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ABSTRACT

Metalorganic chemical vapor deposition (MOCVD) was used to prepare epitaxial
or highly oriented PLT (Pb,,La,TiO,) thin films with x values in the range of 0.21 to
0.34. The growth of PLT films resulted in three-dimensional epitaxial
heterostructures on a (100) surface of both MgO and KTaO, substrates. The PLT film
grown on a KTaO, (100) substrate has a significantly lower minimum channeling
yield compared to that grown on the MgO (100) substrate because of the smaller lattice
mismatch associated with KTaO,. The thickness and refractive indices in the
wavelength range of 435 to 1,523 nm were measured by the prism-coupling method.
The measured film thickness of 570 nm was in good agreement with that obtained
from RBS measurements. The refractive index of the PLT film is smaller than that of

PbTiO,, and its difference at A = 632.8 nm is about 2.5%. The dispersion of the
refractive index was well fitted by a Sellmeier dispersion formula.

INTRODUCTION

Ferroelectric thin films are currently of general interest for fabricating novel
functional devices. The specific ferroelectric Pb,,La, TiO, (PLT) is a transparent
material which results from the addition of La as a chemical modifier to PbTiO,. Itis
well known that PLT thin films have excellent quadratic electro-optic effects and a
linear electro-optic effect for x values of 0.28 and 0.21, respectively'. Because of these
effects, PLT thin films are expected to be useful in the development of various
optoelectronic devices. Applications involving optoelectronic devices based on
optical waveguides require epitaxial PLT films with high transparency, and prior
work on the preparation of PLT thin films has shown that PLT films possessing good
optical properties can be prepared by rf-planar magnetron sputtering’ and rf-
sputtering}.)

In the present work, the MOCVD technique has been applied to the growth of PLT
thin films exhibiting full three-dimensional epitaxial orientation on (100)-oriented
MgO and KTaO, single-crystal substrates. We report here on the substrate
dependence of the growth phenomena and the optical properties of the resulting
epitaxial PLT thin films.




EXPERIMENTAL DETAILS

In all cases, the film deposition was carried out in an inverted vertical, warm-wall reactor
vessel using a resistively heated susceptor. The substrate temperature was measured using a
type-K thermocouple that was embedded in the susceptor about 1.0 mm from the substrate. The
metalorganic precursors employed for each of the components were: tetraethyllead, Pb(CoHs)4;
lanthanum $- diketonate, La(C11H1907)3; and titanium isopropoxide, Ti(OC3H7)4. Argon was
utilized as the carrier gas, and the carrier-gas flow rates were 1000, 140, and 250 sccm for the Ti,
Pb, and La sources, respectively. The temperatures of the Pb and La sources were varied from
9.5 10 11.5°C and 175 to 176.5°C, respectively, and the Ti-source temperature was varied in the
range from 17.5 to 22.0°C. The substrate temperature was fixed at 650°C during the deposition
process, and the reactor pressure was maintained at 70 torr. An oxygen flow of 50 sccm was
used to enhance the pyrolysis process and, more importantly, to eliminate the incorporation of
carbon into the film during growth. The film-growth rates were determined to be in the range of
120 to 250 nm/h by Rutherford Backscattering spectroscopy (RBS).

The crystallographic structure of the as-grown PLT thin films was examined by x-ray
diffraction methods using a Siemens digitized horizontal diffractometer employing both
rotational and rocking capabilities in order to provide statistically correct averaging over the
reciprocal lattice points. The in-plane epitaxial relationships between the film and the substrate
were examined by pole-figure and ¢-scan measurements using a Philips X-Pert Materials
Research Diffractometer. RBS and RBS/channeling experiments were performed in order to
determine the film thickness, composition, and crystallographic perfection. The refractive
indices at different wavelengths were obtained by using a Metricon 2010 prism coupler with
rutile prism.

RESULTS AND DISCUSSION

Figure 1 shows the 8-20 scan from 18 to 50° in 20 for PLT thin films deposited on MgQO
(100) and KTaOs3 (100). For the case of PLT films deposited directly on (100) MgO substrates
without an initial TiO7 layer, a polycrystalline film was grown as shown in Fig. 1(a). However,
by first introducing the titanium isopropoxide for a 20 sec time period in order to grow an initial
TiO2 layer, it was possible to deposit three-dimensionally epitaxial PLT films. In Fig. 1(b), the
only diffraction peaks observed are from the PLT (100) and (200) and from the MgO (200)
planes. This result indicates that the PLT film is oriented with its (100) planes parallel to the
(100)-oriented substrate surface. This observation is consistent with the interface stability of

perovskite films grown on MgO (100) substrates as reported previously3. The lattice parameter
of the PLT film on MgO was determined to be 3.900 A. For the KTaO3 substrate, heteroepitaxy




was achieved without the introduction of TiO» as the initial, intervening layer between the PLT
film and the substrate. Due to the isostructural nature of the KTaO3 substrate and the PLT film
and the good lattice match, the diffraction peaks from the PLT (100) and (200) planes overlap
those from the KTaO3 (100) and (200) planes as shown in Fig. 1(c).
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Fig. 1 0-20 x-ray diffraction patterns from PLT thin films grown on (a) a MgO (100) substrate
without a consideration of the interface stability, (b) a MgO (100) substrate with a
consideration of the interface stability, (c) a KTaO3 (100) substrate.

The nature of the three-dimensional epitaxial relationship between the film and the substrate
was investigated using ¢-scan measurements as shown in Fig. 2 (a), which illustrates 360° ¢-
scans around a small circle through the PLT (220)-and MgO (220) reflections. In Fig. 2 (b),
additional 360° ¢-scans around a small circle through the PLT (111) and MgO (111) reflections
confirm that the PLT (111) and MgO (111) planes are aligned. Figs. 2 (c) and (d) show the ¢-
scans from the (110) and (111) reflections, respectively, of a PLT film grown on a KTaO3 (100)
substrate. Only four peaks with a 90° separation are observed, and these reflections represent
overlapping contributions from the film and isostructural substrate. These results demonstrate
the excellent in-plane epitaxial relationship that is achieved using (100)-oriented KTaO3
substrates.
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Fig. 2 ¢-scan x-ray-diffraction patterns from: (a) the PLT (220) and MgO (220) reflections, (b)
the PLT (111) and MgO (111) reflections, (c) the PLT (110) and KTaO3 (110)
reflections, (d) the PLT (111) and the KTaO3 (111) reflections.




Figures 3 (a) and (b) show the RBS and RBS/channeling spectra for PLT films deposited on
KTaO3 (100) and MgO (100) substrates, respectively. The dotted-dashed line represents the
simulation of the Pbj_xLaxTiO3 spectra with an x value of 0.28 as determined by using the Rump
program#; and the solid line shows the experimental data. The dashed line shows the ion-
channeling results. The minimum channeling yield Y min along the {100] direction were
determined to be 74% and 32% for PLT films on MgO (100) and KTaO3 (100), respectively.
From the equilibrium theories of epitaxy, misfits smaller than about 7% will be accommodated
by uniform elastic strain until a certain film thickness is reached. Above this critical thickness,
strain in the film would be partially relieved by misfit dislocations. In spite of the observation of
three-dimensional epitaxy for PLT films on MgO substrates, the relatively high ¥, value may
be due to the presence of misfit dislocations. Because of the smaller lattice mismatch for PLT
films on (100) KTaO3 substrates, the observation of a significantly smaller minimum
RBS/channeling yield is to be expected.
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Fig. 3 RBS and ion channeling spectrum from (a) a PLT (100) film on KTaO3 (100), (b)
a PLT (100) film on MgO (100) substrates.

In an optical waveguiding system, the important parameters are the refractive index
difference between the film and the substrate, and the thickness of the film. The prism coupler
can be used for observing so-called m lines and from them the mode structure, thickness, and
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Fig. 4. (a) The coupling curve of the He-Ne (632.8 nm) laser beam into a PLT film using the

prism-coupler. (b) The dispersion of the refractive index of the PLT films in the
wavelength range of the 435.8 to 1500 nm. (c) a plot of 1/(n2-1) vs. /A2 .




refractive index of the waveguide can be deduced®. Fig. 4 (a) shows the coupling curve of the
He-Ne (632.8 nm) laser beam into a PLT film using the prism-coupler. The narrow coupling
width is indicative of a smooth film with uniform thickness. At the wavelength of 632.8 nm, the
refractive index of PLT film was determined to be 2.61, while the measured thickness of 570 nm
is in good agreement with that determined by SEM and RBS measurements. The standard
deviations of refractive index and thickness obtained by prism-coupling method were 0.0003 and
3 nm, respectively. The refractive index of the PLT film is smaller than that of PbTiO3 by 2.5
%, and greater than that of PLT film with x of 0.14 grown by rf sputtering by about 6.4 % 2. The
different values for the refractive index may originate from the differences in the lanthanum
amount and possibly different density of the film due to different synthesis techniques. It has
been reported that the refractive index of PLT films grown by rf-planer magnetron sputtering
varied with the Pb content in the film and was in the range of 2.4 - 2.7 at 632.8 nm1.

For the study of the optical dispersion of the PLT film, the refractive index at different
wavelength was measured by changing the wavelength of the light and keeping the coupling
position fixed. Since the number of guiding modes decreases as the wavelength of the light
increases, only one mode was observed when the wavelength was greater than 1000 nm. It was
still possible to determine the refractive indices with one observed mode since the thickness of
the film could be determined by using smaller wavelengths, at which more than two observed
modes exhibited waveguiding. Fig. 4 (b) shows the dispersion of the refractive index of the PLT
films in the wavelength range of the 435.8 to 1,523 nm. This dispersion curve is fairly flat above
600 nm and rises rapidly at shorter wavelengths, showing the typical shape of a dispersion curve
near an electronic interband transition. Generally, the dispersion of the refractive index for many
materials is fitted to the Sellmeier dispersion formula

2
2 _1= 5040 ,
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A

where Ag is an average oscillator position and Sy is an average oscillator strength?. As shown in

(1

Fig. 4 (c), a plot of 1/(n2-1) vs. 1/A2 gives a straight line and fit the Sellmeier dispersion formula
with a single electronic oscillator well. By considering the relationship of Sellmeier-oscillator
parameters to band structure of oxygen-octahedra ferroelectrics, this behavior originates from the
contributions of the oxygen octahedron and an enclosed transition metal ion of titanium, while
lead and lanthanum contribute only to higher conduction bands than those given by titanium ions
with the oxygen octahedra’. Since the slope of the resulting straight line gives 1/S, and the
infinite wavelength intercept gives 1/SgAg2, the values of So and Ag could be determined to be

1.012 x 1014 m-2 and 0.2251 pim, respectively. The average interband-oscillator energy, Eg (=




he/Ag), is calculated to be 5.52 eV. The refractive index dispersion parameter (E¢/Sg), which
depends on the characteristics of the various interband transitions, is found to be 5.5 x 10-14
eV-m2.

CONCLUSIONS

PLT films exhibiting three-dimensional epitaxy have been successfully grown on MgO (100)
and on KTaO; (100) surtaces. The films exhibited a single-phase perovskite structure with (100)
planes parallel to the substrate surface. Due to the smaller lattice mismatch between the film and
substrate in the case of PLT growth on (100) KTaOj3, low RBS/channeling yields were obtained
relative to those determined for PLT films grown on (100) MgO substrates. For the PLT films
grown on MgO (100) substrates, the refractive indices in the wavelength range of 435 to 1,523
nm were measured by a prism coupling method. At the wavelength of 632.8 nm, the refractive
index of PLT film was determined to be 2.61, while the measured thickness of 570 nm is in
good agreement with that determined by SEM and RBS measurements. The dispersion of
refractive index fit well to a single-term Sellmeier relation with an average oscillator strength
(Sp) of 1.012 x 1014 m-2 and an average oscillator position (Ag) of 0.2251 um. The refractive
index dispersion parameter (Ey/Sp) is found to be 5.5 x 10-14 eV-m2.
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