PNNL-11000
uUc-810
Project Technical Information

: i i V-' gl'rn D
G' S I I

Covariance Matrices and Covariance
Components for the Hanford Waste
Vitrification Plant Process

M.F. Bryan
G.F. Piepel
D.B. Simpson

March 1996

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute

%+ Battelle g

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED g5




[N



PNNL-11000
UC-810
Project Technical Information

Methods for Estimation of Covariance Matrices and
Covariance Components for the Hanford Waste
Vitrification Plant Process

M. F. Bryan
G. F. Piepel
D. B. Simpson

March 1996

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352

Reprint of historscal document PHTD-C93-05.01P Rev. 0, dated Sunc 1994, Data, formatting, and other conventions reflect standards at the ongmal date of printing.  Techmcal peer
reviews and editorial reviews may not have been performed.,






DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumesany legal liability or responsibility for the
accuracy, completeness, or.usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or Battelle Memorial Institute. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1836

Printed in the United States of America
Available to DOE and DOE contractors from the
Ofiice of Scientiiic and Technical information, P.O. Box 62, Oak Ridge, TN 37831;
prices available from (615) 576-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

@ The document was printed on recycled paper.







SUMMARY

The high-level waste (HLW) vitrification plant at the Hanford Site was being designed
to immobilize transuranic and high-level radioactive waste in borosilicate glass. Each batch
of plant feed material must meet certain requirements related to plant performance, and the
resulting glass must meet requirements imposed by the Waste Acceptance Product
Specifications (WAPS; DOE, 1993). Properties of a process batch and the resulting glass are ,
largely determined by the composition of the feed material. Empirical models are being

developed to estimate some property values from data on feed composition.

Methods for checking and documenting cogpliance with feed and glass requirements
must account for various types of uncértainties. This d;)cument focuses on the estimation,
‘manipulation, and consequences of composition uncertainty, i.., the uncertainty inherent in
estimates of feed or glass composition. Three components of composition uncertainty will
play a role in estimating and checking feed and glass properties: batch-to-batch variability,
within-batch uncertainty, and analytical uncertainty. In this document, composition
uncertainty and its components are treated in terms of variances and variance components for
univariate situations, covariance matrices and covariance components for multivariate
situations. The importance of variance and covariance components stems from their crucial
role in properly estimating uncertainty in values calculated from a set of ‘observations on a

process batch.

Two general types of methods for estimating uncertainty are discussed: 1) methods
based on data, and 2) methods based on knowledge, assumptions, and opinions about the
vitrification process. Data-based methods for estimating variances and covariance matrices
are well known. Several types of data-based methods exist for estimation of variance
components; those based on the statistical method analysis of variance are discussed, as are
the strengths and weaknesses of this approach. Alternative approaches are mentioned briefly.
Methods for estimating covariance components are based on methods for estimating variance

components.
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Estimating uncertainty from process knowledge may be necessary when data are
scarce or lacking entirely. A Monte Carlo procedure for this type of uncertainty estimation is
illustrated for a hypothetical analytical process; a hypothetical analytical covariance matrix is
developed for use in later studies. Measures of strength of belief in simulated uncertainty
estimates are required to update or combine these estimates with incoming information; an

approach to assigning such measures is developed.

Proper estimation of the uncertainties required for testing process/product
specifications requires the combination of various components of uncertainty. Satterthwaite’s
method for combining components of uncertainty and for assessing the precision of the

overall uncertainty estimate is recommended.

Several batch and glass properties will be est-imated from empirical models based on
feed composition. Overall uncertainty in estimated property values derives both from
uncertainty- in estimated feed composition and from uncertainty in model coefficients. A
general method for collapsing multivariate composition and model uncertainties into
univariate uncertainties for property values is described. Applying this method with the
hyppthetical analytical covariance matrix indicates that analytical uncertainty can be expected
to produce a relative standard deviation between 3.5% and 8% in estimated property values.
An alternative method for assessing the contribution of compositi;n uncertainty to overall

uncertainty is discussed.

A method for calculating the sample size required for estimation of univariate
uncertainty (with specified precision and confidence) is developed. The problem of
simultaneous inference arises in estimation of multivariate uncertainties. Simulation studies
indicate that large sample sizes are required to produce good estimates of covariance matrices,
but that covariance matrices estimated from relatively small samples, when propagated
through property models, produce reasonably stable estimates of univariate uncertainty in
modelled properties. It is recommended that estimates of composition covariance matrices be

based on at least 20 observations.
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Data on composition uncertainty will accumulate during vitrification operations. All
available information (from preceding batches, as well as from the current batch) should be
taken into account, so a method for comblmng previous estimates with current data is
desirable. Several alternatives are discussed, and a univariate Bayesian approach to updating

estimates of uncertainty is described in detail.

The compositional nature of the data involved in the HLW vitrification process creates
difficulties in development and testing of statistical algorithms. Several related topics are
addressed. Finally, applications of the work described in this document and suggestions for

future work are presented,







GLOSSARY

Acceptable--A batch or composition for which all applicable requirements will be met (with
some degree of statistical confidence, as discussed in the body of the document).

Analytical uncertainty--Uncertainty among analytical results from the same sample. This is a
composite form of uncertainty, made up of variability induced during sample preparation and
the inherent error of the measurement process itself.

Batch--A discrete quantity of material (waste, frit, recycle, or a combination of the three) to
be processed by the Hanford high-level waste (HLW) vitrification plant.

Batch-to-batch variability--Heterogeneity between batches made from the same waste type.

Bias--Consistent departures of measured or estimated quantities from the true value (see also
error). ©

Components of covariance--Covariance matrices representing hierarchical levels of
uncertainty for multivariate data.

Components of variance--Variances representing hierarchical levels of uncertainty in
univariate data.

Composition—-The proportions of each chemical species in a batch of material to be processed
by the HLW vitrification plant; usually expressed as mass fractions of nine major oxides
(Si0,, B,0;, Na,0, Li,O, Ca0, MgO, Fe,0,, Al,0,, ZrO,) and a catchall tenth category,
"Others.” In some cases, individual species normally included in Others may be segregated.

Composition unéertaintv--Uncertainty in measured or estimated quantities stemming from
variability in material and/or sampling and analytical error. :

Compositional data--A type of multivariate data in which thé numerical values in each datum
are the proportions (or percentages) of the individual components of the material or
characteristic being represented by the datum. From their nature as proportions (percentages),
these numerical values must lie between 0 and 1 (0 and 100%), inclusive, and they must sum
to 1 (100%).

Confidence--A measure of the long-run performance of a statistical procedure, expressed as
the probability that the procedure produces the advertised result. For example, the procedure
for producing a 95% confidence interval for the mean of a population has a 95% chance of
producing an interval that traps the mean. Note that confidence pertains to the procedure and
not to any particular result.
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Confidence interval--A type of statistical interval designed to trap, with specified confidence,
a single fixed true value, such as the mean of a random variable.

Correlation--A standardized covariance which must lie between -1 and 1, correlation is
computed by dividing the covariance between two random variables by the product of the
standard deviations of the two variables.

Correlation matrix--A standardized representation.of the interrelationships between individual
quantities that make up a multivariate datum, the correlation matrix is a symmetric matrix
with 1’s on the diagonal and the pairwise correlations in the off-diagonal positions.

Covariance--A measure of the tendency of two random quantities to vary together, covariance
is defined as the expected value of the product of the deviations of the two random quantities
from their respective means, i.e., Covariance(X,Y) = E(X - u)(Y - py). Positive covariance
indicates that the two quantities tend to increase ot decrease together. Negative covariance
indicates that one quantity tends to increase while the other decreases (or vice versa).
Covariance can be estimated from a sample of n pairs (X,,Y), i = 1, ..., n, with the formula

covtz, ) = L3 (%, (x,-)

i=1

Covariance components--See components of covariance.

Covariance matrix--A representation of the uncertainties and interrelationships between
individual quantities that make up a multivariate datum, the covariance matrix is a symmetric
matrix with the variances of the individnal quantities on the diagonal and the pairwise
covariances in the off-diagonal positions.

E()--See expected value.

Error--The random deviation of a measured or estimated quantity from the true value, related
to the imperfection of the sampling or analytical procedure.

Expectation--See expected value.

Expected value--The average value of a random quantity; in general, given a function, h(X), -
of a random variable X, the expected value (or expectation) of h(X) is defined as

E(h(X)) = | h(x) dF(x) .

Feed--Though technically referring to material after processing in the Slurry Mix Evaporator,
feed or feed material will here be used as a generic term to refer to any material being
processed in the HLW vitrification plant, upstream of the melter itself (see also melf).
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Long-term variability--Heterogeneity in material over waste types.

Mean--A statistical measure of the average or central tendency of a random quantity; the
mean, 1, of a random variable X is 51mply the expected value of X, i.e., 1 = E(X). The mean

can be estimated from a sample, X, i = 1, ..., n, with the formula .
— 1 n
X.=2) X

Melt--Material being processed by the HLW vitrification plant in the melter or before it has
cooled and solidified into glass. Before reaching the melter, this material will be referred to
as feed.

Model uncertainty--Uncertainty in an estimated property value stemming from imperfection of
the model used to relate feed composition to the property.

Modelled properties--Properties of-feed, melt, or glass for which statistical models are bema
developed to relate feed composition to the property values.

Moments--The expected values of powers of a random variable, X. The first moment, E(X),
is the mean, u. Central moments are expected values of powers of the difference between X
and its mean; the second central moment, E(X-p)? is the variance.

Multiple-batch requirement or constraint--A requirement or constraint imposed over a set of
batches to be processed by the HLW vitrification plant; e.g., a property for which the
requirement is imposed on an entire waste type, rather than on the individual batches
constituting the waste type. See also single-batch requirement or constraint.

Relative standard deviation--The ratio of the standard deviation to the mean; estimated by
S/X. '

S--See standard deviation.

S%--See variance.

Sampling uncertainty--See within-batch uncertainty.

Single-batch requirement or constraint--A requirement or constraint imposed on each
individual batch to be processed by the HLW vitrification plant, with no reference to the
characteristics of preceding or succeeding batches. See also multiple-batch requirement or
constraint.
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Standard deviation--Defined as the square root of the variance, the standard deviation is a
measure of uncertainty on the same scale as the original quantity. Roughly, the standard
deviation is the average distance of an observed value from the mean.

Uncertainty--A general term used to refer to any-of several mieasures of the random behavior
of some quantity; for example, see composition uncertainty, model uncertainty, variability,
and error.

Variability--Uncertainty related to heterogeneity. in material under examination; for example,
see batch-to-batch variability.

Variance—A statistical measure of the random behavior of some quantity, variance is defined
as the expected value of the squared deviation of a random variable, X, from its mean, 1, i.e.,
Variance(X) = E(X - p)®. Variance can be estimated from a sample, X;, i = 1, ..., n, with the
formula ‘

i=1

st = L 3 (x,x)
-;:Iz(ix)

Variance components--See components of variance.

Variance-covariance matrix--See covariance matrix.

WAPS properties and requirements--Properties of and requirements on glass produced by the
HLW vitrification plant, as detailed in the Waste Acceptance Product Specifications (WAPS;
DOE, 1993). These properties and requirements are related to the performance of the glass in
the repository. '

Waste type--A relatively homogeneous stream of waste to be processed by the HLW -
vitrification plant. Several to many batches will be made from a single waste stream.

Within-batch uncertainty--Uncertainty among samples from the same process batch; this is a
composite form of uncertainty, made up of-variability (heterogeneity) in the process batch and
the inherent error of the sampling process itself.

X--See mean.
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ACRONYMS
ANOVA--Analysis of Variance
CVS--Composition Variability Study
DWPF--Defense Waste Processing Facility
HLW--High-Level Waste
IID--Independent and identically distributed
MEM--Measurement Error Model -

PCC--The algorithms to be used by the HLW vitrification plant for product composition
control ‘ ) .

PCT--Product Consistency Test

PVTD--Pacific Northwest Laboratory (PNL) Vitrification Technology Development
PPMD--Process/Product Model Development ‘

RSD--Relative standard deviation

WAPS--Waste Acceptance Product Specifications
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1.0 INTRODUCTION

The high-level waste (HLW) vitrification plant at the Hanford Site was being designed
to immobilize transuranic and high-level radioactive waste in borosilicate glass. Each batch
of plant feed material must meet certain requirements related to plant performance, and the
resulting glass must meet requirements imposed by the Waste Acceptance Product
Specifications (WAPS; DOE, 1993). Attributes® of a process batch and the resulting glass
are largely determined by the composition of the feed material. Accordingly, methods for
controlling feed composition and for checking and documenting product quaiity must be

developed.

Similar vitrification operations will be performed in the Defense Waste Processing
Facility (DWPF) at the Savannah River Site. DWPF has developed a Product Composition
Control System for controlling feed composition and for checking and documenting product
quality (Postles and Brown, 1991; WSRC, 1993). The HWVP Project Waste Form
Qualification Program Plan (Randklev, 1993) calls for the development of a product
composition control-type system to perform these functions for the Hanford HLW vitrification
plant. No name for the Hanford product composition control system has yet been generally
agreed upon. PCC (from product composition control) is used here to refer to the system

under development for the Hanford HLW vitrification plant.

Control of HLW vitrification operations and product quality will be achieved using a
series of mathematical/statistical algorithms. A major objecfive of th;a Process/Product Model
Development (PPMD) cost account of tiie Pacific Northwest Laboratory Vitriﬁca;tion
Technology Development (PVTD) Projeét is the development of algorithms for a PCC
system. These algorithms are discussed in more detail by Bryan and Piepel (1993). For each

(a) Established usage reserves the word property for characteristics of the melt and glass~
(which will usually be estimated via models based on feed composition), but
requirements and constraints will also be imposed on feed composition (oxide mass
fractions and functions thereof). To avoid confusion, the word attribute will be used
to refer to any characteristic upon which a requirement or constraint is imposed and
for which, therefore, an uncertainty estimate is required.
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process batch, the algorithms will: 1) choose a target feed composition, 2) estimate the actual
feed composition by reconciling various.process measurements, 3) use the estimated feed
composition to estimate, check, and document various batch and product characteristics, and

-4) recommend remediation strategies for process batches that do not meet requirements.

Remediation options are limited once material reaches the melter. Since feed
composition largely determines batch and glass properties, these relationships will be
exploited to ensure acceptable batch and glass properties and to perform any required
remediation before material enters the melter. Development of empirical médels relating feed
composition to important properties is one objective of the ongoing Composition Variability.
Study (CVS; Hrma, Piepel, et al., 1992, 1994). The PCC algorithms will use these models to

estimate batch and glass properties as functions of feed composition.

Composition uncertainty® must be taken into account when estimating and checking
“any batch or glass attribute. Composition uncertainty is the uncertainty inherent in estimates
of feed composition. This type of ﬁncertainty may stem from heterogeneity in material,
imperfection of measurement processes, or both. The various categories and sources of
composition uncertainty are discussed in detail by Bfyan and Piepel (1994); highlights of that
discussion are presented here. Three components of composition uncertainty will play a role
in estimating and checking batch and glass attributes:
. Batch-to-batch variability -- Heterogeneity between process batches made from

. the same waste type and frit batch. This type of heterogeneity might also be
called between-batch variability or within-waste type variability.

. Within-batch uncertainty — A combination of heterogeneity within a single
process batch and any imperfections in the sampling process. This type of
uncertainty might also be called sampling uncertainty. '

(a) Composition uncertainty might also be called data uncertainty, since it exists to some
degree in virtually any process used to collect data. However, the main type of data
to be used in HLW vitrification process/product control will be compositional data, so
the more specific term is used here. The methods discussed in this document for
composition uncertainty will also be used to account for uncertainties in other
measured quantities. For example, in at least one of the algorithms, tank level
measurements, which are unrelated to composition, will be used.
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. Analvytical uncertainty - A combination of heterogeneity within a sample,
variability induced during sample preparation, and any imperfections in the
analytical process.

When estimating and checking modelled properties, model uncertainty also must be
taken into account. Model uncertainty is the uncertainty that derives from the use of
empirical models (i.e., models fitted to data). Estimating this type of uncertainty is another
objective of the CVS and therefore is not discussed in this document. The role and use of
model uncertainty in comparing property values to requirements is discussed in some detail

by Bryan and Piepel (1994).

The original scope of the work reported in this document included estimating various
uncertainties based on data obtained from DWPF. However, these data were not available in
time to be incorporated here. Therefore, this work concentrated on identifying, implementing,
and testing methods for estimating uncertainties, on manipulating uncertainty es.timaies, and
on the effects of sample size on precision of estimation. In order to address all these issues,
some uncertainty estimates were needed, so a method for using process knowledge to estimate
uncertainties was developed and implemented, and data from previous studies at the Pacific
Northwest Laboratory were used. The major topics covered by this document are

. estimating univariate and multivariate composition uncertainties and
components thereof (Sections 3 and 4);

. constructing estimates of composition uncertainty from knowledge of the
sampling and analytical process (Section 5);

. combining components of uncertainty and measuring the quality of the
resulting estimate (Section 6);

. methods for and results from propagating composition uncertainty through
empirical property models to yield estimates of the contribution of composition
uncertainty (and components thereof) to uncertainty in estimated property
values (Section 7);

. sample sizes required for estimating composition uncertainty and its
components (Section 8); and

. updatin;gr estimates of uncertainty-(Section 9).
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Section 2 presents statistical concepts and notation that are required in the rest of the
document. Miscellaneous topics are covered in Section 10. Applications and suggestions for

future work are presented in Section 11.
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2.0 STATISTICAL PRELIMINARIES

For precision and brevity in much of what follows, it is necessary to employ some
statistical terminology and notation. This section introduces the required terminology and
notation; however, a full exposition and explanation of this material is beyond the scope of
this document. Fuller coverage of this material is available in most texts on probability and
mathematical statistics (e.g., Lindgren, 1976). This document also uses the concepts and
notation o.f linear algebra, vectors, and matrices. Some of these concepts and notation are
defined below; fuller coverage of this material can be found in books on linear algebra (e.g,

Searle, 1982).

Statistics is the art and science of making decisions in the face of uncertainty.
Accordingly, a major task of statistics is the modelling and characterization of uncertainty.
The most common statistical method of modelling uncertainty employs the concept of a
random variable. Intuitively, a random variable is a quantity that cannot be measured exactly
(either because its value is not fixed or because the measurement process is imperfect).
Therefore, the behavior of a random variable is described in terms of the probability that the
true value of the random variable exists in some set of possible values. Random variables are
often denoted by capital letters, e.g., X, while individual values or realizations of a random
variable are often denoted by lower case letters, with a subscript to indicate which
observation is being represented. For example, n observations of the random variable X ‘
might be denoted x,, X, ..., X,, OF, equivalently, x;, i = 1, ..., n. A group of n observations

may also be represented by a vector, X.

Two basic types of random variables exist. A discrete random variable is one for
which the number of possible values is finite or countably infinite. In many cases, discrete
random variables are counts of the number of occurrences of certain events. For example, the
number of defective items produced by a manufacturing process can range from zero to the
number of items produced. A continuous rana.’om variable is one for which the number of
possible values is uncountably infinite. In many cases, continuous random variables take on

‘values in an interval of possible values. For example, the value of many measured




characteristics (length, weight, concentration, viscosity) must lie between some more or less
well known lower and upper bounds, but, at least theoretically, the individual measurements
may take on any value in the interval. Although many of the concepts discussed below apply -
to both discrete and continuous random variables, most of the quantities involved in HLW
vitrification process/product control are best modelled by continuous random variables;

therefore, this presentation focuses on continuous random variables.

2.1 DISTRIBUTION AND DENSITY FUNCTIONS

Two mathematical functions are useful in describing the behavior of a (continuous)
random variable: the distribution (or distribution function), and the density (6r density
function). To each random variable X, there corresponds a distribution function, F(x) =
Pr{XSx}(“), the probability that the random variable X is less than or equal to the fixed
value X. As a functfon, F(-) is monotonic and nondecreasing. Since for each fixed x, F(x) is

a probability, F(x) must lie in the interval [0,1].

The density function, f(x), exists for most of the common statistical distributions. .
When it exists, the density function is simply the first derivative of the distribution function,
i.e., f(x) = F’(x). The density function characterizes the local behavior of the random

variable. By its nature, f(x) 2 0 for all x, and

f:f(x)dx =1.

In order to achieve this unit integral, a density function incorporates a normalizing constant

(usually a function of the parameters of the distribution, ‘which are discussed below).

Many families of random variables (and the corresponding distributions and deqsities)
have been found useful in statistical applications. For example, the most commonly
encountered family of statistical. distributions is the family of normal (or Gaussian)
distributions. The density function for a normally-distributed random variable X is

(a) The symbol "=" should be read as "is defined to be equal to."
6
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(1 and ¢? are the parameters of the normal distribution and are discussed further below).

Another important family of random variables is the gamma family. The density

function for a random variable X that follows a gamma distribution is

1

T (o) B

f(x) = x*te L, 3(x)

where o and [3 are the parameters of the gamma distribution (discussed below) and I, (x) is
zero if x £ 0 and one otherwise (indicating that a gamma random variable takes on only

positive values).

The members of a family of random variables are distinguished by the values of the
associated parameters. The parameters of a random variable appear in the density function
and are often denoted by lower-case Greek letters. For example, the parameters of the normal
density given above are p and ¢, while the parameters of the gamma density given above are
o and B. Often, the dependence of the behavior of a random variable on the associated
parameters is shown by a slight modification of notation: for example, the density of a
random variable following a normal distribution with parameters p and ¢* may be denoted

f(xly,6%), and the density of a gamma distribution with parameters o and § may be denoted
f(xlo,B).

A common statistical shorthand for the phrase "the random variable X follows a
normal distribution with parameters p and ¢*" is "X ~ N(u,6%)." The shorthand for "the

random variable X follows a gamma distribution with parameters o and $" is "X ~ I'(ct,(3)."

An important special case of the gamma distribution is the chi-square distribution.
This distribution has a single parameter, f, known as the degrees of freedom. A chi-square
distribution with f degrees of freedom [%*(f)] is simply a gamma distribution with parameters,

f/2 and 2, i.e., the I'(f/2,2) distribution.



2.2 MEAN AND VARIANCE

The expectation of a function, h(X), of the random variable X is defined as:

 E(h(X)) sf”h(x)dmx) '=f_:mx>f<x)dx

(the last expression makes sense only if the density function exists). Several such functions

are important enough to warrant specific names. The mean of a random variable X is defined

as:

L, = E(X) = “x dF(x) .

The mean of a random variable is a measure of the central value (or central tendency) of the
random variable. The most common measures of dispersidn about this central value are the

variance:

0% = E(X-L,)? = ﬁ;(x—ux)z dF (%)

and the closely related standard deviation:

(When the meaning is clear from context, the subscripts on i, oy’, and ¢, may be omitted.)
Due to the simple relationship between variance and staridard deviation, much of the
discussion (though not, of course, the equations) in this document could be framed in terms of

either quantity, and shifts between variance and standard deviation go unremarked henceforth.

The mean and variance are examples of moments of a distribution. Moments are
simply expectations of powers of the random variable (often centered by subtracting the
mean). The moments of a distribution convey information on the location and shape of the
distribution and hence on the behavior of the random variable. The first moment of a

distribution is the mean and, as mentioned above, is a measure of the central value (location)



of the distribution. The second (central) moment is the variance and hence is a measure of
the spread (scale) of the distribution. The third moment measures the skewness of the
distribution, and the fourth moment measures kurtosis (how "heavy-tailed" and peaked the
distribution is).

The moments of a distribution are not usually the parameters of the distribution. The
exception is the normal distribution, for which the parameters p and ¢° are indeed the mean
and variance, respectively. The mean and variance of many'distributions are simple functions
of the parameters. For example, the mean and variance of a I'(cl,) distribution are o.ff and
af?, respect;ively; the mean and variance of a chi-square distribution with f degrees of

freedom are f and 2f, respectively.

In some cases, it is useful to specify only the mean and variance of a random variable,
without ascribing to it a distributional form (such as normal or gamma). In this case, an
adaptation of the shorthand above is employed — "X ~ (1,6%)" means that X is a random

variable with mean p and variance ¢°. -

2.3 MULTIVARIATE DATA, COVARIANCE., AND CORRELATION

_ The discussion of random variables above concentrated on the univariate situation, i.e.,
the modelling of a single quantity (even though many measurements or observations of that
quantity may be available). However, in many situations (including much of the material
discussed in this document), the simultaneous behavior of several different quantities is of
interest. This is the multivariate situation. ‘The obvious exar_np'le here is the composition of a
vitrification process batch. For use in melt/glass proper%jl models, batch composition is
usually expressed as mass fractions (proportions or percentages) of nine individual oxides
(Si0,, B,0,, Na,0, Li,0, Ca0O, MgO, Fe,0,, A1203, Zr0,) and a catchall tenth category,
"Others.” Since these mass fractions must sum to one, they are obviously not independent of

one another; hence their simultaneous behavior is of interest.

In multivariate statistics, subscripts are used to distinguish between different random

variables. For example, the 10 components of a vitrification process batch can be denoted by



X,» X5, oy X0 Individual observations of a single random variable are usually indicated by a

second subscript; for example, X; is the j-th observation of the i-th random variable.

Most of the standard univariate distributions and densities have multivariate
generalizations. When modelling several random variables simultaneously, joint distributions
and joint densities, which are functions that model the simultaneous probabilistic behavior of
the variables, must be considered. In addition, when examining the effects of one variable on
another, marginal distributions and marginal densities, which model the probabilistic beha'vior
of one or more variables given the values of other variables, become important. The notation
can get quite complex, so, rather than attempting a general treatment, notation is introduced

below only as necessary.

In multivariate statistics, the tendency of several quantities to vary together ("co-vary")
is of interest. The statistical covariance between two random variables X; and X; is defined
as:

0;; = E(X;-1;) (X-1y)

where the expectation is taken with respect to the joint distribution of X; and X, (ie., this is a
double integral). Whereas the variance of a random variable must be nonnegative (by '
definition), the covariance between two random variables can be positive, negative, or zero.
Positive covariance indicates that the two variables tend to vary together; i.e., if one is large
(relative to its mean), the other tends also to be large, and if one is small, the other tends to
be small. (The repetitive use of the word "tend" is necessitated by the probabilistic nature of
the behavior of random variables.) - Negative covariance indicates that the two variables tend
to vary "in opposite directions;" i.e., if one is large (relative to its mean), the other tends to be
small (relative to its mean), and vice versa. Zero covariance indicates that the behavior of

one variable does not affect the behavior of the other.®

(a) This is not strictly true. Statistical covariance is actually a measure of linear
covariance, so a strongly curved relation between two random variables is not
necessarily reflected in the standard definition of covariance. It is in fact possible to
construct two random variables with zero covariance, even though one is an exact
function of the other.

10



Covariances are not scale-invariant, and their magnitudes are affected by the variances
of the random variables involved. These characteristics complicate interpretation and

comparison of covariances. Statistical correlation is essentially-a standardized, unitless

covariance. The correlation between X; and X; is defined as:

G,
= 17
pij = .

i}

Correlations must lie in the interval [-1,1]. Interpretation of the sign of a correlation is
similar to that for a covariance. In addition, the closer the correlation is to 1 (or -1), the
nearer the relationship between the two variables is to perfect linearity. The correlation
between two random variables is zero if and only the covariance between these two variables
is zero. Two variables that have.zero correlation (covariance) are said to be uricorrglated; if
the correlation (covariance) is non-zero, the two variables are said to be correlated.

Correlated observations are not independent.

Matrix notation is quite useful in multivariate statistics. In this document, matrices are
denoted by upper case letters (e.g., Z or S), and symbols for vectors are underlined (e.g., W.
The random vector, X, is a vector of random variables, X, i = 1, ..., p. The associated mean
vector (the vector of means of the individual random variables) is denoted by yu. A
convenient method for summarizing the variances and pairwise covariances of the elements of
the random vector X is _the variance-covariance matrix (for brevity, called the covariance

matrix below):

Gi C:; O3 =~ ©
°FF 0-% Ou Oy
Z = O3 O3z o3 = © -

Gpl sz GpJ con
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The covariance matrix contains the variances of the individual random variablé€s in the
diagonal positions and the pairwise covariances in the off-diagonal positions. As a
consequence of the definition of cdvariance, the covariance matrix is symmetric (i.e., G; =
o). If the underlying random vector has p elements, the covariance matrix has p rows and p

columns; i.e., its dimension is p x p.

Correlations can also be represented in matrix form; the correlation matrix is defined

1 P12 ,_p13 plp
Par 1 Poy = Pyp
P = p:;} P3z 1 - P3p

_ppl ppz ppJ ’1

The diagonal elements of a correlation matrix are always one (since, by definition, the
correlation of a random variable with itself is one); the pairwise correlations appear in the off-

diagonal positions. Like the covariance matrix, the correlation matrix is symmetric (p; = p;)-

Multivariate generalizations of many common statistical distributions exist. The
notation used to specify the (joint) distribution associated with a random vector X parallels
that used for a univariate random variable. For example, "X ~ MVN(y,X)" indicates that the
random vector X follows a multivariate normal distribution with parameters u and Z. "X ~
(4,X)" indicates that X follows a (multivariate) distribution with mean vector u and covariance

matrix X.

2.4 ESTIMATING POPULATION PARAMETERS WITH SAMPLE STATISTICS

Up to this point, various statistical distributions, parameters, and other theoretical -
constructs used to model the behavior of random variables have been defined and discussed.

In much of statistics, such models for some population (real or abstract) of items are

12



postulated or hypothesized, and information is collected about a sample drawn from this
population. The objectives of this activity include checking the models, estimating
parameters, and drawing inferences about the population, based on the sample. Estimatioﬂ
often involves calculating sample analogues to population parameters, moments, and other
characteristics. Some of these estimation procedures, and the associated notation, are

discussed below.

The usual assumption about a sample is that it is drawn at random from- the
underlying population. The technical definition of a random sample is somewhat involved,
but essentially a random sample is one in which each item in the population has an equal
chance of being selected. A related concept is that of independent and identically distributed
(IID) observations. Given a sample of size n, x;, i = 1, ..., n,' the assumption might be that
each x; is a realization of a éinglé random variable X, or, equivalently, that the distribution of
X; is the same for all i. This is the concept of identically distributed observations. The
concept of independence is essentially that the value of X is unaffected by the values of any
of the other X;’s (j #i). The statistical shorthand used to describe this situation is "X, i = I,
.., 1 ~ IID D(p)," where D is the assumed distribution and p is the vector of parameters of D.
One link between random sampling and ITD observations is this: if D(p) is the statistical
distribution for a given population, and X;, i = 1‘, ..., 0, is a random sample from the

population, thex{ X,i=1, .., n~1ID D).

Assume that a random sample of size n is available from a population with mean u
and variance 6% ie., X;,i=1, .., n, ~ ID (p,qz). The sample-based estimate of the

population mean, |, is the sample mean:

The sample-based estimate of the population variance, %, is the sample variance:

2 1 = _=\2 1
SX—E'—TZ(Xi x)° . (1)

2=l
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The sample-based estimate of the population standard deviation, G, is the sample standard

deviation:

— 2
S, =\ sk

The sample mean, X, is a point estimator of the population mean, p. In many
sitnations, both a point estimate of the population mean and some idea of the quality of this

estimate are required. To address this issue, it must be recognized that the sample mean isa

random variable, since it is a function of the random variables X;, i = 1, ..., n. Therefore, the
sample mean has an associated mean and variance. It can be shown that the sample mean is
unbiased, i.e., that E(X) = j, so the question of the quality of the sample mean as an
estimator of the population mean comes down to the uncertainty in the sample mean. This
uncertainty is measured by the standard deviation (or the variance) of X. In a wide range of

cases, the standard deviation of X is well estimated by

s
— X
S}-{'—._..

Vyn

This quantity, also known the standard error™® of the mean, is used to construct confidence

intervals for the population mean.

The preceding discussion of the standard error of the mean is not, in and .of itself, of
great importance for the purposes of this document. However, it is included as a concrete
illustration of the concept that statistical estimators, §uch-as the sample mean, variance, and
standard deviation, are random variables and thus have associated uncertainty. This
uncertainty must be quantiﬁec} in order to judge the quality of the estimators and to draw
inferences about true (population) values. The PCC algorithms must deal with uncertainties

in statistical estimators, as well as with uncertainties in data.

(a) The term "standard error” is often used to refer to the standard deviation of an
estimator, as opposed to the standard deviation associated with individual observations.

14



In the multivariate case, each observation is a vector (rather than a single number).
For example, if interest focuses on p characteristics of each item and n items are examined,
the data comprise n vectors, each of length p. Denote the observed value for the j-th
characteristic of the i-th item as x;;, where j = 1, ..., p, and i = 1, ..., n, and assume that the
observations are IID. The sample-based estimate of the population covariance between
characteristics j and k, Gy, is the sample covariance:
6., =8, = 1 i(x..—f.)(x. -f) . (2)
Jk Jjk 'F'Iisl ij 3 ik k,

where X; and X, are the sample means of the j-th and k-th characteristics, respectively. The

sample-based estimate of the population covariance matrix, %, is the sample covariance

matrix:
S1 Sz Si3 ™ Sy
2
Sa S2 Sy Syp L& .
= 2 = __— ) {x -}?)(x -}?) (3)

S = sy S, S S3p -1 4 (—i =/ =/
s s?
| p1 Sp2 Sp.? D J

where x; is the i-th observation (a column vector containing the observed values of the p
characteristics for the i-th item), X is the column vector containing the sample means for the p
characteristics), and the superscript "T" indicates vector transpose. Since there are p
characteristics, the sample covariance matrix is a p X p matrix, and, like the population
covariance matrix, it is symmetric. The elements of the sample covariance matrix may be
computed individually [using the formula for single sample covariances given in Equation
(2)], or the whole matrix may be computed using the vector formula given in Equation (3) --

these methods are equivalent (unless there are missing data).




The sample-based estimate of the population correlation between characteristics i and

j» Py is the sample correlation:

Sij

O»
1}
H
1}

ij i 2.2
S;Sy

The sample-based estimate of the population correlation matrix, P, is the p x p symmetric
sample correlation matrix:

1 ry, ry; - 5,
I 1 Iy = I

R=ry; Iy, 1 = 1

_':rpl rpz er w1

2.5 PROPERTY MODEL NOTATION

Finally, some knowledge of the property models under development by CVS is
reduired in the discussions of estimating and propagating composition uncertainty. The
property models being developed by CVS are second-order mixture models, the general form
of which is

10 9 10
o, = 2;1;1.,3:1. + lebikaixj , (4)
1= i=l j>i

where ¢, is the k-th melt/glass property (or, in some .cases, a simple mathematical
transformation thereof), the x; and x; are the mass fractions of the i-th and j-th oxides, and the
by and by, are the coefficients of the relation between the oxide mass fractions and ¢, (to be
estimated from the CVS database). The oxide mass fractions used in a mixture model must

sum to 1, that is,



10
le.=l.

1=1

Several of the models developed by CVS are first-order, meaning that, for some properties
(k), b, = 0 for all i and j. The form of a first-order model is

10
¢k=Zbu?<i . . (5)

i=1

Both the first-order model and the second-order model can be written in the form:

¢, = X"b (6)

= = !

where x is the vector contéining the oxide mass fractions (and cross-products thereof, if the
model is second-order), and b, is the vector of estimated coefficients relating these
composition data to the k-th property. Such models are linear in the estimated coefficients,

b,. First-order models are also linear in the data, x.
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3.0 ESTIMATING UNIVARJATE UNCERTAINTY

As mentioned in Section 2.2, the variance (or standard deviation) of a random variable
is a measure of the spread of the distribution of the random variable about its mean. The
amount of information conveyed by observations of the random variable is inversely
proportional to the variance; i.e., an observation of a random variable with a large variance is
less informative than an observation of a random variable with smaller variance. This should
be clear from the limiting case: if the var%ance is zero, the random variable is actually
constant, and a single observation conveys all information about the random variable. Thus,
variance is a measure of uncertainty. Throughout this document, uncertainty is operationally
defined as the variance(s) [or standérd deviation(s)] and,'in_ some cases, the covariance(s), of
one or more random variables. Thus, estimation and inanipulation of uncertainty is discussed
here in terms of estimation and manipulation of variances (standard deviations), covariances,

and covariance matrices.

3.1 VARIANCES AND VARIANCE COMPONENTS

The simplest approach to estimating the variance of a single random variable X [where
X ~ (u,0%)] is to obtain n IID observations of X (e.g.,' a random sample from the population)
and to use sy* [Equation (i) of Section 2.4] as an estimate of ¢°. The estimated variance can
then be used for a variety of activities, including testing hypotheses and constructing

confidence intervals for p.

This simple case can be formulated differeritly without changing the essential nature of

the problem:

Yi=1n+¢g;,

where i = 1, ..., n, and g ~ (0,0%). In this case, Y; ~ IID (1,6%), so estimation and testing

.

proceeds just as in the previous formulation.
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An observed or measured quantity may be subject to several separate sources of

uncertainty. ‘For example, consider the mode @,

Ve =B * 0y + By + €5 R (7)

where o; ~ (0,6,0), By ~ (0,052, €4 ~ (0,6%), and all the random variables are uncorrelated.
The underlying quantities o, By, and & are often called random effects. Since the random

effects are assumed to be uncorrelated, the uncertainty in each Y is simply

=0+ h+ ot

The quantities &%, 65°, and ¢* (and estimates of these quantities) are known as variance
components (or components of variance). Observations that share o; (or.¢; and [3;) are

correlated and hence are not independent. (The form of the covariance is given below.)

Equation (7) is an example of a two-way nested random model (Searle et al., 1992).
The term "nested” is applied because the random effects are hierarchical; for example,
uncertainty exists among analyses within a single sample, among samples within a single
batch; and among batches within a waste type. Each observed, measured, or estimated
attribute value includes uncertainty introduced at each level of this hierarchy. The uncertainty
at each level in this hierarchy can be represented by a variance. These hierarchical -

representations of uncertainty are the variance components.

Equation (7) is, in fact, an appropriate statistical model for observations of all

attributes (oxide mass fractions, modelled properties, etc.) of material involved in the HLW

(a) The models discussed in this and following sections are examples of linear models.
Linear models are important in a wide variety of statistical disciplines and
methodologies, including the analysis of variance, regression, experimental design,
variance components, and multivariate statistics. For an introduction to general linear
models and their wide applicability, see Searle (1971) or Graybill (1976). In linear
models, it is common to use some lower-case Greek letters (e.g., @, B, €) to represent
random variables (or random effects) that contribute to the variability in an observed
value, while other lower-case Greek letters (e.g., L, o?) are used to represent
parameters of the distributions of these and other random variables.
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vitrification process.” In this case, Yy, is an observation, measurement, or estimate based
on the k-th analysis of the j-th sample from the'i-th batch, ¢,* represents batch-to-batch

variability, o4° represents within-batch uncertainty, and o represents analytical uncertainty.
The covariance between analyses of the same sample from the same batch is o, + 0‘52; the

covariance between observations of different samples from the same batch is O

Functions of the observed Yy, (e.g., various means) will be used to estimate batch and
glass attributes. To compare these calculated values to requirements, estimates of the
uncertainty in the calculated values will be required. The importance of variance components

. stems from their crucial role in properly estimating uncertainty in values calculated from a set
of observations, Yj,. Although the uncertainty in a single Yy, is simply the sum of the three
variance components, the uncertainty in a function of several Yy, can involve the individual
variance components in more complicated ways. .The form of the proper uncertainty depends
on several things, foremost of which is the form of the function of the Y, which is related to

the inference that must be drawn.

Most of the requirements imposed on HLW operations and product are single-batch
requirements, which apply to single process batches. In contrast are the mulriple-batch
requirements, which apply to groups of batches. (See Bryan and Piepel, 1993 and 1994, for
definitions, discussion, and examples of single-batch and multiple-batch requirements). The
inferences required, and therefore the estimated quantities and propér uncertainties, differ

between these two types of requirements.

As an example of a single-batch requirement, consider viscosity at 1150°C, the true
value of which should be between 2 and 10 Pascal-seconds for each process batch. Let Y
represent viscosity at 1150°C, and assume that: 1) the i-th batch is under examination; 2) b

sainples are taken from this batch; and 3) n estimates of viscosity are obtained for each

(a) The total uncertainty in estimated values of modelled properties must include the
contribution of model uncertainty, but this document focuses ‘on the estimation,
manipulation, and effects of composition uncertainty. For these purposes, Equation (7)
is adequate for all attributes of material involved in the HLW vitrification process.

20



sample®. One method for checking this requirement is to test whether the true mean
viscosity for the i-th batch, p + o, is between 2 and 10®. To do this, p + o can be

estimated with the batch mean:

n

b
1
=L+ O, * B, + g,
Since the target of inference for a single-batch requirement is p + o, the inference
should be conditional on (i.e., taking as fixed) the true value of ¢;. Thus, to obtain an
estimate of the uncertainty in the batch mean, uncertainty due to ; and & must be taken into

account, but uncertainty in o; is irrelevant. In this case, the uncertainty in the batch mean is

var(y,.|o) = +

(a) For example, the j-th sample might be split into n portions. Oxide composition would
then be measured for each portion, and the CVS viscosity model would be used to
estimate viscosity at 1150°C for each measured composition.

(b) Arguments can be made for other methods of testing-viscosity and other attributes.
For example, a method that focuses on some percentile of the distribution of the
observed values for the attribute in the current batch (e.g., via a tolerance interval),
rather than on the mean attribute value in the batch (e.g., via a confidence interval for
the mean), might be'used. The relative magnitudes of causes of within-batch
uncertainty are important in choosing between these methods. The mean-based
approach is more appropriate if sampling error is the major constituent of within-batch
variability; the percentile-based approach is more appropriate if the true inhomogeneity
in the batch is the major constituent of within-batch uncertainty. The preliminary
Feed Test Algorithm (Bryan and Piepel, 1994) uses a mean-based approach, on the
assumption of perfect mixing of the process batch. If data from actual processing
indicates that perfect mixing is not an valid assumption, this issue should be re-visited.

(c) Since the batch effect is assumed to be random rather than fixed, an argument can be
made that the best estimator for the quantity p + @ is not the batch mean value, but a
"shrunken" version of this value. Searle, et al. (1992, Chapter 7, esp. pp. 258-260)
discuss this problem. The preliminary Feed Test Algorithm (Bryan and Piepel, 1994)
ignores this complication. If testing of the PCC algorithms with the Plant Simulation
Code indicates problems, this issue should be re-examined.
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An estimate of this uncertainty can be constructed by substituting estimates of the individual
variance components into this expression. Therefore, proper estimation of uncertainty in the

batch mean requires estimates of the variance components.

Inference for multiple-batch requirements is described by Bryan and Piepel (1994) and
by Bryan, Piepel, and Simpson (1994). These tests require an estimate of o, the batch-to-
batch variability. Thus, for both single-batch and multiple-batch requirements, proper
estimation of the uncertainties required for inference requires estimation of individual variance

components.

3.2 ESTIMATING VARIANCE COMPONENTS .

Methods for estimating variance components are discussed in great detail by Searle et
al. (1992). The discussion below focuses on general principles, applicability to HLW
vitrification process/product control, and special features of the HLW vitrification process.

The most straightforward method of esﬁmating variance components involves a
designed experiment. Assume that such an experiment is performed, that a represents the
number of batches examined, that b represents the number of samples taken from c?ach batch,
and that n estimates of the attribute value are obtained from each sample. The total number
of observations is then abn. These data may be ana:lyzed with the aﬁalysis of variance
(ANOVA)®@, as in Table 1. The estimates of the individual variance components are

(a) The analysis of variance, or ANOVA, is a well-known and widely-used statistical
procedure. ANOVA is discussed in most books on basic applied statistics (e.g.,
Snedecor and Cochran, 1980); Graybill (1976) and Searle (1971) present extensive
theoretical treatments of ANOVA.
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where the symbols used above are defined in Table 1. These ANOVA=based estimators can
be derived by setting the sample-based quantities MSA, MSB, and MSE equal to their

expectations (the "Expected Mean Squares” of Table 1) and solving for 6%, o4%, and ¢*.®

The estimators of variance components given in Equation (8) belong to the class of
ANOVA estimators.® Searle et al. (1992) discuss other methods for estimating variance
components, including other ANOVA estimators, maximum likelihood estimation, restricted
maximum likelihood estimation, minimum norm quadratic unbiased estimation (e.g.,
MINQUE and MIV.QUE), and Bayes procedures. One application of the last approach is
given in Section 9, but complete enumeration and elucidation of the wide variety of
techniques for variance component estimation is beyond the scope of this document. The
choice of estimation technique must depend on the stricture of the available data and the
assumptions about the process that are considered realistic at the time. Therefore, this choice
must be made when data become available, as part of the data analysis process. Some

considerations in the choice of specific technique are discussed below.

It is common to- assume that random effects in a linear model follow a normal
distribution. In fact, some distributional assumption is required for several of the variance
component estimation techniques mentioned above (e.g., maximum likelihood and Bayes
procedures). The ANOVA estimators are exceptions -- they are derived simply by equating

mean squares to their expected values and therefore depend only on the moments of the

(a) The method of moments is a technique for deriving statistical estimators in which
sample-based quantities are set equal to their expectations and the resulting equations
are solved for the parameters in terms of the sample-based quantities (Lindgren, 1976).
Thus, the ANOVA-based estimators discussed here are examples of method of
moments estimators.

(3)] This document follows the convention of Searle et al. (1992) in applying the term
"ANOVA estimators” to any estimators derived by applying the method of moments to
quantities involved in an ANOVA. In some cases (e.g., when the data are not
balanced, as discussed at the end of this section), different types of ANOVA may be
legitimately applied to the same data. Different method of moments may result from
these different ANOVAs. Therefore, ANOVA estimators are not necessarily unique.
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underlying distribution(s). The role of the normality assumption is discussed further in
Section 10.1 and in Bryan and Piepel (1994).

In the preceding discussion, it was assumed that the variance components were to be
estimated from balanced data; i.e., that the same number of samples were taken from each
batch, and that the same number of analyses were performed on each sample. This
assumption greatiy simplifies the form of the ANOVA estimators. In fact, with balanced
data, several of the other variance component estimation methods yield estimates identical or
closely related to the ANOVA estimates. Unfortunately, this is not the case if the data are

unbalanced; in fact, for unbalanced data, several reasonable types of ANOVA estimators exist.

ANOVA estimates of variance components can be negative. This is troubling, since
the true values of variance components, by their nature as variances, must be nonnegative.
Searle et al. (1992, pp. 129-131) discuss various options for dealing with this problem. One
is simply to set a negative estimate to zero (thereby concluding that the related random effect
contributes no uncertainty to the observed value); a second is to use one of the methods that

guarantee nonnegative estimates (e.g., maximum likelihood and Bayes procedures).
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4.0 ESTIMATING MULTIVARIATE UNCERTAINTY

For purposes of predicting melt/glass properties, the composition of an HLW
vitrification process batch is currently planned to be quantified by the mass fractions of nine
individual oxides and a catchall tenth category, "Others." As noted in Section 2.3, this is an
. example of multivariate data -- each observation of batch composition comprises
measurements of 10 individual quantities. For multivariate data, interest lies in the
simultaneous behavior of the individual components of’each datum, and uncertainty is usually
represented by a covariance matrix for the random vector (the set of individual random
variables) of interest. Thus, composition uncertainty can be represented by the covariance
matrix associated with the’ vector of oxide mass fractions. Methods for estimating the

covariance matrix from a set of n IID observations are given in Equations (2) and (3) of

Section 2.4.

Anderson and Piepel (1993) studied the effect of composition uncertainty on
uncertainty in the resulting estimated property values by propagating three different
composition covariance matrices through two property models. This study demonstrated the
necessity of accounting for covariance in estimating uncertainty for property values. Ignoring
covariance structure (i.é., accounting only for variances of the individual oxide mass
fractions) led to underestimation. of uncertainty in the estimated property value in nine of
twelve cases considered. There was an average of 27% underestlmatlon in those nine cases,
and an average of 26% overestimation in the remaining three cases Thus, ignoring
covariance structure can seriously affect estimation of composition uncertainty (propagated

into property units).

Equation (7) of Section 3.1 presents a hierarchical model for uncertainty in univariate
observations. A model of that form can be applied to each of the 10 components used to
quantify the cornpositioxi of an HLW vitrification process batch. In fact, the 10 individual

models can be expressed concisely using matrix notation:

X =R+ + B, v8, (9)
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where X is the vector of individual oxide mdss fractions (X;, i = 1, ..., 10), and @, B;, and g
are vectc;rs of random effects. In this multivariate generalization of Equation (7), it is
assumed that o ~ (0,Z,), By ~ (0,Zp), & ~ (0,X), and the random vectors g, B;; and g, are
uncorrelated. In analogy to the univariate case, the covariance matrices Z,, Zg, and X are

known as covariance components (or components of covariance).

Just as for univariate variance components, the importance of multivariate covariance
components lies in their crucial role in estimating uncertainty in values calculated from a set
of observations, Xy;. Searle et al. (1992) discuss estimation of covariance components. The
method to be used in HL'W vitrification process/product control is based on the methods for
univariate variance component estimation discussed in Section 3.2 and on the well-known

formula for the variance of a sum of two random variables (see, for example, Lindgren, 1976,

p. 137):
Var(X;+X;) = Var(X;) + Var(X;) + 2 Cov(X;, X;) .,
from which is easily derived:
Cov(X;, X;) = 12'. {Var(x;+X;) - [Var(X,) + Var(x,)1}.
To obtain estimates of the components of covariance between X; and X, the three univariate
' variance components (Guz, 0'[,2, o see Section 3.1) are estimated for each of X, Xj, and the
sum, X; + X;, and the above formula is applied. Performing this estimation for each pair (i,j),

j > 1, "fills in" the upper half of each of the matrices of coyariance components; the lower

half of each matrix is derived from the Symmetricity of covariance matrices.
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5.0 ESTIMATING UNCERTAINTY FROM PROCESS KNOWLEDGE

The HLW process/product control strategy and algorithms require uncertainty
estimates for each process batch, but the. sampling effort for each process batch is unlikely to
be extensive enough to support separate estimation of uncertainties for each batch. Therefore,
reasonable estimates of uncertainties must be obtained from other sources during the early
stages of plant operation.® Sgch estimates might be developed (using the methods for data-
based estimation of uncertainty discussed in Sections 3 and 4) from data obtained from
experiments, cold testing, and qualification runs performed during technology development
and demonstration or during plant construction and testing, or from data on similar
vitrification processes at other sites (e.g., Savannah River and West Valley). It is possible,
however, that the data available befqrepbmmencement of vitrification operations may be
inadequate or unsuitable for proper estimatic;n of .uncertainty. In any case, such data are not
currently available, and uncertainty estimates are required for development and testing of the
PCC algorithms. One method of filling this void, estimating uncertainty from assumptions

and/or knowledge of the vitrification and analysis process, is presented in this section.

To estimate composition uncertainty (or a component thereof) from process
knowledge, the process must be modelled, and assumptions and knowledge about the process
must be translated into numeripal statements. The general method consists of: 1) formulating
a mathematical model for the process by which data will be obtained (e.g., the sampling and -
analytical processes), 2) assigning a reasonable uncertainty to each parameter in this model,
and 3) propagating the uncertainties in the parémeters .through the model to yield an estimate

of composition uncertainty.

*If the mathematical model is.simple enough, composition uncertainty may be

estimated analytically (i.e., using explicit mathematical error propagation via the general

(@ This problem will fade in importance as an operational database accumulates, at least
within a single waste type. If the assumption of the stability of various uncertainties
over the several waste types is untenable, the problem will reappear at the beginning
of processing of each waste type.
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method presented in Section 7). Unfortunately, due to the complicated nature of the
measurement process and the multivariate nature of the data, it is likely that estimation of
composition uncertainty from a model of the measurement process will have to be done by
the Monte Carlo method. The Monte Carlo method involves: 1) constructing a large number
of simulated compositions using the assumed mathematical model and parameter
uncertainties, and 2) computing the resulting covariance matrix via Equation (3) of Section
2.4.® This method is illustrated in Section 5.1. A method for deriving a measure of

strength of belief in a simulated uncertainty estimate is discussed in Section 5.2.

5.1 ESTIMATING UNCERTAINTY USING THE MONTE CARLO METHOD

The general method for estimating uncertainty from process knowledge requires
formulating a detailed mathematical model of the measurement process. The exact
measurement process to be used in HLW vitrification is not yet known, so a hypothetical
process must be used. In fact, a model of the full measurement process (including both
sampling and analysis) is not required for illustrating the general principles; a model of only
the analytical process suffices to illustrate the principles involved. Therefore, the general

method is here illustrated using a model of a hypothetical analytical process to yield a

hypothetical estimate of analytical uncertainty. What follows is only an illustration of the

general method for estimating uncertainty from process knowledge -- there is no guarantee
that the actual HLW analytical process will be as follows or that the process uncertainties

assumed here are representative of the uncertainties in the actual HLW analytical process.

The analytical process here assumed to be used for estimating composition from a

single sample from a process batch is as follows:

1) Extract the i-th subsample and obtain its mass in grams, M.

(a) In fact, a slight modification of Equation (3) might be required in some cases. If the
assumed measurement process is unbiased and the number of simulated compositions
is large, this modification is trivial and is not considered further.
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2)°  Prepare the subsample, e.g., by dissolution and dilution, to produce a solution
of size C,, where C; is measured in liters (or ml).

3)  Extract the j-th aliquot from this solution and quantify its size in liters, G-

4)  Measure the amounts of each of the p cations® of interest in the j-th aliquot
of the i-th solution, yielding Ay, k = 1, ..., p. These amounts are assumed to
be counts of atoms, expressed in moles.””

5)  For each cation k, k = 1, ..., p, convert from moles per liter, Ay, to raw®
(unnormalized) oxide mass fraction, ¥y [i.e., (mass of oxide) per (mass of
subsample)], using a stoichiometric constant, A,:

A, AC,
oo = kML (10)
13k Mi C.ij

6)  Normalize® the oxide mass fractions so that they sum to one:

(a) The assumptions being made here include: 1) composition of the final glass is
adequately represented solely in terms of oxides; 2) the analytical procedure produces
measurements for all cations in the final glass; and 3) no significant losses of
measured cations occur during processing. In fact, in the simulation, the component
"Others" was treated as a single entity, with a "molecular weight" reflecting the
proportions of minor species given by Hrma, Piepel, et al. (1992) for neutralized
current acid waste.

®) Measurements of cation amounts in units of mass (g or mg) are here assumed to be
equivalent to moles, since atomic weights are known with much less error than that
.arising in almost all measurement processes. If the measurements are expressed in
units of mass, the units associated with A, must be modified accordingly.

(c) These mass fractions are raw in the sense that, due to various errors in the
measurement process, they are unlikely to sum to one.

(@) These constants relate oxide mass to cation quantity (moles or mass) [i.e., (mass of
oxide) per (moles or mass of cation)] and are assumed to be known without error (or
with very small error). .

(e) Both logic and the statistical models used for estimating property values from
composition data require that mass fractions sum to one. The normalization performed
here is crude - it does not take into account what is known about the variances and
covariances of the quantities being normalized. An approach that takes account of
variances is discussed by Deming (1943) and Mandel (1964). Unfortunately, this
approach: 1) does not take account of covariances, and 2) is found, empirically, to
produce larger variances of predicted property values. Proper techniques for
normalizing compositional-data require further study.
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k=1

Xijk =

Two more sets of quantities must be specified in order to perform the simulation: 1)
the "true" composition for which the hypothetical analytical process will be performed, i.e.,
the vector of assumed oxide mass fractions; and 2) the uncertainties introduced at each stage

of the assumed analytical process..

The "true" composition used in this illustration is that of the CVS Internal Standard
Glass (Hrma, Piepel et al., 1992). The oxide mass fractions for this composition appear in
Table 2.

TABLE 2. Oxide Mass Fractions and Hypothetical Uncertainty Estimates
for the CVS Internal Standard Glass

Mass Standard Relative
Oxide Fraction Deviation Standard
Deviation (%)
Sio, 0.5328 0.005383 0.99
B,0, 0.1048 0.002209 2.10
Na,0 0.1129 0.002366 2.04
Li,0O 0.0373 0.000834 2.14
CaO 0.0082 | 0.000187 1.22
MgO 0.0084 0.000192 1.19
Fe,O, 0.0733 0.001585 2.05
ALO, 0.0235 0.000529 2.13
Zr0O, 0.0392 0.000874 2.04
Others 0.0596 0.001306 2.18
Total 1.0000
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The calculation of unnormalized mass fraction for cation k, ¥, involves four
uncertain quantities: 1) mass of the i-th subsample, M;, 2) mass of the i-th solution, C,
3) mass of the j-th aliquot, drawn from the i-th solution, C;, and 4) moles of the k-th cation,
Ay, Uncertainty in the measured composition is introduced at each of these stages, and, to
the extent that characteristics are measured on the same aliquot (or solution, or subsample),
correlation is likely to be introduced. For this illustration, a 2% relative standard deviation
(RSD) in the measurement of each uncertain quantity was assumed, and these quantities were
assumed to follow normal distributions and to be independent (since the measurement
processes are quite distinct). The independence of underlying uncertainties does not imply
that the resulting measurements of oxide mass fractions are independent -- if the same
subsample, solution, or aliquot is used to produce data for more than one oxide, some
correlation is introduced. In addition, correlation is introduced in the normalization process:
For this illustration, it was assumed that measurements of cation quantities were taken from
the same aliquot (which implies the same solution and subsample as well). Since
measurements taken from the same aliquot (or solution, or subsample) are expected to be
more strongly related than those taken from separate aliquots (or solutions, or subsamples),

this assumption should lead to the "strongest" correlation patterns.

" The simulation was carried out by generating 100,000 "observations” from the '
analytical process described above and then computing the empirical (Monte Carlo)
covariance and correlation matrices. Standard deviations and RSDs appear in Table 2; the
correlation matrix appears in Table 3®. These results are used as "true” values for

illustrations and examples in the sections that follow.

The uncertainty estimates presented in Tables 2 and 3 model only analytical
uncertainty. Similar techniques could be used to produce estimates of batch-to-batch
variability and within-batch uncertainty.

(a) Due to greater ease of interpretation, standard deviations and correlation matrices,
rather than covariance matrices, are presented here and below. It is possible to
recover a covariance matrix from the associated correlation matrix and standard
deviations; and vice versa.
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TABLE 3. Correlation Matrix from Hypothetical Analytical Process

Si0, B,0; Na,0 L0 CaO MgO Fe0O, ALO;  ZrO, Others
Si0, 1.000 -0.598 -0.618 -0.447 -0.382 -0.334 -0.524 -0.415 -0.447 -0.492
B,0, -0.598 1.000 0.092 0.156 0.172 0.170 0. 125 0.162 0.148 0.140
Na,0 -0.618 0.092 1000 0.149 0.167 0.170 0.120 0.161 0.145 0.127
Li,0 -0.447 0.156 0.149 1.000 0216 0217 O. 176 0.206 0.195 0.180
CaO -0,382 0.172 0.167 0216 1.000 0230 0.194 0218 0214 0.199
MgO -0.384 0.170 0.170 0217 0.230 1.000 0.194 0223 0.212 0.204
Fe,0, -0.524 0.125 0.120 0.176 0.194 0.194 1.000 0.178 0.174 0.158
ALO, -0415 0.162 0.161 0206 0218 0.223 0.178 1.000 0.206 0.189
7r0, - -0.447 0.148 0.145 0.195 0214 0212 0.174 0.206 1.000 0.180
Others -0.492 0.140 0.127 0.180 0.199 0204 0.158 0.189 0.180 1.000

5.2 QUANTIFYING STRENGTH OF BELIEF
IN SIMULATED UNCERTAINTY ESTIMATES

Methods for combining and updating uncertainty estimates (discuésed in Sections 6
and 9, respectively) require some measure of the strength of belief® in the uncertainty
estimates in order to assign relative weights. Therefore, if Monte Carlo estimates of
uncertainty are to be used in HLW process/product control, measures of strength of belief in
these estimates must be developed. One approach to assigning strength of belief to univariate
uncertainty estimates is discussed below. If simulated estimates of multivariate uncertainty
are to be used in PCC testing or HLW operations, this or some other approach should be

extended to the multivariate situation.

Consider the problem of estimating variance from a random sample of n observations,
X;,i=1, .., n Under the assufnption of normality [i.e;, X, i = 1, ..., n, ~ ID N(p,6%)], the
standard estimator of variance, S?, follows (a mﬁltiple of) a chi-square distribution with
f = n-1 degrees of freedom (Lindgren, 1976, p. 334, Theorem 4). Since the mean and

variance of a chi-square distribution are f and 2f, respectively, the RSD of S?%is

(a) The discussion here is phrased in terms of "strength of belief," because discussion of
© "uncertainty in estimates of uncertainty” is more likely to lead to confusion. The word
"confidence” is also avoided in this context, since "confidence" has a specific technical
meaning in statistical applications.
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rsdls?) = var(s?) =\] 2 J-zf

For example, the RSD of a variance estimate based on 50 degrees of freedom is 20%. Thus,
the relative precision (as measured by RSD) in an estimated variance is a function of the
associated degrees of freedom. This line of thought can be reversed to assign a strength of
belief, measured by the number of degrees of freedo'm, to a simulated uncertainty estimate: if
it is believed that the simuiaﬁon is yielding a variance within 100p% of the true value,

f = 2/p* would be taken as the associated number of .degrees of freedom. This approach
could be refined by takmg into account the strength of belief in the estimate of relative

precision (see the discussion in Section 8.0).
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6.0 COMBINING SOURCES OF UNCERTAINTY

When observed data are subject to more than one source of uncertainty, proper
estimation of the uncertainty in a function (e.g., the rhean) of these observations requires
combining variance components (for example, see Section 3.1). In addition, estimating
variance components often requires combining mean squares (see Section 3.2), and the PCC
algorithms must combine model uncertainty with composition uncertainty. In many cases
(including all so far identified for HLW vitrification process/product control), the required
combination of mean squares or variance components is a weighted sum, where the weights
are related to the distribution of sampling effort (e.g., the number of samples ‘per batch and
the number of analyses per-sample) or étrength of belief in the individual variance

components. In general, such weighted sums take the form;
2 = 2
=1

where s is the required combination of the individual variance components, sjz, with weights

Cj.

Some measure of the quality of s must be available in order to use this estimate to
draw inferences. As discussed in Section 5.2, the quality of a variance estimate is often
quantified by the associated degrees of freedom. The weighted sum above incorporates
several variance estimates, each with an associate number of degrees of freedom, fJ What
number of degrees of freedom should be a'ssociate.c-1 with the combined variance estimate, scz?
The answer to be used by the PCC algorithms is that given by Satterthwa;ite (1946); the

degrees of freedom to be associated with s.2 is

fc = ;’1 = = - ' =
(CJSJ) z (CJSJ)
ML =L




Satterthwaite’s approximation, as the above formula is known, was derived under the
assumption of normality. Caution should be exercised in applying this formula when some of
the c; are ‘negative (which is often the case when estimating variance components). Methods
and additional requirements in this case are discussed by Gaylor and Hopper (1969), who
show that the approximation is adequate when the component (or the sum of the several

components) being subtracted is relatively small.
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70 PROPAGATING MULTIVARIATE UNCERTAINT Y

Many of the batch and glass attributes that must be estimated and checked as part of
HLW vitrification process/product control will be calculated as functions of more than one
uncertain quantity (e.g., oxide mass fractions, other process measurements, empirical model
coefficients). In order to check compliance of these attributes with process and product
specifications, an estimate of the total (univariate) uncertainty asso_ciated with each such
attribute value must be obtained. Therefore, a procedure for combining multivariate
uncertainties to yield univariate uncertainties %s required. The role of the resulting univariate
uncertainty estimates in constructing tests for the acceptability of a feed batch is discussed by

Bryan and Piepel (1994).

The procedure described in Section 7.1 is one form of error propagation (or
propagation of error). The general procedure can be used to estimate uncertainty for a wide
variety of functions of uncertain quantities. For HLW process/product control, the uncertain
quantities fall into two categories: 1) composition and other process measurements, and 2)
empirical model coefficients. This document focuses on the former category, but the method
for incorporating uncertainty due to the latter category is briefly discussed. Section 7.2
examines the contribution of composition uncertainty to overall (univariate) uncertainty for
several modelled properties. Section 7.3 discusses an alternative approach to estimating
univariate uncertainty for attributes that are calculated as functions of more than one oxide

mass fraction or other process measurement.

7.1 A METHOD OF ERROR PROPAGATION

The basis for the error propagation method to be used by the PCC algorithms is as
follows. Let y represent the characteristic of interest, and assume that y = f(2), where z is a
random vector with mean y, and covariance matrix %,. Then, using a Taylor series expansion

about , to approximate f(2), an approximation to the variance of y, O'Y?', can be derived:

612’ = gzzzgz !
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where d, is the gradient of f (i.e., the vector of partial derivatives with respect to z), evaluated

at the observed value of z.

. As discussed above, two distinct sources of uncertainty enter into the uncertainty
associated with a modelled batch or glass property (y): one associated with the estimated
coefficients (b) of the empirical model, the other associated with the estimated composition
(x).” Model uricertainty will be represented by the covariance matrix, %,, for the vector of
estimated model coefficients (which will be obtained from CVS; e.g., Hrma, Piepel, et al.,
1994). For simplicity of presentation, it is assumed here that a single covariance matrix
representing composition uncertainty, Z,, is available. The case of several covariance

components for feed composition is discussed at the end of this section.

The general method of error propagation discussed above can be appiiéd to the case in
which the random vector z consists of two distinct subvectors, e.g., the case in which y =
f(x,b). Denote the gradients of f(x,b) with respect to X and b by d, and d,, respectively. If x
and b are uncorrelated random vectors (a reasonable assumption unless x is part of the data
used to estimate b), the approximate variance of y- divides neatly into two parts, one

attributable to composition uncertainty, the other attributable to model uncertainty:

o} = I, d, + dITyd, -
For the special case where the function f(x,b) is linear in both the data, X, and the

estimated coefficients, b, this formula takes on an even simpler form. For this case, y = X'b,

d. =Db, d, =% and
oy = BTZB + x"Epx .
Since the (approximate) uncertainty in y can be separated into two parts (one due to

composition uncertainty; the other due to model uncertainty), the PCC algorithms will

calculate the two contributions to uncertainty in y separately, to produce two univariate

(a) If the property model is second-order, the vector X contains not only the individual
mass fractions, but also some cross-products.
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estimates of components of uncertainfy in the estimated property value. These two univariate
uncertainty estimates will then be combined and an associated number of degrees of freedom
assigned, as described in Section 6. This approach has the advantage of easy generalization
to the case of several covariance components relevant to composition uncertainty: the
composition covariance components will be propagated separately and the resulting univariate
yariance components will be combined to form a univariate estimate of overall composition
uncertainty (in property units). Again, the method given in Section 6 will be used to combine
the univariate components of composition uncertainty and to assign an associated number of

degrees of freedom.

7.2 CONTRIBUTION OF COMPOSITION UNCERTAINTY
TO OVERALL UNCERTAINTY

The method of error propagation described above was used to investigate the
contribution of composition uncertainty to uncertainty in estimated property values for each of
five properties for which CVS is developing models: viscosity at 1150°C, electrical
conductivity at 1150°C, and normaliZed release of boron, lithium, and sodium from the
Product Consistency Test (PCT). Model uncertainties were not accounted for in these
calculations. The models used in the error propagation were the first-order CVS models
given by Hrma, Piepel, et al. (1994). These models actually predict the natural logarithm (ln)'
of each property. Since the standard deviation of In(Y) can be shown to be approximately
equal to the RSD of Y, error propagation using models that predict In(Y) yields estimates of

RSDs on the original property scales.

Two composition covariance matrices were used in this investigation (and in
investigations discussed in later sectans). The first was the hypothetical analytical covariance
matrix described in Section 5.1. The second was that derivéd from the Corning RR6 data, a:s
described by Anderson and Piepel (1993). The mean oxide mass fractions and standard
deviations from the Corning RR6 data set appear in Table 4; the associated correlation matrix
appears in Table 5. Like the hypothetical covariance matrix, the Corning RR6 covariance

matrix is an estimate of analytical uncertainty, but the Corning laboratory seems to be very
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TABLE 4. AOxide Mass Fractions and Unéertainty Estimates for the Corning RR6 Data

SiO,
B,0.,
Na,O
Li,O
CaO
MgO
Fe, O,
Al O,
ZrO,
Others

Si0,
1.000

-0.243

-0.421

-0.337.

-0.510
-0.652
-0.632

0.567
-0.367
-0.804

Mass Standard Relative

Oxide Fraction Deviation Standard
Deviation (%)

Si0, 0.4787 0.000878 0.17
B,O, 0.0866 0.000416 0.46
Na,0 0.1148 0.000354 0.26
Li,0 0.0321 0.000162 0.31
Ca0 0.0143 0.000081 0.00
MgO 0.0085 0.000047 0.00
Fe,0, 0.1402 0.000648 0.43
ALO, 0.0472 0.000170 0.21
710, 0.0013 0.000047 0.00
Others | 0.0763 0.000212 0.26
Total 1.0000

TABLE 5. Correlation Matrix from Corning RR6 Data

B,O,
-0.243
1.000
0.240
0.154
-0.307
-0.141
-0.430
-0.144
0.004
0.102

Na,O
-0.421
0.240

1.000

0.306
-0.104
0.036
-0.127
-0.310
-0.104
0.059

Li,0
-0.337
0.154
0.306
1.000
-0.201
-0.054
-0.079
-0.042
£ 0.060
0.173

CaO0
-0.510
-0.307
-0.104

-0.201.

1.000
0.629
0.733
-0.344
0.290
0.492
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MgO
-0.652
-0.141

0.036
-0.054

0.629

1.000

0.697
-0.512

0414

0.682

Fe, 0O,
-0.632
-0.430
-0.127
-0.079

0.733

0.697

1.000
-0.525

0.279

0.602

ALO,
10.567
-0.144
-0.310
-0.042
-0.344
-0.512

-0.525.

1.000
-0.026
-0.459

e

ZrO,
-0.367
0.004
-0.104
0.060
0.290
0414
0.279
-0.026
1.000
0.384

Others
-0.804
0.102
0.059
0.173
0.492
0.682
0.602
-0.459
0.384
1.000



precise (note the very low RSDs in Table 4). Uncertainty estimates derived from the Corning
RR6 data are probably too optimistic (i.e., too low) for HLW vitrification operations and

should be viewed as lower bounds.

Table 6 presents the contributions of composition uncertainty to uncertainty in
modelled property values for each of the two composition covariance matrices. The RSDs
yielded by the hypothetical covariance matrix range from 3.5% to 8.6%, while those yielded
by the Corning RR6 covariance matrix range from 0.6% to 1.5%, reflecting the high precision

attributed earlier to the Corning laboratory.

TABLE 6. RSDs for Modelled Properties Derived from Hypothetical
and Corning RR6 Covariance Matrices

Relative Standard Deviation
Corresponding to
Covariance Covariance
Matrix Matrix
Viscosity at 8.61% 1.53%
1150°C .
Electrical 3.51% 0.61%
Conductivity at
1150°C
PCTB - . 7.29% 1.51%
PCT Li 5.74%. 1.25%
PCT Na 7.20% 1.47%
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7.3 AN ALTERNATIVE TO ERROR PROPAGATION
FOR COMPOSITION UNCERTAINTY

The major purpose of error propagation in HLW vitrification process/product control is
collapsing various multivariate uncertainties (composition and model uncertainties) to a
univariate uncertainty for each attribute that is a function of more than one uncertain quantity
(e.g., oxide mass fractions, other process measurements, and empirical model coefficients).
For estimating the contribution of composition uncertainty to the uncertainty of such an
attribute, a possible alternative is the following: 1) apply the function (e.g., the CVS property
model) to each measured composition separately, yielding several estimates of the attribute
value: and 2) use the methods of univariate uncertainty'estimation (discussed in Section 3) to
estimate the uncertainty directly from the estimated values, or use the method of updating a
univariate uncertainty estimate (discussed in Section 9) to combine the current information

)

with information from previous batches.

If this alternative method is employed, error propagation will still have to be
performed for modelled properties, in order to estimate the contribution of model uncertainty
to the overall uncertainty in each property. In addition, the requirement to perform variance
component estimation for each univariate uncertainty may impose a significant computational
burden. A method for updating the cofnposition covariance matrix (such as that provided by
the Kalman filter and/or the existing Measurement Error Model), combined with the general
error propagation method of Section 7.1 (for both composition and model uncertainty) and the
method of assessing-strength of belief in the propagated uncertainty (as detailed in Section 6)

is probably preferable.
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8.0 SAMPLE SIZES REQUIRED FOR ESTIMATING UNCERTAINTY

Understanding the methods used to calculate the number of samples (observations,
measurements, etc.) needed to estimate a paraméter requires understanding the ways in which
a statistical estimation procedure can fail. Many estimation procedures produce an interval of
values within which the parameter is claimed to lie. These procedures can fail in two ways:
1) the interval may not contain true value of the parameter, or 2) the interval may be too
wide to be useful. To properly estimate sample size, the rates of both types of failure should
be controlled. Therefore, at least two quantities must be specified: 1) the desired precision in
the result, i.e., the maximum acceptable width of the interval, and 2) the desired level of

statistical confidence in the result.

Statistical confidence is a measure of the success rate of the statistical procedure, i.e.,
the probability that the procedure produces a correct answer. For example, a properly-
designed procedure to produce a 95% confidence interval for some parameter must have at
least 2 95% chance (probability = 0.95) of producing an interval that actually traps the

unknown true value of the parameter.”

The actual width of a statistical interval is a function of the data upon which the
interval is based, and therefore this width is a randem variable. The best procedures for -
estimating sample size also require specification of a probability with which the desired

precision is to be achieved. This probability might be called the stability of the interval.

(a) Statistical confidence is a measure of the long-run performance of the statistical
procedure, not of the probability that any- particular application of the procedure results
in success. In other words, confidence rests in the procedure, not in any particular
result of the procedure. To illustrate this distinction, assume that data has been
collected and used to construct a 95% confidence interval for the mean value of the
characteristic of interest. Once this procedure is carried out, the calculated interval
either does or does not contain the true mean, and it is not known which is the case.
On the other hand, if the experiment is repeated many times, resulting in a large
number of 95% confidence intervals, then approximately 95% of these intervals will
have trapped the true mean.
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8.1 SAMPLE SIZES FOR ESTIMATING A VARIANCE

Consider estimating the variance (or standard deviation) of a N(p,ol) population, given
a random sample of size n. The standard estimator of variance, S?, follows a multiple of a
chi-square distribution with n-1 degrees of freedom (Lindgren, 1976, p. 334, Theorem 4y;

specifically,

(n-1) s?

.G

~ %2(n-1) .

This fact can be used to compute sample sizes required for estimating variance or standard
deviation with specified precision. The method detailed below, which focuses on estimating
standard deviation, is an adapté.tion of methods described by Hahn and Meeker (1991, pp.
141-144).

It is desired to find the smallest sample size n such that, with probability at least equal

to 1-0., the sample standard deviation, S, is within 100p% of o, i.e.,

pr(1-p)o< S < (1+p)c} 2 1-a.
In this case, 100(1-c))% is the statistical confidence and 100p% is the precision® associated
with the estimation procedure.

By taking advantage of the known distribution of S?, the problem can be reduced to a

search for the smallest n such that
1-0.<Pri(n-1) (1+p) 2<% (n-1)} - Pr{(n-1) (1-p)? <X (n-1)}.
Sample size results for various combinations of 100(1-0)% (confidence) and p (precision)

appear in Table 7. For example, to estimate o? with 20% precision and 90% confidence, a

sample of size 20 is required.

(@) Note that, in this context, higher precision corresponds to lower percentages. For
example, a precision of 1% is higher than a precision of 20%.
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TABLE 7. Sample Sizes Required for Estimating Standard Deviation
with Specified Levels of Precision and Confidence

Precision Sample Sizes Required for Confidence =
80% 90% 95 % 999,

1% 3488 8174 | 13507 | 27084
5% 132 322 538 1088
10% 31 79 | 134 774
20% 7 20 a4 -0
30% 2 9 iy ”
40% 2 5 9 o
50% 5 .| p ”

8.2 SAMPLE SIZES FOR ESTIMATING A COVARIANCE MATRIX

In a multivariate situation, interest lies in an entire covariance rﬁatrix, not just in a
single variance. When batch composition is estimated in terms of nine oxide mass fractions
and "Others," 10 variances and 45 covariances must be estimated. . Although the sample
size calculations above hold for each variance (and, as indicated by simulation results, each
covariance) individually, the problem of simultaneous inference arises in estimating the entire
covariance matrix. When desired levels of precision and confidence must be obtained for

several quantities simultaneously, the sample size required is larger than that required for a

(a) Although a 10 x 10 matrix has 100 elements, the symmetric nature of covariance and
correlation matrices reduces the number of distinct elements that must be estimated to
45. In fact, as long as the measured compositions sum to one, only 35 covariances
must be estimated - the remaining 10 covariances can be estimated from the fact that
any row or column of the covariance matrix must sum to zero. This is related to the
inherent singularity of the covariance matrix for compositional data, which is
discussed in Section 10.1. However, this technical point is of little importance here.
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single quantity, and this required sample size increases rapidly as the number of estimated

quantities increases.

To investigate the extent of the simultaneous inference problem for 10 x 10 matrices,
simulation studies were performed to quantify the performance of estimation for two "true”
correlation matrices: the hypothetical correlation matrix of Section 5.1, and the Corning RR6
correlation matrix discussed in Section 7.2. Sample sizes of 10®, 100, and 1000 were used
in the simulation. For each combination of "true” correlation matrix and sample size, 1000
data sets were generated. The empirical covariance and correlation matrices were computed
for each data set, and the maximum absolute difference between elements of the empirical
correlation matrix and corresponding elements of the “true" correlation matrix was
recorded.® In addition, each empirical covariance matrix was propagated through the first-
order CVS property models for (the natural logarithms of) five properties, as discussed in
Section 7.2.

Table 8 reports the mean (over the 1000 generated data sets) maximum absolute
difference® between elements of the .estimated and "true" correlation matrices. These
results must be interpreted in terms of the absolute’ magnitudes of the "true” correlations
(which appear in Tables 3 and 5). The "true" correlations range between 0.004 and 0.804 in
absolute value. With é_sample size of only 10, the maximum absolute difference, 0.72 for

both "true" correlation matrices, is large enough to imply that some empirical correlations are

(@) In- general, a minimum sample size of 10 is required for proper estimation of a
10 x 10 covariance matrix. Due to the special natirre of compositional data (the
inherent singularity of the covariance matrix), the minimum sample size in this case is
9.

(b) Correlation matrices, rather than covariance matrices, were chosen for these
comparisons because the elements of a correlation matrix are constrained to lie
between -1 and 1, so that the scale is fixed and absolute differences are easily
interpreted. The scale of elements in a covariance matrix depends on the underlying -
variances, which hinders comparison of differences. A disadvantage of using

correlation matrices is that variances are not included in the comparisons.

(c) For investigating the quality of simultaneous estimation, attention should be paid to
the larger deviations, rather than to the mean deviation.
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TABLE 8. Maximum Absolute Deviations in Estimation of Correlation Matrices

Sample Hypothetical | . Corning RR6
Size Correlation Correlation
Matrix Matrix
10 0.72 0.72
100 0.23 0.21
1000 0.07 0.07

routinely quite different from the corresponding "true” values. Even with a sample size of
100, estimation is relatively poof: the maximu‘m. absolute difference is approximately 0.20 for

both "true" correlation matrices.

These results imply that reasonably precise simultaneous estimation of a single
10 x 10 correlation (or covariance) matrix requires large saﬁple sizes. Since required sample
sizes increase rapidly as the number of estimated quantities increases, simultaneous estimation
of covariance components (i.e., simultaneous estimation of several 10 x 10) is expected to
require very large sample sizes. This is supported by the results of another simulation study

(not_reported here).

These results for estimation of covariance matrices and cov.ariance components might
seem discouraging, but it must be remembered that interest lies not in the multivariate
“uncertainties (covariances and components of covax:iance) per se, but anly in their effects on
the uncertainties in modelled properties. As part of the simulation study discussed above,
each empirical covariance matrix was propagated through five first-order CVS property
models. As discussed in Section 7.2, the CVS models-actually predict the natural 1c;garithm
of each property. Since the standard deviation of In(Y) can be shown to be approximately
equal to the RSD of Y, error propagation using models that predict In(Y) yields estimates of
RSDs on the original property scales. The relationship of sample size to precision in
estimation of RSD for each property can be examined by calculating the standard deviation

(over the 1000 replications) of each estimated property RSD for each sample size. This was
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TABLE 9. Relative Precision of RSDs® of Modelled Melt/Glass Property Values

for Three Sample Sizes and Two "True" Covanance Matrices

Relative Precision of Melt/Glass Property RSD

Covariance Property
Matrix n=10 n = 100 n = 1000
Hypothetical Viscosity at 22.3% 7.1% 2.2%
1150°C
Hypothetical Electrical 22.3% 7.0% 2.2%
Conductivity at |
1150°C
Hypothetical PCT B 22.5% 7.2% 2.2%
Hypothetical PCT Lt 22.5% . 7.2% 2.2% -
Hypothetical PCT Na 22.5% 7.2% 2.2%
Corning RR6 Viscosity at 23.1% 7.2% 2.2%
1150°C
Corning RR6 . Electrical 23.1% 7.2% 2.2%
Conductivity at
1150°C
Corning RR6 PCT B 23.6% 7.0% 2.3%
Corning RR6 PCT Li 23.4% 6.9% 2.3%
Corning RR6 PCT Na 23.6% 6.9% 2.2%

(@ RSDs were obtained by propagating composition covariance matrices through CVS

- first-order In(property) models.
approximately RSDs of property values on the origin

tpansformaﬁon)

-

Standard deviations of In(property) values are -
al scale (i.e., without logarithmic

done for each of the two "true" covariance matrices. The resulting relative precisions (the

empirical standard deviation of the estimated RSDs, divided by the known "true” values,

taken from Table 6) appear in Table 9.

These results are more encouraging. The relative precision in each estimated RSD

(i.e., the univariate measures of uncertainty) improves much more quickly with increasing
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sample size than does that associated with multivariate uncertainty estimation.®’ Even with
a sample size of only 10, the individual univariate uncertainty estimates have relative

precisions of about 23%.

An apparent contradiction is lurking in these results. As discussed in Section 4,
Anderson and Piepel (1993) demonstrated that ignoring covariances can lead to serious
ﬁnderestimation of uncertainty in modelled properties. However, the results above indicate
that propagation of even quite poor estimates of multivariate uncertainty can lead to
acceptable precision of uncertainty estimation for univariate properties. The resolution of this
dilemma seems to lie in the tendency of poor estimates of individual elements of a covariance
matrix to offset one another when propagated. Further pursuit of this theoretical point is

beyond the scope of this document.

For some insurance against the simultaneous inference problem, it is suggested that
uncertainties be estimated from sample sizes greater than 20 (which, according to Table 7,

corresponds to a 90% confidence and 20% precision).

(a) Basic statistical theory for simple estimation problems suggests that the standard
deviation of an estimator should decrease (i.e., precision should increase) at a rate
proportional to the square root of sample size. In other words, the standard deviation
of an estimator based on n, samples should be approximately J(n,/n,) times the
standard deviation of an estimator based on n, samples. It is interesting to note that
this pattern appears in Table 9.
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9.0 UPDATING ESTIMATES OF COMPOSITION UNCERTAINTY

Estimates of composition uncertainty (variances, covariances, and matrices thereof)
should be updated to reflect the information that becomes available with each process batch.
One obvious way to achieve this updating is to maintain a database of composition and other
measurements, sample sizes, tank level measurements, and other results for each process
batch, and to re- esumate all required quantities at each step, using the methods described in
Sections 3 and 4. Implementmc this approach may be quite cumbersome (due to the

computational burden of re-computing components of variance and covariance).

Onev alternative is use of a method for updating composition uncertainties (covariance
matrices and components of covariance) for each batch. These updated composition
uncertainties would then be propagated through property models to yield uncertainty estimates
for modelled properties (as in Section 7.1 see also the discussion in Section 7.3). The
existing Measurement Error Model (MEM) updates covariance matrices (in addition fo its
main function of data reconciliation). It may be possible to improve the MEM by combining
it with a Kalman filter or some other Bayesian approach (Bayesian approaches are discussed
below). Adams (1994) describes and compares the basic Kalman filter and the MEM. This

approach would require more investigation and development.

A computatlonally simpler univariate alternative is descnbed in this section. The
illustration concerns estimating a univariate variance. The relationship between variances and
covariances dmcussed in Secnon 4 should allow application of thlS technique to covariance
estimation. In addition, the technique may be used for updatmg variance and covariance

components.

The relative performance of these alternative methods ézould be investigated (e.g., by
simulation), but this would require extensive additional effort. The PCC algorithms will
implement the simple technique described below, and testing (using the Plant Simulation
Code, as described by Bryan and Piepel, 1993) will indicate the potential rewards of -

developing and implementing one of the alternative methods.
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In updating estimates, prior informaﬁon must be combined with information contained
in a current data set. Combining prior and current information is one application of the
branch of statistics known as Bayesian statistics. In the Bayesian approach, as in other
branches of statistics, data are modelled as realizations of a random variable, with an
associated statistical distribution, known as the likelihood. The parameters of the likelihood
(or functions thereof) are usually the target of inference. In Bayesian statistics, these
parameters are also modelled as random variables. Hence, a statistical distribution, known as
the prior distribution, is associated with each parameter. This pnor distribution is chosen to
reflect information and beliefs about the parameter of the likelihood. One method is to
choose a general distributional form, a mean, and a standard deviation for the parameter. In
this base, the mean value represents the best guess of the true value of the parameter, and the

standard deviation reflects the uncertainty about this guess.

The Ba}.lesian approach combines prior information (in the form of the prior
distribution) with the current data (in the form of the likelihood) to produce a posterior
distribution, an updated statistical distribution for the parameter. Both the new estimate of
the parameter and the new estimate of the uncertainty about the true value are drawn from

this posterior distribution.

To illustrate the principles of Bayesian statistics, consider the problem of estimating
a univariate variance. Assume that n current observations, X, i=1, .., n, are available,
where X;,i=1, ., n, ~ D N(O, 025 (In this case, the normal distribution serves as the
‘likelihood.) In addition, assume that ‘both a prior estimate of o2, denoted s, and a prior
estimate of the standard deviation of ¢%, denoted e, are avaﬂable Define

N PR
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Based on these definitions, an updated estimate of ¢* (one incorporating both the data

and the prior information) can be constructed from one possible Bayes estimator:

; si = _Y_f_j_i. , (11)
where
5, = 8+%‘_§;x§ ,
and
Vo =T+ 5

(in each case, the subscript "u" is used to denote an updated estimate). In addition, an

updated estimate of the standard deviation of ¢ can be constructed: -

2
3, Sy

e = = . (12)

‘ (yu—l),/yu—z Y. 2

The derivation of the updated estimators in Equations (11) and (12) are given in the
Appendix. That derivation generally follows Lehmann (1983, pp. 246-247). Slightly
different approaches to this problem are given by Berger (1985, p. 287, Problem 8), DeGroot
(1970), and Searle et al. (1992, pp. 94-96). '

One cost of using a Bayesian approach' is the requirement to specify a prior
distribution. The updating method given above is based on the use of a conjugate prior,
which is a prior distribution that, when combined with the likelihood, yields a posterior
distribution of the same family as the prior. This is quite a handy feature when updating
must be done for each of several steps in a proceés (e.g., for each batch of material to be

vitrified), since the posterior distribution (and associated parameter estimates) of the preceding
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step serves as the prior distribution for the next step, and the estimation procedure is

essentially unchanged. Automating such a procedure is quite simple.

Tnitial estimates of ¥ and 8 must be furnished for the first batch in the process (or
waste type). The strength of knowledge about the process will be taken into account in

choosing the initial y and 3 to be used by the PCC algorithms.

A multivariate version of the updating scheme discussed in this section appears in
Anderson (1984, p. 272). As might be expected, the multivariate approach requires much
more prior information. If PCC testing indicates problems, and if adequate prior infonna:tion
can be obtained, the univariate approach (applied to each measured or estimated quantity
individually) may be replaced with a multivariate method (appiied to all measured and
estimated quantities simultaneously). One example of such a multivariate method is the

hybrid MEM/Kalman filter mentioned above.
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10.0 MISCELLANEOUS TOPICS

This section deals briefly with additional issues related to the nature of the data in the
HLW vitrification process (Section 10.1) and to the nature and use of variance and covariance

components (Section 10.2).

10.1 COMPOSITIONAL DATA

Batch compositions will be the major type of multivariate data used in HLW
process/product-control. These compositions are currently planned to be expressed as vectors
of 10 mass fractions, corresponding to the nine major oxides and the category "Others."
These mass fractions are; proportions (or percentages) and therefore must lie between 0 and 1
(or 0% and 100%). In addition, the 10 mass fractions in a single composition should sum to
one (or 100%). These characteristics define compositional data. Aitchison (1986) discusses
the nature of compositional data and statistical techniques for such data. Two consequences
of these characteristics of compositional data are of interest here: 1) individual mass fractions
cannot be normally distributed, and therefore the joint distribution of the 10 mass fractions
cannot be multivariate normal, _and 2_) covariance matrices for compositions are singular.“"

These facts complicate statistical modelling and manipulation of compositions.

Since compositions cannot be normally distributed, the applicability of statistical
techniques that assume normality must be questioned. This issue is discussed by Bryan and
Piepel (1994). Briefly, the strict nonnormality of compositional data does not imply that
statistical techniques based on the aséumption of normality must necessarily perform poorly

for cc_)mpositional data. In fact, preliminary investigations indicate that such techniques

(a) The definition of matrix singularity is somewhat involved; for a full discussion of
singularity, see Searle (1982). Briefly, a matrix is singular if there exists some exact
linear relationship among the rows or columns of the matrix. The singularity of
covariance matrices for compositions follows directly from the unit-sum restriction.
The specific manifestation is that each row (and column) of a covariance matrix for
compositional data sums to zero. The relevance of the singularity of a covariance
matrix for compositional data should become clear in the discussion below.
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perform adequately for individual components and quite well for certain functions of
compositions. Specifically, property values estimated from CVS models seem to follow
distributions that are almost indistinguishable from normal distributions. More insight into

performance of techniques based on normality will be gleaned during testing of the PCC

algorithms.

-

The singularity of the covariance matrix for compositional data and the nonnormality
of such data complicate the generation of random compositions (which will be required for
testing PCC algorithms). The techniqﬁe used to generate random compositions for the Monte
Carlo studies reported in this document is based on the technique for generating observations
from a multivariate normal distribution presented by Kennedy and Gentle (1980, pp. 228-
231). This technique uses the Cholesky decompositioﬁ of the covariance matrix of the target -
multivariate normal distribution to transform a vector of TID normal random variables. The
singularity of the covariance matrix for compositional data necessitates a minor modification
of this technique -- one row and column of the covariance matrix (usually the row and
column corresponding to the "Others” component) is dropped, in order to eliminate the
singularity. The Cholesky decomposition of this reduced covariance matrix is used to
produce nine components of the composition, and the tenth component is calculated by

subtracting the sum of the nine components from one.

10.2 VARIANCE AND COVARIANCE COMPONENTS

The remaining issues to be addressed in this section relate to the nature and use of

variance and covariance components in HLW vitrification process/product control:

. Once estimates of variance components have been obtained, these components
can be used to optimize allocation of sampling effort. Essentially, optimal
allocation entails concentrating sampling effort at those stages in the hierarchy
of uncertainty (batch-to-batch variability, within-batch uncertainty, analytical
uncertainty) that contribute most to the overall uncertainty. Cochran (1977)
discusses optimal allocation of sampling effort.

. The methods presented in this document assume a certain stability in the
hierarchy of uncertainty. For example, within-batch and analytical uncertainties

are assumed to be constant or changing only slowly. This assumption seems
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reasonable and greatly reduces what would otherwise be an inachievable level
of sampling for each batch and analysis for each sample. Still, this assumption
should be investigated during HLW vitrification operations. Such investigation
would be a natural part of a process monitoring scheme.

The linear models used for attributes of feed, melt, and glass [Equations (7)
and (9)] could be modified to include other variance (covariance) components,
e.g., separation of within-batch heterogeneity from sampling error, or separation
of -variability induced during sample preparation from analytical error (Bryan
and Piepel, 1994).
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11.0 APPLICATIONS AND FURTHER WORK

The topics covered in this document affect several stages of HLW vitrification
process/product control. The specific applications of this material will depend on the course
of development of the process/product control system and the vitrification plant itself. Some
examples of applications are presented in Section 11.1. A number of possible future

investigations are briefly discussed in Section 11.2.

11.1 POSSIBLE APPLICATIONS

Uncerta.mty estirates must be available when processing begins. If no data are
available from which to estimate various uncertainties (or if the available data are
inadequate), the methods of Section 5 should be used to construct uncertainty estimates. If '
data are available (e.g., from Savannah River or West Valley operations, or from development
and testing of the Hanford HLW vitrification plant itself), the methods of Section 3 and 4

should be used to estimate uncertainties.

During processing of each batch, composition data will be obtained and used to judge
batch quality. As part of this, uncertainty estimates will be calculated, updated, combined,
and propagated; these steps draw on the material in Sections 3 and 4, 9, 6, and 7, .

respectively.

Testing of the PCC- algonthms (e.g., with the Plant Simulation Code) will probably -
require the ability to produce random vectors ("obseryanons") tk}at follow known and
reasonable covariance patterns. A method for generating multivariate observations that follow
a given covariance structure is presented in Section 10.1. Two possible analytical covariance
matrices are discussed in this document: the hypothetical covariance matrix developed in
Section 5.1, and the Comning RR6 covariance matrix (discussed in Section 7.2). In addition,
the methods of Section 5 can be adapted to préduce a range of covariance matrices with

which to exercise the PCC algorithms.
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The results presented in Section 8 suggést that reliable uncertainty estimates‘should be
based on 20 or more observations. If a designed experiment, such as the one described in
Section 3.1, is to be conducted to estimaté variance (or covariance) components, a minimum
of 20 batches should be examined, with two samples drawn from each batch, and two
analyses run for each sample. Such an experiment would entail 20 x 2 x 2 = 80 observations
and would provide 19, 20, and 40 degrees of freedom for estimating batch-to-batch
variability, within-batch uncertainty, and analytical uncertainty, respectively. Unfortunately,
since uncertainty estimates are required for each of the tanks and steps in the HLW
vitrification process, several to many such experiments might be required. However, the
replicated analytical effort might be unnecessary for later experiments, providing analytical

uncertainty can be assumed.to be unaffected by the source of the analyzed material.

112 POSSIBLE FUTURE INVESTIGATIONS

A number of possible future investigations were mentioned in preceding sections. For
ease of reference and comparison, these are recapitulated below, along with the section in

which the topic arose:

. Identify and collect information from Savannah River's DWPF and/or the West

Valley Demonstration Project that is suitable for estimating composition
uncertainty, and perform this estimation (Section 1). :

. Evaluate the assumption of perfect mixing, alternatives, and implications for
choosing between mean-based statistical procedures and percentile-based

statistical procedures (Section 3.1).

. Investigate necessity for and applicability of "shrunken” estimators of attribute
values (Section 3.1). ' ]

. Develop and compare techniques for normalizing measured compositions,
including effects on uncertainty (Section 5.1).

. Improve simulatiion of analytical uncerté.inty (Section 5.1).

. Develop simulated within-batch and batch-to-batch covariance matrices
(Section 5.1).
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. Examine sensitivity of simulated covariance matrices to "trué" composition,
precision of various steps in the measurement process, and the measurement of
several components from the same or different aliquots, solutions, or
subsamples (Section 5.1). Note that such sensitivity analyses may be valuable
in optimizing allocation of sampling effort.

. Extend the method for constructing measures of strength of belief for
simulation-based estimates of univariate uncertainty to the multivariate situation
(Section 5.2).

. Develop methods for constructing measures of strength of belief in simulation-
based uncertainty estimates that incorporate a confidence coefficient (Section
5.2). -

«  Develop the multivariate Bayes and hybrid Kalman filter/Measurement Error
Model approaches to updating uncertainty estimates; compare each to the
existing MEM and the univariate Bayesian updating method (Section 9).

. Investigate natural and reasonable statistical models for compositional data,
including the Dirichlet and logistic normal classes of distributions discussed by
Aitchison (1986) (Section 10.1).

. Develop optimal allocation of sampling effort in HLW vitrification operations
(Section 10.2).

. Examine adequacy of the suggested experimental design and sample sizes for
estimating uncertainty, under several sets of assumptions about the true
uncertainties (Section 11.1).

The necessity and benefits of each activity should be judged relative to operating
experience and data (such as that from Savannah River and West Valley) and testing of the

existing PCC algorithms (e.8., with the Plant Simulation Code).
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APPENDIX

DERIVATION OF A BAYESIAN ESTIMATOR OF VARIANCE

The problem considered here is that of estimating (or updating an existing estimate of)
a univariate variance, o2, using Bayesian statistics. The form of the Bayes estimator is

affected by

. the prior distribution, a statistical distribution that ¢mbodies information on the
parameter of interest, in this case, the variance;

. the likelihood, the statistical distribution from which the data are assumed to be
drawn; and : "

. the loss function, which characterizes the penalty associated with incorrect

estimates of the parameter.

The squared error loss function is used in this derivation; for squared error loss, the
Bayes estimator is simply the mean of the posterior distribution. Further discussion of loss
functions is beyond the scope of this document; see Berger (1985), DeGroot (1970), Lehmann
(1983), or Lindgren (1976) for more information.

A normal likelihood is used in this development. Specifically, it is assumed that n

observations, X;, i = }, ..., 0, are available, where X;,i=1, .., n, ~ D N(O, &?.

In addition, it is assumed.that both a prior estimate of o, denoted s?, and a prior
estimate of the standard deviation of o2, denoted e, are available. These estimates are used to

formulate a prior distribution below.

Define:
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Based on these definitions, an updated estimate of o (one incorporating both the data

and the prior information) can be constructed from one possible Bayes estimator:®

Sg = _E”_ . (a.1)
Y.L
where
1 2
Su- 8+ —2-; Xi 1
and

Y= T+

(in each case, the subscript "u" is used to denote an updated estimate). In addition, an
updated estimate of the standard deviation of ¢* can be constructed:

5 . gl

= u =

- (A.2)
(VoL ¥u2 Y2
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The development of a prior distribution from s and e and the use of this prior
distribution in deriving the estimators in Equations (A.1) and (A.2) are now considered.

Under normality, one (slightly nonstandard) representation of the joint density of the X’s is

n

CE(xITY= E(X, .- XplT) = C,te % =C,tT'e™™,

(a) Since the prior distribution has not yet been fully specified, many Bayes estimators are
possible. :

A2
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where

i

o o

=~ 2 1
y =Y X T= r

I=1,

C, is a normalizing constant (to ensure that the density function integrates to one; this
constant is of no interest in this discussion), and X denotes the vector containing x;, 1 =1, ...,
n. In this development, a prior distribution is placed on 7,® rather than on o®. Specifically,

1 is assumed to follow the gamma density I(g,1/cr):

w(T) = C,T9te™, (A.3)

where C, is another normalizing ‘constant (again, of no interest in this discussion).

Reasonable values for the parameters of this gamma density (g and o) must now be

derived. To do so, the followirig results for the I'(g,1/0) distribution are used:

sy = 9, B = g
o o
1 o4 1 o
El—=) = E\2 2) = , El—\ = E\A4 i} = .
(’c) o) = o1 (ch) (4’) = <g=rr5=m

From these results, the following can be derived:

E(0?) = 7(5__1).,

a2

4y = )
B0 = gD ¢

v(c?) = Elo?-E(c?)) = E(c*) ~[z(o]

(a) The parameter T, known as the precision, is sometimes used in place of o, the
variance, as a parameter of the normal distribution.

A3



_ az o 2— aZ
4{g-1)(g-2) [T(g-l)] 4(g-l)z(g-2)'

The prior estimates are now equated to the corresponding moments of the proposed
gamma prior [i.e., s* = E(c?); €* = V(c?)], the resulting equations are solved for g and 0, and

the relationships to y and & (defined above) are noted, as follows:

2
g=) Lo 8liaay,

S4
a = 2s¥g-1) = 25%|=+1 20 .
e
The elements necessary for a Bayesian approach to updating the estimate of ¢° are
now available. The updating proceeds by forming the posterior distribution of T as the
(properly normahzed) product of the prior distribution and the likelihood:

n(tlx) = Cflxl T)m(T) = C, rrgtgmtlay) = crtigdasy)

where C; and C, are normahzmg constants (again, of no interest in this dlscuss1on) By
comparison with Equation (A.3) above, the posterior distribution of T is I“[r+y, 1/(20+y)].
Thus; the posterior distribution is of the same family as the prior distribution (the gamma
family), and the update is reflected by the change in the parameters of the gamma
distribution. The Bayes estimator of o? = 1/27 is the posterior mean of 1/27:

o5+ ¢
s? = E( = l ) 28+y = 7;X = 8"
27T 5 2(r+y-1) Y*-%‘l Y.L '

as in Equation (A.1) above. Similarly, the posterior standard deviation of 1/2t is used as the

estimator of the posterior standard deviation of o%
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e = J (25+Y)2 s =
¢ 4 (r+y-1)2(r+y-2)

as in Equation (A.2) above.
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