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Gas-Bubble Snap-Off Under Pressure Driven Flow In
Constricted Noncircular Capillaries

by
A. R. Kovscek and C. J. Radke
Earth Sciences Division of Lawrence Berkeley Laboratory
and Department of Chemical Engineering
University of California
Berkeley, CA 94720

ABSTRACT

A model for snap-off of a gas thread in a constricted, cornered pore is developed. The
time for wetting liquid to accumulate at a pore throat into an unstable collar is examined, as
is the time for the resulting pore-spanning lens to be displaced from the pore so that snap-off
may repeat. A corner-flow hydrodynamic analysis for the accumulation rate of wetting liquid
due to both gradients in interfacial curvature and in applied liquid-phase pressure reveals
that wetting-phase pressure gradients significantly increase the frequency of liquid
accumulation for snap-off as compared to liquid rearrangement driven only by differences in
pore-wall curvature. For moderate and large pressure gradients, the frequency of
accumulation increases linearly with pressure gradient because of the increased rate of
wetting liquid flow along pore corners. Pore topology is important to the theory, for pores
with relatively small throats connected to large bodies demonstrate excellent ability to snap-
off gas threads even when the initial capillary pressure is high or equivalently when the
liquid saturation is low. A macroscopic momentum balance across the lens resulting from
snap-off reveals that lens displacement rates are not linear with the imposed pressure drop.
Instead, the frequency of lens displacement scales with powers between 0.5 and 0.6 for pores
with dimensionless constriction radii between 0.15 and 0.40. Statistical percolation
arguments are employed to form a generation rate expression and connect pore-level foam
generation events to macroscopic pressure gradients in porous media. The rate of foam
generation by capﬂlary snap-off increases linearly with the liquid-phase pressure gradient
and according to a power-law relationship with respect to the imposed gas-phase pressure

gradient.






INTRODUCTION

Gas injection into oil reservoirs is an important, practical means of improving oil
recovery [1] and extending the production lifetime of a reservoir. However, typical gas drive
fluids such as steam, carbon dioxide, enriched hydrocarbons, and nitrogen can be inefficient
displacement agents because they are much less dense and viscous than the resident oil.
Foaming a gas drive fluid is useful ft;r alleviating unwanted buoyancy-driven gas flow and
viscous fingering.

In practical applications [2-4] mixtures of surfactant solution and gas are injected
into porous oil-bearing rock, and a foam evolves in situ. The mechanisms of in-situ foam-
texture evolution (i.e., the number density of foam bubbles) are not completely elucidated.
Specifically, the roles of wetting-liquid flow rate and porous medium capillary pressure on
foam generation are not understood. Further, knowledge of foam generation is not complete
to the extent that adjustment of bubble size with variations in gas and liquid velocity may be
explained quantitatively [5, 6].

Gas bubble formation by snap-off at pore necks is an important mechanism for foam
generation [7-10}. Snap-off has been studied in cylindrical capillary tubes and in media that
mimic the corners of natural pores such as two-dimensional transparent replicas of rock and
constricted, cornered capillaries. Snap-off in cylindrical capillaries has been studied
thoroughly both experimentally and theoretically [11-14]. The study most relevant to our
work is that of Roof (15]. He considered the snap-off of oil droplets in constricted cylindrical
capillaries in which a groove was filed into the capillary wall to enhance liquid flow [15] and
developed a static criterion for successful snap-off that states the pore throat to body aspect
ratio must be less than roughly 0.5 for snap-off to occur.

Less attention has been given to snap-off in noncircular pores. Observations of snap-
off in transparent glass micromodel replicas of rock pore space have revealed a wealth of
information on foam behavior. Mast [8] was apparently the first to use a micromodel to study
foam generation and flow mechanisms. He recognized that only capillary forces and
interfacial tension were involved in snap-off. Chambers and Radke [7] carefully documented
and identified the foam generation and destruction mechanisms in micromodels of a
Kuparuk (Alaska) sandstone. Owete and Brigham (9] found that bubble snap-off at pore
constrictions was the dominant foam generation mechanism in heterogeneous micromodels.
However, micromodel studies are not useful for quantifying rates of foam generation because
they are dominated by capillary end effects (7). To quantify snap-off in noncircular pores,
Ransohoff et al. [16] measured the time to snap-off a gas bubble moving through a smoothly




constricted, square, glass capillary tube at a constant gas flow rate and proposed a
companion corner-flow hydrodynamic theory. Interfacial curvature differences were the only
driving forces considered for the rearrangement of wetting liquid. Above a critical or
transition capillary number, the snap-off time is predicted to be independent of gas velocity.
Flow rearrangement of wetting liquid z_along pore corners determines the snap-off time. Below
the transition capillary number, however, snap-off time decreases linearly with the bubble
velocity. Experiment satisfactorily matched these predictions.

Falls et al. [17] also attempted to quantify snap-off by constructing a rate expression
for use in a one-dimensional simulator for foam generation and transport in porous media.
They presumed that the time for liquid drainback to pore throats was inversely proportional
to a capillary-pressure based (i.e., curvature based) driving force, and that the time for lens
displacement was inversely proportional to the interstitial gas velocity. With this rate
expression, they were able to match limited experimental foam-flow results from
unconsolidated glass beadpacks.

Unfortunately, the above models for snap-off do not address nor explain the dramatic
refinement in steady state foam texture that occurs when liquid injection velocity is
increased while the gas velocity is held constant [18], or the apparent nonlinear increase in
foam generation rate with increasing gas velocity when the liquid injection rate is held
constant [6]. As foam texture strongly influences gas mobility in porous media [19], we must
understand foam texture evolution in order to understand gas mobility in the presence of
foam. Our analysis focuses on foam generation as gas is injected into a porous medium
draining wetting liquid and primarily on foam generation at low wetting phase content of the
porous medium.

We present a corner-flow hydrodynamic theory to predict the accumulation of wetting
liquid preceding the snap-off of a gas thread in smoothly constricted, cornered capillaries
with the added feature of an imposed axial liquid pressure gradient. Thus, the rate of
accumulation of wetting liquid due to gradients in both interfacial curvature and liquid-
phase pressure is calculated. Also predicted is the time required to dislodge the resulting
aqueous, pore-spanning lens under the action of a fixed pressure drop so that the snap-off
process may repeat. A rate expression for foam generation by snap-off under the action of
liquid-phase pressure gradients naturally arises. Such rate expressions are an important
ingredient of the mechanistic prediction of foam behavior in porous media reported elsewhere
{5, 20, 21].



SNAP-OFF OF GAS BUBBLES

The sequence of events typical of gas-bubble snap-off in water-wet porous media is
depicted in Fig. 1 (c.f., [7, 10]) . A thread of gas moves from left to right under the action of a
fixed, applied pressure drop. Pore geometry is characterized by a constriction or throat
radius, Re, a body radius, Rp, and a cgnstriction wavelength, L, as displayed in Fig. 2. Note
that the pore is gently sloped and smoothly constricted as these are important geometric
constraints for foam éeneration [16]. Figure 2 defines a pore as a throat connected to two
adjacent pore bodies.

In Fig. 1a, the gas thread deforms and invades a liquid-filled pore. The interfacial
curvature increases as the bubble squeezes into the throat. Gas and liquid pressures on
either side of the interface are related through the Young-Laplace equation to both the
interfacial curvature and the capillary pressure, Pg,

Pe=pg-pw=0 Cm:"(EIT*Elz‘) @

where p is the phase pressure, the subscripts g and w represent the gaseous and wetting
liquid phases, respectively, ¢ is the interfacial tension, Cp, is the interfacial curvature, and
ajp represent mutually orthogonal interfacial radii of curvature. Two such radii are
illustrated in Figs. 2 and 3. ay(zc), in Fig. 2, is the transverse or axial interfacial curvature at
the pore neck and lies in the plane of the figure, while a, defined in Fig. 3, is the
circumferential interfacial curvature that lies in the pore cross section, perpendicular to the
plane containing aj(ze).

To invade pore throats where liquid fills the entire cross-section or where an aqueous
lens spans the pore space, the bubble in Fig. 1a must overcome the entry curvature of the
constriction. Numerous equilibrium entry curvatures, Cm,e, are available in the literature
for a variety of pore shapes [16, 22-24]. For a pore with a circular cross-section of radius R,
the entry curvature is 2/R corresponding to a hemispherical bubble, whereas for noncircular
cross-sections, entry curvatures are slightly less.

After the bubble passes through the pore neck, it expands reducing its interfacial
curvature, as illustrated in Fig. 1b. The moving bubble interface rearranges and deposits
liquid in the pore corners at a curvature corresponding to the local value of the enfry
capillary pressure [16, 28, 29]. That is, the interfacial curvature at any axial position is
initially determined by the pore size at that position. This gradient in interfacial curvature,
between the bubble front and the pore neck, results in a liquid pressure difference that drives



liquid into the pore neck. Additionally, the imposed pressure gradient required to displace
the bubble accelerates liquid accumulation at the throat. If enough liquid collects into a collar
in a gently sloped pore so that the gas/liquid interface forms an inscribed circle anywhere in
cross section in the pore, the collar becomes unstable, since any disturbance in the axial
direction grows spontaneously [16]. The result, depicted in Fig. 1c, is snap-off into a pore-
bridging lens with a curvature corresponding to the local value of the minimum-surface-
energy entry curvature. Thus, a foam lamella is never formed directly by snap-off. After lens
creation, gas can reinvade the pore throat displacing the lens, as seen in Fig. 1d. Again,
liquid is deposited at the local value of the entry curvature by the moving bubble interface.
The snap-off process then repeats so long as ample wetting phase is present and sufficient
pressure gradients exist in the gas phase to displace the liquid lens. Eventually, the lens
drains to a foam lamella if the capillary-suction pressure is large and surfactant is present to
stabilize the thin-liquid film.

Not all pores permit enough liquid to accumulate for snap-off. Depending on the
value of R¢/Rp, it may be impossible for enough liquid to collect so that the gas-liquid
interface reaches the unstable circumferential inscribed circle configuration. In this
situation, the gas/liquid interface reaches a constant curvature, liquid rearrangement in the
axial direction ceases, and snap-off does not occur. Rather, a stable liquid collar emerges. For
snap-off to occur in a gently constricted pore, the pore throat must fill with liquid such that
the interfacial curvature at the pore throat equals the critical curvature for snap-off. Only
pore-throat to pore-body constriction ratios, RoRb, of approximately 0.5 or less are
sufficiently small to permit collection of enough liquid for snap-off in cornered pores. The
critical aspect ratio of pore throat to body size arises from purely static arguments and is
known as the Roof criterion [15]. The Roof criterion applies specifically to gently sloped pores
where the circumferential curvature is much larger than the axial curvature, and where
liquid is initially deposited along pore walls at the local value of the entry curvature. Snap-off
is prevented in pores with sharp constrictions because large axial curvatures stabilize the
gas/liquid interface against snap-off. Legait [25] actually prevented snap-off of oil
experimentally by constructing a sharply constricted square capillary.

An important aspect of Fig. 1 leading to snap-off in porous media are the "nooks and
crannies" and corners that line pore walls [7, 26]. A somewhat realistic cross-sectional pore
shape is given in Fig. 3a, and a model representation of the shape is presented in Fig. 3b. As
the bubble depicted in Fig. 1a moves downstream, wetting liquid remains in the corners of

the pores, in addition to coating the pore walls. Thus, Fig. 3 illustrates that substantial



wetting liquid remains in the corners of the pore as compared to the thin films lining the pore
walls. Liquid-filled nooks, crannies, and corners typically exhibit much lower hydrodynamic
resistance compared to that in the thin-liquid films coating pore walls [16], thereby
enhancing the redistribution of wetting liquid.

Figure 1 suggests that snap-off may be divided conceptually into the processes of
liquid accumulation, rearrangement of the liquid collar into a pore-spanning lens, and
displacement of the lens out of the pore throat. Rearrangement from an unstable collar into a
lens is rapid in constricted, circular capillaries [27] and is similarly expected to be rapid in
cornered capillaries [16]. Hence, lens rearrangement is not accounted for in light of the
longer time scales for liquid accumulation and lens displacement. Liquid accumulation and
lens displacement are treated as independent because lens displacement is relatively rapid
and does not influence liquid accumulation. In subsequent sections, each time scale is
established, and this assertion is verified.

LIQUID ACCUMULATION

Liquid flow along the corners of a pore determines the frequency of liquid
accumulation. Because the resistance to flow in thin films scales inversely with the third
power of the film thickness, film flow is highly resistive compared to the bulk flow of liquid in
pore corners. Consequently, thin films are neglected throughout this analysis as corner flow
dominates liquid rearrangement. The secondary effects of thin films on liquid flow in
noncircular cross-section capillaries have been proven negligible more rigorously [16]. Hence,
calculation of the time required for sufficient liquid accumulation to initiate snap-off
amounts to specifying and solving a two-phase corner-flow evolution equation under the
action of an imposed liquid-phase pressure gradient.

In addition to neglecting thin films, we also assume that the gas phase is inviscid,
flow of the wetting liquid in pore corners is slow and unidirectional, and the wetting liquid is
incompressible and Newtonian. Further, the pore is gently sloped and smoothly constricted
so that the transverse curvature is negligible relative to the circumferential curvature. Pores
with large transverse curvatures are not included in the analysis because they do not permit
snap-off and, accordingly, are not relevant to the creation of foam bubbles. For a smoothly
constricted pore, the amount of wetting liquid initially deposited in a pore corner is set by the
curvature of the bubble front. For slow bubble flow, the interfacial curvature at the front of
the bubble is the local value of the equilibrium entry curvature [28, 29].



Continuity of the liquid phase describes the relationship between fluid accumulation

and flow rate

aAw — 'an
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2

where Ay is the area of the corner occupied by wetting liquid, and qw is the volumetric flow
rate of wetting liquid. Since the nonwetting gas phase is inviscid, qw is related to the local
liquid pressure gradient through a dimensionless flow resistance, f, for flow corner flow [30]

= aXz)Aw (‘ aPw) @)
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In Eq. (8), p is the wetting liquid viscosity, pw is the local pressure of the wetting liquid, and
a is the circumferential radius of interfacial curvature displayed in Fig. 3. Ransohoff and
Radke [30] tabulate B as a function of corner geometry, contact angle, and rigidity of the
interface.

We take qyw as the sum of curvature and pressure-driven flows. Any curvature-driven
flow to cause rearrangement into a lens or collar is superimposed linearly upon the net
transport of wetting liquid through the corners of the pore. The pressure gradient in Eq. (3)
is thus the sum of driving forces contributed by differences in interfacial curvature and by
the imposed pressure gradient. Since the transverse curvature in Eq. (1) is negligible in
comparison to the circumferential curvature for gently sloping pores, the interfacial

curvature is 1/a(z), and the total liquid pressure gradient becomes

% =JL_a_a+(apw 4)

0z  a¥(z) dz _aT)imposed
where the last term on the right represents the net imposed pressure gradient. It arises
because a pressure gradient is required to drive bubbles through porous media during foam
flow, or when gravity is considered for a long vertically oriented pore. Previous work
neglected this term [16].

Combining Egs. (2), (3), and (4) with the observation that Ay is proportional to a2(z)
yields an evolution equation for the interfacial radius of curvature as a function of position

and time. In dimensionless form, it reads
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Following Ransohoff et al. [16], k (= a/Rp) is taken as the dimensionless interfacial radius of
curvature, { (= z/L) is the dimensionless axial direction, and 1 (= t/t;) is the dimensionless
time. With this choice of scaling, the characteristic time, te, is equal to [2p.BRb(I./Rb)2]/0' and
embodies the effects of fluid properties, constriction length, and corner geometry on the time
for liquid accumulation. A very viscous fluid or a corner with a large flow resistance factor, B,
leads to long liquid accumulation times. Likewise, for low interfacial tensions the
characteristic time becomes long. A dimensionless, modified capillary number arises because

of the superimposed wetting liquid flow, Capy (= (%X- ﬁ) ). It includes factors
: G oz imposed

describing the pore geometry along with viscous and capillary forces. Equation (3) relates the
imposed pressure gradient to the viscosity and velocity of the corner fluid, justifying the
terminology of a modified capillary number.

Implicit in the derivation of Eq. (5) is the assumption that the flow resistance factor
is a constant, independent of position or time. This assumption only holds rigorously for flow
in corners of constant cross-sectional shape that are not rounded and for flow where the
fluid/fluid interface exhibits either a no-slip or a no-stress boundary [30].

Calculation of the time for liquid accumulation demands a specific pore shape. For
illustrative purposes, a pore with a square cross-section and a constriction with the following

dimensionless shape function are chosen
Az =1-8- A‘) L2 () 4 cosn(e - )] ©

where A = R(z)/Rp, Ac is the dimensionless constriction radius (RoRDb), {¢ defines the
dimensionless position of the pore constriction, and R(z) is the largest circle that may be
inscribed locally in the pore cross-section. Small dimensionless constriction radii define pores
with small throats connected to relatively large bodies. A constriction radius of one refers to
an unconstricted tube. A typical pore shape is illustrated in Fig. 2.

Equation (5) is a second-order, boundary-value problem that is solved numerically
with a Galerkin finite element method using Newton-Raphson iteration to resolve the

nonlinearities. Crank-Nicolson time stepping provides an algorithm that is unconditionally



stable and second-order accurate in time. Further numerical details are available elsewhere
[31]. Both constant curvature and no-curvature-driven-flux boundary conditions are relevant
to the pore-level physics of snap-off. No-curvature-driven-flux boundary conditions at both
pore boundaries restricts a pore, in a serially connected set of pores, to only rearrange the
initial volume of liquid within one pore wavelength. Here, 0x@{ is zero at the pore
boundaries, { = 0 and 1. For simplicity, this is termed a no-flux boundary condition
throughout the remainder of the paper. Liquid, though, streams along the liquid-filled
corners of the pore in response to the imposed pressure gradient. A constant curvature
boundary condition (i.e., constant capillary pressure suction) is akin to connecting a pore
body to a large source of wetting liquid. Liquid is supplied at the pore boundaries without
changing the gas/liquid curvature at those boundaries, or x = constant at { =0 and 1.

In the first calculations, the curvature of the gas/liquid interface in the center of the
pore bodies adjacent to a pore throat is fixed to the entry curvature, consistent with a pore
that is connected to a liquid source. The initial condition is liquid deposited in pore corners
with a curvature determined by the entry curvature at the local, axial pore size consistent
with repeated snap-off and rearrangement of corner liquid by a moving lens. Liquid
accumulation continues until the interface assumes an inscribed circle (i.e., unstable)
configuration anywhere within the pore, or until a constant curvature (i.e., stable) interface
forms throughout the pore. Snap-off always occurs near the pore throat because the
interfacial curvature is greatest there. The dimensionless time, t5, to accumulate enough
liquid for snap-off in a square constricted pore is plotted versus the dimensionless
constriction radius in Fig. 4 for Cay = 0, 10, 50, and 100. These modified capillary numbers
correspond to imposed pressure gradients of 0, 400, 2000, and 4000 kPa/m (0, 17.7, 88.5, and
177 psi/ft), respectively, for a pore with a pore-body radius of 100 pm, a normalized
constriction length (I/Rp) of 20, and where the interfacial tension is 32 mN/m. The amount of
time required for liquid accumulation prior to snap-off decreases dramatically with
increasing Capy, . At large modified capillary numbers, liquid is pumped rapidly through the
pore corners, due to the large imposed pressure gradient, and quickly accumulates at the
throat.

Interestingly, the curves for Cap equal to 50 and 100 asymptote sharply at a
dimensionless constriction radius of roughly 0.53 which corresponds exactly to the Roof
criterion [15, 16] for a pore with a square cross-section. This limit is indicated by the dashed
line on Fig. 4. In the limit of no imposed pressure gradient, Camy = 0, liquid accumulation

times in a cornered capillary increase with A because the pore walls are not sufficiently



curved to draw liquid rapidly into the pore throat for snap-off. At high imposed pressure
gradients, however, liquid is pumped quickly into growing collars accelerating the curvature-
driven rearrangement of liquid, even when interfacial curvature gradients are not large. For
Ac greater than the Roof criterion, snap-off is always prohibited because the corner liquid
assumes a constant curvature shape and profile rearrangement of the corner liquid ceases
before reaching the unstable collar configuration.

For an infinitely tight constriction where A equals zero, ty remains finite. As first
explained by Ransohoff ez al. [16] for snap-off in cornered pores, as A¢ approaches zero, the
snap-off position is slightly downstream from the pore neck at a dimensionless axial position
of 0.05. Hence, the accumulation time must remain nonzero.

In the second example reported in Fig. 5, a no-flux boundary condition is applied in
the center of the pore bodies adjacent to a pore throat. Again, the initial liquid profile is given
by the local value of the equilibrium entry curvature. The gas/liquid interfacial curvature is
symmetric about each pore boundary, and liquid in the pore corners simpljf rearranges. For
highly constricted pores, the result is identical to the results in Fig. 4. However, for A;
greater than roughly 0.35 and Cap, equal to zero, the times for snap-off m Fig. 5 increase
more rapidly with increasing A¢ than in Fig. 4. Again the dashed, vertical line denotes the
Roof criterion for this pore shape. As the pore throat becomes less constricted, it takes a very
long time to accumulate the liquid available within one pore wavelength into an unstable
collar. For only curvature-driven rearrangement of liquid (i.e., Cap = 0), a square pore with a
constriction to body ratio greater than about 0.4 does not snap-off. The pore is starved for
liquid even though the static Roof criterion indicates that snap-off may occur. A collar forms,
but the critical curvature for snap-off cannot be reached. As Cap, increases from 0 to 100, we
again see that the time for snap-off decreases dramatically. Additionally, for Cay, of 50 and
100, the strong imposed pressure gradients allow snap-off to occur at the Roof criterion,
where t; asymptotes sharply.

In the third example, we explore the competing effects of pore drainage due to
capillary suction and liquid accumulation at the pore throat by calculating snap-off in pores
that attempt to establish equilibrium with the overall porous-medium capillary pressure. The
initial liquid profile is still set by the local value of the equilibrium éntry curvature except at
the pore boundaries where the capillary pressure or curvature is set to a value greater than
that given by the equilibrium entry value. Hence, the constant curvature at pore boundaries
is fixed by the medium capillary pressure, and liquid drains from the pore in addition to
spontaneously rearranging. Cay, is first set to zero, so that we examine purely curvature-



driven liquid rearrangement while the pore-boundary curvature is made progressively larger.
Figure 6 presents liquid accumulation times as a function of the pore constriction size
and the capillary pressure condition applied at the pore boundaries. Curves are labeled with
a ratio of capillary pressures, Pc p/Pc e, to indicate the capillary pressure at the boundary
relative to the equilibrium capillary entry pressure. The subscripts b and e indicate the
boundary and entry capillary pressures, respectively. A ratio of unity states that liquid at the
pore boundary is at the local equilibrium entry value of the capillary entry pressure for a
given pore size. Ratios greater than unity indicate that the local boundary capillary pressure
is greater than the entry capillary pressure. Note that we probe capillary pressures almost
twice the equilibrium entry value. Figure 6 makes two important points. First, with
increasing values of Pcp/Pce the critical pore-throat to body aspect ratio necessary for
sufficient liquid accumulation for snap-off decreases. That is, the range of pores supporting
snap-off narrows toward pores with relatively small throats as the boundary capillary
pressure increases. Second, for those pores that have small pore throats relative to their body
size, the time for accumulation of liquid and snap-off to a pore spanning lens in all cases is
almost identical to the P¢ 1/Pc e equal to 1 case until the dimensionless radius of constriction
closely approaéhes a critical value, l*, separating pores that snap-off from those that do not.
The critical pore-throat to body ratios in Fig. 6, where accumulation times
asymptotically approach infinity, are given by a restatement of the Roof criterion [15, 16]
incorporating the interfacial curvature at the boundary. The Roof criterion is purely static
and relates the critical inscribed circle configuration of wetting fluid necessary for snap-off to
pore geometry. It assumes that the curvature of liquid in pore corners at the boundaries is at
the (dimensionless) entry curvature and states that this curvature controls snap-off. To
obtain an analytic expression for the geometric criterion for snap-off represented by the
asymptotes in Fig. 6, we replace the entry curvature with the dimensionless boundary
curvature in Egs. (3) to (7) of Ransohoff et al. [16]. For the case of a gently sloping pore, the

following static criterion incorporating pore geometry emerges

~ Y1 i~
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where Eim (=CmRp) is the nondimensional curvature. Equation [7) recovers the Roof criterion
when the boundary curvature equals the equilibrium entry curvature. The two vertical
dashed lines on Fig. 6 represent the usual Roof criterion for Pep/Pee equal to 1 (ie., A =
0.53) and the modified criterion given by Eq. (7) for Pcb/Pee equal to 1.4 (ie., A" = 0.38).
Table 1 lists all of the critical aspect ratios for the square-tube calculations summarized in
Fig. 6. In all cases, the numerical calculations closely approach the asymptotes predicted by
Eq. (7).

Figure 7 gives liquid accumulation times for increasing superimposed liquid phase
pressure gradients when P¢}/Pce equals 1.4. The vertical dashed line again represents the
snap-off criterion stated by Eq. (7). Similar to both Figs. 4 and 5, the time required for liquid
accumulatior_l prior to snap-off decreases dramatically with increasing Capy,. Trends similar
to those presented in Fig. 7 for increasing values of Cayy, are obtained for all reasonable
values of the ratio Pc1/Pee.

Interestingly, comparison of Figs. 4 through 7 teaches that similar results are
obtained for tightly constricted pores under a variety of imposed liquid-phase pressure
gradients and initial and boundary conditions. Liquid accumulation is so rapid for tightly
constricted pores that the initial and boundary conditions do not influence strongly the
accumulation time. We do not perform calculations of accumulation time for pores with both
drainage due to capillary suction and no-flux boundary conditions as this case is aphysical .

LENS DISPLACEMENT

Final rearrangement of the accumulated liquid in an unstable collar into a pore-
spanning lens is very rapid [27]. Before liquid accumulation commences again, however, the
lens must be displaced from the pore throat. Expulsion of the lens requires that the pressure
drop across the lens be sufficient to overcome all viscous and capillary resistances present. To
follow the unsteady motion of the lens depicted in Fig. 8, we apply a macroscopic momentum
balance. Consistent with our assumption of rapid lens displacement times as compared to
transport times of liquid along pore corners and surface roughness, we assume that the lens
has little time to drain and maintains constant volume. The lens control volume lies between
the curved lens surfaces 1 and 2, as indicated by the shading in Fig. 8, and moves with the
lens. This controel volume is useful in that momen'tum influx and efflux are eliminated for a

lens of constant volume.

Consistent with the previous assumptions of a gently sloping pore and slow flow, the
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lubrication approximation applies and the velocity of the liquid in the lens is coparallel with
the pore axis. That is, the magnitude of the velocity is identical to the axial component of the
velocity. The lens slides over both the thin lubricating films lining the pore walls and the
bulk wetting fluid in the pore corners.

Under these restrictions, the axial component of the momentum balance [32, 33] for
the situation depicted in Figure 8 is written as

Pgt'f U@ dVv = PwlAl - PW2A2 + Fp -Fp ®
\'

where p is the liquid mass density, U is the average axial lens velocity as a function of the
axial position, V is the (constant) lens volume, pw1 and pw2 are the respective average ]iquid
pressures at surfaces 1 and 2, and Aj and Ag are the axially projected areas of surfaces 1 and
2, respectively. The left side of Eq. (8) represents the accumulation of momentum in the
control volume. The first two terms on the right describe the entrance and exit pressure
forces acting at surfaces 1 and 2, respectively, while Fp arises from the pressure exerted by
the capillary wall on the lens fluid and Fp describes the axial viscous drag encountered by
the lens.

To obtain the entrance and exit pressure forces, a force balance is performed to relate
the gas pressures across the lens interfaces to the liquid pressures at surfaces 1 and 2. Thus,

the pressure difference across each liquid/gas surface of the lens reads [28] :

(Pg1 - Pw1)A1 = (021t R} + Dfy) coso (92)

(Pg2 - Pw2)A2 = (021 Ry + Dpp) cosm2 (9b)

where R is the radius of the largest circle that can be inscribed locally in the pore cross-
section, and ® is the angle between the radius of interfacial curvature, a, and R. The
subscripts g1, wl, g2 and w2 refer to the gas and liquid pressures immediately adjacent

surfaces 1 and 2, respectively. Equation (9) applies for a tube of any cross-section. For a

straight tube, ® is zero. The drag force, Dy, arising from moving a meniscus over a thin liquid

film is given by Wong et al. (28]
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D =2nR;c0; Ca?? | i=12 10)

where a is a constant of proportionality that is different for the front and rear of the lens, ois
the surface tension, and Ca (=pU(2)/0) is the local capillary number. The continuity equation

AU; = A(2)U(2) an

relates the average velocity, U(z), anywhere inside the lens to the average velocity at the
projected area of surface 1. Equations (9) and (10) give the liquid pressure at surfaces 1 and 2
as a function of the gas pressure and the interface velocity.

The viscous force exerted by Athe lens fluid in unidirectional flow on the wall of a

capillary with a general cross-sectional shape is

Fp= f %) dAyan (12).
v I |R(z)

where Ay is the wall area wetted by the lens. The derivative of the axial velocity, vz(1), is
evaluated at the pore wall.

To obtain the pressure force acting in the axial direction, the local lens pressure is
multiplied by the axial differential area, the product is then projected in the z-direction and
integrated. For gently sloping pores, the projection in the z-direction is, to an excellent

approximation, the slope of the pore wall, dR/dz. Thus, the pressure force is written as

Fg = Lau pw(z.r) dd% dAvan 13)

In the lens-displacement calculations to follow, a circular constricted pore is chosen
because it provides a simple geometry and because the drag and fluid pressure relationships
are known exactly. Pore geometry is not crucial for obtaining the flow-rate trends of lens
displacement, because flow resistances for bubble or lens flow in slots, and in pores with
circular and noncircular cross-sections scale with velocity in a similar fashion [28, 34]. The
pressure drop to drive a bubble or lens scales as Ca2/3 consonant with the classical result of

Bretherton [35]. Only the proportionality constants differ among differing pore geometries. In
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fact, Wong et al. [28] derive the proportionality constants, o, for a variety of polygonal pore
shapes, such as triangles, squares, and hexagons, and find that the proportionality constants
are all approximately equal and about a third of the circular-pore proportionality constant.
Thus, a circular constricted pore provides a conservative estimate of lens displacement times
while maintaining the proper velocity scaling.

For a circular constricted pore, where lens flow is described by local Poisueille flow,
the integrals in Eqs. (12) and (13) have been evaluated elsewhere (cf., Egs. (6) and (13) of ref.
[82]). Substitution of Egs. (9) through (13) into Eq. (8) yields an expression describing the
position of the upstream plane of the lens as a function of time for a given pressure drop,

parameterized by the lens volume and the pore shape:

2.~ ~
i.[l%(hz -hy )d—h.l—] = A2(Pg1 - Pg2) + 2A2(cosw; - h<>08001)
dt dt M
-OhA2(16S; + 8S; )(9(11‘;1—) (14).
t

2 \2/3
23
+ 20,023 oq%z—coscol- ag(x—;) cos®, (%%1—)
1

A2
In the accumulation term, Eq. (11) is utilized, and the result is integrated over the lens
volume. In Eq. (14), dimensionless time, T, is defined by t/ pRl_r,3/0')1/2 where the denominator
is an inertial time scale, h (=z/R}p) is the dimensionless axial position where h equal to zero
defines the location of the pore throat, and Sg (=pRp/0) is a scaled gas-phase pressure. The
Ohnesorge number, Oh = u/(po‘Rb)w' , gauges the relative importance of inertia. Small values
of Oh lead to impulsive, jerky lens motion, known as Haines jumps [36], whereas large values
yield smooth, continuous lens displacement. hj is the axial location where the upstream lens

meniscus intersects the pore wall.
S1 and Sg are dimensionless pore-shape integrals with the following definitions

h2
si=| & (15),
A“(h)

hi

and

14



h2

Sy = f—g A %dh (16),
NG

ll

hy

where § is a dummy variable of integration.

Briefly, the first term on the right of Eq. (14) describes the force exerted on the lens
by the difference in gas pressure on either side of the lens. The second term represents the
contribution of surface tension to the net force on the lens. Depending on the position of the
lens in the pore, this contribution may aid aid or hinder lens movement. The third and
fourth terms are drag contributions from displacing the bulk fluid in the lens and displacing
the lens menisci, respectively.

Equation (14) is a second-order initial value problem that is readily solved by Runge-
Kutta methods [37]. A fourth-order method is used here [31]. The trapezoidal rule is used to
evaluate the pore-shape integrals. Calculation of the time for lens displacement proceeds
once a dimensionless lens volume V (= Viens/Rp3), pore geometry, and pressure driving force
Ap (= pg1 - Pg) are specified. Following rearrangement of a liquid collar into a lens, the lens
is initially stationary. Hence, the initial condition for computations is U (=dh 1/d?) equal to
zero. The proportionality constants for contact line drag, g and a4, are assigned smooth
tube values of 3.8785 and 1.13065, respectively [28]. The Ohnesorge number is fixed at 0.021
for computations. This value corresponds to lens fluid with a viscosity of 1.2 mPa-s, density of
1000 kg/m3, an interfacial tension of 32 mN/m in a tube with an R, of 100 pm. Finally, Eq.
(6) again describes the axial pore shape.

Figure 9 displays a typical plot of dimensionless time versus position of the upstream
location where the lens meniscus contacts the wall, hg (displayed schematically on Fig. 8), as
a solid line. Also inserted is a schematic of the pore and the initial position of the lens. The
pore is quite constricted and long with a dimensionless constriction radius of 0.20 and a
constriction length, L/R}, of 20. Recall that pores with sharp constrictions (for example, L/Rp
= 1) prohibit snap-off because the sharp transverse interfacial curvature stabilizes the
interface. Initially, the lens is centered about the constriction with hg at a position of about
-4. The lens moves. slowly as the rear of the lens squeezes through the constriction. Once past
the constriction, the lens moves quickly through the pore body, and again slows down at
about hg equal to 14 in order for the trailing lens interface to squeeze through the next pore
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constriction. Rapid lens translation through the pore body is similar to a classic Haines jump
[36]. The lens repeatedly slows down and speeds up as it transports through subsequent pore
throats and bodies.

Figure 10 summarizes the dimensionless time, tq, to push a lens out of a pore
constriction to hg equal to 10 in Fig. 9, as a function of the pore throat to body size ratio for a
variety of dimensionless pressure drops. Dimensionless lens volume is identical to that in
Fig. 9, as are the constriction length and Ohnesorge number. The asymptotic increase in
displacement time for tight constrictions at each pressure drop reveals that a threshold
pressure drop must be exceeded to overcome capillary forces that tend to drive lenses into
pore throats. This threshold pressure drop gives the minimum value that must be exceeded
in order to mobilize a lens and dislodge it completely from a pore throat. Otherwise, the lens
remains stationary in the pore throat or slightly downstream of the throat where the
imposed pressure drop is just balanced by capillarity. Setting the velocity terms in Eq. (14) to
zero teaches that Ap must always be greater than 2(A17L coswg - Aglcoswg) for successful lens
mobilization. It is clear that the threshold pressure drop depends on the constriction
geometry and the volume of fluid in the lens. As expected, the threshold pressure drop
decreases for less constricted pores, and the time for lens displacement decreases with
increased pressure drop.

Our model of lens displacement has three dimensionless parameters that may be
varied in addition to dimensionless pressure drop and the ratio of pore throat to body size.
First, displacing a lens of greater volume incurs more viscous drag at the wall increasing the
lens displacement time for any given pressure drop. Second, decreasing the length of the
constriction decreases the lens displacement time. Third, decreasing Oh decreases the total
time a lens spends moving through a pore, and decreases the time the lens spends traversing
a pore body relative to the time required to squeeze past a pore throat. As Oh decreases, lens

motion is impulsive and rapid, whereas for large Oh (0(0.1)), lens motion is smooth.

RATE OF FOAM GENERATION BY SNAP-OFF
We desire a pore-level based rate expression for snap-off and a connection of pore-
level foam generation to macroscopic gas and liquid flow in porous media. Earlier studies [16,
17, 38] argue that the rate of foam generation is inversely proportional to the time to snap-off
a gas bubble with the proportionality constant reflecting the number of active foam

germination sites. Ransohoff ef al. [16] take the maximum of the dimensional accumulation or

16



displacement time as the time for snap-off , whereas others [17, 38] take the snap-off time as
the sum of accumulation and displacement times. We explore a statistical model for
translating the pore-level snap-off results into a porous medium rate expression. First,
though, we establish the pore-level frequency of accumulation and lens mobilization.
Implicitly, our analysis assumes that liquid accumulation and lens displacement in

assemblies of connected pores are not highly cooperative phenomena.

Liquid-Pressure-Gradient Dependence

The frequency of liquid accumulation to form a collar that subsequently rearranges
into a lens is a function of the imposed pressure gradient within a given pore. Additionaily,
the capillary pressure of the porous medium is an important parameter. Figure 11
demonstrates the dimensionless frequency of liquid accumulation as a function of imposed
pressure drop for constant curvature boundary conditions. Liquid is initially arrayed with a
curvature ¢orresponding to the local value of the equilibrium entry value for a variety of
constriction aspect ratios. We find that f; essentially increases linearly for modified capillary
numbers greater than about 5. Each curve has a finite intercept because interfacial
curvature gradients cause liquid accumulation even when no pressure gradient is imposed
through the wetting corner liquid. Experimental confirmation of the magnitude of the
intercept and the limiting behavior as Cay, approaches zero is provided by the data of
Ransohoff et al.[16] for gas-bubble snap-off in single, square tubes. To achieve this
comparison, bubble capillary numbers must be rescaled to our Cap, using the theory of Wong
et al [28] for bubble flow in cornered capillaries. Additionally, application of no-flux boundary
conditions to the calculations summarized in Fig. 11 produces qualitatively similar results
(31].

Figure 12 displays f5 versus Cap, as the curvature of the interface at the boundaries
of a pore increases. The pore throat to body aspect ratio is fixed at 0.40. The linear trend of
increasing f5 at moderate to high modified capillary numbers in Fig. 11 is maintained as the
fixed boundary capillary pressure is increased. The role of decreasing pore boundary
curvature is to decrease the frequency of accumulation and increase the range of Cap, over
which the accumulation frequency is nonlinear. Further, the trends displayed in Fig. 12
generalize to pores of differing constriction size.

Figures 11-and 12 suggest the following functional form for f,

fa=1fa0(Ae, Pcp/Pee) + B(Ac, P b/Pee) Cap amn
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where f3 ¢ is the accumulation time when no pressure gradient is imposed, and B is the slope
of the curve. As A¢ decreases, fa o increases because liquid is drawn rapidly toward the pore
throat. On the other hand, fy o decreases for a fized A as the capillary pressure at the pore
boundary increases (hence, the ratio P¢ b/Pce increases). Competition between liquid
accumulation and drainage reduces fa o for a given A¢. Likewise, B depends on Ac and
Pc1/Pce- The slope increases slightly with decreasing dimensionless constriction radii,
because tightly constricted pores demand a more rapid frequency of liquid accumulation, but
decreases as Pc /P is increased at a fixed constriction aspect ratio due to the decreased
availability of liquid. Equation (17) applies strictly to Cay above about 5, but it well
approximates the low Cay, regime also. Deviation from linearity occurs at low capillary
numbers because strongly constricted pores rearrange liquid rapidly due to pore wall
curvature, even when the imposed liquid pressure gradient is small and P¢ p/Pc e is high.

Gas-Pressure-Drop Dependence

Figure 13 displays the reduced frequency of lens displacement, on a log-log scale, as a
function of the reduced pressure drop, Ap - App, where Ap is the imposed pressure drop across

the lens and Apy is the threshold pressure for a given constriction radius, geometry, and lens
volume. The inertial time scale has been converted to the same as in Figs. 11 and 12 by
dividing by Oh. The frequency of lens displacement increases with the constriction aspect
ratio, since it is easier for lenses to squeeze out of less constricted pore throats. The linearity

of the numerical results indicates a power-law dependence such as

fa= D(M)[Aff - Apr(Ac, LRy, '\"/)]n(}‘c) (18)

where the line for each dimensionless constriction ratio follows a slightly different power-law

relation, with 11 and D depending on A¢. The power-law exponent decreases with increasing
Ac, because the time interval spent moving the lens out of the pore throat to the point where
the Haines jump through the pore body begins, decreases with both increasing A¢ and
increasing reduced pressure drop. Tightly constricted pores are more dissipative than less
constricted pores. The time required for the Haines jump relative to the initial displacement
time is almost insignificant. Further, Fig. 13 indicates that D increases with A¢.

Snap-Off Rate in Porous Media
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Equations (17) and (18) provide a basis for inferring the rate of snap-off in porous
media and the effect of porous medium properties, such as permeability and capillary
pressure. To scale pore-level phenomena so that macroscopic rates of foam generation by
snap-off can be written, we invoke a statistical network description of porous media [39-41].

Minimal elements of a statistical description of porous-medium physics include size
distribution functions for pore bodies and pore throats {40, 41]. Also, throat and body size
correlations are typically constrained to insure that pore bodies with dimensions smaller
than pore throats are not selected [41]. Foam generation and foam displacement of pore
fluids is a drainage process, as demonstrated by Fig. 1. Thus, the pores that gas may enter at
a given capillary pressure, P¢, are those having a throat radius greater than the drainage
radius Rq, According to Eq. (1), Rq equals 20/P if the gas/liquid interface is hemispherical.
In the simple models discussed below, we assume that all pores with a throat radius of Rq or
greater are available to gas. More complicated analyses differentiate between pores where
gas is allowed and where gas actually occupies the pore [40]. Neglecting occupancy statistics
may overstate the probability of displacement somewhat, but-at high P typical of strong
foams at steady state we expect the allowed and occupied fractions to be nearly the same.
Finally, we assume that the percolation threshold is exceeded so that multiphase flow is
possible.

When this minimal description of a porous-medium network is combined with a pore-
level description of foam physics, rate expressions for foam generation by snap-off may be
developed. The regime of interest is that of strong foam flow where foams exhibit substantial
pressure drops in the porous medium, ranging from 200 to 5000 kPa/m (O(10) to O(100)
ps/ft). Within porous media, strong foams are characterized by a fairly dense pore-level
spacing of lenses or lamellae, long-lived foam lamellae due to effective surfactant
stabilization of the gas/liquid interface, in-situ regeneration of coalesced foam, intermittent
mobilization of foam bubbles, and a high fraction of the gas-phase that is stationary,
statistically, as trapped foam [20, 38, 42]. Flow is likely unsteady at the pore level because
pore-level flow paths and pressure gradients for the gas and liquid phases fluctuate [39] and
flow stream lines constantly evolve. Foam bubbles and lenses or lamellae only move, as
described by Eq. (18), when the local pressure gradient is sufficient to keep them mobilized.
Strong foam behavior translates to fluctuating, transient flow at the pore level, where pore-
spanning lenses or lamellae alternate between periods of rest and motion.

For successful snap-off of a moving lens to occur within this backdrop of chaotic pore-

level flow, a pore must exhibit a fairly small pore throat to body size ratio to ensure rapid
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liquid accumulation, and posses sufficient liquid so that an unstable liquid collar may form
near a pore throat. Yet the pore cannot be too highly constricted, so as to prevent lens
mobilization. Liquid accumulation and mobilization do not necessarily occur simultaneously.
A lens may generate but remain stationary for a period of time and then mobilize. Thus, we
require pores with both a high, gas-phase pressure gradient and a lens forming geometry. We
take the probability of a successful snap-off event as the product of the individual

probabilities for liquid accumulation and lens mobilization:
Pso=PaFd 19

where the probabilities, P, are averaged over a representative sample of pore space.

The probability of an individual pore-level liquid accumulation event, pa, and snap-
off to a lens is presumed proportional to the frequency of liquid accumulation. To obtain the
probability of accumulation, the pore-level probability is integrated over the fraction of pores
that gas occupies and that also have sufficient pore throat to body size ratios and liquid
saturation. Hence, the probability of accumulation within a network of pores is written:

o0

?a= rc f N FbPa d)-b d}c (20)

Ao/h
A

where I is the distribution function describing the number fraction of pores with a given Ag,
T is the dimensionless, constrained, number fraction pore-body size distribution, and AFis
the upper bound for the static criterion given in Eq. (7). Typically, pore throat and body sizes
are made dimensionless by a single, characteristic pore dimension Ry, . Since A4 is inversely
proportional to P according to Eq. (1), Eq. (20) explicitly reflects the capillary pressure or,
equivalently, the liquid saturation dependence of snap-off via the Leverett J-function 43].
Moreover, Eq. (1) also identifies how the critical throat to body constriction ratio for each
pore size varies with medium capillary pressure. As a porous medium becomes progressively
drier, the capillary pressure rises; A* shrinks (c.f., Table 1) and approaches zero. Thus, the
lower integrand of the inner integral in Eq. (20) grows, the range of integration shrinks to
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zero, and foam generation by snap-off ceases. Equation (17) also predicts that Pa decreases as
the porous medium capillary pressure increases.

Additionally, the probability of an individual lens displacement event, A, is
proportional to the frequency of lens displacement. The porous-medium averaged probability
of lens displacement, &y, is found by integrating Hd over the fraction of gas-entered pores

that are not too constricted for displacement events at a given gas-phase pressure drop:

Aolg™
P3=] T f Thpg dAp | dAc (1)
A

where g*(Aff) is the minimum pore throat to body ratio for lens mobilization at a given
pressure gradient. As the pressure gradient increases, lens mobilization is possible over a
wider range of pore sizes which is reflected in a reduced g*(Aﬁ); thus, a wider range of
integration in Eq. (21). The inner integral in Eq. (21) correctly predicts that a lens in a
wetting, unconstricted tube always flows given a nonzero gas-phase pressure drop.

To construct a porous-medium averaged rate expression for foam generation per unit
volume of gas-occupied pore space, we substitute f5 and fq given in Eqs. (17) and (18) for Pa
and g in Eqs. (20) and (21), respectively. Second, the liquid pressure gradient is extracted
from Cap,, the gas pressure drops are converted to pressure gradients by division by L, and
the result is dimensionalized by dividing both sides of the equation by the time scale pRy,/c.
Third, the result is divided by the mean gas volume per pore averaged over all pores, ‘Vg , to
obtain the rate per unit volume of gas-occupied pore space (c.f, [40, 41]). Lastly, since both
the gas and liquid pressure gradients are independent of pore geometry and since the power-
law exponent, 7, is only a weak function of pore geometry according to Fig. 18, pressure
gradient terms are moved outside the integral. That is,

rg = kilVpwl ([Vpg - [Vpg,1 ) + ka(|Ved -[Vpg,1 ! (222)

where
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The proportionality constants, k1 and kg reflect the number of foam germination sites as a
function of pore size and geometry, the porous medium capillary pressure, and the gas-phase
pressure gradient. For high water saturations, Eqs. (22) predict a large generation rate by
snap-off. Figure 138 indicates that the power-law exponent, 1, is roughly 2/3 for the pore
throat to body aspect ratios typical of sandstones (44]. An example calculation of k] is given
in the Appendix.

The mobilization pressure for lenses or foam lamellae within a network of pores is
central to the frequency of displacement. Since the gas phase is dispersed as foam bubbles
that are separated mainly by lamellae, it is not clear how to predict the threshold pressure
gradient or the variation in g’I= with pressure gradient and foam texture. A separate theory
for lens or lamellae mobilization is needed that depends upon the permeability of ::he porous
medium and the number density or texture of foam (c.f., [45-51]). We leave the portion of the
rate expression arising from lens displacement in its general power-law form. From the
above theories for foam mobilization pressure gradients [45-51}, we do expect, however, that
the mobilization pressure gradient decreases inversely with R¢ or the square root of
permeability.

At the high pressure gradients characteristic of the steady flow of strong foam, the
first term in Eq. (22a) dominates over the second, because large liquid-phase pressure

gradients induce rapid snap-off as compared to static purely curvature driven accumulation

of liquid according to Figs. 4, 5, 7, 11, and 12. In this case, rg reduces to the form

rg ~ k1/Vpwl[Vpg - [Vog 1" (23).
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A variant of Eq (23) has been used elsewhere to successfully describe the experimentally
observed gas and liquid velocity dependence of foam texture in consolidated sandstones [20,
21] with the constant k1 fixed by history matching rather than evaluating Eq. (22b) directly.

DISCUSSION

Equations (22) and (23) do not account for existing lenses or lamellae that convect
into a snap-off site where liquid is accumulating. If the rate of lens or lamella convection is
too large, liquid accumulation at pore throats is prevented because the translating lenses or
lamellae sweep the accumulating liquid out of the pore throat preventing the formation of
lenses. However, in many foam displacements of interest [5, 18, 20, 52], strong foam
coalescence forces apparently come into play before lamellae become so closely spaced that
liquid accumulation is affected. Otherwise, the snap-off rate developed above must be
compared to the lamellae convection rate to determine whether sufficient time exists for a
lens to form before the accumulating liquid is swept out of the pore throat [17].

One of the major assumptions used in the proposed model of snap-off is that the rate
of aqueous lens displacement out of a pore throat is greater than the rate of liquid
accumulation. Thus, the two processes were decoupled and pore spanning lenses maintained
constant volume. Figures 11 and 13 reveal that this is indeed a valid assumption. The
frequencies of displacement and accumulation are on a common scaling and the frequency of
lens displacement is roughly an order of magnitude greater than the frequency of
accumulation.

Only snap-off in pores of square cross-section was presented quantitatively. Predicted
flow-rate trends, though, apply equally to other cornered, cross-sectional pore shapes. First,
different corner geometries shift t5, but the trend of a linear increase in the frequency of
liquid accumulation with the imposed liquid velocity through pore corners is maintained. For
an equilateral triangle, t; at a given Cap, is slightly less than that for the square cross-
section pore. More liquid is held in the corners of a triangular pore as compared to a square
pore at the equilibrium entry curvature [16]. Therefore, in triangular geometries, liquid
rearranges more quickly into a pore-spanning lens. Second, the drag-velocity scaling for the
lens displacement portion of snap-off is independent of capillary geometry [28]. Geometry
changes the proportionality constant; hence, it alters the actual time for displacement, but
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not the velocity scaling found for t4. Generally, the proportionality constant increases with
the number of sides of a polygonally shaped pore. A circular pore represents the case of
maximum drag. Since a pore of circular cross-section was employed for the displacement
calculations, the actual lens displacement time for cornered pores is overestimated.

Finally, our analysis provides some insight into foam generation where gas and
liquid-phase pressure gradients are very low. Figures 6 and 7 teach that accumulation of
liquid and rearrangement into a pore-spanning lens occurs, provided that pores are strongly
constricted, even in porous media where there is no liquid-phase pressure gradient and the
average capillary pressure is quite high. Typical throat-to-body ratios range from 0.10 to 0.20
[44] in porous sandstones meeting our geometric criteria for highly constricted. Thus, even
though pressure gradients are not sufficient to mobilize lenses, a portion of pore throats
within a porous medium may be filled with lenses that snapped-off and now block gas flow. If
surfactant is present at the interfaces of these lenses, they evolve into stationary foam
lamellae if drained of wetting liquid. When such lamellae rupture, the porous medium has
the opportunity to reform them provided sufficient liquid is present.

SUMMARY

A pore-level model for foam generation by snap-off of a gas thread in a constricted,
cornered pore is presented. The important time scales analyzed are the time to accumulate
liquid and form an aqueous lens, and subsequently the time to displace that lens so that
snap-off can repeat.

A corner-flow hydrodynamic analysis of the formation of a wetting liquid collar
reveals that under moderate imposed pressure gradients in the bulk wetting corner liquid,
the time to accumulate sufficient liquid for snap-off decreases inversely with the wetting
liquid velocity streaming through the pore corners. The time to accumulate liquid at a pore
throat decreases rapidly with increased wetting liquid flow along pore corners. Symmetry
boundary conditions applied in the pore bodies adjacent to a pore throat show that even
though a pore may possess the critical pore throat to body ratio necessary for snap-off,
sufficient liquid is not present to cause snap-off for pores with large pore constriction to body
ratios. Snap-off proceeds all the way up to the static Roof snap-off criterion, when a pore is
connected to an unimpeded source of wetting liquid.

A parameter central to the hydrodynamic analysis is the interfacial curvature at the
pore boundary, or equivalently the porous-medium capillary pressure. We find that liquid

accumulation continues even though pores are subject to strong capillary drainage forces.
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Strongly constricted pores present a pore topology that drives liquid accumulation even when
the porous-medium capillary pressure is high. Analogous to the Roof criterion, a static
criterion determined by interfacial curvature at pore boundaries exists whereby the pore-
throat to pore-body ratio must be sufficiently small for snap-off to occur.

A macroscopic momentum balance on the aqueous lens formed by collar
rearrangement to a pore spanning lens shows that the frequency of lens displacement is not
linear with the imposed pressure drop across a lens. The frequency of lens displacement
scales with a power between 0.5 and 0.6 for pores with constriction radii between 0.15 and
0.4 when plotted versus the reduced pressure drop. The reduced pressure drop is the
pressure drop across a lens minus the threshold pressure drop required to drive a lens
through a pore constriction of a given geometry.

Simple network statistical arguments are used to scale the pore-level rates of liquid
accumulation and lens displacement. Overall, the frequency or rate of foam generation by
capillary snap-off increases linearly with the liquid-phase pressure gradient, while the rate of
generation incredses according to a power-law relationship with imposed gas-phase pressure
gradient.
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NOMENCLATURE
a radius of interfacial curvature, m
A cross-sectional area, m2
B proportionality constant in the expression for frequency of accumulation
Ca capillary number
Capn  modified capillary number
Cm mean interfacial curvature, m-}
D proportionality constant in the expression for lens displacement
Dr three-phase contact-line drag force, N
f frequency, g1
Fp viscous drag force, N
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pressure force exerted by pore wall, N

g aspect ratio for lens mobilization

G gamma function

h dimensionless axial position for lens displacement calculations

k1o  constants in rate expression for foam generation by capillary snap-off,
s1 mN-2 pa-(141) and -1 m"l‘-3 Pa M, respectively

L constriction wavelength, m

Oh Ohnesorge number

P phase pressure, Pa

Pe capillary pressure, Pa

P probablility of a successful, pore-level accumulation or displacement event

P probability averaged over a representative volume of porous media

aw volumetric wetting liquid flow rate, m3/s

r radial coordinate, m

g rate of foam generation by snap-off, m3s1

R radius of largest inscribed circle in a pore cross section, m

Si2  dimensionless pore shape integrals

t time, s

ta dimensionless liquid accumulation time

te characteristic time for liquid accumulation, s

td dimensionless lens displacement time

U average axial lens velocity, m/s

vz axial velocity profile, m/s

v lens volume, m3

‘Vg volume of gas-occupied pore space in network model, m3

z axial distance along a constricted pore, m

Greek Letters

o proportionality constant for contact-line drag

8 dimensionless flow resistance along a corner

1l power-law exponent describing fg

r dimensionless pore-size distribution function

K dimensionless interfacial radius of curvature

A dimensionless pore radius
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wetting liquid viscosity, Pa-s

wetting liquid density, kg/m3

surface tension, N/m

dimensionless time

angle betweenrand ain a comitricted tube
dummy variable of integration

dimensionless axial distance

Superscripts

*

dimensionless quantity
critical pore throat to body aspect ratio

Subscripts

12
12

a
b

o

g A 38 o 8 & 0«

denote orthogonal radii of curvature
denote location of surfaces for momentum balance
liquid accumulation

body, boundary

constriction

lens displacement, drainage
equilibrium

gas phase

transverse radius of curvature
characteristic dimension

no pressure gradient is imposed
snap-off

threshold pressure drop

wetting phase
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APPENDIX

A sample evaluation of Equation (22b) as a function of A is provided here.
Integration is performed with the trapezoidal rule. The necessary size distribution functions,
functional forms for B and D, and values of the parameters g*, 1, and Em,g, are given in Table
Al

The pore-throat size distribution is represented by a two parameter gamma
distribution, Eq. (A1), and the body size is described by a constrained gamma distribution.
Equation (A2) ensures that each pore has a body size that equals or exceeds the
corresponding throat size. In both Egs. (A1) and (A2), G is the gamma function. Pore
dimensions A¢ and A} are made dimensionless by the common characteristic dimension Rpm.
Hence, if we need the ratio of R¢ upon R}, for a given pore, we substitute A ¢/Ap.

The parameter B, which describes the increase in the frequency of liquid
accumulation with increasing liquid phase pressure gradient, is represented by the simple
relation in Eq. (A3) where B is a nonzero constant if A¢/Ap is less than A* as given by Eq. (7)
and is zero otherwise. The value of B in Table Al is the average value of the slopes found on
Fig. 11. Next, an analysis of D for the constriction sizes portrayed in Fig. 13 reveals that D
decreases linearly with A¢Ap. Equation (A4) gives the exact expression for this line.

The minimum pore throat to body ratio for lens mobilization , g*, is set to consecutive
values of 0.15, 0.20, 0.25, and 0.30 to simulate a decreasing gas-phase pressure gradient,
while the power-law exponent, 7 is set to 2/3. Finally, the dimensionless entry curvature for
each pore, Em,e, is set to 1.89 to represent pores with a square cross section.

Figure Al presents a dimensionless kj versus Adl for different values of g*. The
inverse of the drainage radius is chosen because it is proportional to capillary pressure. For
square pores undergoing liquid drainage, the capillary pressure equals 1.896/AdRm, and the
x-axis of Fig. Al spans from a P. of zero to roughly 12 kPa for ¢ = 32mN/m and a
characteristic pore diameter of 100 pm. As expected, the number of foam germination sites
embodied by k1 is quite small when the capillary pressure is close to zero, increases rapidly
and peaks as the largest pores are desaturated, and then declines rather slowly as At
increases further and pores become progressively drier. Further, as g* increases, the

likelihood of lens mobilization decreases, and k] decreases.
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Table 1: Critical aspect ratios for square tube calculations.

Table Al: Equations and parameter values for sample calculation.

Quantity, Symbol
throat distribution 205 exp(A,) Al
. .= : c
function, T'¢ c Ga5
0, Ap<ic
constrained body A2
distribution function, I'y 9
A exp(hp) ,Ap 2Ae
G(3)[ A2 exp(-Ap)/G(3) dAp,
Ac
14E6, re<y”
proportionality constant for ) T A A3
the frequency of B= A o *
accumulation, B 0, l—b—z A
1 proportionality constant for 0.00096142
the frequency of lens D= 0.0080937- Ae/Ap Ad
displacement, D
g+ 0.15, 0.20, 0.25, and 0.30 |
n 0.66 It
’Em . 1.89 "
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FIGURE CAPTIONS

Figure 1: Sequence of events leading to foam generation by snap-off (a) entry
of unshaded gas into a liquid filled pore throat, (b) accumulation of aqueous
liquid at the pore throat into a collar, (c) rearrangement of aqueous liquid to
a pore-spanning lens, and (d) displacement of lens from pore throat.

Figure 2: Typical geometry of a capillary constriction.

Figure 3: Cross sections of (a) realistic pores in reservoir media, and (b) model square pores.
Thin wetting films line pore walls.

Figure 4: Dimensionless time for liquid accumulation into a pore neck to cause snap-off for
varying constriction ratios. The effect of imposed liquid-phase pressure gradient with
constant curvature boundaries is illustrated.

Figure 5: Dimensionless time for liquid accumulation into a pore neck to cause snap-off for
varying constriction ratios. The effect of imposed liquid-phase pressure gradient with no-flux
boundaries is illustrated.

Figure 6: Dimensionless time for liquid accumulation into a pore neck to cause snap-for
varying constriction ratios. The effect of interfacial curvature at the pore boundary is
illustrated at Capy =0.

Figure 7: Dimensionless time for liquid accumulation into a pore neck to cause snap-off for
varying constriction ratios. The effect of liquid-phase pressure gradient is illustrated for
Pc,b/Pc’e =14.

Figure 8: An aqueous lens located within a periodically constricted tube.

Figure 9: Dimensionless lens displacement time versus distance at the rear meniscus wall
contact in a periodically constricted cylindrical pore.

Figure 10: Dimensionless time to displace a lens for varying constriction ratios. The effect of
increasing pressure drop across the lens is illustrated.

Figure 11: Dimensionless frequency of liquid accumulation into a pore
constriction as a function of the modified capillary number over a range
of constriction radii at P¢p/Pc,e = 1.0.

Figure 12: Dimensionless frequency of liquid accumulation into a pore
constriction as a function of the modified capillary number over a range of pore boundary
curvatures.

Figure 13: Dimensionless frequency of lens displacement out of a pore
constriction as a function of reduced pressure drop.

Figure Al: Dimensionless rate constant for capillary snap-off as a function of inverse
drainage radius.
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