
**Development of Models and
Software for Liquidus Temperatures
of Glasses of HWVP Products:
Final Report**

RECEIVED
APR 01 1996
OSTI

P. R. Hrma **P. Wu**
J. D. Vienna **G. Eriksson**
A. D. Pelton **S. Degtiarev**

March 1996

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest National Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

 Battelle
MASTER

Development of Models and Software for Liquidus Temperatures of Glasses of HWVP Products: Final Report

P. R. Hrma
J. D. Vienna
A. D. Pelton*
P. Wu*
G. Eriksson*
S. Degtiarev*

March 1996

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352

*Centre for Research in Computational Thermochemistry, Ecole Polytechnique
Montreal, Quebec, Canada

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information, U.S. Box 22, Oak Ridge, TN 37831;
prices available from (615) 576-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

The document was printed on recycled paper.

TABLE OF CONTENTS

1	INTRODUCTION/SUMMARY	3
2	OPTIMIZATION OF BASE GLASS	7
2.1	Na ₂ O-B ₂ O ₃ -SiO ₂ system	7
2.2	Na ₂ O-Al ₂ O ₃ -SiO ₂ system	9
2.3	Na ₂ O-Fe ₂ O ₃ -SiO ₂ system	9
2.4	Other Systems with Al ₂ O ₃ and Fe ₂ O ₃	11
2.5	Na ₂ O-ZrO ₂ -SiO ₂ system (and compound Na ₂ ZrSi ₂ O ₇)	11
2.6	Na ₂ O-CaO-SiO ₂ system (and solid solution Na ₂ Ca ₂ Si ₃ O ₉ -Na ₄ CaSi ₃ O ₉) ..	11
2.7	Clinopyroxene (NaFeSi ₂ O ₆ -CaMgSi ₂ O ₆) solid solution	11
2.8	Optimization of CVS liquidus calculations	12
3	INCLUDING Fe ²⁺ IN THE DATABASES	12
4	INCLUDING CHROME IN THE DATABASES	13
5	INCLUDING NICKEL IN THE DATABASES	13
6	INCLUDING MANGANESE IN THE DATABASES	13
7	CALCULATIONS FOR CVS GLASSES	14
7.1	Discussion	30
8	THE SPINEL PHASE	32
9	SOLUBILITY OF SO ₃ , PO ₄ , Cl, F, I AND H ₂ O IN GLASSES	32
9.1	SO ₃ Solubilities	34
9.2	Phosphate solubilities	41
9.3	Halide solubilities	44
9.4	H ₂ O Solubilities	45
10	MOLTEN SALT DATABASES	48
11	REFERENCES	49

1 INTRODUCTION/SUMMARY

In an earlier report [92 Pel] was described the development of software and thermodynamic databases for the calculation of liquidus temperatures of glasses of HWVP products containing the components SiO_2 - B_2O_3 - Na_2O - Li_2O - CaO - MgO - Fe_2O_3 - Al_2O_3 - ZrO_2 -“others”.

The software package developed at that time consisted of the EQUILIB program of the F*A*C*T computer system with special input/output routines. Since then, Battelle has purchased the entire F*A*C*T computer system, and this fully replaces the earlier package. Furthermore, with the entire F*A*C*T system, additional calculations can be performed such as calculations at fixed O_2 , SO_2 , etc. pressures, or graphing of output. Furthermore, the public F*A*C*T database of over 5 000 gaseous species and condensed phases is now accessible.

The private databases for the glass and crystalline phases were developed for Battelle by optimization of thermodynamic and phase diagram data. That is, all available data for 2- and 3-component sub-systems of the 9-component oxide system were collected, and parameters of model equations for the thermodynamic properties were found which best reproduce all the data. For representing the thermodynamic properties of the glass as a function of composition and temperature, the modified quasichemical model was used. This model was described in the earlier report [92 Pel] along with all the optimizations. With the model, it was possible to predict the thermodynamic properties of the 9-component glass, and thereby to calculate liquidus temperatures. Liquidus temperatures measured by Battelle for 123 CVS glass compositions were used to test the model and to refine the model by the addition of further parameters.

In the present report, we describe the continuation of this work.

First, the optimization of the base 9-component glass was extensively re-examined and improved as will be discussed in Section 2. Many binary and ternary systems were completely re-optimized, and our treatment of Al_2O_3 and Fe_2O_3 in the model was revised to better account for the charge compensation effect. The clinopyroxene phase has now been modeled as a solid solution $\text{NaFeSi}_2\text{O}_6$ - $\text{CaMgSi}_2\text{O}_6$ and new thermodynamic data for acmite have been used. A sodium-calcium silicate solid solution has also been included, as has the compound $\text{Na}_2\text{ZrSi}_2\text{O}_7$.

Chrome, nickel, manganese and Fe^{2+} were added to the database through optimization of a large amount of data as described below in Section 3-6. A model for the corundum solid solution (Cr_2O_3 - Fe_2O_3 - Al_2O_3) was also developed. Data for Cr, Ni and Fe in other solid compounds and solutions were also optimized, but these phases were never calculated to form as primary phases over the range of composition of the CVS glasses and so they were not included in the databases prepared for Battelle.

A model was also developed for the $(\text{Fe}, \text{Ni}, \text{Mn})(\text{Fe}, \text{Al}, \text{Cr}, \text{Mn})_2\text{O}_4$ spinel phase, and parameters were obtained by optimization as discussed in Section 8.

Calculated liquidus temperatures and primary phases are compared with the experimental results in Section 7. Agreement is significantly improved over that in the earlier report. The comparison of calculations and experimental results is discussed in detail in Section 7.1. Comparisons of calculated and experimental spinel liquidus temperatures are discussed in Section 8.

Bi was not added to the database as originally proposed because, following discussions with P. Hrma, it was decided to include Mn in the spinel model instead.

A model for sulfate, phosphate, chloride, fluoride, iodide and water in dilute solutions (< 10 wt.%) in glass was developed. This required re-programming of a number of F*A*C*T software modules.

Calculations of the solubilities of these constituents are compared to available data in Section 9. Agreement is generally very good, and in most cases this agreement is achieved with no adjustable parameters. Solubilities in equilibrium with a gas phase (containing SO₂, O₂, H₂O, etc.) can be calculated with the ACT option of the EQUILIB program. Solubilities in equilibrium with solid or liquid sulphates, phosphates and halides can also be calculated. In the case of phosphates, optimized data for the solid phosphates are included in Battelle's private one-component database. For liquid sulphates and halides, which can form molten salt solutions, use either the /SOLN-SALT/ solution from the public F*A*C*T database, or the Li, Na, Mg, Ca/F, SO₄ molten salt solution which has been prepared by optimization and is included in the private SOLUTION database. Data for pure solid and liquid sulfates and halides can be taken from the public F*A*C*T database.

The optimization of the Li, Na, Mg, Ca/F, SO₄ molten salt phase is discussed in Section 10.

A list of the solutions in the optimized private SOLUTION database which has been prepared is given in Table 1, while a list of the contents of the private one-component databases prepared for Battelle is given in Table 2. In the species selection step of the EQUILIB program one should select only these solutions and compounds as well as the /SOLN-SALT/ phase and, if required, data for pure liquid or solid halides and sulfates and any gases from the public F*A*C*T databases. No other species or solutions from the public F*A*C*T databases should be required, and their selection could cause problems of compatibility of data. Of course, a saving in computation time can be realized if species which are certain not to form in a given case are not selected. Note also that after an EQUILIB calculation, if one enters "LIST", then the calculated activities of all species and solution components are displayed.

Table 1

Solutions in Private Battelle Database

FILE 1 DEC 14, 1994
NaCa silicate solid solution (Na₂Ca₂Si₃O₉-Na₄CaSi₃O₉)

FILE 2 JAN 11, 1995
Acmite-Augite solid solution (NaFeSi₂O₆-CaMgSi₂O₆)

FILE 3 MON APR 11, 1994
Corundum Al₂O₃-Cr₂O₃-Fe₂O₃ solid solution

FILE 4 AUG 31, 1995
Spinel (Fe,Ni,Mn)(Fe,Cr,Al,Mn)O₄

FILE 5 AUG 28, 1995
Salt-liquid Li,Na,Mg,Ca/F,SO₄

FILE 6 TUE AUG 29, 1995
Glass

FILE 7 TUE AUG 29, 1995
Mn₂SiO₄-Mg₂SiO₄ solid solution

Table 2

Compounds in Private Battelle Database

Species found in USERBASE

2 OPTIMIZATION OF BASE GLASS

The optimization of the base glass (SiO_2 - B_2O_3 - Na_2O - Li_2O - CaO - MgO - Fe_2O_3 - Al_2O_3 - ZrO_2) was discussed in the earlier report [92 Pel]. Since then, the optimization has been extensively re-examined and improved.

A number of ternary sub-systems have been re-optimized with attention paid only to those composition regions where the basicity falls within the range of basicities of Battelle's CVS glasses because, from the equations of the model, only optimizations within these composition regions will have any influence on the multicomponent calculations. According to the model, "basicity" is defined as:

$$(\text{n}_{\text{SiO}_2} + 2\text{n}_{\text{B}_2\text{O}_3} + \text{n}_{\text{ZrO}_2}) / (\text{n}_{\text{SiO}_2} + 2\text{n}_{\text{B}_2\text{O}_3} + \text{n}_{\text{ZrO}_2} + 2\text{n}_{\text{Na}_2\text{O}} + 2\text{n}_{\text{Li}_2\text{O}} + \text{n}_{\text{CaO}} + \text{n}_{\text{MgO}} + 2\text{n}_{\text{Al}_2\text{O}_3} + 2\text{n}_{\text{Fe}_2\text{O}_3})$$

2.1 Na_2O - B_2O_3 - SiO_2 system

In the case of the Na_2O - B_2O_3 - SiO_2 system, the following optimized parameters were obtained. Calculated and experimental [51 Mor] liquidus points are compared in Table 3.

Since the optimization only applies for the range of basicity of the CVS glasses, the miscibility gap at low Na_2O contents in the Na_2O - B_2O_3 - SiO_2 system is not correctly reproduced.

$$\omega_{\text{NaSi (B)}}^{61} = -83.68 \text{ kJ/mol}$$

$$\omega_{\text{SiNa (B)}}^{11} = -125.52 \text{ kJ/mol}$$

$$\omega_{\text{NaB (S)}}^{01} = 75.31 \text{ kJ/mol}$$

Table 3

Calculated and Experimental [51 Mol] Liquidus Points in the
 $\text{Na}_2\text{O}-\text{B}_2\text{O}_3-\text{SiO}_2$ System

Point Number (from [51 Mol])	Composition (wt.%)			T(°C)	
	Na_2O	B_2O_3	SiO_2	expt.	calc.
102	30.8	15.8	53.4	706	680
104	28.3	11.4	60.3	710	687
105	30.0	10.0	60.0	755	722
106	34.0	6.0	60.0	805	797
107	49.2	21.2	29.6	854	869
108	49.4	15.2	35.4	916	949
109	49.7	10.3	40.0	966	1002
110	35.9	15.4	48.7	769	712
111	42.0	18.2	39.8	784	779
87	16.3	30.5	47.2	787	835
89	22.0	28.0	50.0	760	736
90	19.0	26.3	54.7	771	812
92	21.0	23.6	55.4	784	778
93	26.5	12.9	60.6	676	671

2.2 Na₂O-Al₂O₃-SiO₂ system

In the Na₂O-Al₂O₃-SiO₂ system, a "charge compensation effect" is operative, whereby an Al atom can replace Si on a network site only if paired with a Na ion. This means that the structure and properties of the glasses are very different on either side of a line where the Na/Al molar ratio is 1.0. Since this ratio is greater than 1.0 for nearly all CVS glasses, it was decided to optimize only this region. This was found to be much easier if the quasichemical "charge parameter" of alumina was set equal to that of sodium (0.3444). Furthermore, since compositions on the Al₂O₃-SiO₂ and Na₂O-Al₂O₃ systems are not in the ranges of composition (either of Na/Al ratio or of basicity) of interest, the binary parameters of these systems were chosen only with a view to optimizing the ternary system. The following optimized parameters were obtained

$$\begin{aligned}\omega_{\text{NaAl}} &= -449.78 \text{ kJ/mol} \\ \omega_{\text{AlSi}} &= -190.255 y_{\text{Si}}^2 \text{ kJ/mol} \\ \omega_{\text{NaAl}(\text{Si})}^{01} &= -167.36 \text{ kJ/mol}\end{aligned}$$

A comparison of calculated and experimental [60 Osb] invariant points is given in Table 4.

A satisfactory optimization of the nepheline (NaAlSiO₄) liquidus of the Na₂O-Al₂O₃-SiO₂ system was not obtained. Consequently, liquidus temperatures of CVS glasses with compositions for which nepheline is a possible primary phase are not well calculated as will be discussed in Section 7.

2.3 Na₂O-Fe₂O₃-SiO₂ system

In the Na₂O-Fe₂O₃-SiO₂ system, a charge compensation effect is also probably operative, although to a lesser degree than in Na₂O-Al₂O₃-SiO₂. In any case, the optimization of this system was improved over that reported in the earlier report by setting the "charge parameter" of FeO_{3/2} equal to that of Na₂O (0.3444). Furthermore, most emphasis was placed on fitting the phase diagram [30 Bow] at low Fe₂O₃ contents. More recent data [90 Hol] for the thermodynamic properties of pure acmite (NaFeSi₂O₆) were employed than were used in the earlier report. ΔH_{298}° of acmite was later adjusted by -16.75 kJ/mol in the optimization which is within the experimental error limits. One optimized ternary parameter was required:

$$\omega_{\text{NaSi}(\text{Fe})}^{01} = -50.21 \text{ kJ/mol}$$

Table 4

Comparison of Calculated and Experimental [¹⁶⁰O_{8b1}] Invariant Points in the
Na₂O-Al₂O₃-SiO₂ System

Composition (wt.%)			T(°C)	Reaction
Na ₂ O	Al ₂ O ₃	SiO ₂		
expt. calc.			1062 1073	L → SiO ₂ + NaAlSi ₃ O ₈
expt. calc.			740 750	L → Na ₂ Si ₂ O ₅ + SiO ₂ + NaAlSi ₃ O ₈
expt. 26.0 calc. 27.8	12.5 11.2	61.5 61.0	732 735	L → Na ₂ Si ₂ O ₅ + NaAlSi ₃ O ₈ + NaAlSiO ₄
expt. 32.0 calc. 31.5	10.1 10.4	57.9 58.1	760 742	L → Na ₂ Si ₂ O ₅ + Na ₂ SiO ₃ + NaAlSiO ₄
expt. calc.			1118 1118	L → NaAlSi ₃ O ₈

2.4 Other Systems with Al_2O_3 and Fe_2O_3

The treatment of the components Al_2O_3 and Fe_2O_3 is now different, since their assumed "charge parameters" in the quasichemical model were changed in order to give better optimizations of the important $\text{Na}_2\text{O}-\text{Al}_2\text{O}_3-\text{SiO}_2$ and $\text{Na}_2\text{O}-\text{Fe}_2\text{O}_3-\text{SiO}_2$ systems. (These systems are important because Na_2O and SiO_2 are both major CVS glass components.) Because of this, it was necessary to re-optimize all systems containing Al_2O_3 or Fe_2O_3 . The systems which were re-optimized are: $\text{CaO}-\text{Fe}_2\text{O}_3$, $\text{Al}_2\text{O}_3-\text{B}_2\text{O}_3$, $\text{Al}_2\text{O}_3-\text{CaO}$, $\text{Al}_2\text{O}_3-\text{MgO}$, $\text{Al}_2\text{O}_3-\text{ZrO}_2$, $\text{Na}_2\text{O}-\text{Fe}_2\text{O}_3$, $\text{SiO}_2-\text{Fe}_2\text{O}_3$, $\text{Al}_2\text{O}_3-\text{B}_2\text{O}_3-\text{SiO}_2$, $\text{Al}_2\text{O}_3-\text{Li}_2\text{O}-\text{SiO}_2$, $\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2$, $\text{MgO}-\text{Al}_2\text{O}_3-\text{SiO}_2$.

2.5 $\text{Na}_2\text{O}-\text{ZrO}_2-\text{SiO}_2$ system (and compound $\text{Na}_2\text{ZrSi}_2\text{O}_7$)

Very few data are available for this system, but a value of $\omega_{\text{NaSi}(\text{Zr})}^{21} = -209.2 \text{ kJ/mol}$ (-50 kcal/mol) was estimated. A compound $\text{Na}_2\text{ZrSi}_2\text{O}_7$ has been observed which was not included in our earlier report [92 Pel]. No thermodynamic data are available for this compound. Accordingly, C_p was estimated from C_p of ZrO_2 and ZrSiO_4 , while ΔH_{298}° and S_{298}° were chosen to best reproduce the observed liquidus temperatures of the CVS glasses.

2.6 $\text{Na}_2\text{O}-\text{CaO}-\text{SiO}_2$ system (and solid solution $\text{Na}_2\text{Ca}_2\text{Si}_3\text{O}_9-\text{Na}_4\text{CaSi}_3\text{O}_6$)

The earlier optimization of this system has been improved. In particular, the assumption of an ideal solid solution between $\text{Na}_2\text{Ca}_2\text{Si}_3\text{O}_9$ and $\text{Na}_4\text{CaSi}_3\text{O}_6$ markedly improves the agreement between the calculations and the published phase diagram.

2.7 Clinopyroxene ($\text{NaFeSi}_2\text{O}_6-\text{CaMgSi}_2\text{O}_6$) solid solution

A major improvement in reproducing the observed liquidus temperatures of the CVS glasses was effected by treating the clinopyroxene phase as a solid solution of $1/2(\text{NaFeSi}_2\text{O}_6)$ and $1/2(\text{CaMgSi}_2\text{O}_6)$. Thermodynamic data for pure $\text{CaMgSi}_2\text{O}_6$ were taken from the F*A*C*T database, and a Henrian solution parameter

$$RT \ln Y_{1/2(\text{CaMgSi}_2\text{O}_6)} = -26342 + 19.246 T \text{ J/mol}$$

was chosen to best reproduce the observed CVS glass liquidus points.

Although Cr and Ni can probably also dissolve in this solid solution, this was not considered in the present model because of lack of data and because good results were obtained in most cases without this.

2.8 Optimization of CVS liquidus calculations

In many cases, interactions between minor constituents of the CVS glasses can be important. For example, an $\omega_{ZrSi(Al)}$ ternary parameter is necessary in the calculations. However this parameter cannot be obtained by simply optimizing data for the ZrO_2 - SiO_2 - Al_2O_3 ternary system because ZrO_2 and Al_2O_3 are minor constituents of the glasses, and the interactions between these constituents in a predominantly sodium borosilicate glass is quite different from that in a ZrO_2 - SiO_2 - Al_2O_3 glass. Consequently, it is only possible to optimize such parameters from actual measurements on the CVS glasses. In this way the following parameters were determined:

$$\begin{aligned}\omega_{ZrSi(Al)}^{01} &= -313.80 \text{ kJ/mol} \\ \omega_{LiSi(Zr)}^{21} &= -138.07 \text{ kJ/mol} \\ \omega_{CaSi(B)}^{01} &= 62.76 \text{ kJ/mol} \\ \omega_{BSi(Zr)}^{01} &= -12.55 \text{ kJ/mol} \\ \omega_{LiSi(Ca)}^{01} &= -100.42 \text{ kJ/mol} \\ \omega_{MgSi(Zr)}^{01} &= 167.36 \text{ kJ/mol} \\ \omega_{CaSi(Zr)}^{01} &= -41.84 \text{ kJ/mol} \\ \omega_{CaSi(Fe)}^{01} &= -87.86 \text{ kJ/mol} \\ \omega_{FeSi(Mg)}^{01} &= 16.74 \text{ kJ/mol}\end{aligned}$$

3 INCLUDING Fe^{2+} IN THE DATABASES

Optimizations were performed for the liquid and solid phases of the FeO - Fe_2O_3 - SiO_2 - CaO system. An article on this work is in preparation. The following systems involving Fe^{2+} were also optimized: FeO - MgO , FeO - ZrO_2 , FeO - Al_2O_3 - SiO_2 . All these optimizations will appear in "Phase Diagrams for Ceramists". No data for the FeO - B_2O_3 system could be found, so ideal mixing was assumed.

The optimized parameters have been incorporated into the database for the glass and can be used to calculate the effect of oxygen pressure on the Fe^{2+}/Fe^{3+} ratio in the glass (using the EQUILIB program and the ACT option).

Fe^{2+} has also been incorporated into the database for the spinel phase as discussed in Section 8.

Data for Fe^{2+} in solid crystalline phases and solid solutions such as Fe_2SiO_4 - M_2SiO_4 or $FeSiO_3$ - $MSiO_3$ solutions ($M = Mg, Ca$) were also optimized, but these phases were never

found to form as primary phases from the CVS glasses in the calculations and so they have not been included in the database prepared for Battelle.

4 INCLUDING CHROME IN THE DATABASES

Most binary, ternary and quaternary sub-systems of the $\text{CrO-Cr}_2\text{O}_3-\text{SiO}_2-\text{CaO-Al}_2\text{O}_3-\text{FeO-Fe}_2\text{O}_3$ system have been fully optimized. Two articles are being prepared based on this work. As well, the optimizations will appear in "Phase Diagrams for Ceramists". Good quantitative reproduction of all phase diagram and thermodynamic data has been obtained, including the effect of O_2 pressure on the $\text{Cr}^{2+}/\text{Cr}^{3+}$ ratio and on the phase equilibria.

Data for several Cr-containing solid phases were also optimized. The spinel phase is discussed in Section 8. A database was prepared for the corundum solid solution, $\text{Fe}_2\text{O}_3-\text{Al}_2\text{O}_3-\text{Cr}_2\text{O}_3$. This phase was found in the calculations to be the primary phase for certain CVS glasses. None of the other Cr-containing solid phases were found to form as primary phases from the CVS glasses in the calculations, and so they have not been included in the database prepared for Battelle.

No data for the $\text{Na}_2\text{O-CrO-Cr}_2\text{O}_3$ system were found. Consequently, one parameter $\omega_{\text{Na}_2\text{O-Cr}(3+)}$ was optimized by using spinel liquidus data for the CVS glasses.

Cr^{6+} has not been included in the database due to lack of available data. This oxidation state will be most important in basic glasses.

5 INCLUDING NICKEL IN THE DATABASES

Parameters from optimizations of the NiO-SiO_2 , NiO-MgO and NiO-CaO systems were included in the glass database. These optimisations are to be published in "Phase Diagrams for Ceramists". The phase Ni_2SiO_4 was optimized but was found never to appear as a primary phase in the calculations. Consequently, it has not been included in the database prepared for Battelle. No data for the $\text{Na}_2\text{O-B}_2\text{O}_3-\text{NiO}$ system or its sub-systems were found. Hence, an $\omega_{\text{Na}_2\text{O-Ni}}$ and an $\omega_{\text{B-Ni}}$ parameter were optimized by using spinel liquidus data for the CVS glasses. The spinel phase, which contains nickel, is discussed in Section 8.

6 INCLUDING MANGANESE IN THE DATABASES

Parameters obtained by optimizing the following systems were included in the glass database: MgO-MgO , MnO-SiO_2 , MnO-CaO , $\text{MnO-Al}_2\text{O}_3$, and MnO-ZrO_2 . These optimizations will appear in "Phase Diagrams for Ceramists". From an examination of available data it was

concluded that Mn^{3+} will not appear in appreciable concentrations in CVS glasses, and so Mn^{3+} was not included in the glass database.

Data for the $MnSiO_3$ solid phase and Mn_2SiO_4 - Mg_2SiO_4 solid solutions were also included in Battelle's databases. Although neither of these phases appeared in the calculations for the CVS glasses, they could appear in glasses with somewhat higher Mn contents.

Manganese has been included in the spinel phase as discussed in Section 8.

7 CALCULATIONS FOR CVS GLASSES

Experiments on 123 compositions were carried out by Battelle. The compositions are listed in Table 5. The ID number is that used by Battelle. Glasses 1 to 23 are CVS-I. Glasses 24 to 123 are CVS-II glasses 1 to 100. The compositions of "others" is shown in Table 6 as regards Cr, Ni and Mn content.

Experimental liquidus temperatures, primary phases and the elements observed by SEM/EDS in the primary phases are shown in Table 7 which is reproduced from the most recent tables supplied to us by Battelle in 1994.

Calculated liquidus temperatures and primary phases are shown in Table 8. These were calculated by assuming that no prior precipitation of spinel occurs (that is, it is assumed that the amount of any prior spinel precipitation has a negligible effect on the glass composition). For some glass compositions, the calculations indicated that two immiscible glass phases exist at equilibrium. However, the calculations shown in Table 8 were all performed by assuming only one glass phase. In cases where two glass phases appear at equilibrium, taking account of this fact in the calculations usually only changes the calculated liquidus temperature by 10° or less. In cases where two "primary" phases appear in Table 8, the lower temperature liquidus is a metastable liquidus calculated by suppressing the formation of the phase appearing at the higher temperature.

Note that in Table 8 the "CO(R)" phase is the corundum solid solution (Fe_2O_3 - Al_2O_3 - Cr_2O_3). Clinopyroxene (Cp) is the $NaFeSi_2O_6$ - $CaMgSi_2O_6$ solid solution.

Calculations of the spinel liquidus, also shown in Table 8, are discussed in Section 8.

The amounts of Ni, Cr and Mn in the "others" (as in Table 6) was taken into account in the calculations. The remaining "others" were grouped together as the one fictitious component " In_2O_3 " as described in the earlier report [92 PeI]. (This "compound" is included in the glass database but in no solid phases. Its affect is only to lower the activities of the other components. In_2O_3 was chosen because its molecular weight is close to the average of the "others").

Table 5

Compositions of CVS-I and CVS-II Glasses

Composition (weight fraction)										ID
SiO ₂	B ₂ O ₃	Na ₂ O	Li ₂ O	CaO	MgO	Fe ₂ O ₃	Al ₂ O ₃	ZrO ₂	Others	No
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	1
.5500	.0500	.0500	.0700	.1000	.0000	.0200	.1500	.0000	.0100	2
.4200	.2000	.0500	.0700	.0000	.0800	.0200	.1400	.0100	.0100	3
.5700	.2000	.0900	.0100	.0200	.0800	.0200	.0000	.0000	.0100	4
.5700	.0500	.0700	.0700	.0000	.0000	.1500	.0800	.0000	.0100	5
.4400	.2000	.0500	.0700	.0000	.0000	.0200	.0000	.1200	.1000	6
.5700	.0500	.0964	.0100	.1000	.0000	.0336	.0000	.1300	.0100	7
.5363	.0500	.0837	.0100	.0000	.0800	.1500	.0000	.0800	.0100	8
.4200	.1962	.0538	.0100	.0000	.0800	.1400	.0000	.0000	.1000	9
.5700	.0851	.0949	.0100	.0000	.0000	.0200	.1200	.0000	.1000	10
.4200	.1549	.0751	.0100	.1000	.0000	.0200	.1400	.0000	.0800	11
.4200	.1764	.0736	.0700	.1000	.0000	.1500	.0000	.0000	.0100	12
.5700	.2000	.1862	.0100	.0000	.0000	.0200	.0038	.0000	.0100	13
.4200	.2000	.1862	.0100	.0000	.0000	.0200	.0238	.1300	.0100	14
.5589	.0500	.1211	.0700	.0000	.0800	.0200	.0000	.0000	.1000	15
.4327	.0500	.1873	.0100	.0000	.0800	.0858	.1442	.0000	.0100	16
.4545	.0500	.1455	.0100	.1000	.0000	.1400	.0000	.0000	.1000	17
.4214	.0500	.1186	.0700	.0200	.0800	.0200	.0000	.1300	.0900	18
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	19
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	20
.5700	.2000	.0900	.0100	.0200	.0800	.0200	.0000	.0000	.0100	21
.5363	.0500	.0837	.0100	.0000	.0800	.1500	.0000	.0800	.0100	22
.5153	.0956	.1052	.0375	.0289	.0084	.1179	.0456	.0063	.0393	23
.5226	.0874	.0700	.0600	.0000	.0500	.0400	.0800	.0100	.0800	24
.5017	.0700	.0883	.0600	.0700	.0000	.0450	.1100	.0300	.0250	25

Table 5 (continued)

Compositions of CVS-I and CVS-II Glasses

Composition (weight fraction)										ID
SiO ₂	B ₂ O ₃	Na ₂ O	Li ₂ O	CaO	MgO	Fe ₂ O ₃	Al ₂ O ₃	ZrO ₂	Others	No
.4645	.1320	.0700	.0435	.0700	.0100	.0450	.1032	.0368	.0250	26
.5600	.1095	.0700	.0536	.0700	.0000	.0400	.0619	.0100	.0250	27
.4751	.1590	.1010	.0200	.0348	.0000	.0400	.0800	.0100	.0800	28
.5373	.0700	.0700	.0382	.0700	.0046	.1200	.0159	.0100	.0641	29
.4814	.1700	.0700	.0591	.0094	.0000	.0400	.0953	.0100	.0648	30
.5115	.0700	.0985	.0600	.0000	.0500	.1140	.0610	.0100	.0250	31
.5431	.0944	.0924	.0600	.0000	.0000	.0712	.0138	.1000	.0250	32
.4694	.1700	.1306	.0200	.0000	.0000	.0669	.1043	.0100	.0288	33
.4915	.0751	.0833	.0600	.0700	.0100	.0400	.0100	.0935	.0665	34
.4683	.1700	.0700	.0466	.0700	.0100	.0400	.0901	.0100	.0250	35
.4937	.0700	.1692	.0225	.0300	.0500	.0400	.0896	.0100	.0250	36
.4600	.1313	.0802	.0486	.0500	.0200	.0400	.0243	.1000	.0457	37
.4729	.0700	.1700	.0214	.0601	.0000	.0400	.0756	.0100	.0800	38
.5353	.1053	.1125	.0375	.0083	.0084	.0719	.0231	.0385	.0592	39
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	40
.5353	.1053	.1125	.0375	.0083	.0084	.0719	.0231	.0385	.0592	41
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	42
.5700	.0500	.1031	.0669	.0000	.0000	.0600	.0100	.1300	.0100	43
.5700	.1314	.0500	.0700	.0000	.0800	.0200	.0686	.0000	.0100	44
.5700	.0500	.0735	.0700	.0000	.0800	.0200	.0365	.0000	.1000	45
.5700	.0522	.2000	.0100	.0800	.0000	.0200	.0578	.0000	.0100	46
.4464	.2000	.0736	.0700	.0000	.0000	.0200	.0961	.0000	.0939	47
.5059	.0500	.0841	.0700	.0800	.0000	.1500	.0033	.0000	.0567	48
.4431	.2000	.0512	.0700	.0800	.0000	.0200	.0257	.1000	.0100	49
.5463	.0500	.2000	.0155	.0000	.0800	.0200	.0782	.0000	.0100	50
.5619	.0500	.2000	.0126	.0000	.0000	.0200	.0555	.0000	.1000	51
.4391	.2000	.0675	.0100	.0800	.0000	.0200	.0000	.0834	.1000	52
.5190	.2000	.0832	.0100	.0000	.0000	.1320	.0458	.0000	.0100	53

Table 5 (continued)

Compositions of CVS-I and CVS-II Glasses

Composition (weight fraction)										ID
SiO ₂	B ₂ O ₃	Na ₂ O	Li ₂ O	CaO	MgO	Fe ₂ O ₃	Al ₂ O ₃	ZrO ₂	Others	No
.5700	.1843	.0500	.0331	.0800	.0000	.0200	.0526	.0000	.0100	54
.5445	.0500	.2000	.0428	.0000	.0000	.0200	.0027	.1300	.0100	55
.4200	.0544	.2000	.0364	.0000	.0800	.0200	.0892	.0000	.1000	56
.4200	.1743	.2000	.0369	.0000	.0000	.0200	.1388	.0000	.0100	57
.4200	.0500	.2000	.0428	.0800	.0000	.0632	.1340	.0000	.0100	58
.5421	.0500	.0891	.0700	.0800	.0000	.1500	.0088	.0000	.0100	59
.5700	.0839	.1061	.0700	.0000	.0000	.0200	.1400	.0000	.0100	60
.5147	.1109	.1044	.0100	.0000	.0800	.1428	.0272	.0000	.0100	61
.4838	.0500	.1362	.0700	.0000	.0800	.0742	.0258	.0700	.0100	62
.5040	.0639	.1500	.0421	.0200	.0500	.0200	.1000	.0200	.0300	63
.5325	.0694	.0781	.0700	.0500	.0200	.0300	.1000	.0200	.0300	64
.5675	.0500	.0625	.0700	.0320	.0380	.1000	.0300	.0200	.0300	65
.5070	.1477	.0500	.0653	.0200	.0300	.0300	.0500	.0700	.0300	66
.5700	.1078	.0500	.0699	.0500	.0200	.0200	.0623	.0200	.0300	67
.5299	.1106	.0500	.0595	.0200	.0500	.0308	.0592	.0200	.0700	68
.5264	.1259	.0577	.0700	.0200	.0200	.0200	.0746	.0200	.0654	69
.5294	.0500	.1277	.0429	.0500	.0200	.0200	.0400	.0500	.0700	70
.4700	.1442	.0968	.0390	.0500	.0200	.0200	.0854	.0200	.0546	71
.5073	.1357	.0957	.0413	.0200	.0200	.0515	.0785	.0200	.0300	72
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	73
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	74
.6000	.0817	.0450	.0788	.0008	.0009	.0720	.0233	.0385	.0590	75
.5226	.0874	.0700	.0600	.0000	.0500	.0400	.0800	.0100	.0800	76
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	77
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	78
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	79
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	80

Table 5 (continued)

Compositions of CVS-I and CVS-II Glasses

Composition (weight fraction)										ID
SiO_2	B_2O_3	Na_2O	Li_2O	CaO	MgO	Fe_2O_3	Al_2O_3	ZrO_2	Others	No
.3900	.2000	.0500	.0700	.0200	.0800	.0200	.1500	.0100	.0100	81
.4380	.1718	.1268	.0727	.0375	.0005	.0200	.1150	.0075	.0102	82
.5281	.0876	.1725	.0743	.0063	.0005	.0200	.0925	.0075	.0107	83
.5281	.0664	.1200	.0730	.0000	.0000	.0200	.1625	.0175	.0125	84
.5579	.1765	.1125	.0156	.0500	.0005	.0200	.0500	.0075	.0095	85
.3232	.1717	.1900	.0051	.1000	.0000	.0200	.1800	.0000	.0100	86
.5697	.0509	.0925	.0642	.0025	.0008	.0812	.0288	.0431	.0663	87
.5344	.1128	.0860	.0697	.0007	.0004	.0013	.0196	.1548	.0203	88
.5175	.0917	.1211	.0523	.0097	.0061	.0388	.1180	.0026	.0422	89
.4596	.1587	.1086	.0583	.0024	.0001	.0004	.2043	.0000	.0076	90
.5040	.1355	.0797	.0696	.0007	.0002	.0046	.1640	.0001	.0416	91
.5660	.0781	.0664	.0713	.0079	.0032	.0334	.0816	.0005	.0916	92
.4854	.1418	.0812	.0691	.0008	.0008	.0080	.1819	.0005	.0305	93
.5697	.0509	.0925	.0642	.0025	.0008	.0812	.0288	.0431	.0663	94
.5175	.0917	.1211	.0523	.0097	.0061	.0388	.1180	.0026	.0422	95
.5040	.1355	.0797	.0696	.0007	.0002	.0046	.1640	.0001	.0416	96
.5660	.0781	.0664	.0713	.0079	.0032	.0334	.0816	.0005	.0916	97
.4854	.1418	.0812	.0691	.0008	.0008	.0080	.1819	.0005	.0305	98
.5018	.0600	.1800	.0632	.0400	.0050	.1050	.0200	.0050	.0200	99
.4550	.0600	.1800	.0700	.0050	.0050	.0050	.0200	.1100	.0900	100
.5600	.1600	.0500	.0254	.0050	.0400	.0699	.0200	.0497	.0200	101
.5479	.1600	.0500	.0121	.0050	.0050	.1050	.0200	.0050	.0900	102
.5074	.1600	.0500	.0176	.0050	.0400	.1050	.0200	.0750	.0200	103
.4400	.0600	.1734	.0700	.0050	.0400	.1050	.0200	.0050	.0816	104
.5600	.0950	.1800	.0700	.0050	.0400	.0050	.0200	.0050	.0200	105
.4900	.0951	.1800	.0699	.0400	.0050	.0050	.0200	.0050	.0900	106

Table 5 (continued)

Compositions of CVS-I and CVS-II Glasses

Composition (weight fraction)										ID
SiO ₂	B ₂ O ₃	Na ₂ O	Li ₂ O	CaO	MgO	Fe ₂ O ₃	Al ₂ O ₃	ZrO ₂	Others	No
.4550	.0600	.1800	.0700	.0050	.0050	.1050	.0200	.0800	.0200	107
.4400	.0600	.1800	.0700	.0050	.0200	.0050	.1700	.0050	.0450	108
.4764	.0600	.1800	.0136	.0400	.0050	.0050	.1700	.0050	.0450	109
.4983	.0800	.1800	.0180	.0137	.0050	.0250	.0987	.0613	.0200	110
.4597	.0600	.1403	.0700	.0400	.0050	.0250	.1050	.0750	.0200	111
.4400	.1171	.1800	.0100	.0400	.0050	.1050	.0200	.0629	.0200	112
.5600	.1600	.0542	.0700	.0050	.0050	.1008	.0200	.0050	.0200	113
.5600	.1600	.1050	.0100	.0050	.0400	.0050	.0200	.0050	.0900	114
.4400	.1600	.1000	.0700	.0050	.0400	.0050	.0200	.0700	.0900	115
.4400	.1337	.1279	.0700	.0098	.0050	.0986	.0200	.0050	.0900	116
.4400	.1600	.1800	.0526	.0400	.0050	.0271	.0703	.0050	.0200	117
.463	.109	.163	.042	.010	.016	.087	.032	.004	.074	118
.4801	.1142	.1003	.0376	.0275	.0363	.0568	.0636	.0429	.0407	119
.5328	.1048	.1129	.0373	.0082	.0084	.0733	.0235	.0392	.0596	120
.4200	.1743	.2000	.0369	.0000	.0000	.0200	.1388	.0000	.0100	121
.5203	.0969	.0980	.0356	.0097	.0077	.1019	.0523	.0199	.0577	122
.5329	.0740	.0626	.0596	.0035	.0012	.1229	.0286	.0443	.0704	123

Table 6

Compositions of "Others" in CVS Glasses

ID #	CVS - II #	Composition (wt.%)			
		Cr ₂ O ₃	NiO	MnO ₂	Remainder
	55	15	0	47	38
	56	12	0	78	10
	57	9	0	0	91
	64	1.70	14.81	0	83.49
	65	23.7	0	0	76.3
	66	25.5	12.4	34.4	27.7
	67	17.8	0	0	82.2
	68	71.3	0	6.4	22.3
	69	25.93	0	16.32	57.75
	70	38.31	2.69	11.57	47.43
	99	3.47	5.03	8.32	83.18
	100	0.85	9.80	2.98	86.37
All other glasses		2.24	10.30	2.69	84.77

Table 7

Experimental Liquidus Temperatures, Primary Phases, and
Elemental Analysis of Primary Phases from Battelle

CVS #	Experimental Ti phase	SEM/EDS elements	Ti Spinel	no spinel T range	CVS #	Experimental Ti phase	SEM/EDS elements	Ti Spinel	no spinel T range
1 959 ZS			977		3 931 ZS				782-1038
1 903 Cp					4 810 CS	Ca, Si			702-812
2 927 CS	Ca, Si		891-1038		4 800 Cp	Ca, Fe, Ni, Si			
2 916 LA	Al, Si				5 832 CS	Ca, Si; Zr, Nd, La			
3 929 Ov	Mg, Si; Fe, Ni		868-1038		6 939 Cp	Ca, Fe, Si; Ni, Cr			988
4 957 SO	Si		927-1038		7 819 Cp	Ca, Fe, Ni, Si			>1004
5 939 Op	Fe, Si		1035		8 866 Op	Fe, Si; Mg			934
6 21118 ZS			1014-1118		9 1018 ZS				≥1118
7 >1118 ZS			1074-1118		9 1018 ZS				735-1146
7 >1118 C2					10 <585 (None)				>868
8 >1118 ZS	Zr, Si		>1118		11 1035 ZS	Zr, Si			927-1038
8 >1118 Op	Mg, Si				12 840 Cp	Ca, Fe, Mg, Si; Ni, Cr			826-918
9 1097 (?)	Mg, Fe, Si; Cr, Ni		>1118		13 909 Cp	Ca, Fe, Mg, Si			826-911
10 (?) (?)	severe segregation		>1118		14 >1118 ZS				1014-1118
11 919 CS	Ca, Si; Nd, La		1035		15 <679 (None)				956
12 826 Op	Fe, Si		752-1038		16 877 Cp				906
13 <571 (None)			571-1038		17 925 ZS	Zr, Si			971
14 <571 (None)			571-1038		17 925 Cp	Ca, Mg, Si; Fe			
15 866 Ov	Mg, Ni, Si; Cr		837-1038		18 865 Cp	Ca, Fe, Si; Na, Cr, Ni			895
16 >1118 Ov	Mg, Si		>1118		18 862 Cp	Ca, Na, Fe, Si; Mg, Ni, Cr			>883
17 943 CS	Ca, Si		1000		18 862 NZ	Na, Zr, Si			
18 913 Cp	Ca, Fe, Si; Na, Ni				20 1081 ZS	Zr, Si			1012-1115
18 >1118 ZO	Zr		1014-1118		21 904 Op	Mg, Si			834-951
19 916 ZS			961		22 989 Ov	Mg, Ni, Si			
19 916 Cp	Ca, Mg, Fe, Si; Ni, Cr				23 858 CS	Ca, Si			
20 913 Cp			966		24 <714 (None)				800
21 957 SO			927-1038		25 899 Op	Fe, Si; Ni			>951
22 >1118 ZS			>1118		26 1049 ZS				1012-1115
22 >1118 Op					27 <642 (None)				642-1018
23 858 Cp			980		28 <642 (None)				642-872
1 929 Ov	Mg, Ni, Si; Fe, Cr		1048		29 1108 ZS	Zr, Si			1012-1115
2 839 CS	Ca, Si				30 1070 Hm				1090
2 800 Cp	Ca, Fe, Ni, Si				31 939 SO	Si			927-1038
					32 1054 NZ	Na, Zr, Si			1008-1114

CVS #	Experimental Ti phase	SEM/EDS elements	Ti Spinel	no spinel T range
1 959 ZS			977	
1 903 Cp				
2 927 CS	Ca, Si		891-1038	
2 916 LA	Al, Si			
3 929 Ov	Mg, Si; Fe, Ni		868-1038	
4 957 SO	Si		927-1038	
5 939 Op	Fe, Si			
6 21118 ZS			1014-1118	
7 >1118 ZS			1074-1118	
7 >1118 C2				
8 >1118 ZS	Zr, Si		>1118	
8 >1118 Op	Mg, Si			
9 1097 (?)	Mg, Fe, Si; Cr, Ni		>1118	
10 (?) (?)	severe segregation		>1118	
11 919 CS	Ca, Si; Nd, La		1035	
12 826 Op	Fe, Si		752-1038	
13 <571 (None)			571-1038	
14 <571 (None)			571-1038	
15 866 Ov	Mg, Ni, Si; Cr		837-1038	
16 >1118 Ov	Mg, Si		>1118	
17 943 CS	Ca, Si		1000	
18 913 Cp	Ca, Fe, Si; Na, Ni			
18 >1118 ZO	Zr		1014-1118	
19 916 ZS			961	
19 916 Cp	Ca, Mg, Fe, Si; Ni, Cr			
20 913 Cp			966	
21 957 SO			927-1038	
22 >1118 ZS			>1118	
22 >1118 Op				
23 858 Cp			980	
1 929 Ov	Mg, Ni, Si; Fe, Cr		1048	
2 839 CS	Ca, Si			
2 800 Cp	Ca, Fe, Ni, Si			

Table 7 (continued)

Experimental Liquidus Temperatures, Primary Phases, and
 Elemental Analysis of Primary Phases from Battelle

CVS #	Experimental Tl phase	SEM/EDS elements	Tl Spinel	no spinel T range
33	967 Np	Na,Al,Si		>1038
	967 Ov	Mg, Ni, Si		
34	736 Np	Na,Al,Si		701-872
35	941 Np	Na,Al,Si		895-1115
36	877 Op	Fe, Si		868-1038
37	803 Np	Na,Al,Si		752-1038
38	1042 Ov	Mg, Si; Fe		>1115
39	1029 ZS			895-1115
40	862 Cp	Ca,Mg, Si; Cr		826-928
41	887 Cp	Ca,Mg, Si; Fe, Ni, Cr		854-936
42	969 Cp	Ca,Fe,Mg, Si	1093	
43	1090 ZS			1012-1115
44	884 Cp	Ca, Mg, Si; Fe, Ni, Cr		807-1038
45	894 Cp	Ca,Mg, Si; Fe, Ni, Cr	>956	
46	858 Cp	Ca, Cr, Fe, Mg, Ni, Si	1004	
47	877 Cp	Ca, Mg, Si; Na,Fe, Ni, Cr		807-1038
48	868 Cp	Ca, Mg, Si; Ni,Fe, Cr		807-1038
49	847 Cp	Ca, Mg, Fe, Si; Ni, Cr	957	
50	922 ZS			1025
51	856 Cp	Ca,Na,Fe, Si; Mg, Cr, Ni	899	
	856 NZ	Na,Zr, Si		
52	973 Op	Fe, Cr, Si		>1038
53		Radioactive glass -- not measured		
54		Radioactive glass -- not measured		
55	944 CO			>1118
	906 Cp	Na,Ca,Fe, Cr, Si		
56	880 Cp	Na,Ca,Fe, Cr, Si		1117
	880 NZ	Na,Zr, Si		
57	1036 CO	Cr; Fe		953
	945 Cp	Na,Ca,Fe, Cr, Si		
58	906 Ov	Mg, Si; Ni		(?)
	902 Mg2B2O5(?)	Mg		
59	715 SO	Si		699-1038

Table 7 (continued)

Experimental Liquidus Temperatures, Primary Phases, and
 Elemental Analysis of Primary Phases from Battelle

CVS	Experimental Ti phase	SEM/EDS elements	no spinel Ti Spinel T range
60	788 SO	Si	752-966
61	792 SO	Si	717-793
62	<554 (None)		554-1028
63	927 Np	Na, Al, Si	868-1038
64	895 Op	Fe, Si; Cr, Ni	983
65	>1114 ZS		
66	799 Np	Na, Al, Si	1066-1114
67	1022 Co	Cr	952-1066
68	>1114 Co	Cr	755-874
69	>1114 Co	Cr	>1114
	883 Op(?)	Cr, Fe, Si	
70	>1114 Co		642-931
818	LA	Al, Si	
71	890 Op	Fe, Cr, Si	1004
72	794 Np		>868
73	816 LA	Al, Si	793-874
74	850 Cp	Ca, Fe, Si; Ni	1066
75	816 LA	Al, Si	807-1038
76	761 Cp	Ca, Fe, Si; Na	712-824
	744 LS	Si	
77	1027 NZ	Na, Zr, Si	964-1154
78	1129 ZS		1032-1154
79	949 SO	Si	>1154
80	>1154 ZS	Zr, Si	1129
81	>1154 (?)	Si	1013
82	745 LS	Si	
83	741 CS	Ca, Si	693-924
	741 LS	Si	718-924
84	966 NZ	Na, Zr, Si	
85	>1150 (?)	Si	869-1028
86	1015 Np	Na, Al, Ca, Si; S, Cr	1042-1154
87	<571 (none)		867-1154
88	929 ZO		571-874
89	838 Cp	Ca, Fe, Si; Mg	901-1152
			762-924

CVS	Experimental Ti phase	SEM/EDS elements	no spinel Ti Spinel T range
60	788 SO	Si	752-966
61	792 SO	Si	717-793
62	<554 (None)		554-1028
63	927 Np	Na, Al, Si	868-1038
64	895 Op	Fe, Si; Cr, Ni	983
65	>1114 ZS		
66	799 Np	Na, Al, Si	1066-1114
67	1022 Co	Cr	952-1066
68	>1114 Co	Cr	755-874
69	>1114 Co	Cr	>1114
	883 Op(?)	Cr, Fe, Si	
70	>1114 Co		642-931
818	LA	Al, Si	
71	890 Op	Fe, Cr, Si	1004
72	794 Np		>868
73	816 LA	Al, Si	793-874
74	850 Cp	Ca, Fe, Si; Ni	1066
75	816 LA	Al, Si	807-1038
76	761 Cp	Ca, Fe, Si; Na	712-824
	744 LS	Si	
77	1027 NZ	Na, Zr, Si	964-1154
78	1129 ZS		1032-1154
79	949 SO	Si	>1154
80	>1154 ZS	Zr, Si	1129
81	>1154 (?)	Si	1013
82	745 LS	Si	
83	741 CS	Ca, Si	693-924
	741 LS	Si	718-924
84	966 NZ	Na, Zr, Si	
85	>1150 (?)	Si	869-1028
86	1015 Np	Na, Al, Ca, Si; S, Cr	1042-1154
87	<571 (none)		867-1154
88	929 ZO		571-874
89	838 Cp	Ca, Fe, Si; Mg	901-1152
			762-924

Table 8

Calculated Liquidus Temperatures and Primary Phases for CVS Glasses

ID #	CVS #	Calculated Ti Phase	Ti spinel	Comments
1	1	907 ZS 850 Cp	968	
2	2	920 CAS		Phase contains Ca, Si, Al as observed
3	3	970 Al_2O_3		X (poor agreement)
4	4	985 SO		
5	5	920 Cp	1062	Experimental " FeSiO_3 " is an unstable compound
6	6	1116 ZS		
7	7	1155 ZS		
8	8	1201 ZS		
9	9	943 Mg_2BO_3	1273	Experimental marked "?"
10	10	— —	997	
11	11	929 CAS	1111	Phase contains Ca, Si as observed
12	12	831 NCS2	946	Experimental " FeSiO_3 " is an unstable compound
13	13	— —		
14	14	— —		
15	15	859 Ov 873 LS		Ov = Mg_2SiO_4
16	16	1153 Np		X (poor agreement) - See Note (a)
17	17	907 NCS1 888 Cp	1108	Phase contains Ca, Si as observed
18	18	1216 Ov 1113 ZO		X (poor agreement) OK
19	19	907 ZS 850 Cp		
20	20	907 ZS 850 Cp		
21	21	985 SO		
22	22	1201 ZS		

ID #	CVS #	Calculated Ti Phase	Ti spinel	Comments
23	23	890 Cp	993	
24	1	834 ZS	1065	X (poor agreement) - possible improvement if Ni included in Ov model
25	2	871 Hm 870 Cp	1152	
26	3	894 ZS 835 Cp		
27	4	801 Cp		
28	5	814 Albite	982	Chemical analysis questionable. Small crystals and interference from glass
29	6	898 Cp		
30	7	770 Np	1116	X (poor agreement) - possible improvement if Ni included in Ov model
31	8	876 Cp		
32	9	1038 ZS		
33	10	---	866	
34	11	1005 ZS		
35	12	817 Cp		
36	13	872 Cp		
37	14	1062 ZS		
38	15	---	1001	
39	16	889 NZ 851 Cp	885	
40	17	907 ZS 850 Cp		
41	18	889 NZ 851 Cp		
42	19	890 NZ 853 Cp		
43	20	1081 ZS		
44	21	880 SO		X (poor agreement)
45	22	1004 Ov	915	
46	23	859 NCS1		Phase contains Ca, Si as observed

ID #	CVS #	Calculated Ti Phase	Ti spinel	Comments
47	24	---	1011	
48	25	900 Cp		
49	26	1039 ZS		
50	27	---		
51	28	---		
52	29	1077 ZS		
53	30	898 Np	913	x (poor agreement)
54	31	897 SO		
55	32	1055 NZ		
56	33	969 Np	753	
57	34	1103 Np		X (poor agreement) - See Note (a)
58	35	971 Np	914	
59	36	909 Cp		
60	37	810 Np		
61	38	954 Np		X (poor agreement) - See Note (a)
62	39	996 NZ		
63	40	853 Cp		
64	41	907 Cp		
65	42	967 Cp	1018	
66	43	1057 ZS		
67	44	895 ZS 865 Cp		See Note (b)
68	45	945 ZS 865 Cp		See Note (b)
69	46	866 ZS 815 Cp	1051	See Note (b)
70	47	914 NZ 840 Cp		See Note (b)
71	48	798 ZS 781 Cp		X (poor agreement) - problem could be related to high Cr and Ni contents of solid phases (not modeled)

ID #	CVS #	Calculated Ti Phase	Ti spinel	Comments
72	49	818 Zs 815 Cp	930	See Note (b)
73	50	907 ZS 850 Cp		
74	51	890 NZ 884 ZS 853 Cp	889	
75	52	973 ZS		? (good T agreement)
76	53	---		
77	54	---		
78	55	1028 CO(R)	1124	CO(R) temperature will be lower if a significant amount of spinel precipitates first
79	56	963 CO(R) 884 ZS	1124	If CO(R) precipitates in ID# 78, 80 then it must also precipitate here
80	57	995 CO(R) 853 Cp	735	
81	58	944 LA		X poor agreement as regards phase
82	59	885 Np 768 Cp		X (poor agreement) - See Note (a)
83	60	784 NZ 777 Cp		Experimental observation of SO probably related to formation of two-phase liquid
84	61	782 Cp		Experimental observation of SO probably related to formation of two-phase liquid
85	62	---		
86	63	1215 Np		X (poor agreement) - See Note (a)
87	64	921 NZ 907 Cp	957	See Note (b)
88	65	1122 ZS		
89	66	872 Np		
90	67	1025 CO(R)		
91	68	1732 CO(R)		
92	69	1663 CO(R)		
93	70	1481 CO(R)		

ID #	CVS #	Calculated Tl Phase	Tl spinel	Comments
94	71	921 NZ 907 Cp	929	? (satisfactory agreement in T)
95	72	872 Np		
96	73	851 Np 762 LA		
97	74	812 Cp	1123	
98	75	887 Np 774 LA		
99	76	892 Cp		X poor agreement in T (correct phase)
100	77	979 NZ		
101	78	1074 NZ		
102	79	847 SO		Phase correct. T too low
103	80	1133 ZS	1120	
104	81	879 Cp	901	Experimental marked "?"
105	82	796 NZ 734 Cp		T correct (experimental "LS" was a guess)
106	83	786 NCS2		Phase contains Ca, Si as observed
107	84	926 NZ		
108	85	949 Np		Experimental marked "?"
109	86	1140 Np		
110	87	---		
111	88	903 NZ		
112	89	899 NZ 865 Cp		See Note (b)
113	90	815 Cp		
114	91	911 Albite 873 Np 820 SO	853	
115	92	963 ZS		
116	93	862 Cp	902	
117	94	932 Np 823 Cp		X (poor agreement) See Note (a)
118	95	870 Cp		

ID #	CVS #	Calculated TI Phase	TI spinel	Comments
119	96	907 ZS 850 Cp		
120	97	890 NZ 884 ZS 853 Cp		
121	98	1103 Np 720 Albite		X (poor agreement) See Note (a)
122	99	876 Cp	949	
123	100	952 ZS 884 Cp	1067	Experimental "FeSiO ₃ " is an unstable compound

Cp = clinopyroxene = NaFeSi₂O₆-CaMgSi₂O₆ solid solution

Hm = hematite Np = Nepheline Ov = Olivine

LA = Li-Al silicate LS = Li₂SiO₃ NZ = Na-Zr silicate

SO = SiO₂ ZO = ZrO₂ ZS = ZrSiO₄

CO(R) = Cr₂O₃-Fe₂O₃-Al₂O₃ (corundum) solid solution

CAS = CaAl₂Si₂O₈ (Anorthite)

NCS1 = Na₂Ca₂Si₃O₈-Na₄CaSi₃O₈ solid solution

NCS2 = Na₂Ca₃Si₆O₁₀

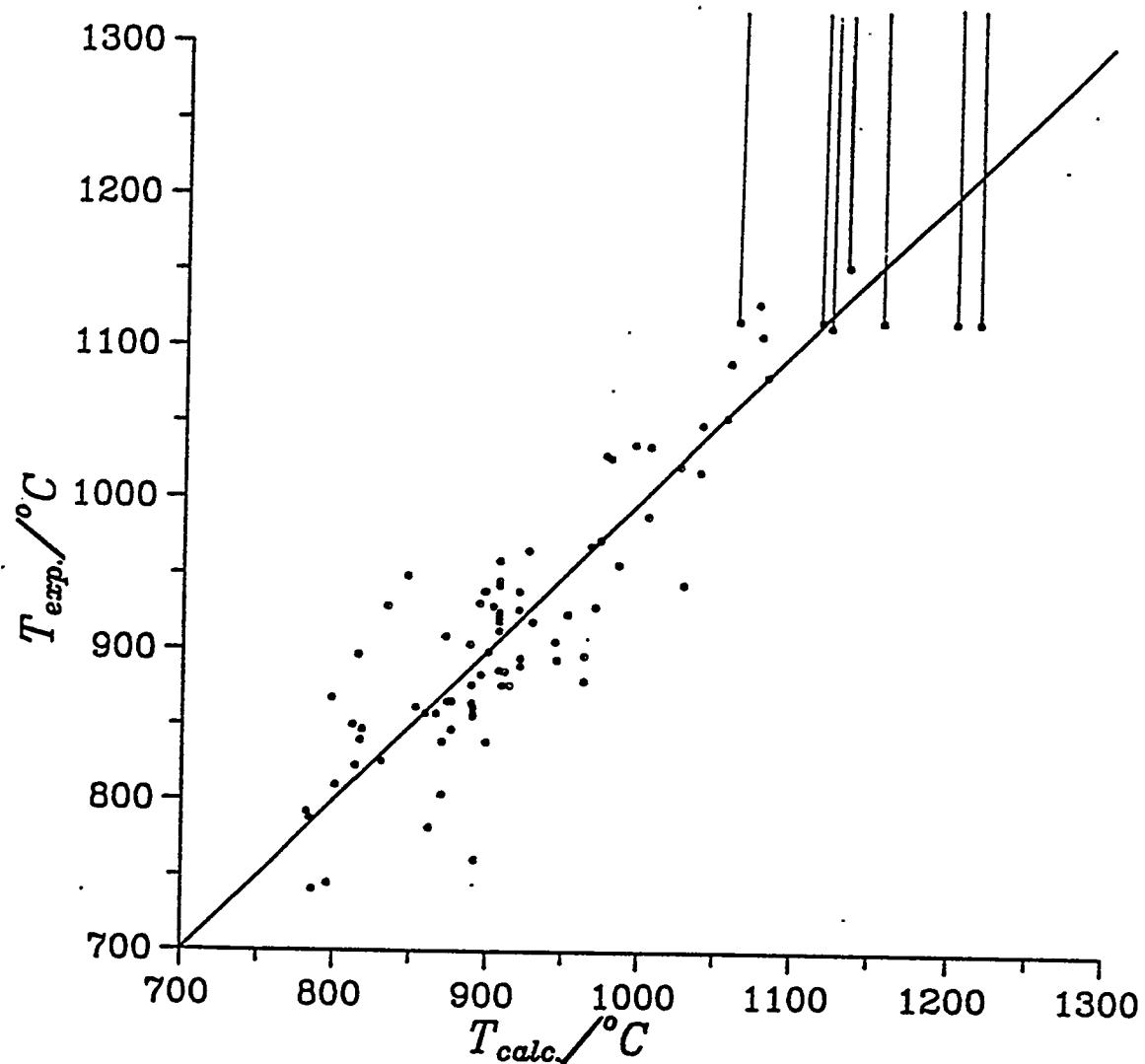
Note (a) In general, the precipitation of nephilene is poorly predicted because the optimization of the Na₂O-Al₂O₃-SiO₂ diagram is poor in this composition range. If nephilene is calculated as a primary phase, be skeptical.

Note (b) Glass contains low ZrO₂. Small amount of ZS or NZ precipitate could have been missed in experiments.

7.1 Discussion

Of the 17 compositions for which nepheline (Np) is the calculated primary phase, agreement between experimental and calculated liquidus temperatures is acceptable in only 9 cases. This is as expected from the discussion in Section 2.2. When nepheline is calculated as the primary phase, be skeptical.

In Fig. 1 are plotted experimental versus calculated liquidus temperatures for the 80 compositions (excluding the 17 compositions for which nepheline is calculated as the primary phase) for which experimental liquidus temperatures are given in Table 7. The average deviation is 32°. (If the 17 nepheline points are also included, the average is 47°) Eight of the eleven points for which experimental values were indicated as " > T " are also shown on Fig. 1. (The other three, ID #67-69 are off the scale of Fig. 1 but calculations agree with observations.)


In several glasses (ID# 67, 68, 69, 70, 72, 87, 112), Zr-containing phases (ZS or NZ) were calculated as primary phases. Although these were not observed experimentally, these glasses contain very low ZrO_2 contents, and the small amounts of precipitate could have been overlooked.

Orthopyroxene (Op), either as $MgSiO_3$ or a solution of $MgSiO_3$ and $FeSiO_3$, was never obtained as a primary phase in the calculations. Furthermore, its calculated thermodynamic activity was always very low. That is, only large changes in the optimized thermodynamic properties of this phase, well outside the error limits of the present calculations, would cause it to appear. Furthermore, in many cases, the experimental observations (Table 7) indicate an Op phase containing only Fe and Si. However, pure $FeSiO_3$ is an unstable compound. We thus have no explanation for the experimental observation of the Op phase.

In several cases, $CaSiO_3$ (CS) is shown in Table 7 as the primary experimental phase. In the calculations, the thermodynamic activity of this phase was also always low. However, anorthite (CAS = $CaAl_2Si_2O_8$) or a sodium-calcium silicate (NCS1 or NCS2) were observed as primary phase in these samples, and these compounds contain the elements Ca, Si, (Al) observed by SEM/EDS.

Somewhat better agreement might be obtained by incorporating Ni into the models for some of the solid phases, particularly olivine. Unfortunately, there are few data upon which the modeling could be based.

CVS-II glasses #55-57 differ only in the content of Cr_2O_3 (and MnO_2). Hence, if corundum (Cr_2O_3 solution) precipitates in #55 and 57, it would also be expected to precipitate in #56 as calculated, but this apparently was not observed.

Comparison of Experimental and Calculated Liquidus Temperatures for
CVS Glasses (Assuming negligible spinel precipitation)

Fig. 1

8 THE SPINEL PHASE

A two-sublattice model for $(\text{Fe}, \text{Ni})(\text{Fe}, \text{Cr}, \text{Al})_2\text{O}_4$ spinel solutions has been developed through optimization of available thermodynamic data for the pure components (Fe_3O_4 , NiCr_2O_4 , etc.) and of available data for equilibria between the spinel phase and other solid phases (corundum, wustite, metal, etc.) as a function of oxygen pressure, temperature and composition in the Fe-Cr-O , Fe-Ni-O , Fe-Al-O , Ni-Cr-O and Fe-Cr-Al-O systems.

Manganese was included in the spinel model by taking literature data for the pure compounds MnAl_2O_4 and Mn_3O_4 , by taking ΔH_{298}° from the literature for the pure compounds MnCr_2O_4 and NiMn_2O_4 and then estimating S_{298}° and C_p by an increment method, and by using the observed fact that $\text{Mn}_3\text{O}_4\text{-Fe}_3\text{O}_4$ solid solutions are nearly ideal.

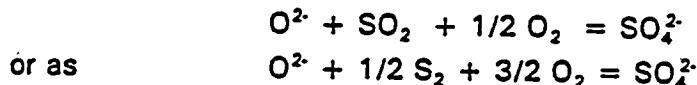
Good agreement with a large and diverse body of experimental data was obtained. It is thus believed that the thermodynamic properties of the spinel $(\text{Fe}, \text{Mn}, \text{Ni})(\text{Fe}, \text{Mn}, \text{Cr}, \text{Al})_2\text{O}_4$ phases are well modeled. Inaccuracies in calculations of spinel liquidus temperatures are more likely due to the database for the glass phase, or to the fact that the dissolution of Mg in the spinel solution was not modeled, or to the experimental results.

The spinel liquidus temperature was calculated for several CVS glasses for which observed spinel liquidus temperatures are reported in Table 7. Results of the calculations at $P_{\text{O}_2} = 1 \text{ atm}$ are shown in Table 8. The oxygen pressure had little effect. Decreasing P_{O_2} to 10^{-3} atm changed the calculated liquidus temperatures only by approximately 3° . A comparison of Tables 7 and 8 shows that agreement is satisfactory in some cases and poor in others. Out of 24 samples, an average deviation of 68° was obtained. Of 8 additional samples in which the experimental observations were shown as " $> T$ ", agreement was found in 3.

In the case of samples with ID# 88 and 89 (CVS-II #55, 56), calculation of the spinel liquidus temperature before Mn was added to the spinel model gave $T_l = 809^\circ$. That is, adding Mn to the spinel phase gives a large increase in the calculated temperature and results in much better agreement with the experimental results in these high-Mn (see Table 6) glasses.

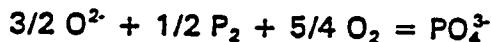
9 SOLUBILITY OF SO_3 , PO_4 , Cl , F , I AND H_2O IN GLASSES

Recently we have developed a simple model [93 Pel] which has proved very successful in predicting the solubility of sulfur as sulfide ion, S^{2-} (under reducing conditions) in oxide slags and glasses for concentrations up to about 10 wt.%. It is assumed that the S^{2-} ions substitute nearly ideally for O^{2-} ions and for SiO_4 groups in the glass structure. Sulfide solubilities can then be predicted from a knowledge only of G° of the pure sulfides (Na_2S , CaS etc.) and of the activities of the oxides in the glass (which are given by the quasichemical

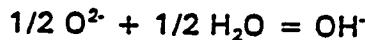

model.) If necessary, constant adjustable parameters, $RT\ln y_{Ms}$ (where y = activity coefficient) may be included. The model has been described in detail [93 Pel] and its application to the calculation of sulfide solubilities has been demonstrated.

In the present study, the model has been adapted to permit the calculation of the solubility of other anions (SO_4^{2-} , Cl^- , I^- , F^- , PO_4^{3-} , OH^-) in an oxide slag or glass through substitution for O^{2-} ions or SiO_4 groups. This has required re-programming of a number of F*A*C*T software modules.

Under oxidizing conditions, sulfur dissolves in glass as sulfate. The dissolution can be written:



For dilute solutions of SO_4^{2-} , the activity of the oxide ion is constant and the activity of SO_4^{2-} abeys Henry's Law. Hence, the weight of dissolved SO_4 (or dissolved " SO_3 " or dissolved "S") varies directly as p_{SO_3} . Alternatively, the dissolution can be written as:



in which case the weight of dissolved sulfate varies as $(P_{\text{SO}_2} P_{\text{O}_2}^{1/2})$ or as $(P_{\text{S}_2}^{1/2} P_{\text{O}_2}^{3/2})$. This behavior has been observed, thereby confirming that under oxidizing conditions the predominant sulfur-containing species in solution is SO_4^{2-} .

The dissolution of phosphorus as phosphate under oxidizing conditions has been confirmed by the observation that the weight percent of dissolved phosphorus varies closely as $(P_{\text{P}_2}^{1/2} P_{\text{O}_2}^{5/4})$ according to the mechanism:

In the case of H_2O , it has been observed that the weight of dissolved H_2O varies as $P_{\text{H}_2\text{O}}^{1/2}$, thereby indicating dissolution as OH^- according to:

However, there is evidence that some of the hydroxyl groups are bonded to the silicon network. Therefore, the simple model has been modified in this case as discussed below in Section 9.4.

In the following sections, the model is used to calculate solubilities of sulfate, phosphate, halides and water, and the calculations are compared to the available data. In most cases, no adjustable parameters were required. The model calculations are probably valid to total solute concentrations of about 10 wt.%.

9.1 SO₃ Solubilities

For the case of sulfur solubility as SO₄²⁻ in glasses, no adjustable model parameters whatsoever were used. The G° values for Na₂SO₄, Li₂SO₄, CaSO₄ and MgSO₄ were taken directly from the F*A*C*T database. That is, the following comparisons with measured solubilities involved no curve-fitting, and are *a priori* predictions.

SO₃ solubilities in glasses in equilibrium with a gaseous phase have been reported by many authors. Nagashima and Katsura [73 Nag] measured SO₃ solubilities in Na₂O-SiO₂ melts at different SiO₂/Na₂O ratios at different temperatures for constant P_{SO₂}, P_{O₂}^{1/2} = 0.08 kPa. Their results and calculated values are compared in Table 9. Similar measurements by Holmquist [66 Hol] are compared with calculated values in Table 10. In these experiments, P_{SO₂}, P_{O₂}^{1/2} was also varied and the expected approximately linear relationship between log(wt. % SO₃) and log (P_{SO₂}, P_{O₂}^{1/2}) was observed. Papadopoulos [73 Pap] measured SO₃ solubilities in predominantly SiO₂-CaO-Na₂O glasses at P_{SO₃} = 0.01 atm. His results (corrected to P_{SO₃} = 0.01 atm) are compared to calculated values in Table 11. Fincham and Richardson's [54 Fin] measurements of SO₃ solubilities in CaO-Al₂O₃-SiO₂ glasses at 1500°C are compared to measurements in Table 12. Other data reported by these authors at 1650°C were not sufficiently complete to permit the calculation of SO₃ solubilities. However, relative solubilities among glasses of different compositions can be deduced from their results, and these are also compared with calculations in Table 12.

From Tables 9-12 it can be seen that agreement between experimental and calculated solubilities is good to excellent. The best agreement is with the results of Papadopoulos in Table 11. The agreement with the result of Holmquist in Table 10 is not as good at low SiO₂/Na₂O ratios, but any attempt to improve this agreement by introducing adjustable parameters results in poorer agreement with the other authors. That is, the agreement is believed to be within the error limits of the experiments.

Schreiber et al [87 Sch] measured SO₃ solubilities in an alkali borosilicate glass of composition (wt.%) 57.9 SiO₂, 1.0 TiO₂, 0.5 ZrO₂, 14.7 B₂O₃, 0.5 La₂O₃, 2.0 MgO, 5.7 Li₂O and 17.7 Na₂O. Results from the authors' smoothed curve are compared with calculated values in Table 13. (In the calculation, TiO₂ and La₂O₃ were ignored.) Agreement is within the range of scatter of the data points as reported in the article [87 Sch].

Table 9

Calculated SO₃ Solubility in Na₂O-SiO₂ Glasses Compared to
Measurements of Nagashima and Katsura [73 Nag]

$$(P_{SO_3} P_{O_2}^{1/2} = 0.08 \text{ kPa})$$

Molar Ratio (SiO ₂ /Na ₂ O)	T (°C)	1/T (10 ⁻⁴ /K)	ln W _{SO₃} (weight fraction)	
			expt.	calc
1	1300	6.36	-3.1	-2.7
	1250	6.57	-2.8	-2.3
	1100	7.28	-0.7	(-2.0)
2	1300	6.36	-6.3	-7.4
	1250	6.57	-5.8	-6.4
	1100	7.28	-2.9	-3.45
3	1300	6.36	-9.7	-9.9
	1250	6.57	-9.1	-8.9
	1100	7.28	-5.2	-5.5

Table 10

Calculated SO₃ Solubility in Na₂O-SiO₂ Glasses Compared to
Measurements of Holmquist [66 Holl]

T (°C)	(SiO ₂ /Na ₂ O) Molar Ratio	10 ⁴ P _{SO₃} P _{O₂} ^{1/2} (atm)	log (wt.% SO ₃)	
			expt. (Smoothed)	Calc.
1150	2	0.3	-0.32	-0.24
		1	0.20	0.20
		3	0.69	0.52
	3	3	-0.26	-0.36
		10	(0.71)	0.10
	4	10	-0.22	-0.40
	1.5	1	0.76	0.54
		3	1.06	0.78
		1	0.47	0.15
1200	1.75	3	0.81	0.48
		1	0.05	-0.24
		3	0.46	0.16
	2.0	10	0.89	0.52
		1	-0.75	-0.85
		3	-0.22	-0.41
	2.5	10	0.36	0.05
		1	-0.86	-0.85
		3	-0.31	-0.34
	3	10	0.16	0.08
		30	-0.84	-0.89
		10	-0.25	-0.41
1250	1.5	1	0.48	0.20
		1	0.00	-0.28
		1	-0.27	-0.69
	2	3	0.02	-0.24
		10	0.35	0.19
		30	0.85	0.52
	2.5	10	-0.15	-0.37
	3	10	-0.61	-0.78
		30	-0.16	-0.33

Table 11

Calculated SO₃ Solubilities in SiO₂-CaO-Na₂O-(Al₂O₃-MgO) Glasses Compared to Measurements of Papadopoulos [73 Pap]

(at P_{SO₃} = 0.01 atm)

T (°C)	Mole fractions					SO ₃ (mole fraction)	
	SiO ₂	Al ₂ O ₃	CaO	MgO	Na ₂ O	expt. (corrected)	calc.
1370	0.721	0.002	0.136	0.005	0.127	0.00745	0.00715
	0.722	0.001	0.142	0.004	0.123	0.00636	0.00685
	0.741	0.001	0.089	0.003	0.159	0.00664	0.0103
	0.707	0.001	0.200	0.005	0.083	0.00280	0.00417
	0.715	0.001	0.193	0.005	0.083	0.00280	0.00385
	0.710	0.001	0.196	0.005	0.085	0.00238	0.00420
	0.653	0.002	0.195	0.005	0.133	0.01216	0.0162
	0.653	0.002	0.196	0.004	0.132	0.01265	0.0161
	0.657	0.002	0.194	0.005	0.131	0.01050	0.0151
	0.661	0.002	0.195	0.005	0.127	0.00967	0.0137
	0.685	0.002	0.144	0.004	0.154	0.01066	0.0156
	0.778	0.001	0.090	0.004	0.123	0.00360	0.0044
	0.778	0.001	0.144	0.004	0.071	0.00133	0.00185
1373	0.653	0.002	0.196	0.004	0.132	0.0126	0.0157
1397	0.660	0.002	0.198	0.005	0.128	0.0115	0.0108
1403	0.659	0.002	0.194	0.004	0.131	0.0107	0.0108
1427	0.677	0.002	0.187	0.005	0.123	0.0066	0.0060
1433	0.669	0.002	0.192	0.004	0.128	0.0062	0.0069
1451	0.660	0.002	0.201	0.005	0.128	0.0063	0.0063
1453	0.665	0.002	0.194	0.006	0.129	0.0050	0.0058
1483	0.666	0.002	0.199	0.005	0.125	0.0038	0.0040

Table 12

Calculated Sulphate Capacities, C_{SO_4} , of $CaO-Al_2O_3-SiO_2$ Glasses Compared to Measurements of Fincham and Richardson [54 Fin]

$$C_{SO_4} = (\text{Wt. \% S} / P_{SO_2}^{1/2} P_{O_2}^{3/2}) \text{ where } P = \text{atm.}$$

Slag Number [54 Fin]	Composition (wt. %)			$\log C_{SO_4}$ at 1500°C	
	CaO	Al ₂ O ₃	SiO ₂	expt.	calc
S1	37	27	36	6.70	6.43
S2	32.5	26.5	41	6.50	5.94
S4	54	1	45	7.18	7.02
S5	41	52	7	7.83	7.60
S6	45.8	18	36.2	7.20	7.05
				$\log C_{SO_4} - \log C_{SO_4}$ (slag 56) at 1650°C	
				expt.	calc.
S11	54	0	46	-0.25	-0.03
S12	48	0	52	-0.35	-0.46
S14	35.5	64.5	0	-0.20	0.22
S15	41	59	0	0.15	0.63
S16	52.5	47.5	0	0.95	1.33

Table 13

Calculated SO₃ Solubility in Alkali Borosilicate Glass at 1150°C Compared to Measurements of Schreiber et al [87 Sch]

$\log (10^4 P_{SO_3} P_{O_2}^{1/2})$ (atm)	$\log (\text{wt. \% S})$	
	expt. (smoothed)	calc.
1.0	-0.44	-0.77
1.5	0.03	-0.32

Table 14

Calculated SO₃ Solubilities in Glass in Equilibrium with a Molten Salt Phase for

Glass Compositions used by Sullivan [94 Sull]

Glass Compositions (wt. %)

	WL-3	WL-4	WL-5
SiO ₂	59.2	57.1	55.0
B ₂ O ₃	11.4	10.8	10.3
Na ₂ O	11.2	11.2	11.2
Li ₂ O	6.8	6.8	6.8
Al ₂ O ₃	6.2	7.6	9.1
P ₂ O ₅	1.1	1.4	1.6
SO ₃	1.3	1.6	1.9
Others	2.8	3.5	4.1

SO₃ Solubilities in Glass in Equilibrium with Liquid
Na₂SO₄-Li₂SO₄ Solution

Glass	T (°C)	wt.% SO ₃ in glass	wt.% Li ₂ SO ₄ in equilibrium molten salt phase
WL-3	900	0.95	9.8
	1150	1.36	13.7
	1400	1.51	16.9
WL-4	900	0.95	9.3
	1150	1.37	13.1
	1400	1.56	16.4
WL-5	900	0.93	8.8
	1150	1.39	12.6
	1400	1.61	15.9

Table 15

Base Composition of Simulated Low Level Nuclear Waste Glass
Used in Studies of Crichton et al 194 Cril

Component	wt.%	Component	wt.%	Component	wt.%
SiO ₂	56.78	P ₂ O ₅	1.187	Fe ₂ O ₃	0.005
B ₂ O ₃	5.00	F	0.213	Cr ₂ O ₃	0.036
Na ₂ O	20.00	Cl	0.092	Nd ₂ O ₃	0.012
Al ₂ O ₃	12.00	SO ₃	0.321	Bi ₂ O ₃	0.014
CaO	4.00	K ₂ O	0.327	ZrO ₂	0.005

SO_3 solubilities in glass in equilibrium with a molten sulfate phase have also been reported. Kordes et al [51 Kor] (quoted by [66 Hol]) reports solubilities of Na_2SO_4 of 7 and 3 wt.% in $\text{Na}_2\text{O} \cdot 2\text{SiO}_2$ and $\text{Na}_2\text{O} \cdot 3\text{SiO}_2$ respectively at 1200°C in equilibrium with liquid Na_2SO_4 . Calculations give 9.4 and 4.8 wt.% respectively. Pearce and Beisler [65 Pea] indicate a composition containing ~ 3 wt.% Na_2SO_4 at the glass/tridymite/ Na_2SO_4 (liq.) triple point at 1200°C. Calculations give 2.6 wt.%.

For the three alkali borosilicate glass compositions listed in Table 14, Sullivan [94 Sul] reports a solubility of SO_3 (in equilibrium with a molten sulfate phase) of 1.3 wt% SO_3 for glass WL-3 and 1.1 and 1.2 wt.% for glasses WL-4 and WL-5 respectively, without specifying the temperature. Calculated solubilities in Table 14 are in very good agreement with the results of Sullivan. It can be seen that the calculated solubilities are quite insensitive to temperature (as expected for equilibrium between two liquid phases).

Finally, Crichton et al [94 Cri] report a "solubility" of 0.68 wt.% SO_3 in equilibrium with Na_2SO_4 (temperature unspecified) for an alkali borosilicate glass of the composition given in Table 15. Calculations (ignoring minor constituents) gave 2.4, 2.2 and 2.1 wt% SO_3 at 900°, 1150° and 1400°C respectively. This agreement is not as good, but the description of the experimental method as given by Crichton et al is not at all clear.

9.2 Phosphate solubilities

For phosphate solubilities in glasses there are very few measurements, and these are often contradictory and of poor accuracy. The thermodynamic properties of the pure phosphates are also not well known.

Thermodynamic data for pure liquid $\text{Mg}_3(\text{PO}_4)_2$ were taken from the F*A*C*T database. Data for solid $\text{Ca}_3(\text{PO}_4)_2$ and $\text{Na}_3(\text{PO}_4)$ were found, but no data for the liquids were found and so these were estimated from the solid data and from estimated Gibbs energies of fusion. For $\text{Li}_3(\text{PO}_4)$, only the enthalpy of formation at 298 K was found. Properties of the liquid were estimated by assuming that ΔS and ΔC_p for formation of $\text{Li}_3(\text{PO}_4)$ from Li_2O and P_2O_5 are the same as for the formation of $\text{Na}_3(\text{PO}_4)$ from Na_2O and P_2O_5 .

No adjustable model parameters were used.

Crichton et al [94 Cri] report a solubility limit of 3.0 wt.% P_2O_5 in a glass of the composition given in Table 15 when in equilibrium with pure solid Na_3PO_4 and $\text{Na}_2\text{Ca}_4(\text{PO}_4)_2\text{SiO}_4$. They do not indicate the temperature for this result, and the description of their experiment is not clear. Calculations give P_2O_5 contents at 700°, 900°, 1100°, 1300° and 1500°C of 0.13, 0.74, 1.98, 2.9 and 3.8 wt.% respectively in equilibrium with solid $\text{Na}_3(\text{PO}_4)$ and $\text{Ca}_3(\text{PO}_4)_2$.

Phosphate solubilities in $\text{Na}_2\text{O}-\text{SiO}_2$ glasses in equilibrium with a gas phase are reported by Inoue and Suito [85 Ino]. These are reported as "phosphate capacities", $C_{\text{PO}_4} = (\text{wt.\% PO}_4)/P_2^{1/2} \cdot P_{\text{O}_2}^{5/4}$ ($p = \text{atm}$). At 1250°C in solutions with $\text{SiO}_2/\text{Na}_2\text{O}$ molar ratios of 3/2 and 1/1, values of $\log(C_{\text{PO}_4}) = 26.4$ and 25.4 respectively are reported, whereas present calculations give 27.2 and 24.6 respectively as shown in Table 16. Similar data from other sources have been collected by Ban-ya and Hino [91 Ban]. Discrepancies of this order are found between sources.

The calculated temperature dependence of C_{PO_4} over the range 1200° to 1350°C agrees well with the reported data [91 Ban].

Inoue and Suito [85 Ino] report phosphate capacities for $\text{Na}_2\text{O}-\text{SiO}_2$ glasses with additions of Mg and Ca silicates. These are shown in Table 16 where it can be seen that agreement with calculated values is satisfactory.

Table 16

Calculated Phosphate Capacities C_{PO_4} in Glasses at 1250°C
Compared with Measurements of Inoue and Suito [85 Ino]

$$C_{PO_4} = (\text{wt.\% } PO_4 / P_{P_2}^{1/2} P_{O_2}^{5/4}) \text{ where } P = \text{ atm}$$

Composition (wt.%)			log (C _{PO₄})	
3Na ₂ O . 2SiO ₂	3CaO . 2SiO ₂	3MgO . 2SiO ₂	expt.	calc.
100	0	0	26.4	27.2
80	20	0		26.4
80	0	20		24.3
Na ₂ O . SiO ₂	CaO . SiO ₂	MgO . SiO ₂		
100	0	0	25.4	24.6
80	20	0	24.85	24.1
80	0	20	24.7	23.5

9.3 Halide solubilities

The only data which could be found on the solubilities of halides are those of Crichton et al [94 Cri]. As already mentioned above, the descriptions of the experiments are confusing, and in the case of sulfate solubilities Crichton et al do not agree well with Sullivan [94 Sul] who studied glasses of similar composition.

For the model calculations, all G° values of the pure halides were taken from the F* A *C*T database.

For the case of chloride solubility, no adjustable model parameters were required. At 900°C, 1100°C and 1300°C, the Cl content of a glass of the composition given in Table 15 (ignoring minor components) was calculated as 0.77, 0.78 and 0.79 wt% respectively when in equilibrium with liquid NaCl. Crichton et al, without giving a temperature, report a solubility of 0.8 wt.% in excellent agreement with the calculations. The insensitivity of the solubility to change in temperature is as expected for equilibrium between two liquid phases. Crichton et al also report solubilities as a function of temperature over the range 800°C to 1300°C, but it is not possible to decipher from their description exactly what they measured nor exactly what the results were. In any case, they observed the solubility to be insensitive to temperature changes, in agreement with the calculations.

For the case of iodide solubility, Crichton et al report solubilities of 0.5 ± 0.3 wt.% I (depending on the experimental method) when a slag of the composition of Table 1 is in equilibrium with liquid NaI. With no adjustable model parameters, a solubility of ~ 2.0 % was calculated. An adjustable parameter of $RTIny_{NaI} = 3500$ cal/mol was thus introduced, resulting in calculated solubilities of 0.37, 0.53 and 0.69 wt.% at 700°, 900° and 1100°C respectively. Such a small positive parameter is reasonable in view of the large size of the iodide ion which would tend to decrease its solubility. Similar parameters $RTIny_I = 3500$ cal/mol were also included for $Ca_{1/2}I$, LiI and $Mg_{1/2}I$ in the glass.

For the case of fluoride solubility, the glass is in equilibrium with solid fluorides over the temperature range of the experiments of Crichton et al. Hence, the solubility will depend more strongly on temperature. These authors report a solubility of 2.8 wt.% F in a slag of the composition given in Table 15. This seems to be the value observed at 725°C (see their figure 2). With no adjustable parameters, a solubility of 0.6 wt.% was calculated at 725°C in equilibrium with solid NaF and solid CaF_2 . Accordingly, an adjustable parameter of $RTIny_{NaF} = -3500$ cal/mol was introduced, resulting in a calculated solubility of 2.65 wt.% at 725°C. Such a small negative parameter is reasonable in view of the fact that fluorine can probably enter the glass not only as F⁻ ions but also by bonding directly to Si, thereby increasing its solubility. Similar parameters $RTIny_{NaF} = -3500$ cal/mol were also included for $Ca_{1/2}I$, LiI and $Mg_{1/2}I$ in the glass.

The calculations give a solubility of 8.7 mol % F (2.65 wt.% F) at 725°C and 10.1 mol % F at 850°C in equilibrium with solid NaF and CaF₂. Crichton et al, in their figure 2, show an "immiscibility boundary" of 8.9 mol % at 725°C and ~13.5 mol % at 850°C. However, the interpretation of this figure, and how it was obtained, are unclear.

9.4 H₂O Solubilities

In basic glasses, water is presumed to dissolve principally as free OH⁻ ions. However, in acid glasses, the hydroxyl groups are most likely bonded to silicon (-Si-O-H). This is evidenced by the observation in several binary glass systems SiO₂-M₂O (M = Li, Na, K), SiO₂-CaO, etc. that as the SiO₂ content is increased the H₂O solubility at first decreases, but then passes through a minimum to increase again at high SiO₂ contents.

For the fraction which dissolves as free OH⁻ ions, the same model was used as was used for sulfate, phosphate and halide solubilities. For the fraction which dissolves as bonded hydroxy ions, a species "H₂O", formally similar to Na₂O, was introduced into the quasichemical model (with a quasichemical "charge parameter" of 0.3444).

Solubilities of H₂O in different binary glasses have been measured by several authors. These are generally in good agreement and have been compiled by Ban-ya and Hino [91 Ban]. Some representative results are shown in Table 17. The following model parameters were chosen so as to optimize these data: G° of liquid NaOH and KOH were taken from the F*A*C*T database. G° of liquid Ca(OH)₂ and Mg(OH)₂ were set equal to the values of the corresponding solids from the F*A*C*T database. The following adjustable parameters were then introduced: RTlnγ_i = -5.4, -18.0, -13.0 and -13.0 kcal/mol for i = NaOH, LiOH, Ca_{1/2}OH and Mg_{1/2}OH respectively. For pure H₂O, G° was set equal to the value obtained by extrapolating G° of liquid H₂O to high temperature and adding 30.0 kcal/mol. This is, of course, necessarily an adjustable parameter of the model, but this procedure was chosen so as to give a reasonable temperature dependence. Finally, the following optimized quasichemical parameters were introduced:

$$\begin{aligned}\omega_{HO_{1/2}SiO_2} &= -22.0 \text{ kcal/mol} \\ \omega_{HO_{1/2}AlO_{3/2}} &= -22.0 \text{ kcal/mol}\end{aligned}$$

Calculated H₂O solubilities are compared with reported values in Table 17 for binary glasses and with values for a ternary glass in Table 18.

Table 17

Calculated H₂O Capacities, C_{H₂O}, of Binary Glasses Compared to Measurements

$$C_{H_2O} = (\text{wt.\% H}_2\text{O}/P_{H_2O}^{1/2}) \text{ where } P = \text{atm}$$

System	Mole Fraction X_{SiO_2} or $X_{Al_2O_3}$	T°C	log C _{H₂O}		ref.
			expt. (smoothed)	calc.	
Na ₂ O-SiO ₂	0.85	1317	-0.96	-1.10	[58 Kur]
	0.80		-1.10	-1.15	
	0.75		-1.12	-1.24	
	0.70		-1.08	-1.36	
	0.50		-0.69	-0.69	
Li ₂ O-SiO ₂	0.80	1300	-0.90	-1.19	[58 Kur]
	0.69		-0.97	-1.13	
	0.50		(-0.65)	-0.59	
	0.667	1394 1156 977	-0.96	-1.05	[57 Rus]
			-1.14	-1.15	
			-1.30	-1.23	
CaO-SiO ₂	0.6	1600	-1.19	-1.15	[69 Igu]
	0.5		-1.21	-1.20	
	0.4		-1.05	-1.02	
CaO-Al ₂ O ₃	0.5	1650	-1.00	-1.37	[90 Wat]
	0.4		-0.84	-0.80	
	0.3		-0.55	-0.42	

Table 18

Calculated H₂O Capacities, C_{H₂O}, of SiO₂-MgO-CaO Glasses at 1450°C
with X_{SiO₂} = 0.50 Compared to Measurements of Ban-ya et al [86 Ban]

$$C_{H_2O} = (\text{wt.\% H}_2\text{O}/P_{H_2O}^{1/2}) \text{ where } P = \text{atm}$$

Molar Ratio MgO/(MgO + CaO)	log C _{H₂O}	
	expt.	calc.
0.25	~ (-1.13)	-1.16
0.375	-1.12	-1.14
0.50	-1.10	-1.12
0.625	-1.08	-1.10
0.75	~ (-1.05)	-1.07

10 MOLTEN SALT DATABASES

Databases have been developed for molten salt solutions which can exist in equilibrium with glasses. A sublattice model was used which has been described previously [88 Pel]. Databases were developed by optimization of thermodynamic and phase diagram data for all binary and several common-ion ternary systems. Many of these optimizations have been described in publications [87San, 88Pel, 90Des1, 90Des2, 90Des3, 91San] and several others have been more recently performed. In general, the model for molten salts is good, the optimizations reproduce the data very well, and there are many data available. Hence, the thermodynamic properties of the molten salt solutions are expected to be well modeled.

Two solution databases should be used in the calculations. The first, developed as a private database for Battelle, is the Li, Na, Mg, Ca/F, SO₄ solution. That is, this database models a molten salt solution containing the cations Li⁺, Na⁺, Mg²⁺, and Ca²⁺ and the anions F⁻ and SO₄²⁻. The other solution is the F*A*C*T public solution database /SOLN-SALT/ which models the Li, Na/F, Cl, I, SO₄ molten phase.

11 REFERENCES

[30 Bow] N.L. Bowen, J. F. Schairer and H.W.V. Willem, Am. J. Sci., 20, 405-455 (1930).

[51 Kor] E. Kordes, B. Zöfelt and H. Pröger, Z. Anorg. Allg. Chem., 264, 255-271 (1951).

[51 Mor] G.W. Morey, J. Soc. Glass Tech., 35, 270-284 (1951).

[54 Fin] C.J.B. Fincham and F.D. Richardson, Proc. Roy. Soc. London, A223, 40-62 (1954).

[57 Rus] L.E. Russell, J. Soc. Glass Tech., 41, 304T (1957).

[58 Kur] C. R. Kurkjian and L.E. Russell, J. Soc. Glass Tech., 42, 130T (1958).

[60 Osb] E. F. Osborn and A. Muan, "Phase Equilibrium Diagrams of Oxide Systems", Am. Ceram. Soc. (1960).

[65 Pea] M.L. Pearce and J.F. Beisler, J. Am. Ceram. Soc., 48, 40-42 (1965).

[66 Hol] S. Holmquist, J. Am. Ceram. Soc., 49, 467-473 (1966).

[69 Igu] Y. Iguchi, S. Ban-ya and T. Fuwa, Trans. ISIJ, 9, 189 (1969).

[73 Nag] S. Nagashima and T. Katsura, Bull. Chem. Soc. Jap., 46, 3099-3103 (1973).

[73 Pap] K. Papadopoulos, Phys. Chem. Glasses, 14, 60-65 (1973).

[85 Ino] R. Inoue and H. Suito, Trans. ISIJ, 25, 118 (1985).

[86 Ban] S. Ban-ya, Y. Iguchi and S. Yamamoto, Tetsu-to-Hagané, 72, 2210 (1986).

[87 San] J. Sangster and A.D. Pelton, J. Phys. Chem. Ref. Data, 16, 509-561 (1987).

[87 Sch] H.D. Schreiber, S. Kozak, P.G. Leonhard and K.K. McManus, Glastech. Ber., 60, 389-398 (1967).

[88 Pel] A.D. Pelton, Calphad J., 12, 127-142 (1988).

[90 Des1] Y. Dessureault, J. Sangster and A.D. Pelton, J. Electrochem. Soc., 137, 2941-2950 (1990).

[90 Des2] Y. Dessureault, J. Sangster, and A.D. Pelton, *J. Phys. Chem. Ref. Data*, 119, 1149-1178 (1990).

[90 Des3] Y. Dessureault, J. Sangster and A.D. Pelton, *J. Chim. Phys.*, 87, 407-453 (1990)..

[90 Hol] Holland and Powell, *J. Metamorph. Geol.*, 8, 89-124 (1990).

[90 Wat] M. Watanabe, Y. Iguchi and S. Ban-ya, *Tetsu-to-Hagané*, 76, 1672 (1990).

[91 Ban] S. Ban-ya and M. Hino, "Chemical Properties of Molten Slags", Iron and Steel Inst. Japan, Tokyo(1991).

[91 San] J. Sangster and A.D. Pelton, *J. Phase Equilib.*, 12, 511-537 (1991).

[92 Pel] A.D. Pelton, P. Wu and G. Eriksson, "Development of Models and Software for Liquidus Temperatures of Glasses of HWVP Products, "Report to Battelle, (November, 1992).

[93 Pel] A.D. Pelton, G. Eriksson and J. A. Romero-Serrano, *Metall. Trans.*, 24B, 817-825 (1993).

[94 Cri] S.N. Crichton, T. J. Barbieri and M. Tomozawa, "Solubility Limits for Troublesome Components in a Simulated Low Level Nuclear Waste Glass", manuscript communicated by P. Hrma (1994).

[94 Sul] G.K. Sullivan, "Sulfate Segregation in Vitrification of Simulated Hanford Nuclear Waste Glass", manuscript communicated by P. Hrma (1994).

