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ABSTRACT

BCl;, with addition of N,, Ar or H,, is found to provide smooth anisotropic pattern transfer in
GaAs, GaN, GaP, GaSb and AlGaAs under Inductively Coupled Plasma conditions. Maxima in
the etch rates for these materials are observed at 33% N, or 87% H, (by flow) addition to BCl;,
whereas Ar addition does not show this behavior. Maximum etch rates are typically much higher
for GaAs, GaP, GaSb and AlGaAs (~1,2 pm/min) than for GaN (~0.3 um/min) due to the higher
bond energies of the latter. The rates decrease at higher pressure, saturate with source power (ion

flux) and tend to show maxima with chuck power {ion energy). The etched surfaces remain

stoichiometric over a broad range of plasma conditions.
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INTRODUCTION

There are a wide variety of electronic and photonic devices fabricated from compound
semiconductors that require precise paitern transfer that maintains the stoichiometry of the binary
or ternary material'™”. The GaAs/AlGaAs system is used for high electron mobility transistors
(HEMTS), heterojunction bipolar transistors (HBTSs), 0.98 um fiber pump lasers and red light-
emitting diodes (LEDs), while GaP is important for high power LEDs®. GaN and related alloys
are attracting tremendous interest for blue/green/UV laser diodes and LEDs and high temperature
electro_nics@) . In particular there are no simple wet ¢tch solutions for GaN, placing emphasis on
the development of dry etch processes(w’.

High density plasma conditions have been reported to provide fast etch rates for
GaAs/AlGaAs, GaP and GaN using Cl, (with additions of Ar or N,) or BCl; (with additions of
Ar or N,) . Most of this work has focused on Electron Cyclotron Resonance (ECR) sources™ ™17,
but a few reports have appeared dealing with Inductively Coupled Plasmas (ICP) (1820 There are
compelling reasons to focus on the latter source, because of its superior uniformity and absence
of expensive electromagnets that require active cooling(m. In particular, BCl;-based discharges
are of primary interest because of the ability of BCl; to remove the native oxides on compound
semiconductors and hence to provide a wide process window.

In this paper we report on a parametric study of BCl;/N,, BCl;/Ar and BCl;/H, ICP etching
of GaAs, AlGaAs, GaP, GaSb and GaN; The etch products for these materials, namely GaCl,,
AICl,, AsCl,, PCl,, SbC), and NCl, or N, (the nitrogen products are not yet established) are quite

volatile, and thus high eich rates would be expected. In part II of this paper we report results of

similar experiments on In-based compound semiconductors, where the InCl, products are much

less volatile than their GaCl, counterparts. We find that BCl;-based chemistries under ICP
conditions are universal etchants for lII-V semiconductors. This means that the CH/H,
chemistry, popular in the past under reactive ion etching conditions, is not necessary when high
density reactors are employed. The main advantage of this situation is the absence of hydrogen

passivation effects, which reduce the effective doping in the near-surface of device structures.

EXPERIMENTAL
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The following samples were employed in this study: semi-insulating undoped (100) GaAs
and undoped (100) GaSb substrates grown by the Czochralski process; nominally undoped (p ~
10% cm™®) Aly,sGagsAs grown by either Metal Organic Molecular Beam Epitaxy® or Metal
Organic Chemical Vapor Deposition MOCVD)® at 550 - 650°C on semi-insulating GaAs
substrates; nominally undoped GaP substrates (n ~ 10" cm™) grown by the Czochralski process
and nominally undoped (o ~ 10”7 cm™) GaN grown on ALOj; substrates by MOCVD at 1040°C.
All samples were patterned with a Shipley 4330 photoresist.

Experiments were performed in a Plasma Therm 790 System which utilizes a He backside-
cooled, rf (13.56MHz)-powered sample chuck and a 2 MHz, 1500 W ICP source™ '®, The total
gas load was held constant at 15 standard cubic centimeters per minute (sccm). Electronic grade
BCl;, N,, Ar or H, were injected directly into the ICP source. The process pressure was varied
from 2 - 15 mTorr, the rf chuck power from 50 - 350 W (corresponding to dc biases of
approximately -100 to -680 V) and the source power from 0 - 1000 W. Etch depths were
measured by stylus profilometry of the features after removal of the photoresist, while etch
anisotropy was examined by scanning electron microscopy (SEM). Surface morphology was
quantified by atomic force microscopy (AFM) and near-surface stoichiometry was examined by

Auger Electron Spectroscopy (AES).
RESULTS AND DISCUSSION

Figure 1 (top) shows material etch rates as a function of discharge composition in BCL;/N, at
fixed pressure (2 mTorr), source power (500 W) and dc self-bias (-250 V). The rates are a
maximum at ~33% N, addition. Ren et al.” and Shul et a1, ©¥ reported similar results for ECR

or ICP BCl;/N; etching of InP, GaAs and GaP. In the former work, maximum emission
intensities for atomic chlorine was found at 25% N, addition, which provides an explanation for
the etch rate behavior through the enhanced dissociation of BCl; to provide reactive atomic
chlorine neutrals. While the rates for GaAs, AlGaAs and GaP are relatively close, those for GaN
are about a factor of 4 lower at higher BCl; percentages. Since the products for GaN are equally
as volatile as those of the other materials, this suggests the limiting step is product formation
because of the higher bond energy of GaN (8.92 eV/atom compared to 6.52 eV/atom for
GaAs)®. Note that the rates for GaAs, AlGaAs and GaP can be controlled over a very wide
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range (a factor of approximately sixty) at fixed bias, pressure and source power by simply
varying the BCl; percentage in the discharge. Etch yields are shown at the bottom of Figure 1.
The calculations for etch yield will be described elsewhere but in brief,we define the eich
yield as the number of substrate atoms per incident ion at the energy employed in these
experiments(which is about 274 eV, based on the dc self-bias of about 250 V,and the plasma
potential of about 24 eV).The ion flux is determined from a semi-empirical calculation similar to
that of Stewart et al.?”

We can contrast the results with BCl3/N, to those obtained with BCls/Ar or BCly/H,
(Figure 2). In the latter case we see an initial rise in etch rate as BCl; is added to H, due to the
presence of chlorine neutrals that form more volatile etch products for the group III elements
compared to hydrogen, but beyond ~10% BCl, there is a broad range of plasma conditions
where the eich rates are low. Optical emission spectroscopy and mass spectroscopy of the
discharges under these conditions shows there is virtually no atomic chiorine, due to
recombination to form HCL Thus, both active etchants (Cl and H) are reduced in concentration,
leading to reduced etch rates. These rates tend to rise again for pure BCl; plasmas due to the
increase in available atomic chlorine. For BCly/Ar there is no parasitic scavenging of the active
species; for GaAs, AlGaAs and GaP this leads to a general increase in rates as BCI; is added and
a reduced etch rate for pure BCl; due to the reduced ion-assisted component of the etch
mechanism. For GaN the etch rate decreases beyond relatively low BCl; percentages for the
same reason; the difference is due to the fact that GaN has a high bond energy and requires a
strong ion-assisted etch component.

The effect of process pressure at fixed de chuck bias is shown in Figure 3. The general trend
is for a drastic fall-off in etch rates above 5 mTorr as chlorine neutrals recombine with BCl,

fragments. This was confirmed by optical emission spectroscopy, which showed the chlorine

atom lines between 726 - 775 nm decreasing to undetectable levels. For BCly/N, discharges the

rates peak in the range 5 - 10 mTorr for materials other than GaN, where there is a good
correlation with the atomic chlorine emission intensity maxima.

As ICP source power is increased, producing higher ion fluxes, there is a general tendency
for etch rates to increase (Figure 4). The top two sections of this figure show results for two
different BCl/N, conditions, at fixed dc chuck bias. The etch rates either saturate or start to

decrease at the highest source powers, which is commonly observed in ECR etching and is
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usually ascribed to sputter desorption of the active species before they can react with the sample
surface. At fixed rf chuck power (bottom of the figure), where dc chuck bias will decrease as
source power increases (from -250 V at zero source power to -105 V at 1000 W), a similar trend
is observed. This data is related to that shown in Figure 5, which displays etch rates as a function
of either rf chuck power (which increases chuck bias) or chuck bias for fixed source power and
several pressures. Since this bias controls the energy of ions impacting the sample surface'®,
there will be a general tendency for increased etch rates until the point at which reactants are
desorbed by ion-assistance before they form etch products. Note that maximum etch rates
exceeding 1 pm/min for GaAs, AlGaAs, GaP and GaSb and 0.3 um/min for GaN are obtained in
BCl;/N, at 2 mTorr and moderate source power and chuck bias. These are good conditions for
production of through-wafer via holes in GaAs, GaP or GaSb substrates for power transistor
applications.

As expected for low pressure operation with ion-assisted etch chemistries, the pattern transfer
was smooth and anisotropic. Figure 6 show SEM micrographs of features etched into GaAs (top).
AlGaAs (center) or GaN (bottom) using a 10BCly/5Ar discharge. The photoresist mask has been
removed in all cases, using acetone. No other post etch cleaning steps were performed. Note that
the etch depth on the AlGaAs sample is much larger than for the other samples,and thus the
surface appears rougher.Similarly good results were obtained with 10BCl;/5N,; discharges, as
shown in Figure 7 for GaAs (top left), AlGaAs (bottom left) and GaN (iop and bottom right).
The addition of N, to BCl; chemistries typically enhances photoresist etch rates and can provide
sidewall protection through redeposition, but for these Ga-based materials there does not appear
to be significant undercut in any case.

AFM imaging of the etched surfaces also provided confirmation of the high quality of the
pattern transfer. Figure 8 shows the root-mean-square (RMS) roughness for a fixed etch depth of

one micron, measured over 5 x 5 pm’ regions of GaAs and AlGaAs surfaces etched at fixed
source power (500 W), dc bias (-250 V) and pressure (2 mTorr) in either BCly/N, or BCly/Ar

discharges. As-grown samples typically show RMS values in the range 0.2 - 0.8 nm, and
therefore the ICP etching process is not producing any significant surface roughening.

In II-V dry etching, a smooth surface essentially guarantees that it is also stoichiometric® ¥,
i.e. there has been equi-rate removal of the group III and group V etch products. Figure 9 shows
AES surface scans of GaAs after etching in SBCl3/10Ar (top left), 10BCly/5Ar (bottom left),
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5BCl,/10N, (top right) or 10BCl;/5N, (bottom right). There is oxygen present from the native
oxide that grows during transfer of the sample from the reactor to the AES system, and
adventitious carbon from the atmospheric exposure. The residual chiorine is near the detection
limit of AES (£ 1% at %). The etched surface are therefore chemically quite clean, and remain
stoichiometric, as shown in the depth profiles of Figure 10. The Ga/As ratio remains constant
even at the surface, indicating that both are being removed at the same rate during the etching

process.
SUMMARY AND CONCLUSIONS

Under conventional reactive ion etching conditions, BCl; has been found to be an attractive
plasma chemistry for patterning GaAs and related compounds because of its ability to getter
water vapor and readily remove the native oxides on these materials. The results from this
current work on ICP etching using BCl;-based mixtures show that it is also an attractive choice
under high density conditions. The addition of N, at around 33% by flow produces a strong
enhancement in etch rates due to dissociation of the BCl; and consequently higher atomic
chlorine density. Under these conditions the etch rates for GaAs, AlGaAs, GaSb and GaP are 4 -
8 times higher than with BCl;/Ar or BCl;/H, discharges of the same relative BCly composition.
The rates are found to generally decrease with pressure and to generally increase with both ion
flux and ion energy. In the latier two cases the rates may saturate or even decrease at very high
fluxes or energies due to reactant desorption. The pattern transfer is smooth and anisotropic over

a broad range of plasma conditions.
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Figure Captions

Figure 1. Etch rate (top) and etch yield (bottom) of Ga-based semiconductors as a function of
BCl; percentage in BCl;/N, ICP discharges at fixed source power (500 W), pressure (2 mTorr)
and dc self-bias (-250 V).

Figure 2. Etch rates of Ga-based semiconductors as a function of BCl; percentage in BCl;/Ar or
BCly/H, ICP discharges at fixed source power {500 W), pressure (2 mTorr) and dc self-bias (-250
V).

Figure 3. Etch rates of Ga-based semiconductors as a function of pressure in 10BCl;/5N; or
10BCl,/5Ar ICP discharges at fixed source power (500 W) and dc self-bias (-250 V).

Figure 4. Etch rates of Ga-based semiconductors as a function of ICP source power in BCI;/N,

or BCl;/Ar ICP discharges of different composition.

Figure 5. Etch rates of Ga-based semiconductors as a function of rf chuck power or dc chuck
bias in BCl3/Ar or BCly/N, ICP discharges at fixed source power (500 W) and pressures of 2 - 5

mTorr.

Figure 6. SEM micrographs of features etched into GaAs (top), AlGaAs (center) and GaN
(bottom} with 10BCly/5Ar, 2 mTorr, 500 W source power, 250 W rf chuck power discharges.

The photoresist masks have been removed in all cases.

Figure 7. SEM micrographs of features eiched into GaAs (top left), AlGaAs (bottom left) or
GaN (top and bottom right) with 10BCly/5N,, 2 mTorr, 500 W source power, 250 W rf chuck

power discharges. The photoresist masks have been removed in all cases.

Figure 8. RMS roughness measured by AFM for GaAs and AlGaAs etched with BCl3/N, or
BCl,/Ar ICP discharges as a function of discharge composition at fixed source power (500 W),
pressure (2 mTorr) and dc self-bias (-250 V).
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Figure 9. AES surface scans of GaAs etched in 2 mTorr, 500 W source power, -250 V dc bias
discharges of 5BCly/10Ar (top left), 10BCl;/5Ar (bottom left), SBCI;/i0N; (top right) or
10BCl;/5N; (bottom right).

Figure 10. AES depth profiles of GaAs etched in 2 mTorr, 500 W source power, 250 V dc bias
discharges of 10BCly/5Ar (top), 5BCly/10N, (center), or 10BCl,/5N; (bottom).
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