LA-12984

RECEIVED
APR 0 4 1998
OSTI

Introduction to Finite-Difference
Methods for Numerical Fluid Dynamics

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.

DISTRIBUTION OF THIS DOCUMENT I8 URLIVETED Tﬁ‘i i’%% %?E

Edited by Patricia W. Mendius, Group CIC-1

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither The Regents of the University of California, the

United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of
the University of California, the United States Government, or any agency thereof.

LA-12984

Uuc-700
Issued: September 1995

Introduction to Finite-Difference
Methods for Numerical Fluid Dynamics

Evan Scannapieco
Francis H. Harlow

Los Alamos

NATIONAL LABORATORY
Los Alamos, New Mexico 87545

TABLE OF CONTENTS
Abstract L,
I INTRODUCTION o o o e e o e e s s s,

II. ONE-DIMENSIONAL HEAT FLOW
A. Flux and Conservation
B. Numerical Representation
C. Partial-Differential Equations
D. Computational Implementation of Equations
E. Programmingand Results

III. NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS
A. A Graphical Explanation of the Diffusional Stability Condition
B. A Mathematical Derivation of the Diffusional Stability Condition
C. Implicit Calculations
D. Computational Implementation of the Implicit Method
E. Anaytic Solution of the Heat-Flow Equation

IV. LAGRANGIAN FLUID DYNAMICS
A. Fluid Flow and Lagrangian Methods
B. Description of Equations Used in Lagrangian Fluid Flow
C. Viscous Pressure and Diffusion
D. Computational Lagrangian Fluid Flow
E. Shocks and Shock Tubes

B. The Equations of Eulerian Fluid Flow
C. The Partial-Differential Equations of Fluid Flow
D. Computational Implementation of Equations
E. Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

VI. TRUNCATION ERROR ANALYSIS AND THE COURANT CONDITION
A. Introduction
B. Numerical Instability of the Cell-Centered Approach
C. Truncation Error Analysis
D. Truncation Error Analysis of The Donor-Cell Technique
E. Summary of Numerical Instabilities and Artificial Viscosity

VII. TWO-DIMENSIONAL INCOMPRESSIBLE FLUID FLOW
Calculations in Two-Dimensions
The Equations of Two-Dimensional Incompressible Fluid Flow
Solving Two-Dimensional Fluid-Flow Equations
Computational Implementation of Equations
Simulation of the Karman Vortex Street

HY QW

VIII. ADDITIONS TO TWO-DIMENSIONAL FLUID CODE 133

A. Flow Regions with Obstacles 133
B. Heat Transfer « « o v v v v o v e e e e e e e e e e 139
C. Convection Calculations« « . .« o o oo 147
D. Two-Dimensional Compressible Flow 157
E. Results of Two-Dimensional Compressible Flow 162
IX. TURBULENCE TRANSPORT« « o v v o v v v v oo 172
A. Tensor Notation . . . « . v v v v v v v e e e e e e e e 172
B. Turbulence Transport and K —e Models 174
C. Computational Implementation of the K — € Turbulence-Transport Model 179
D. Turbulence Transport and the Karman Vortex Street 186
GIOSSATY .« « « o e e e e e e e e e e e e e e e e e 196
Acknowledgments o .o oo 206

vi

INTRODUCTION TO FINITE-DIFFERENCE METHODS
FOR NUMERICAL FLUID DYNAMICS
by

Evan Scannapieco and Francis H. Harlow
ABSTRACT

This work is intended to be a beginner’s exercise book for the study of basic finite-
difference techniques in computational fluid dynamics. It is written for a student level
ranging from high-school senior to university senior. Equations are derived from basic
principles using algebra. Some discussion of partial-differential equations is included, but
knowledge of calculus is not essential. The student is expected, however, to have some
familiarity with the FORTRAN computer language, as the syntax of the computer codes
themselves is not discussed. Topics examined in this work include: one-dimensional heat
flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and
two-dimensional incompressible fluid flow with additions of the equations of heat flow and
the K — ¢ model for turbulence transport. Emphasis is placed on numerical instabilities
and methods by which they can be avoided, techniques that can be used to evaluate the
accuracy of finite-difference approximations, and the writing of the finite-difference codes
themselves. Concepts introduced in this work include: flux and conservation, implicit and
explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell
and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq
approximation for heat flow, cartesian tensor notation, the Boussinesq approximation for
the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided

which defines these and other terms.

I. INTRODUCTION

One of the most important techniques used in the computer modeling of physical
systems, finite differencing represents an essential part of modern theoretical physics.
Able to generate solutions to systems that are far too intricate to be solved analytically,
this technique has given physicists the ability to model, examine, and better understand
complex physical situations. From the study of microscopic systems to the modeling of
the world’s climate, finite-difference programs have opened up an entire field of research

that has only been possible within the the past 40 years.

In the following paper we will examine a series of finite-difference programs, gaining a
clearer understanding of their underlying physical principles and the techniques by which
these are implemented. It is our intention to represent these physical systems so that they
will be easily understood both by those who are dealing with them for the first time and
those familiar with their partial-differential representations. Partial differential equations
will be used but only as a result of a discussion of the basic principles from which they are
derived. The mathematics will follow, as it should, from a clear set of physically meaningful

observations.

It will be essential, however, for the reader to have a clear understanding of the
FORTRAN computer language in which all programs will be written. While there are many
finite-difference simulations that are written in other languages, FORTRAN has proved to
be an efficient, easily understood, and widely accepted language for scientific computing.
For these reasons we will limit our discussion to simulations written in this language, and
for reasons of scope we will not discuss the meanings of each of its commands. We assume
that the reader is already familiar with computers and desires to apply this knowledge
to the study of physical systems. It is our intention to apply physical principles to the
creation of computer simulations, not to discuss the syntax of the simulations themselves.

‘There are two ways to approach this work. It can be interpreted as a guide to writing

one’s own finite difference simulations, a type of handbook for creating one’s own codes, or

3

it can be read as a textbook, omitting actual programming by the reader. We hope that
the reader will adopt the former approach. While it will take more time for the reader to

create his own simulations, the extra time will prove to be time well spent.

The reasons for writing one’s own code are twofold. First, the reader who is able to
structure his own code will be sure to have a full understanding of the concepts involved.
There is only so much that can be explained about the process; true understanding will
result only from experience. Secondly, by writing his own programs, the reader gains the
advantage of being able to examine the results obtained from various initial parameters.
Only a limited number of results will be presented in this work, thereby leaving the reader

with a vast set of cases which can be independently investigated.

As we move through this series of programs, we will examine a broad spectrum of
physical systems. We will begin with the simulation of heat transfer in one dimension,
examining various forms of numerical instabilities and explicit and implicit solution
techniques. Our discussion will then move to compressible fluid flow in one dimension,
examining both Eulerian and Lagrangian methods of simulation of a number of different
systems. We will show a method for determining the accuracy of our finite-difference
representations and use it to examine numerical instabilities. We will discuss the
simulation of incompressible fluid flow in two dimensions, calculate incompressible fluid
flow in conjunction with heat, discuss two-dimensional compressible fluid flow, and finally

implement the equations of turbulence transport in an incompressible code.

Likewise, our discussion will cover an equally broad set of topics in a range of technical
fields. We will discuss various physical equations and the systems that they represent, the
mathematical properties of these equations and how these relate to solving them with a
computer, and the structuring of the programs themselves. Although we will be dealing
with these varying subjects, a single underlying thrust must remain clear in our minds.

We must remember that what we are doing is taking observable physical phenomena and

4

translating them into terms which can be dealt with by the computer. The form will be
greatly changed, but the basic physical principles will always be faithfully represented.

In as much as we can simulate reality, we can use the computer to make predictions
about what will occur in a certain set of circumstances. Finite-difference techniques
can create an artificial laboratory for examining situations which would be impossible
to observe otherwise, but we must always remain critical of our results. Finite-differencing
can be an extremely powerful tool, but only when it is firmly set in a basis of physical
meaning. In order for a finite-difference code to be successful, we must start from the
beginning, dealing with simple cases and examining our logic each step of the way. Building
further insights on what we have done in the past, we will start with the simplest case

possible: heat transfer in a single dimension. The rest will follow logically.

II. ONE-DIMENSIONAL HEAT FLOW
A. Flux and Conservation

The first system that will be examined in this series of studies is that of heat conduction
in a single dimension. In this chapter, we will write a program that numerically solves
a single equation of heat transfer over a one-dimensional array. This program can most
easily be pictured as the simulation of a metal rod that is initially at an even temperature
and is insulated along its sides. As the program progresses, the simulated rod is heated
from one end, and the resulting change in temperature along the rod is recorded as output.

A diagram of this system appears in Fig. II-1.

777772 L el L

Metal Rod insulation
777 77777777 7777777777 77777777777

L heat source

Fig. TI-1

Each section of this rod is represented by an element in an array that corresponds
to its position. These elements, called ZONES, record the temperature at finite distances
along the rod and at finite time intervals, hence the name finite difference. This type of
representation can be thought of as similar to a motion picture, where each frame exists for
a small but finite time step. Motion is not fluid as in reality but is instead approximated
by a series of small changes from one “frame” to the next.

Our simulation of heat flow in this manner will introduce two basic concepts that are

essential to the understanding of the underlying principles on which many finite-difference

6

codes are based: FLUX and CONSERVATION. Flux is the amount of something passing
through a unit area in a unit time. In our current example, the flux that is of interest is
HEAT FLUX, the transport of heat from one zone to another. But flux is by no means
limited to only heat. It can represent the movement of mass, momentum, energy, or any
other value that describes the amount of something that is present in a zone. No matter
what is being fluxed, the concept remains essentially the same. Flux represents motion
from one place to another, the rate at which something moves through a given area.

Conservation means that the total amount of something never changes regardless of
its motion from one region to another. If this same concept is viewed in terms of the
amount of something that exists in a finite region, conservation means that in any region
of space the change in something equals the amount that goes in minus the amount that
comes out plus the change of that amount within the region. Once again, this principle
holds true for many different quantities. Mass, momentum, and energy, while different
physically, are identical in the fact that they are conserved.

These two concepts of flux and conservation are critical to the way that our finite
difference codes are structured. Their implementation and a simple equation obtained
from experimental observation are all that is necessary to represent the transfer of heat
numerically.

B. Numerical Representation

In order to represent this system in a manner that can be solved computationally,

we must first examine the structure represented by each zone in our simulated metal rod.

Looking at an individual zone (also called a CELL), we find a physical system as in Fig. II-2.

v aterial A&

Fig. 1I-2

Here T-left and T-right represent the temperature along either edge of the zone, and d
represents the thickness. The heat flux of this system is defined by an equation known as

Fick’s Law. A result of direct experimental observations, Fick’s Law is as follows:

k (’Tleft - Tright) (II-].)

fl f heat =
ux of heat P

In this equation, k is called THE COEFFICIENT OF HEAT CONDUCTIVITY and
is proportional to the rate at which a given material conducts heat across a temperature
gradient. k is an intrinsic property of the material being represented and must be
chosen based on the conductive properties of that material. For example, silver, a very
conductive metal, is represented by a high value of k, around 4 J/s-cm-°C. Wood on the
other hand, is a poor heat conductor and is consequently associated with a low k& value,
1.3% 1073 J/s-cm- °C. The conductivity of iron is somewhere between these two materials,
yielding an intermediate value for k, 0.67 J/s-cm- °C.

Taking this equation as it applies to a single cell, we can now make a generalization
as to how it can be implemented over an array. Given a rod of length D, this length can
be divided into an array of size j. Each zone will now have a length dz, which is defined

as D/j. Such a system is shown in Fig II-3.

8

n T T = _
[l
| Ll A
L e
o 2 3 j-1AjAj+1 J__”
j+1/2
j-12
Fig. II-3

Each zone in this array can now be indexed with a counter j, with zones j — 1 and
J + 1 being the zones at the left and right respectively. Note that the flux between zones
will occur at the walls and will therefore occur at points such as j + 1/2 and j — 1/2 in
the diagram. Note also that the diagram contains both a zone 0 and a zone j + 1, existing
beyond the normal bounds of the rod. These zones are used to implement BOUNDARY
CONDITIONS, equations that represent the external conditions that affect the values of
the real zones. The heating source at the left of the pipe is represented by one such
boundary condition. Temperatures for each cell are defined at the center of the cell,
existing at positions 1, 2, 3, etc. Density of cells and cross-sectional area between cells are
defined as p and A respectively.

These definitions can be used to write an expression for the heat energy contained in

any given cell:

Volume = A dz (I1-2)
Heat energy of cell j = Mass b T} , (I1-3)

where b = the specific heat of the material. As
Mass = Volume density = A dz p, (I1-4)

the heat energy can also be written as

Heat energy of cell j = Adz pb T . (I1-5)

We now apply our conservation of energy principle to derive an equation for the
change in energy. The letter n will be used as a TIME CYCLE COUNTER, an integer
that represents the number of time cycles that have been calculated. These cycles, also
called time steps, can be thought of as individual frames in our analogy of the motion

picture. The time at a cycle n is represented by ™, which is computed as follows:
t"=ndt. (1I-6)

In this equation dt is equal to the time increment per cycle, i.e., the change in time between
each “frame.” The superscript n in t™ notates that the value being expressed occurs at time
cycle n. It does not indicate t raised to the power n. We will continue to use superscipts
in this manner, combining them with the subscripts used earlier to represent position. 77"
will therefore be defined as the temperature in cell 7 at time step n, and similarly, TJT"H
will represent the temperature in cell j at the time step n + 1.

By using this notation and assuming that our heat source is always placed at the left,

energy conservation can be expressed as

[Heat Energy];-”r1 — [Heat Energy]7 =

[Amount in]}_; ;, — [Amount out]%.q /s - (II-7)
Referring now to our principle of flux:
[Amount in]}_, = [Flux]7_, /, A dt (I1-8)

and

[Amount out]}, ;o = [Flux|7,,/, A d¢ (I1-9)

10

Using Fick’s law to determine flux at j +1/2 and j — 1/2, and using the equation for heat

energy of a cell (II-5), we can express Eq. (II-7) as follows:

", —Tr 17 - T3
o =T g =) dt¢. (L-10)

+1_ g
ApdzbT} Apdz bT} =k 7 I

This equation can be algebraically manipulated to obtain

kdt
T T = o ~ T =T} + T (-1

% is often called the THERMOMETRIC CONDUCTIVITY of a material and is
represented by the Greek letter 0. Thus, our conservation equation in final form appears

as follows:

L dt
TP —Tp = (U'(m—g)(z}p—l =213 + T74,) (II-12)

This equation expresses heat flow in a manner that can be computationally solved.
Based upon our knowledge of the previous time step, this equation allows us to calculate the
new temperatures for every zone along the rod. By carrying out this equation repeatedly,
the overall flow of heat can be observed.

Based on our discussion so far, it is now possible to begin writing the finite-difference
code itself; but before this process is begun, let us first examine the nature of our equation.
Although this equation has been generated from basic principles, it is obtained more
often through the manipulation of partial differential equations. While not necessary to
the writing of simple finite-difference codes, these partial-differential equations (P.D.E.’s)
give scientists greater insight into simple systems and allow for analysis of much more
complicated physical phenomena. Because these equations are continually being applied
to finite-difference codes, it is important that they be examined and related to the problem
at hand.

C. Partial-Differential Equations
For those familiar with partial-differential equations and their use, the following

discussion of heat flow in analytical terms will serve to provide a different viewpoint into

11

the construction of our finite-difference codes. However, this section is not essential to
the writing of this code and should, therefore, not deter the reader who is unfamiliar
with these expressions. Such a reader should try to work through these concepts without
intimidation; they are merely provided as an alternate method to examining this problem.

Going back to Eq. (II-11) and distributing the dz? term among the temperatures, we

obtain the following equation:

T+l _ o l:TﬁH—Ti _ T;—T;—l]
J J
24— <2 =90

dz dx
dt

— (1I-13)

By changing our nomenclature to more clearly represent 7" as a function of position and
time, we can rewrite T} as T(z;,t"), Tj4q as T(z; + dz,t"), and TJT"H as T(z;,t" + dt).

QOur equation now takes the form

T(z;,t" + dt) — T(z;,t) _ =
dz

T(zj+dz,t™)=T(zy,t") T(xy t™)—T(x;—dz,t™)
=0 dz
dt

] . (I-14)

Using the definition of the derivative of f(z), namely

df _ .. flz+dz)— f(z)
d_xzdla:r_r}o dz ’

we take the limit as dt and dz — 0 and obtain the following terms:

. T(zj,t™ +dt) - T(z;,t") 0T
- I-
A, dt Bt (11-15)
i L@+ d) =Tt <-8I> (T1-16)
1) — _ n
m T(iEJ +t") T(.’IIJ dz,t™) — <§z> ' (H-].7)
dz—0 dz 0) ;_1/2
Thus Eq. (II-14) can be rewritten:
aT aT
or Y (%)jﬂ/z - (%)jﬂ/z (T1-18)
ot dz '

12

Once again taking the limit as dz — 0:

8T _ 8°T

This is the heat-flow equation for a single direction. Starting with this equation, one
would have been able to work backwards, choosing “finite differences” for each derivative
and eventually generating Eq. (II-12). Derived from the same principles as our finite-
difference equations, partial-differential equations provide a different outlook from which
to approach computation.

D. Computational Implementation of Equations

Having derived an expression for heat flow in finite-difference form, the question still
remains of how it will be computationally implemented. To complete this final stage
in the writing of our code, three major issues must be examined: boundary conditions,
redefinition of variables, and the structure of the program itself.

Our first major issue is the construction of boundary conditions. As was previously
discussed, boundary conditions represent the external conditions that act to change a
system. This representation is accomplished by the placing of zones beyond the normal
boundaries of the array. The values of these FICTITIOUS ZONES or GHOST ZONES are
chosen in such a way that they accurately express the external environment of the system
in question. In this chapter, the conditions to be simulated will be a heat source at the
left and an uninsulated area at the right of the rod.

While the temperature in each true zone within the rod will be determined by
successive calculations of Eq. (II-12), the values at the fictitious zones will be calculated to
represent fixed temperatures at either end of the array. In order to determine these values,

consider the situation at either end of the array as represented in Fig. II-4.

13

Fig. 11-4

In this diagram, T represents the temperature along the left end of the rod, the
value that should remain constant throughout the simulation. Although not present in
the actual array, this constant temperature can be thought of as 177, the average of the
temperatures at zone T; and ghost zone Tp. Therefore T;, can be expressed as follows:

To+Ty
5 .

Ty = (11-20)

Solving this equation for T,

To=2T, — T . (11-21)

Similarly, if Tr is defined as the temperature along the right end of the rod, T34, can be

expressed as follows:

Tspy =2Tp—Tj - (11-22)

By implementing these two equations, boundary conditions can be expressed for both
the left and right of the system. Expressions for the other surfaces of the rod will not be
needed, as they are assumed to be completely insulated, thus reducing the problem to one
dimension.

The second major issue in solving of Eq. (II-12) computationally is the redefinition of
variables. Thus far in this chapter, our equations have been represented in a manner that

is not accepted by the FORTRAN programming language. Therefore certain modifications

14

must be made in the way that various variables are represented; they must be redefined

in terms of computationally accepted symbols:
jbar

j
o = sig
T}, the temperature at zone j at time cycle n, will now be defined as T(j), an element in
an array T defined from T(0) to T(jbar +1). Likewise, T}‘H will be defined as Tnew (j),
an element in an array defined from Tnew (1) to Tnew (jbar).

The following new variables will also be defined:

TO = the intial temperature of the rod
stime = the time at which the program ceases to run
ptime = the time between successive displayings of the
values of the zones in the array
pt = a counter for ptime

st = a counter for stime

Our finite-difference code will be divided into five sections, each with a clearly defined
task. The first of these sections is the initialization procedure that dimensions the arrays
and assigns initial values to all variables. This initialization is done in a subroutine that
is called only once at the beginning of the program.

The second section of our code sets up a loop that repeats each time cycle. This section
determines if the time counters pt and st have reached ptime and stime respectively and
then increments the counters. If pt has reached ptime, it is reset to zero, and the current
array of zones is sent to the output subroutine. If st reaches stime, the program terminates.

'The third major section is the definition of boundary conditions, which occurs after
the test for ptime and stime and before the actual computation of the next time cycle. In
our particular program, this section should carry out Eq. (II-21) and Eq. (II-22) on the

array T', updating values for the ghost zones at each time cycle.

15

The fourth section is the portion of the program that implements Eq. (I1-12), which
also occurs within the time-counting loop. This implementation is made up of two loops,
the first of which assigns Tnew according to this equation, and the second of which transfers
the values of Tnew back into T. The code for this section is as follows:

do 100 j =1, jbar

Tnew(j) = T(j) + sig*dt/dx**2 * (T(j+1) + T(j-1)-2*T(j))
100 continue

do 200 j=1, jbar

T(j) = Tnew(j)
200 continue

This two-loop structure is essential to the successful computation of T at the new
time step. If one were to forego the computation of Tnew and directly compute T, the
temperature terms at the right hand of the equation would not exist at the same time cycle.
While T(j+1) and T(j) would still be at time n, T(j-1), having already been computed in
the previous iteration of this do loop, would exist at time n + 1. By creating a second
array and moving these values into T after they are all computed, we are able to avoid
this problem.

The final section in our code is the output subroutine, which occurs when pt=ptime.
This procedure could contain various graphics routines, write results to an output file, or
simply display the various array values on the screen. A diagram of these sections and

their interactions appears in Fig. 1I-5.

16

Start

'

1. Initial Conditions

v ¢ st =stime .

5. Output 2. Tests |«u End

pt =ptime ‘

3. Boundary Conditions

'

4. Temperature Computation

Fig. 1I-5

E. Programming and Results

We have now reached a point where the reader should be able to write his own finite-
difference code for heat transfer. In this work a limited series of examples are examined in
order to demonstrate the output of our code.

Figures II-6 through II-10 below show the results of a simulation of an insulated
rod that is originally at 0°C, with a fixed temperature at the left (T) of 400°C, fixed
temperature at the right (Tr) of 0°C, a thermometric conductivity (¢) of 1.0 m? per sec,
a zone length (dz) of one meter, a j of 50, and a time step (dt) of 0.1 seconds. Results are

shown at 10, 50, 100, 250, and 1000 seconds.

17

18

Temperature (C)

Temperature (C)

Temperature (C)

Temperatures along rod
a sigma = 1.0 dx= 1.0 d¢ = 0.1 time = 10

E.W
a_
°_°°° Iéﬁ Z; a 5;-5 5;1.
Distance along rod (m)
Figure II-6
Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.1 time = 50
é
§
" ©.D I.Q.i N‘ a 5;.!! 5:‘1
Distance along rod (m)
Figure II-7
) Temperatures along rod
=g sigma = 1.0 dx = 1.0 d¢ = 0.1 time = 100
2
g
- [o 3] Ié-’ 1‘3.0 5‘7.! ﬂll-b

Distance along rod (m)

Figure 11-8

Temperatures along rod
sigma = 1.0 dx=0.1 dt = 1.0 time = 500

4 9
)

100.D
2

ios.0
1

Temperature (C)

aa

D)

Distance along rod (m)

Figure I1-9

Temperatures along rod
sigma = 1.0 dx= 0.1 dt = 1.0 time = 1000

o o

a.n

Temperature (C)
wa 2

¢a

T
a.0 =2 xD o E0.D

Distance along rod (m)

Figure II-10

Notice how the zone temperatures approach a straight line as the simulation progresses.
Such a line is the final steady-state solution of this system, regardless of thermometric
conductivity. Solutions at earlier time steps can be approximated using Eq. (I11-55), which

is derived at the end of Chapter III.

19

In the next three graphs, the effects of changes in time step are shown in relation to a

simulation which is otherwise identical to the one above. Figure II-11 shows a temperature

curve for a system at a time of 100 seconds with a time step of 0.495, just under 1/2.

Temperature (C)

[31-Y o e
)

100.0
A

Temperatures along rod
sigma = 1.0 dx = 1.0 d¢ = 0.495 time = 100

A T T T]
L] 12.8 tire] 378 Stob

Distance along rod (m)

Figure II-11

This figure is almost identical to Fig. II-8, indicating that there is little difference

between the results obtained with a time step of 0.1 and the results obtained with a time

step of 0.495. Results are quite different, however, when a time step of 0.5 is used, as in

Fig. II-12.

20

Temperature (C)

10

.0 MO 006

1% 0

Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.5 time = 100
100] é] ﬁ'oD 3;.!! $<;-D

Distance along rod (m)

Figure II-12

The stair-step type temperatures that can be seen in this graph are a result of a
numerical instability. This instability becomes even more violent when the time step is

further increased to 0.505, as in Fig. II-13.

Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.505 time = 100

dl.a ﬂlJ.] Bl}hﬂ 758 0 L0tA.D
1)

Temperature (C)

-am .I-Slﬂ ‘

a.b 153 =0 21 0)

Distance along rod (m)

Figure 1I-13

Notice that in this figure the highest temperatures are much greater than 400°C, whereas
the lowest temperatures are below —250°C. Obviously, this does not accurately represent
the transfer of heat down the rod.

The numerical instability seen in Figs. II-12 and II-13 arises whenever the quantity
g—fg is greater than 1/2. The presence of this instability means that the more accurately
one wishes to resolve a set of circumstances, the shorter the time step that must be chosen.
This problem highly limits the sorts of cases that can be simulated, yet there is a method
by which it can be overcome. The following chapter examines this numerical instability
and discusses the use of an implicit method of solution—a method that increases the speed,

accuracy, and applicability of our finite-difference codes.

21

III. NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS
A. A Graphical Explanation of the Diffusional Stability Condition

In the cases presented at the end of the last chapter, we discovered that our finite-
difference code is numerically unstable when the value of %% exceeds 1/2. This constraint
is known as the diffusional stability condition, and it is one of two important conditions
that we will examine in our series of finite-difference codes.

Consider the simplest case possible for our simulation: that of a rod at a constant
temperature, To, with this same temperature at either end. Now consider the case in which
this system of constant temperatures is perturbed by slightly increasing the temperatures
of the odd-numbered zones by an amount € and slightly decreasing the temperatures of
the even-numbered zones by the same amount. The result is a system such as depicted in

Fig. I1I-1.

Tosa = o+ €
T :EE ® Py Teven =70 - £
0
& o
| | | | } |
] | I | 1 1
1 2 3 4 5
Zone
Fig. I1I-1

Let us now chose an odd numbered zone, j, and examine the calculation of its

temperature at each time step. We begin with

n+1 n odt n ()

22

and substitute our new definition of T to obtain

dt
T;‘“=To+e+g—m2[To—e+To—e—2(To+e)], (I1I-1)

which can be reduced to
deodt
+1 __
T;l = To +€— d:IIz
or
4odt
+1 _
fZ;-n = To +€ [1 — -dm—z} .

If a constant & is defined such that
§

)

4dodt
dz?
our equation becomes

T =To+e1-¢.

(I11-2)

(I11-3)

(IT1-4)

Note that £ in this equation is made up of all positive components; therefore, £ > 0 and

(1 -¢) <1 in all circumstances.

These constraints leave us with four cases to examine, the first of which occurs when

0 < ¢ < 1. In this case, 1 — £ is a fraction between 0 and 1. T;‘H is therefore computed

as Tp + € (fraction), yielding a value closer to Tp than the previous time step. Subsequent

iterations of this equation generate a series of temperatures such as shown in Fig. ITI-2.

-~
®

£=1/3

Time Step

Fig. I11-2

23

In this case, the temperature converges towards Tp, moving towards the array of constant

temperatures that defines a correct solution.

In our second case £ = 1, leaving us with the equation T;‘H = Tp. The graph of this

case converges immediately, as illustrated in Fig. III-3.

Time Step

Fig. I11-3

Our third curve is similar to the first and occurs when 1 < £ < 2. When this is true,
1 — € is again a fraction, but this time it is a number between 0 and —1. The result is a
set of values which alternate above and below Tp but converge toward that value as shown

in Fig. I1I-4.
E=15

Time Step

Fig. I11-4

24

A corollary to this case occurs when £ = 2. For this value the graph oscillates but

does not converge, as in Fig. ITII-5. This case, while not convergent, is still considered to

represent the bounds of numerical instability.

£=2.0

[J o @
T
€
To
o o o
| | } i | |
1 1 ! I | L
1 2 3 4 5 ..
Time Step
Fig. I1I-5

Our fourth and final case occurs as soon as this bound is crossed, when £ > 2. In this
set of circumstances 1 —§ < —1, yielding values of 7% that not only oscillate but diverge
from the correct solution. The graph of temperatures appears as in Fig. ITI-6, with values

diverging until the program is terminated.

®
, . E=25
o —2e
L J
o
A J R B B
Time Step
Fig. I1I-6

25

In order to avoid this condition, as well as the stable but nonconverging state pictured

in Fig. ITI-5, we must choose £ such that £ < 2. Referring to our definition of £ as %‘;—d},
we obtain
dodt
<2 III-
= <2, (IT1-5)

which is the diffusional stability condition

odt 1

We have therefore demonstrated graphically that this condition must be met for a solution
to converge.
B. A Mathematical Derivation of the Diffusional Stability Condition

Once again, we will turn to a mathematical explanation to reinforce an argument that
has been made graphically. This section, like section II-C, is not essential to the writing
of our codes; it is simply another method of arriving at the diffusional stability condition
and better explaining the manner in which it can be overcome. Again, one should follow
as closely as possible, gaining familiarity with the application of various mathematical
methods towards this problem.

We will begin with the heat-flow equation as expressed in Eq. (II-12), this time

substituting our definition for &:

§

T?'*’l = T}L + Z (T}L_*_l + ’1—_‘?_1 - 2T_7n) . (IH-7)

Let us examine the behavior of T} with the following trial solution:

II?Z — Aeikjda:eiwndt . (IH-8)

Here TJ' represents T' at a time step n and zone j, whereas ¢*¥79% and e*¥™% represent e
raised to i k j dz and i wn dt respectively, where ¢ is the imaginary number. If 7 is defined

as

26

Eq. ITI-8 becomes

T = Aetkidepn (I11-9)

From this equation, we see that » must be between 1 and —1 for T} to converge.
If > 1, the solution will diverge monotonically, moving farther and farther towards
either positive or negative infinity. If r < —1, the solution will diverge in an oscillatory
manner, alternating between positive and negative values but always moving away from
convergence.

Keeping these restrictions on r in mind, let us now use our test definition of I7 to

substitute for temperature terms in Eq. (III-7):
Aetkidzntl — peikjdzm % [Aeik<i+1>rn + AgtkG=pn _ 2Aeikirn] . (111-10)
Dividing both sides by Ae?¥7 4% gives
P14 S [hie g omike _g) (1-11)
Using the identity e’ = cos + isin6 we can rewrite this equation as
r=1+ g [2coskdz — 2] (I1I-12)

or

r=1-— g [1 —coskdz] . (III-13)

Consider the extreme cases for the coskdz term, namely coskdz = +1 and —1. If
coskdz = +1, then Eq. (III-13) reduces to 7 = 1, a valid statement according to the
restrictions that we have placed on r. This case poses no problems.

Taking the other extreme, cos kdz = —1, we are left with

r=1-¢. (ITI-14)

27

Because ¢ is always positive, 7 can never exceed 1 in this case. It can, however, be less

than —1, a problem which places the following condition on &:

~1<1-¢ (I11-15)
or

£<2. (I11-16)

Using our definition of £, we find that Eq. (I11-16) is simply another statement of the

diffusional stability condition:

odt 1

Our analytical method arrives at precisely the same result as the pictorial analysis; the
diffusional stability condition must be met in order to ensure numerical stability.
C. Implicit Calculations

We have now derived the diffusional stability condition mathematically as well as
graphically and have demonstrated that it is essential to the numerical solving of Eq. (II-
12). It is possible, however, to solve the heat-flow equation numerically without meeting
this condition, by expressing the & terms of the heat-flow equation at time n + 1 rather
than at time n. In this method, heat flow is not represented by Eq. (II-12), but instead

by the following:

+1 _ odt (i1 +1 +1
T =T + — [T + 50 — 205]. (111-18)

Let us now examine this equation mathematically as we did in Section B. Inserting a

similar trial solution and dividing by Ae**79%r™, we obtain

r=1+ % [eikd“r + ethdzr —2r] . (ITI-19)
or
r=1+ % [2r cos kdz — 2r] , (I1I-20)

28

which can be algebraically manipulated to obtain

1
r= . I11-21
1+§(1—coskd:r) ()
Examining the upper and lower limits for cos kdz, we find that
r=1 (I11-22)
or
re— (IT1-23)
Y

Because £ is always positive, r will be between 0 and 1 in all cases, indicating that
our solution will be numerically stable regardless of the value of gz—dﬁ. Equation (ITI-18)
will therefore remain stable at any resolution and time step; all that remains is to solve it
numerically.

Equation (III-18) represents an IMPLICIT METHOD of calculation. In this method,
values at the new time cycle are not directly calculated from old values as they were in
the EXPLICIT METHOD used in the previous chapter. They are instead calculated using
an iterative process that begins with a trial solution and modifies that solution with each
iteration until it has converged to within a specified value. In our program this iteration
will be done using Newton’s Method.

Newton’s Method is an iterative process that uses successive approximations to solve
an equation in the form f(z) = 0. In Newton’s method a trial value for z; is first chosen,

then the following equation is applied iteratively:

Tp41 =Ty — S @a) . (II1-24)

(%)

dz zn

This equation generates successive approximations for z, each more accurate than the one
before it. When z has converged to within a specified range, z,, is then taken as the final

solution.

29

We can better understand how this method arrives at a solution by examining an
example equation, f(z) = z* —2. Choosing z; = 2 as a trial value, we will let the solution

converge to within three decimal places.

2_9
Tnil = Tn — ’”gm (I11-25)
n
1 = 2.000
T = 1.500
I3 = 1.466
Ty = 1.414
75 = 1.414

A plot of these values along the graph of the equation appears in Fig. III-7.

f(x) 1

X4X X2 X1
1 X5 3 2
X
Fig. IT1-7

This figure illustrates how one solution is used to obtain the next. The tangent is

used to approximate the graph of f(z,) at the value zn, and T,41 is given the value of

30

z for which the tangent crosses the x-axis. This value is then substituted for = and the
process is repeated until it has converged.
Let us now apply this process to Eq. (III-18). Expressing this equation as a function

of T+, we obtain

F (ij+1) _ T]p+1 —T - gdﬁ [T'n.+1 +Tn+1 2Tj"+1] . (I11-26)

Taking now the derivative with respect to T;‘H, we find that

20dt
+1
FI) =1+ 27 - (1mL-27)

Using both of these definitions in Eq. (I1I-24), we are left with the final formula:

f
1 ;‘“(new guess) = T}""l (old guess) — (T 17 (_;ldzg: ;ss)) . (IT1-28)
dx?

By using this formula iteratively, we can now compute values for T}‘H for any values of

adt
dx?

D. Computational Implementation of the Implicit Method

Now that we have developed an implicit method for use in solving the heat-transfer
equation, we can implement this method on the computer. We will do this by making
small modifications to the heat-transfer code that has already been written.

We begin by defining a constant beta that is set during the initialization procedure.

Beta is defined as

1
g

and is used to avoid successive calculation of the denominator in Egq. (II1-28) during
iterations of Newton’s method. Also in this procedure, we define a constant ftest that
is equal to the margin of error to which our iterative procedure will converge. Typically
ftest has a value of approximately 0.001 times some maximum value of T in the problem.

Besides these two definitions in the initialization procedure, most of the major

modifications to the program occur in the computation section (referred to as Section 4

31

in the previous chapter). This section in its explicit form should be removed and replaced
with an implicit section of code.

This implicit section should consist of a loop that makes the initial guesses for the
temperatures at time n+1 and a loop that iterates until the values of T™*! have converged
to within ftest. The first loop is simply a do loop that defines the initial guesses for the

new temperatures as the temperatures at the old time step. Thus,
Tnew(j) = T() . (I11-29)

This loop is then followed by an until loop that is constructed in the following manner.
At the beginning of each iteration, a value fmax is set at zero. After this statement, the
program moves into another loop that calculates f(T) along every point along the rod
and uses these values to calculate the next guess for the new temperatures. Also in this
loop, the largest absolute value for f (T) is stored in the variable fmax. After this loop,
the program makes a check to see if fmax is less than ftest. If ftest is larger, the until loop
ends; if fmax is larger, the loop is repeated. The code for this loop should be similar to
the following:
100 fmax = 0.
do 200 j= 1,jmax
f = Tnew(j) - T(j) - (sig*dt/(dx*dx)) * (Tnew(j+1)+ T (j-1) - 2*T(j))
fmax = amax1(abs(f),fmax)
Tnew(j) = Tnew(j) - f * beta
200 continue
if (fmax.gt.ftest) then goto 100
Notice that all the T terms on the right of the equation that sets f are actually
temperature values at the present implicit iteration. T’s and Tnew’s are mixed due to the
structure of the loop. Optionally, a counter for the number of iterations of the until loop
can be added, terminating this iterative process when a maximum number of iterations is

reached, regardless of the values of fmax.

32

When this loop has finally terminated, the T array is redefined with the values from
the Tnew array, and the program moves on to the next time step. All other sections
remain in the same form as in our original program. No other modifications are necessary

to create a fully-implicit version of our one-dimensional heat-transfer code.

Start

1. Initial Conditions

‘ st = stime

P End
- 2. Tests

pt = ptime -

5. Output

3. Boundary Conditions

J

4. Implicit solver

f max < ftest

Fig. II1-8

33

By using the implicit code with the same set of parameters as were present in Fig. II-
12 (Tp = 0°C, Ty = 400°C, T, = 0°C, o = 1 m?/sec, de = 1 m, j = 50, dt = 0.5 sec, time

= 100 sec, Z% = 0.5), the results shown in Fig. III-9 are obtained.

8x? —

Q
a Temperatures along rod
sigma = 1.0 dx= 1.0 dt = 0.5 time = 100

< o
o o
-
5
= -
© o
~ 8
(]
j=
g q
O o
= =

° LD ISl i 3{0 Zi S

Distance along rod (m)

Fig. I11-9

This figure helps to illustrate the numerical stability of this method. The system

remains stable at a time step of 0.505 (‘—;;d% = 0.505), as indicated in Fig. III-10.

Temperatures along rod
sigma = 1.0 dx = 1.0 dt = 0.505 time = 100

Temperature (C)
.ol | 10.0 080

100.0

00

a0 Ut .0 g ©. b

Distance along rod (m)

Fig. IT1-10

Even at a time step of 10 sec, where %ﬁ- is equal to 10 and only 10 time cycles are

computed up to time 100, the system remains numerically stable. The results in Fig. I1I-11

34

below appear almost identical to those calculated explicitly in Fig. II-11, yet the time step

used is over twenty times as large.

:. Temperatures along rod
B sigma = 1.0 dx = 0.1 dt = 10 time = 100

kias |]
1

aoa

Temperature (C)
206.0

10

o]

T |
0.1 a.c ®xa 21t

Distance along rod (m)

Fig. ITI-11

We see through example that implicit methods are able to generate results for sets of
parameters that are numerically unstable when calculated explicitly. This technique will
prove essential in latér simulations, preventing the first of two major numerical instabilities
that we will examine in our series of exercises.

E. Analytic Solution of the Heat-Flow Equation

In this section, we will be manipulating the heat-flow equation in order to generate
an analytic solution that can be used to check the validity of our computational results.
Once again, following the manipulation of this partial-differential equation is not essential
to making use of the derived solution.

We begin with Eq. (II-19), the one-dimensional heat-flow equation in partial-
differential form

oT o*r

(o

and make the assumption that T is a function of the single dimensionless quantity that

includes o, z, and &:

T =T(€) (111-30)

35

where

£

al
(e

By making this definition, we are assuming that the rod is of infinite length, so that the

length of the rod does not enter into these parameters. This assumption is made because

the derivation of a solution for a finite rod is a much more involved process than a solution

for the infinite case. For our purposes an analytic solution to the infinite rod case will

prove to be sufficient.

Using Eq. (ITI-30), we can obtain expressions for its partial-derivatives. Differentiating

with respect to t we obtain

éizﬁﬁzig@wﬁﬂ
ot de ot 2\/o de -

Differentiating to obtain the second derivative with respect to z gives us

oT _dTo¢_ 1 dT
oz ~ dE 0z +Jot dE
and
T 1 dT
axz_(/—]a_t2d€2'

Equations (I11-31) and (III-33) are substituted into Eq. (1I-19) to obtain

T (—t3/2) dT o d°T

2o €~ ot dé?
or
_€dT _ d (dT
2d¢ dE \ d€
If we define a variable y such that
_ T
Y= €’
Eq. (I1I-35) becomes
&, %
2Y = U

36

(I11-31)

(111-32)

(I11-33)

(I11-34)

(I11-35)

(I11-36)

or

£ 1
—24f =24 -
504 ey (I11-37)
which can be integrated to obtain
62
~ = Iny+C, (I11-38)

where C is a constant.

Exponentiating both sides of this equation gives us:

2
P (I11-39)
or
g2
et = yK, , (IT1-40)

where K is a constant. We then use our definition of ¥y and multiply both sides of the

equation by d§ to obtain

g2
e~ de = K1dT . (IT1-41)
This can be integrated to obtain
&2 \
/ e de = KiT+ K, (IT1-42)
&

where K is another constant. If we choose &; to represent £ at a distance of zero from the

end of the rod this equation becomes

_ .2
e dt =K\ T+K,. (IT1-43)

i

which can be simplified by defining a variable z such that

N
i

(A [y

37

Equation (II1-43) then becomes

e dz=KT+K,.

o\gl

(IT1-44)

To determine the values K; and K5, we examine two test cases. In the case where

is 0, the temperature is equal to that of the wall at the left end of the rod. We then have:

2 | e~ dz = KTy + Ko

O\o

(111-45)

or

K, =—(K T1L) . (I11-46)
In the case where we are at an infinite distance from the heat source at one end of the rod,

the temperature is equal to the initial temperature specified for the rod:

o0
2/e—22dz = K,To + Ko ,
0

(I11-47)
which reduces to
2 (@) — K\ Ty + Ko (IT1-48)
or
VT -K{Ty =K . (I11-49)
Setting Eqs. (I1I-46) and (I1I-49) equal to each other, we obtain
—K\Ty, =7 — KiTy (I11-50)
or
NZ3
Ky=————. IT1-51
K, can then be obtain by substituting into Eq. (III-46):
Tp\/7
Ky=——""——. I11-52

38

Substituting both of these values into Eq. (II1I-44) we obtain

T

2Vt

2 0/ e dz = (T = Ty) <(?o%7—r’f—L)) (II1-53)
or .
T =T, + (To — T1) (%) 2/ﬂe—zzdz . (I11-54)

T

2Vot
% I e~*dz | in this equation is a form of the PROBABILITY INTEGRAL, also
0

called the ERROR FUNCTION. This term is not integrable in terms of simple polynomials,

but it can be “solved” by defining

a
erf(a) = % e % dz,

0

where er f(a) can be determined as in the following table.

erf(a)

a erf(a) a erf(a)
0.00 0.0000 0.9 0.7969
0.05 0.0564 1.0 0.8427
0.10 0.1125 1.1 0.8801
0.15 0.1680 1.2 0.9103
0.20 0.2227 1.3 0.9340
0.25 0.2763 14 0.9523
0.30 0.3286 1.5 0.9661
0.35 0.3794 1.6 0.9764
0.40 0.4283 1.7 0.9838
0.45 0.4755 1.8 0.9891
0.50 0.5205 1.9 0.9928
0.55 0.5633 2.0 0.9953
0.60 0.6039 2.1 0.9970
0.65 0.6420 2.2 0.9981
0.70 0.6778 2.3 0.9987
0.75 0.7112 24 0.9994
0.80 0.7421 2.5 0.9996

39

Our final solution to the heat-flow equation is then

T =Ty + (To - Ty) erf (2 j&_t) . (I11-55)

This equation can be used to check the accuracy of our numerical results. It represents
the infinite rod case in which the temperature wave is not affected by the conditions at
the right end of the rod. At early time steps, the temperatures in our finite-rod simulation
should approximate those generated by this equation. Solutioné at late time steps, as we
saw in Chapter II, should approach a straight line. By examining the results generated
by our code. in both these circumstances, we can verify the validity of our finite-difference

calculations.

40

IV. LAGRANGIAN FLUID DYNAMICS
A. Fluid Flow and Lagrangian Methods

Up to this point our finite-difference codes have dealt strictly with the equation of heat
transfer [Eq. (II-19)], but heat flow is only one of many phenomena that can be modeled
using the finite-difference method. In the following several chapters, we will be looking
at another physical phenomenon that can be simulated in this manner: the motion of
FLUIDS.

For our purposes, we will define a fluid as anything that is infinitely deformable or
malleable. This means that, while a fluid may resist moving from one shape to another,
it resists the same amount in all directions and in all shapes. Fluids can be either
COMPRESSIBLE or INCOMPRESSIBLE. An incompressible fluid is one that does not
change its density much when pressure is applied to it, meaning that the fluid is moving
at a velocity much less than its sound speed. A compressible fluid is one that undergoes a
large change in its density as pressure is applied to it, meaning that the fluid is moving at
a speed that is comparable to its sound speed. We will be dealing with compressible fluids
in this chapter.

Our simulation will be of a system that can be reduced to one dimension: a piston
moving in a long cylinder that is filled with gas. The compression of gas in this manner
can by dealt with in one of two ways: through LAGRANGIAN or EULERIAN methods.

In an Eulerian code, zones remain fixed in space throughout the simulation. Fluids
move in and out of the zone at various rates, causing the mass contained in a particular
zone to change as the simulation progresses. All physical quantities are fluxed between
cells, but the position of the cells at all time steps remains the same. We will examine this
method in Chapter V.

Another method for simulating this situation is the Lagrangian technique. In a
Lagrangian code the positions of zones vary between each time step. As fluids are

compressed and decompressed, the zones move accordingly, maintaining an equal mass

41

throughout the simulation. In a Lagrangian calculation, the energy, momentum, and
position of a given zone vary from time step to time step; only the mass contained by the
zone is held fixed. The Lagrangian technique is the one that is used in this chapter.
B. Description of Equations Used in Lagrangian Fluid Flow

In order to derive the equations that are used in a one-dimensional Lagrangian code,
we must first define a group of variables and coordinates similar to those used in our first
two simulations. We again have a one-dimensional system of zones, each zone representing
a certain section of the system being simulated. The system appears as in Fig. 1I-3, with

a series of j true zones and ghost zones appearing at O0andj+1

ol

Figure IV-1

The variables that will be applied to this system, however, are quite different from
those of the heat-transfer problem. In the fluid-flow case there is no longer a single array
of temperatures, but instead a group of arrays that represent position, pressure, velocity,
density, internal energy, and viscous pressure. The definition of these variables over a zone
j is shown in Fig. IV-2.

In this figure:
T;41/2 = position of cell wall to the right of zone j

uj41/2 = velocity at cell wall to the right of zone j
p; = pressure of zone j
I; = internal energy per unit mass of zone j
g; = viscous pressure of zone j
p = density of zone j

42

Jj-l1 j-v2 j j+112 j+1

b, L5, q,r

Figure IV-2

Note that u and z are located at the walls of the cells while the rest of the variables are
located at the centers. These positions will be important in determining the relationship
among these various quantities.

With our variables defined as in Fig. IV-2, the equations that relate them to one
another can be derived. Consider the relationship between z and u: z is the array of wall
positions and u is the array of the time rate of change of those wall positions, i.e., velocity.

From these definitions, we see that

g% =u. (IV-1)
Finite-differencing this equation gives us
¥ — g
+1/2 +1/2
j+1/ = j+1/ — u;z+1/2 , (IV—2)

which can be rewritten as an equation for position in terms of velocity:

T = Ty + Uy ppdt (IV-3)

This is the first important equation of our Lagrangian fluid flow code.
The next equation follows from Newton’s second law of motion, (Force = Mass x

Acceleration), and the definition of pressure, (pressure = %) In our code we define a

43

momerllltum
ce
Fj+1

N 7//;/)/

Ji j+1

Figure IV-3

momentum cell whose center lies at the boundary between two normal cells and define F}
and Fj41 as the force at the right and the left of the j momentum cell. A momentum cell
is depicted in Fig. IV-3.

By the definition of pressure, F; and F;41 are rewritten in terms of variables defined

in Fig. IV-2:

Fj=(pj +q;) A (Iv-4)

Fip1 = (pj1 +gi+1) 4, (IV-5)

where A is the surface area of a cell wall. Note that here we use the sum of the physical
pressure and the viscous pressure, an additional pressure that is necessary to achieve

numerical stability. The viscous pressure will be discussed in more detail in section C.

Using Newton’s second law and noting that acceleration is the time rate of change of

velocity, we obtain

U?ill/z = Uiy
Fit12=m (—— 2) , (IV-6)

where Fj 12 is equal to the net force at the cell wall j +1 /2. In the case where there are

no outside forces such as gravity in the x-direction, the net force at j + 1/2 is equal to the

44

force pushing the momentum cell from the left (F;) minus the force by which it pushes the

next momentum cell on the right (Fj41):
Fip1p=Fj— Fjy1 . (IV-7)

Combining Eq. (IV-6) and Eq. (IV-7) gives us

U — Uii1/2
F3-~Fj+1=m(f+/dtf > (IV-8)
or, by substituting for F; and Fj,;,
. —
1/2 +1/2
(9 +Pj — gj+1 —pjy1) A=m (Y) 7t/) . (IV-9)

Defining the quantity M as Zt and solving for u;‘+11 /2> We are left with the expression

dt
u?—tll/z = U/ + I (0] + 4} — Py - aFy1) (IV-10)

which gives change in u in terms of variables used in Fig. IV-2.
An expression for p can be obtained by again using our definition of M. Because
density is equal to M divided by the width of a zone, it follows that
M

p; = : (Iv-11)
? Tivi2 ~ Ti—1y2

which is the Lagrangian density equation.

An expression for I, the internal energy per unit mass of a cell, can be derived by
appealing to the definition of internal energy. I can be defined as the difference between
the total energy per unit mass and the kinetic energy per unit mass contained in a cell,
which is the same as the heat energy per unit mass. We can therefore use the first law of

thermodynamics,

Al =AE=Q - pAV , (IV-12)

where AF is the change in heat energy, Q is the heat received from both conduction from
an outside source (which will not be important in this simulation) and dissipation of mean

flow kinetic energy, p is the pressure, and AV is the change in volume.

45

We now make use of the variable g, which we called the viscous pressure earlier in
this chapter. One way of thinking of this pressure is as —Q/AV, or the increase in heat
energy over the compressive (or negative) change in volume. Using ¢, Eq. (IV-12) can be

written as

Al = —(q+p)AV . (IV-13)

Because the total internal energy is equal to m x I, this equation can be rewritten in the

following differential form:

oV
m— = —(q +p)§t— . (IV-14)

In finite-difference form, Eq. (IV-14) becomes

mtt _n) .
m (-————J J) =—(g+pA [3$J+1/2 - 6%_1/2} . (IV-15)

dt ot ot

. . 7] .
Using our definition of M as I and u;y1/2 a8 x’gt” 2 we solve for IJT-“‘h1 and obtain the

Lagrangian internal energy equation in finite-difference form:

¥ =1+ S (@) (W~ 2) - (IV-16)

To obtain an equation for pressure (p), we employ the ideal gas law, namely
pV =nRT, (IV-17)

where p is the pressure, V is volume, n the number of moles, T the temperature, and R is
the universal gas constant. In SI units R = 8.3145 J /°K mol
In an ideal gas it can be shown that when Cp and C, are the molar heat capacities at

constant pressure and constant volume,
Cp,—Cy=R. (IV-18)
Combining this equation with Eq. (IV-17) and solving for p gives
n
p= —V:(Cp - C,)T, (IV-19)

46

which can be rewritten as

— ! CP

Because C, is the molar specific heat and I is the internal energy per unit mass,
nCy,T =ml . (Iv-21)
By use of this equation, Eq. (IV-20) becomes

— 1 CP
p=13 (o - 1) mi . (IV-22)

We now define a constant v such that

CP
Y 5;

This variable is called the POLYTROPIC GAS CONSTANT. This constant is always
greater than one and represents the ratio of specific heats and is a property of the gas

being simulated. Some typical values of 7 are

air, y=14
helium, v = 1.66
CO;, y=1.34
SFg, 7= 1.08

v and p are used in Eq. (IV-22) to obtain the Lagrangian finite-difference equation for
pressure:

p; =(—=1p;I7. (IV-23)

This equation, also known as the POLYTROPIC EQUATION OF STATE, is used to
calculate values of p at each time step.
With pressure defined, let us take a closer look at g, called the viscous pressure. This

variable accounts for loss of kinetic energy in addition to what is used to compress the

47

gas. It serves as a means by which kinetic energy is dissipated in irreversible processes in
the fluid such as the creation of heat through friction. The equation for artificial viscous

pressure appears in the following form:

n

a; qOP?C (’U:;-l_l /2~ U?H /2> if positive

or if negative q; =0, (IV-24)

where go is a constant between 0.1 and 0.25, and cis a characteristic velocity of the system.

This equation will not be derived in this work, but it is important to understand why
it appears in this form. The irreversible processes that are modeled through the use of the ¢
equation occur when there is a rapid change in the volume occupied by a gas in a system. In
our system this change occurs when there is a large differential between the velocities at the
left and right of a given cell. Hence we make ¢ proportional to u;.‘_l /2~ u;‘ 125 indicating
a large amount of kinetic energy dissipated when there is a large velocity differential and a
small amount dissipated when there is a lesser difference in velocities. Because dissipated
kinetic energy is never returned to the system, this term is said to have a value of zero
when its computed value is negative.

In order to be dimensionally correct u;.‘_l /2~ u;‘ 12 is multiplied by the density of
the zone and by ¢, which is called the characteristic velocity. As c’s purpose is simply to
make our equation dimensionally correct, we have some leeway in choosing this velocity.
Typically it is chosen in one of three ways. The simplest method is to define c as equal to
the value of some other major velocity in the simulation. In our simulation this would be
the velocity of the piston that compresses the gas in the cylinder. Another way that this

velocity can be defined is by using the sound speed of the fluid in question. Namely
c= /2 (IV-25)

which can be rewritten using our equation for pressure as

c=+v(y-1I. (IV-26)

48

The third way in which ¢ can be determined is by combining these two approaches by

adding the sound speed to a prevalent velocity in the problem. In this case

¢ = piston speed + /y(y—1)I. (Iv-27)

This third method is the one used in the model presented in this work.

In this section transport equations for position, velocity, density, internal energy,
pressure, and viscous pressure were derived—all the equations necessary to construct a one-
dimensional compressible fluid-flow simulation. The equations of fluid flow, particularly
those of density (or continuity), internal energy, and velocity (or momentum), are often
called the NAVIER-STOKES EQUATIONS. This is a general term that can be used
to represent any set of fluid-flow equations in 1, 2, or 3 dimensions. Having derived
these equations, we are ready to move our discussion to the construction of the computer
code itself; but before we take this step, let us first take a closer look at the artificial
viscous pressure. Its relationship with the diffusion equation will help us derive a stability
requirement that will be important in this simulation.

C. Viscous Pressure and Diffusion

Let us examine the effect of ¢ on the momentum equation [Eq. (IV-10)]. Substituting

our definition of q [Eq. (IV-24)] into the momentum equation, while dropping the p’s and

the subscripts on p, gives us

dt
u?ﬂ/z =ul o+ I (‘Ja pc (’“?-1/2 - u?+1/2) —QpC (u?+1/2 - u;-‘+3/2)) , o (IV-28)
which can be rewritten

gopcdt
u?-tll/z = Ujye + ‘O—M—‘ (u}z—1/2 + Ujia/2 = 2“?+1/2) : (Iv-29)

This equation is in the form of a diffusion equation [Eq. (III-18)] where

d2
o= Jopcar

= (IV-30)

We can use our definition of p

49

p= A—TZEE- = % : (IV-31)
to rewrite Eq. (IV-30) as
oc=qocdzx . (IV-32)
Using the diffusional stability condition on o [Eq. (I11-6)],
Z_jzé < .;_ , (I11-6)
we find that
2o d‘;dt < % . (IV-33)

This important stability requirement arises from the parallelism between the effect
of g on the momentum equation and the equation of heat diffusion. It is the first of two
major stability conditions that are found in this code.

The second condition, the COURANT STABILITY CONDITION, is a stability
condition that occurs as a result of a numerical instability that will be discussed in
Chapter VI. Its presence in a Lagrangian simulation can be explained by using a simple
example.

Consider the Fig. IV-4, where the fluid at the left wall of a zone of length dz is moving

to the right with velocity v, while the fluid at the right wall is stationary.

Figure IV-4

In this case, we see that for a given time step (dt), the left wall will move toward

the right wall a distance v dt. In order for our Lagrangian simulation to remain valid, the

50

left wall cannot be allowed to move past the right wall. Mathematically the system must
satisfy the following equation:

vdt < dzx . (IV-34)

Because dz is always positive, this equation can also be written as

dt
v—<1. | (IV-35)

Since cross-overs can also occur when a right wall moves leftward past a left wall, our final
stability coridition is

dt
ol == <1. (IV-36)

In our code, v is equal to the maximum velocity in the system |u| + c. Equation (IV-36)
is the Courant stability condition. It will be discussed in greater detail later on in this
work. In this chapter, we need only note its restrictions when we represent our system of
equations computationally.
D. Computational Lagrangian Fluid Flow

Using the equations derived in Section B, we can begin writing our one-dimensional
Lagrangian compressible fluid-flow code. As was true in the heat code, we must define our
variables in FORTRAN terms before we discuss their use in the code itself. Qur variable
names appear in code form as follows: p; = p(j), ¢; = q(j), I; = sie(j), p; = rho(j),
Ujr1/z = U (§), Tjpa2 = x(), uj—1/2 = u(j-1), and Tj_1/2 = x(j-1). Note that = and u,
while still defined at j + 1/2 and j — 1/2, are written as x(j), u(j), x(j-1), and u(j-1). For
both of these variables an array index of j indicates a value at position j + 1 /2, the wall
directly to the right of cell j.

Our program is structured similarly to the heat flow problem illustrated in Fig. II-5.
The code exists in five main sections: an initialization routine, a section for time checks
and incrementation of counters, the definition of boundary conditions, the updating of

variable values, and an output procedure.

o1

First, let us examine our initialization procedure, which defines all the initial values
necessary for the problem. Just as in the last simulation, this procedure is used to initialize
time counters and define the length of the system being simulated, but this procedure must
also set values which were not present in our last case.

It defines the constants:

q0 as occurs in Eq. (IV-24)

gamma the ratio of specific heats

M mass/area

ul the velocity at the left end of the cylinder
ur the velocity at the right end of the cylinder

Also initial values must be assigned to the constants:

rho0 the initial zone density
sie0 the initial zone internal energy
u0 the initial zone velocity

A loop such as the one that assigned temperatures in the previous problem must be
constructed to initialize all the real elements of arrays rho as rho0, sie as sie0, and u as
u0, and to compute initial values for x, p, and q using Egs. (IV-3), (IV-23), and (IV-24),
respectively.

After the initialization procedure, the program moves into the same sort of loop as
did the heat program: making checks, incrementing time counters, updating boundary
conditions, and updating the arrays. The time check portion of the loop is exactly the
same as in our last two codes and can be written by repeating what was discussed in
Chapter II. The boundary conditions and array assignments are also quite similar to those
of our first program but must now be modified to deal with a group of arrays as opposed
to a single array of temperatures.

The boundary conditions must be defined for each variable that is referenced at the

j = 0 or j = jbar+1 positions. We can determine which variables are referenced in these

52

positions by referring to the equations that define our variable values: Egs. (IV-3), (IV-10),
(IV-11), (IV-16), (IV-23), and (IV-24).
From Eq. (IV-11), which appears in code form as

rho(j) = M/(x(j) - x(j - 1)), (IV-37)
we see that x(0) will be referenced, indicating the need for the position at the left of the
system to be prescribed in our boundary conditions. By similar analysis of Egs. (IV-16)
and (IV-24), we see that there is also a need for values to be determined for u_; /2 and
uj41/2, and for this reason boundary conditions must be assigned to u(0) and u(jbar),
representing u._; /> and uj14 /2, respectively.

An examination of Eq. (IV-10) might lead the reader to believe that boundary
conditions are also required for p and q at position jbar+1. This requirement would
be true if the wall at the right of the cell were not prescribed, indicating a u(jbar) that is
determined independently of p and q. The only three variables that must be modified to
establish our boundary conditions are x(0), u(0), and u(jbar).

These variables should be assigned according to the system we wish to represent. For
the piston problem, the wall at the right is stationary, indicating that u(jbar) = ur. The
velocity at the leftmost cell wall in this problem is equal to the velocity of our simulated
piston, u(0) = ul. The position of the leftmost cell wall is equal to its position at the old
time step plus the distance that it moves to the right during the new time step, x(0) =
x(0) + dt * ul.

In our boundary conditions, we set a value of u(jbar) and not u(jbar+1). This value
may seem strange to the student, as it does not make use of a ghost zone but rather
modifies a real value in the array. It is allowed because u(jbar) itself exists at a boundary,
representing the velocity at the wall directly to the left of zone jbar. In effect, a ghost zone
is being modified in which u(jbar) defines the rightmost wall.

With the boundary conditions updated, the code then moves into the updating portion

of the program. This is an explicit procedure, which does not use the nested loop structure

93

that was employed in the previous chapter. We are once again dealing with a single loop
that assigns new array values based on the values at the previous time step. However, this
time we are not dealing with a single array of temperatures but a series of interdependent
arrays.

This change presents a problem that was not present in the previous simulation,
namely that of updating the values of the variables in an order such that all terms defined
at time m in an equation exist at the same time step. This problém is a more complicated
version of the one that caused us to create a Tnew array in Chapter II. Now we are not
only concerned that the terms of a single array exist at the same time step, but that the
values of a group of arrays be updated in an order such that each variable is calculated
using values from appropriate time steps.

To understand how this order is determined, let us first list our six equations in
pseudo-code format. All variables are expressed as they would be in FORTRAN with the
exception of the superscripts which are used to remind the reader of the time step at which

each of these terms exists. In this form, Eq. (IV-3) becomes

x™H1() = x™() + u™(j) dt. (IV-38)
Equation (IV-10) becomes

W) = ur() + (/M) * (pnG) + a7() -p (1) (+1)). (1V-39)
Equation (IV-11), written at the new time step, is

rho™*! (j) = M (x"*(j) - x"*(j-1)). (IV-40)
Equation (IV-16) becomes

sien+! = sie”(§) + (dt/M) * (¢"(3)+p™()) * (" (-1) - v (3))- (IV-41)
Equation (IV-23) at the new time step is

p"+1(j) =(gamma, - 1) * tho™*! (j) * sie™**(j). (IV-42)
Equation (IV-24) also at the new time step is

o4

qn+1(j)= qO * rho"‘”(j) * cn+1 * (un+1 (J _1) _ u"'H(j))

if (@**1() . 1t 0) g™+ (§)= 0.0, (IV-43)

where ¢c"*! is computed at cell j as in Eq. (IV-27).

The equations are placed in an order such that each variable exists at an appropriate
time step when it is used. For example, both z and u must exist at time step n when
Eq. (IV-38) is implemented, so this equation must appear before Eq. (IV-39). By similar
argument, Eq. (IV-39), which includes a p term at time n, must appear before Eq. (Iv-
42), which updates p. Further examination of equations in this manner leaves us with
a final order in which these equations must be placed, namely, Eq. (IV-38), Eq. (IV-
41), Eq. (IV-39), Eq. (IV-40), Eq. (IV-42), and Eq. (IV-43), where the third and fourth
are interchangeable, as well as the fifth and sixth. The variable updating portion of the

program is a loop that implements these transport equations in an appropriate order.

Initial B.C.
t = stime
I Output I‘ni = pu'mel Tests I‘)

“

|Boundary Conditions I

Update Values

(I«

Figure IV-5

55

With these four sections completed, all that remains is to construct an output
procedure desirable to the user, and the one-dimensional Lagrangian fluid code is complete.
A graphical representation of this code appears in Figure IV-5.

E. Shocks and Shock Tubes

The following five figures are plots of the density of the fluid in the cylinder as the
piston moves in from the left. The parameters chosen for this simulation are: length
= 10.(cm), ul = 0.5(cm/s), ur = 0.0(cm/s), gamma = 5/3, jbar=20, rho0 = 1.0 (g/cm3),
sie = 0 (cm?/s%), q0= 0.3, and dt = 0.05(s). Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

Densities at Time 2 (s)

1.0

3‘_0

7.'[]

0.0

.0 2.3 S 73 1D.d

Figure IV-6

Densities at Time 4 (s)

0.0 2.3 5.1 7.3 1D.a
Figure IV-7

56

Densities at Time 6 (s)

= 0 0 2.1 LD 7.2 0.0
Figure IV-8
Densities at Time 8 (s)
. 0 0 2.5 5.0 7.8 0.0
Figure IV-9
Densities at Time 10 (s)
=
Figure IV-10

——— e e — e e -

57

The phenomenon that we are examining in these plots is known as a SHOCK, a rapid
transition between two states that moves relative to the fluid. Weak shocks occur when
fluid is moved at low speeds, but the effects of shocks are most notable when a fluid is
moved at a velocity that is near to or greater than the sound speed of the fluid. A shock
can be visualized by using the analogy of an evenly spaced line of billiard balls.

Consider the case in which a narrow channel has a piston at one end and is filled with

evenly spaced billiard balls, as depicted in Fig. IV-11.

Figure IV-11

The leftmost ball is pushed to the right by the piston and begins to pile up balls in front
of it as it moves down the passage. This movement creates a region in which billiard balls
exist at a much higher density than in the rest of the passage, because the billiard balls
that are moving are touching each other whereas the stationary ones are still evenly spread
apart. The front of this compressed region (called the shock or SHOCK FRONT) moves
forward faster than the piston itself because billiard balls are constantly piling up in front
of the piston as it moves to the right. This system is illustrated in Fig. IV-12. Note that
in this figure the transition from the compressed region to the undisturbed surroundings
is virtually instantaneous, and that the shock front is not a gradual change in density but
rather takes place over a very narrow span.

Our Lagrangian plots demonstrate this sharp contrast between compressed and
uncompressed fluid that occurs in a shock. In these plots we can also see the compressed
region expanding and the shock front moving at a velocity that is greater than that of

the piston. The velocity of the shock front can be predicted, as can other properties,

58

compressed region

1

shock front
(moves faster than the piston)

Figure IV-12

by appealing to the equations that describe the theory of shocks. In particular, we will
be using the equations of INFINITE STRENGTH SHOCKS, shocks that occur when the
shock speed is large compared to the sound speed ahead.

These equations will not be derived in this work, but such derivations are available in
various textbooks and monographs, specifically in “Fluid Dynamics—A LASL Monograph”
by Francis Harlow and Anthony Amsden, LA-4700. In an infinite strength shock, these

equations are
_y+1
Us = 5

where u, is the velocity of the shock, and Uy is the velocity of the piston, and
_y+1
=273
where ps the density behind the shock, and py is the initial density of the fluid.

Up , (IV-44)

Ps po (IV'45)

Applying these equations to the parameters used in our simulation, we predict that
the shock will move forward at a speed of 0.66 (cm/s), and produce a compressed region
of density 4 (g/cm®). These two values can be used to verify the results presented in
Figs. IV-6 through IV-10.

59

The next two graphs illustrate the effect of g0 on the accuracy of our numerical
simulations. If g0 is chosen too low, the answer becomes numerically unstable, as is

illustrated in Fig. IV-13.

a_ Densities at Time 10 (s), 0 =10.1
o EX 5.0 7.8 100
Figure IV-13

If g0 is too high, on the other hand, the answer is stable but inaccurate, losing the degree

of clarity that was present in the ¢0 = 0.3 graphs.

Densities at Time 10 (s), g0 =0.75

4.0

30
|

2.0

1.0

0.1

]
G.D 2.3 3.8 7.3 10.Q

Figure IV-14

At even higher g0 values, the diffusional stability condition is violated, resulting in the

program being terminated by errors.

60

TV Gewening | SRR A v l{_‘,‘, P ,V‘

A second problem that can be modeled using a one-dimensional Lagrangian code
is that of a SHOCK TUBE, a tube that contains two fluids, usually gases, of different
densities. Computationally, this problem is set up by setting all velocities to zero and
creating an array that is made up of one set of zones at a density piesz and another set
of zones at a different density prignt. Because our equations assume a constant M , these
zones must be MASS MATCHED such that the mass of every zone is a constant. This
matching is done by decreasing the initial length of the denser zones relative to the initial
length of the less dense zones such that dz p is a constant.

In the example presented in this work, pie is chosen to be 1 (g/cm®) while Pright 1S
4 (g/cm?®). Mass matching is achieved by multiplying the length of the left zones by 8/5
and multiplying the length of the right zones by 2/5 so that 8/5 x 1 = 8/5 = 2/5 x 4. The

resulting code appears as the following:

do 100 j = 1,jbar/2
rho(j) = rho0
x(j) = x(j—1)-+(8./5.)(length/Hoat(jbar))
100 continue
do 200 j = (jbar/2)+1,jbar+1
rho(j) = rho0*4
x(j) = x(j—1)+(2./5.)*(length/float(jbar))

200 continue

For the results shown in this simulation, the following parameters are used: length =
10.0 (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar = 20, rhol = 1.0 (g/cm?), rhor = 4.0
(g/cm?), sied = 1.0(cm?/s?), q0= 0.3, gamma = 5/3, and dt = 0.05 (s). Note that sie0
is not equal to zero in this simulation; there would be no motion of fluids in the shock
tube without some initial internal energy being present. Figures IV-15 through IV-20 are
graphs of this system at times of 0, 1, 2, 3, 4, and 5 seconds respectively.

61

62

L

Densities at Time O (s)

|

w._‘o.n 23 3.0 7.3 0.0
Figure IV-15

_ Densities at Time 1 (s)

S : : : .

0aD 23 3.0 73 14.0

Figure IV-16

=3 Densities at Time 2 (s)

~ o 2.1 34 7.5 10.0
Figure IV-17

= Densities at Time 3 (s)

; s

Q
—'090 zlz 5:.(71'5 R I(IID

Figure IV-18

=- Densities at Time 4 (s)

Q|

‘=;-‘U°D Zl 3 f)'.a 7'.5 ‘IlU.U
Figure IV-19

- Densities at Time 5 (s)

0aD 2.3 30 7.5 10.0

Figure IV-20

63

In these graphs we see three major features: a shock wave moving to the left, a
CONTACT DISCONTINUITY between the two fluids that is also moving to the left, and
2 RAREFACTION WAVE that is moving to the right and bouncing off of the wall. Each

of these elements has been labeled in Fig. IV-21, below.

rarefaction wave
contact discontinuity \
shock front

10

/

1.0

¢.D

T. 0 é-ﬁ S‘ 8 7‘.5 I.CII O
Figure IV-21

The equations that describe the properties of each of these three features of the shock
tube problem will not be included in this work. Once again, the reader interested in these
equations should refer to LA-4700 or a similar work.

The same sort of instabilities that were present in the piston problem can also be
induced in the shock tube problem, as is illustrated by the following plots of density at a
time of 2 seconds, each generated by the same parameters as the previous graphs except

for g0, which is 0.1 in the first graph and 0.75 in the second.

64

Densities at Time 2 (s), g0 =10.1

5

s 23 3.0 7.3 10.0
Figure IV-22

=4 Densities at Time 2 (s), g0 = 0.75

° Tal ant 3q 7e9 190
Figure IV-23

Again, if g0 is increased to an even higher level, the code will become numerically unstable.

In this chapter we have seen a number of simulations that can be created using the
Lagrangian equations for one-dimensional compressible fluid flow. In the following chapter,
we will solve the same sorts of problems using an Eulerian method, learning a different

technique that can be used to solve the equations of fluid motion computationally.

65

V. EULERIAN FLUID DYNAMICS
A. Eulerian Methods and Advective Flux

In the previous chapter we examined the use of Lagrangian methods in solving the
equations of one-dimensional compressible fluid flow. We are now going to approach the
same problem from a different perspective, using an Eulerian technique. In this method the
zone positions are held completely fixed, while all quantities are allowed to move between
zones. Cell masses are not constant in time, but instead fluid moves between cells; while

only the spatial coordinates of the zones remain constant.

This constancy of spatial coordinates is maintained by the calculation of ADVECTIVE
FLUXES, fluxes that occur as a result of the motion of fluid from one region to another.
An example of this type of flux is the transfer of heat by convection, where heat energy
is moved from one region to another by the transfer of the material that contains that
energy. The new region is heated not because the material in that region has absorbed
thé energy from another region, but because a new, hotter material has been moved in to

replace the old.

This type of flux is in contrast to the NONADVECTIVE FLUXES that were present
in our Lagrangian calculations. Those fluxes occur when the quantities themselves move
from one region to another without any motion of material. An example of a nonadvective

flux is heat conduction.

While our previous simulation dealt only with nonadvective fluxes, our Eulerian one-
dimensional fluid code will include both advective and nonadvective fluxes. In order to
accomplish this, we must return to our six equations that describe the interaction of the
various physical quantities and add to each a term that describes the advective fluxes that

are intrinsic to the Eulerian method.

66

B. The Equations of Eulerian Fluid Flow

In order to understand the manmer that advective flux can be mathematically
represented, we must first take a closer look at the situation that it represents. Consider a
system such as in Fig. V-1, in which a portion of the material in one zone is being moved

into the zone that is adjacent to the right.

N

]
)
8.
<

Figure V-1

In this picture we see that when the material in a zone is moving at a velocity u, the
material contained in a length u dt will be moved into the adjacent cell. Because each zone
has an area A, the volume moved from one cell to another is A u dt.

This transfer of volume can be multiplied by p, the mass per unit volume, to obtain

the following equation for total mass crossing the cell boundary in a given time step:
Total Mass Crossing Boundary in a Time Step (dt) = A pudt (V-1)

This equation can be used to find the mass flux, the total mass crossing per unit time per

unit area:
Apudt

Mass Flux = A

(V-2)
Equation (V-2) is a statement of the advective mass flux between two cells. It illustrates
a much more general principle that can be shown by replacing p by a value Q, the density
of any quantity that is being advected. In this general case

Advective Flux = Qu. (V-3)

67

The density of each of the various physical variables is computed by simply dividing
the desired quantity by the volume of a cell. Consider the case of momentum, for example.

As was stated in the previous chapter, momentum is mass times velocity:
mu = momentum . (V-4)

Dividing both sides by the volume of a cell, we obtain

mu momentum

= V-5
volume volume ()

Because m/volume is p and momentum /volume is the momentum density, this equation
can be rewritten:

pu = momentum density . (V-6)

By a similar process, we find that
pI = internal energy density , (V-7)

and

pu? .. .
- = kinetic energy density . (V-8)

Note that I in Eq. (V-7) is internal energy per unit mass.
Substituting these three density terms into Eq. (V-3), we obtain the following

equations of advective flux:

Advective flux of mass = pu (V-9)
Advective flux of momentum = pu? (V-10)
Advective flux of internal energy = pJu (V-11)
Advective flux of kinetic energy = %2—11 (V-12)

We will use these expressions in deriving the equations of Eulerian fluid flow.

68

We begin with the expression for density, which was described in our Lagrangian

calculations as

M
pj = - (IV-11)
P T 179

This expression needs to be modified to reflect the fact that mass is no longer a constant

and that distance between cell walls is no longer a variable. To modify this equation, we
first substitute dz, the fixed distance between the cell walls, for T2 — Thg /2t

M

We must now derive an expression for changes in M, the mass of a cell divided by the
area. This derivation is similar to that of the expression for heat in Chapter II. From mass

conservation,

mass;-""1 — mass; = amount in - amount out . (V-14)

Because amount in and amount out are simply flux X area x time step, and flux has been

defined by Eq. (V-2), numerical expressions for both these terms can be calculated:

amount in = fluxjess Adt = (pu);_1/2 Adt (V-15)

amount out = Auxyigns Adt = (pu)j41/2 Adt (V-16)

By substituting these two values into Eq. (V-14) the change in mass, mass;-“H — massy,

can be expressed as follows:
A mass = (pu)j_1/2 Adt — (pu)jy1/2 Adt . (V-17)

Using our definition of M as mass divided by area and factoring out like terms, we obtain

an equation for change in M:
AM = dt ((pu)j—1/2 —(p¥)j41/2) - (V-18)
Combining this equation with Eq. (V-13), we find the following:
dt
8= () (s-172 = Gulgeass) (v-19)

69

Because the new density is equal to the old density plus the change in density, p+ Ap, we
are left with a final equation for the updating of densities that is made up of two parts:
an expression for the density at the old time step and an expression for the change due to

advective flux:
n dt
P =pf + (5) ((pw)j—1/2 = (Pujs1/2) - (V-20)

This analysis leaves us with an equation that expresses density at the new time step, but
also presents us with a problem. Equation (V-20) makes use of the advected p;_1/2 and
pj+1/2 densities expressed at the left and right wall of cell j. These quantities cannot be
referenced directly but instead must be computed using one of two methods: CENTERED
or DONOR CELL.

Centered expressions for advected quantities are computed by averaging the values at
the cell centers to the right and left of the wall across which fluid is being advected. In

our case, centering would lead to an expression for density in the form of Eq. (V-15):

1
Pi—1/2 = §(Pj + Pj—l) . (V'21)

This value is not acceptable for p;_j/2, however, because it is UNCONDITIONALLY
UNSTABLE, meaning unstable no matter how small we choose our time step. The reason
for this instability will be discussed in Chapter VI.

A better method is the donor-cell technique, which uses the upstream value as the
value at the advection cell wall. In this technique, the value of a quantity at the cell wall
is equal to the value at the left cell center if the flow is from the left or equal to the value
at the right cell center if the flow is from the right. This choice of values is mathematically

expressed as
(UP)j—l/z = Pj—1Uj—1/2 Af uj_12 > 0

or (V-22)

(UP)j—1/2 = PjUj—-1/2 if w12 < 0
and is illustrated visually in Fig. V-2.

70

\

j-1 J

j-12
Figure V-2

The donor technique should be employed wherever a quantity is being advected across a
cell wall, as is the case with internal energy.

The Eulerian internal energy equation can be calculated beginning with the Lagran-
gian equation:

. dt .
G =17 + 52 (¢ +15) (uj—1/2 - ”?+1/z) (IV-16)

This transport equation for I is made up of two major terms: the internal energy
at the last time step (/7') and the change because of nonadvective flux -j“% (q;‘ + p;‘)
(u;.‘_l /2~ u;.‘+1 /2). To write this equation in an Eulerian manner, we must add a third
term to represent the advective flux. Before this term is added, however, this equation

must first be modified. Multiplying by M, we obtain

(M I3 = (MDF +dtlp+)7 (1o~ 624ey2) - (V-23)

This equation represents the total change in M I due to the nonadvective pressure terms.
We saw in Eq. (V-20) that the transport equation for a variable whose value is changed

only by advective flux appears in the form

n+1 n
(%)J = (%)J + (dt/dz) ((flux of @);_1/2 — (Aux ofQ);11/2) , (V-24)

where () is any variable property of the cells and Vis the volume of a single zone. Using

this equation to express change due to advective flux in terms of energy density, we obtain

(MIF = (M)} = dt ((ouD) o = (Pu)-1)3) - (V-25)

71

Combining this equation with Eq. (V-23) gives us an expression for change in internal

energy that accounts for both advective and nonadvective fluxes:

(MIYF = (M) — dt [(puD) a2 = (puD_jo + 0+ D Wy = 12)] - (V-26)

Because zones are stationary in an Eulerian simulation, M = pdx. Therefore, this equation

can be rewritten as

(PDnH (PI)J [(PUI) j+1/2 (PUI)J 1/2+(P+Q)g(§+1/2 j—1/2)] . (V-27)

This equation is computed using the donor-cell technique for the pul terms:

(PUI)j—l/z = Uj—l/z(PI)j—l if Uj-1/2 > 0
or (V-28)
(PUI)j—1/2 = uj—l/z(PI)j if wuj_1/2 < 0.

By a process similar to the derivation of Eq. (V-26), Eq. (IV-10) is rewritten as

(Mu ?.1-11/2 (Mu)3yq/o —dt ((P +q)741—(p+ Q)?) . (V-29)

This equation is combined with an advective equation in the form of Eq. (V-25), namely

(M'LL ?13/2 (Mu):]+1/2 + dt ((puz)J (pu2)?+1) ’ (V‘?’O)

to obtain an equation that accounts for both the advective and nonadvective fluxes that

affect momentum:

(Mu)2H = (Mu)fyy s = dt ((0u") 341 — (") + P+ @)F — (0 + 9)7) - (V-31)
Once again referring to our equation for M given a fixed distance between cells (M = pdz)
we obtain

()2 = (P02~ 2 () — (o0} + (B4 a0+ D) - (V32

72

In this equation, values for u at the cell centers must be computed using the donor-cell

technique. These appear in the form

(pu?); = uj(pu)j—12 if wu; >0

or

(pu®); = uj(pu)jre ¥ u; <0, (V-33)

where uj, pj_1/2, and pj11/2 are computed as averages of the values half a cell to the left

and half a cell to the right of the point at which these quantities are defined:

s + .

Pi-1/2 = (———p 4 12 2 ’) (V-35)
. + .

Pi+1/2 = (pj—zpj—ﬂ) : (V-36)

The student may pose the question of why these averages are used in donor-cell calculations,
as they seem to indicate a centered approach that is unconditionally unstable. To explain
why these averages are employed, we return to our momentum cell diagram, noting where
these various variables are located. In the following figure, the letters in bold indicate

quantities at positions where their values are not specified.

momentum cell

73

PR - — r——— B —— - e ———

The terms that employ the donor cell technique are made up of two portions, the
donoring velocity and the quantity that is donored. In our original case of density flux,
these quantities are u;_;/2 and pj—1/2, respectively. The donoring velocity is always taken
at the position at which the flux is taking place, whereas the donored quantity is taken at
the center of the cell to the upstream side of the cell wall at which a flux is taking place.
For density flux and internal energy flux, all of these values can be taken from positions at
which these quantities were directly defined: density and internal energy at the cell centers

and velocity at the cell walls. For momentum flux, however, the situation is different.

From Fig. V-3, we see that the donoring velocity at the wall of the momentum cell is
u;, whereas the donored quantities at the center of the momentum cell exist at positions
j—1/2 or j+1/2. This configuration forces us to use values that are not directly present
in our arrays. These values: uj, pj—1/2, and pjii1/2, are obtained by averaging as in
Egs. (V-34) through (V-36).

We have now derived Eulerian equations for density (p), internal energy (I), and
momentum (mass X u). Values for pressure and viscous pressure (p and q) are determined
directly from the values of the other three quantities at each new time step. Thus, the
equations for p and g from Chapter IV can be used in our Eulerian simulation. We have
completed all the derivation necessary to obtain a set of equations for the simulation of
one-dimensional fluid flow in an Eulerian manner and can now begin to implement these
equations on the computer. Before we begin this implementation, however, let us first take
a look at how our equations appear in partial-differential form and make some observations
as to the way that Lagrangian and Eulerian calculations are related.

C. The Partial-Differential Equations of Fluid Flow

Once again, we are going to examine the partial-differential equations that relate
to our finite-difference equations. As was the case when we previously examined these
equations, this section is not necessary in the writing of our finite-difference code. It is

provided only as an additional method of looking at this system.

74

By a process similar to that used in Section C of Chapter 2, we can rewrite
our equations of fluid flow by taking the limits as dr and dt approach zero and
generating equations in partial-differential form. In this form Egs. (V-20) (mass), (V-27)

(momentum), and (V-31) (heat energy) appear as follows:

Op Opu _

'E + E =0 (V‘37)
dpu | Opu® _O(p+9)
ot + oxr 0z (V-38)
Opl Opul _ Ou
o tTor ~ Pty (V-39)

These equations represent the Eulerian form of the transport equations for mass,
momentum, and heat energy respectively. They are another form of the Navier-Stokes
Equations.

We are going to take a look at these Eulerian equations and relate them to the
equations used in the Lagrangian code, trying to gain a better understanding of why
these two seemingly dissimilar methods yield computationally similar results.

We will begin with the mass equation, Eq. (V-37). By the chain rule, the second term
can be expanded to obtain

= +u—+p—=0. (V-40)

We now employ the mathematical identity for the total differential of a function of
two variables, f(z,t):

df = %—{dt + -Z—i—dm . (V-41)

This equation states that for arbitrarily slight changes in ¢ and z (denoted by dt and dz)
the function f changes by an amount df, as given by the formula. Dividing by d¢ gives us

G _of ot
w0t s d (V-42)

75

In the special case When L follows the motion of a fluid, as in a Lagrangian calculation,
then %xt- =4 and

i ot Vag

éj—c _ L9 (V-43)
This is an expression for the rate of change of f along the motion of a fluid, also known
as the LAGRANGIAN DERIVATIVE. It will be denoted in this work as %’% as opposed
to —5% Elsewhere in the literature, the notation %E is often used to further emphasize
the difference between the partial and Lagrangian derivatives. The meaning, however, is
equivalent.

Using the Lagrangian derivative to rewrite Eq. (V-40), we obtain

dp Ou
g =0 (V-44)

This equation is the Lagrangian partial-differential equation for fluid flow; its finite-
difference approximation is equivalent Eq. (IV-11). To show this equivalence, we begin

with Eq. (V-44) and divide by p? to obtain

1dp 10u _
—— V-45
p? dt t p 8r ()
or
dz 16u
L7 =0. V-46
dt + p Oz 0 ()
Finite differencing the second term gives us
d% 1
_E -+ E (Uj+1/2 - uj—l/Z) =0. (V—47)

Note that in this equation dz is no longer part of a partial derivative but a finite distance
between zones.
From Eq. (V-13) we have M = pdz, and from Eq. (IV-1) we have u = dz/dt, so we

can write this equation as

di 1 [dz; dz;
e L (2 BR-1/2) V-48
at M < dt dt) 0. ()

76

In this equation, all dt terms are Lagrangian derivatives and can thus be treated in the

same manner. We can therefore integrate this equation with respect to dt to obtain

1 (ZTjyr/2 —Tj-1/2
= (— . (V-49)

This equation is equivalent to our Lagrangian density equation,

M | (IV-11)

n — *
Zivi2 ~Ti1/2

2

Pj

We see then, through the use of partial-differential equations, that the Eulerian and the
Lagrangian mass equations are equivalent in the properties that they represent.
This equivalence is also true for the momentum equation, which appears in Eulerian

form as Eq. (V-38). This equation can be expanded to obtain

Ou Op ou Opu oP
S tUgs U U=

5 U TP TV T as (V-50)

where P signifies the total pressure (P = p+ gq).
Returning to the mass equation (V-37), we see that the sum of the second and fourth

terms of Eq. (V-50) is equal to zero; this gives us

ou ou oP

% + pu% = —% (V"51)
or
Ou ou OP
Employing the Lagrangian derivative, we obtain
du OP
-Et- = —-5; . (V-53)

This equation is the Lagrangian partial—diﬁ'erentia.l’équation for momentum. Dividing both
sides by p and finite-differencing it gives us

u?tl —yn 1
j i
= (P~ Pam) 50

77

which, with a shift of indices, is equal to Eq. (IV-10):

dt
“?:11/2 =Ujyyy0 + Wi (P? + 45 —Dj — q?+1) . (Iv-10)

For internal energy, the process is similar. Eq. (IV-39) is expanded
ol op oI opu Pdu

o + I% + pug- +1I 5 = " ha (V-55)
the second and fourth terms are dropped using the mass equation
oI ol ou
P (-8? + U'a—m) = —P% N (V—56)

and finally the Lagrangian derivative is used to get the Lagrangian equation for change in

internal energy:

dl Ou

— =—P—.
Pz Oz

Through finite differencing, this equation can be shown to be a partial-differential

(V-57)

representation of Eq. (IV-16):

=1+ i (4 +25) (“?'—1/2 - “j+1/z) - (IV-16)

So we see that for an Eulerian simulation, our equations appear as

op | Opu _

5 + P 0, (V-37)

Opu Bpu® 0P _

OpI , dpul , POu _

; -59
o T T T (V-59)
whereas, in a Lagrangian simulation, our equations are
dp Ou
—_— — V‘44
du OP ~
bkl Wil V-60
3. =0 (V-60)
dal ou
- —~—=0. V-61
dt + PB:I; 0 ()

78

These partial-differential equations provide another way of looking at our one-dimensional
fluid-flow equations. They help to explain the Lagrangian and Eulerian finite-difference
equations and demonstrate that, although these are seemingly different, their underlying
principles are the same.

D. Computational Implementation of Equations

The structure of our Eulerian one-dimensional fluid code is similar to that of the
Lagrangian code: it contains the same five sections, its variable declarations are almost
the same, and the output procedure is of the same type.

There are, however, some major differences between these two codes. These differences
are found in the initialization procedure, in the boundary conditions, and in the equations
that are used to update the variable values.

The order in which our variables are given new values is again rho, u, I, p, and q; but
rho, u, and I must now be calculated using quantities calculated before the program enters
the loop that assigns new values to these arrays. This loop must generate values for rho,
u, and I; but the transport equations that were derived in Section B are written in terms
of bj, (pu);+1/2, and (pI);. We have to obtain array values for the following quantities
before calculating the other physical variables:

rhon(j)—p}**

rhoun (J)_pu;:.l-]il /2

rhoin(j)—pIF+* .
Each of these arrays is calculated using the Eulerian equations of transport. The
calculations are done for all array values before any updating of rho, u, I, p, or q is
done.
Density is computed by simply setting the rho array equal to the rhon array:
rho(j) = rhon(j) .

Velocity, u is computed by dividing the density times velocity array by the density array
at position j+1/2:

79

u(j) = rhou(j)/(.5 * (rhon(j) + rhon(j+1))) -
Internal energy is computed by dividing the internal energy times density array by the
density array:
sie(j) = rhoin(j)/rhon(j)
The p and q equations remain unchanged from the Lagrangian case. This situation leaves
us with a loop that assigns values for rho, u, I, p, and q that appears in the following form:
do 300 j =1,jbar
rho(j) = rhoun(j)
u(j) = rhoun(j)/(.5*(rhon(j)-+rhon(j+1))
sie(j) = rhoin(j) / rhon(j)
p(j) = (gamma-1) * rho(j) * sie(j)
asie = gamma * (gamma-1) * abs(sie(j))
¢ = abs(ul) + sqgrt(asie)
a(j) = q0 * rho(j) * ¢ * (u(j-1)-u(j))
if (q(5)-1t-(0.0)) aj) = 0.0
360 continue
This loop is preceeded by another loop that computes rhon, rhoun, and rhoin arrays

using the Eulerian equations for the transport of mass, energy, and momentum:

p?H =05+ 5—; ((pw)j1/2 — (pu)js1/2) (V-20)
(I = (o1} — 2 [(oul)2/2 — (PuD)fajo + 0+ 05 (a0 = 5-12) | (V-2)
(o) 32 = (Pw)Fr1/2 — j—i ((0u®)2y — (D)} + (p+ Qe — 0+)7) (V-32)
Each of these equations requires the use of the donor-cell technique, meaning that donor-
cell values must be computed for .
Pj—1/2 and pji1/2
(PUI)j—l/z and (PUI)j+1/2
(pu?); and (pu?)jt1 -

80

The problem of having to write our equations in a manner that allows the computation of
donor-cell for each of these terms can be approached in at least two ways: with a series of

if/then checks or with a double look-up technique.

The first of these methods involves writing a separate if/then check for each of these six
terms. This approach uses six different variables, each with values determined according
to the direction of the motion of the fluid, with six separate checks being made for the
direction of fluid motion at every loop iteration. This method is viable, but it triples the
number of if/then checks, calls for the use of additional scalar variables, and unnecessarily

complicates our code.

A much easier technique is to carry out all the flow direction checks before any of the
arrays are computed. To do this, we create two arrays of variables: idnr and jdnr. In a
loop at the beginning of the variable updating portion of the program, all the elements in
these arrays are assigned values of either 0, if the flow is from the left to the right, or 1, if
the flow is from the right to the left. idnr represents the motion of fluid at the cell walls
(§ + 1/2), while jdnr represents the flow of the fluid at the cell centers (§). The loop in

which they are computed is the following:
do 100 j =1,jbar
idor(j) =0
jdnr(j) =0
if (u(j).1t.0.0) idnr(j)=1
if ((u(i-1)-+u(j))-16.0.0) jdnr(j)=1
100 continue .

We can use these integer arrays to determine the positions at which the donor-cell terms
are computed. By indexing our variables with j plus an appropriate value of idnr or jdnr,

we can rewrite the donor cell terms in the following manner:

81

(pu)j—1/2—rho(j-1+idnr(j-1)) * u(j-1)
(pw)j+1/2—rho(j+idnr(j)) * u(j)
(puI);_1/a—tho(j-1+idnr(j-1)) * u(j-1) * sie(j-1-+idnr(j-1))
(puI)js1/2—rho(j+idnr(j)) * u(j) * sie(j+idnr(j))
(pu?)y—(u(-1)+u(i)) * 5 * u(i-1+jdnr(j-1)
(rho(j-14-jdnr(j-1))-+rho(j+jdnr(j))) * .5
(pu?)jr—(@)+u(+1)) * 5 * u(+jdur(j)) *
(rho(j+jdnr(j))+rho(j+1+jdnr(j+1))) * .5
The terms on the right of this table are simply computational translations of Egs. (V-22),
(V-28), and (V-33), using a double look-up technique rather than carrying out an if/then
statement for each of the ‘equations.

We can compute rhon(j), rhoun(j), and rhoin(j) by constructing a loop that follows
the computation of the donor-cell arrays but comes before the computation of the rho-u-sie
loop. This loop should appear similar to the following, with the values from the above
table being used whenever one of the bold (donor-cell) terms is used.

do 200 j = 1,jbar
c.. density
rhon(j) = rho(j) + ((dt/dx) * ((tho u);_1/2 —(rhou);i1/2))
c.. internal energy
rhoin(j) = (rho(j) * sie(3)) — ((dt/dx) * ((rho u sie)js1/2—
&(rho u sie);_1/z + (P()+a()) * (@G)—ui-1))))
c.. momentum
rhoun(j) = (((tho(j)+rho(j+1)) * .5) * u(j)) — ((dt/dx) *
&((rho u?)j41 — (rho u?);) * (p(i+1)+a(i+1)—p()—a()))
200 continue

82

To summarize, the variable updating portion of our program consists of first a donor-cell
loop; then a loop to compute the mass, momentum, and internal energy densities; and
finally a loop that changes the values of the rho, sie, u, p, and q arrays. The return
designations of these loops have been numbered in this order.

Returning to the issue of the boundary conditions: An analysis of our equations
indicates a need for specified values of rho(0) and sie(0) in addition to u(0) and u(jbar) as
in the Lagrangian case. Positions need no longer be updated because they remain fixed
throughout the simulation; instead, the conditions must be added that sie at position 0 is
equal to a variable siel, and rho at position 0 is equal to a variable rhol. These boundary
conditions are of a different nature than those in the heat-transfer problem. There, a
constant temperature was maintained at the wall by the recalculation of the value of T(0)

at every time step. The equation was
To=2Ty - Ty . (II-21)

This averaging is not necessary in the present code, because the value used at the wall is
computed using the donor-cell technique. If flow is from the left to the right, as is the case
with our piston, the values assigned to sie and rho at position j = 0 will effectively exist
at the rightmost wall, j = 1/2. We are now faced with the question of what values should
be assigned to the variables at these positions.

In the Eulerian case, we do not represent the piston itself but rather a shock that
is created by the motion of a piston somewhere upstream. We can therefore appeal to
the equations for the fluid dynamics of shocks to determine our boundary conditions at
the left: p = %”_—'—ipo, and I = 3‘,;p0. By substituting our “gamma” and “ul” for the v’s
and u’s in these equations, we can generate quantities for rhol and siel that will help
to maintain a shock wave. Finally, these two variables are added to the initialization
procedure, completing our Eulerian code. A graphical representation of this code appears

in Figure V-4.

83

tart

(g:_m
g

Initial B.C.
[- ™ .
l Output K———I‘n —piime Tests Jit_:—f—%)
|Boundary ConditionsJ

ono!

Density Loop

Update Values

Figure V-4

E. Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

" The following five figures are plots of the density of the fluid in the cylinder as the
shock moves in from the left. The parameters chosen for this simulation are: length = 10.0
(cm), ul = 0.5 (cm/s), ur = 0.0 (cm/s), jbar=20, rho0 = 1.0 (g/cm?), sied = 0 (cm?/s?%), q0
= 0.25, gamma = 5/3, and dt = 0.05 (s). Note that these parameters are precisely those
used to run the Lagrangian piston problem, with the exception of g0, which is lowered
from 0.3 to 0.25 for the Eulerian simulation. Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

84

Densities at Time 2 (s)

s Ly T I N
Figure V-5

by Densities at Time 4 (s)

* 0o 13 i 75 119
Figure V-6

- Densities at Time 6 (s)

2]

© oo 23 sa 7.5 1o

Figure V-7

T et S e > e

85

Densities at Time 8 (s)

44

&0

10

up

D.b g co 7.t 1.0

Figure V-8

Densities at Time 10 (s)

IR

Figure V-9

Note that the Eulerian shock is not as sharp as the Lagrangian shock, even at this
lower value of g0. This difference is due to an artificial diffusion that results as an effect
of the donor-cell technique. This effect will be discussed in Chapter VI.

Once again applying the equations of shocks [Egs. (IV-44) and (IV-45)] to the
parameters used in our simulation, we predict that our shock will move forward at a
speed of 0.66 (cm/s) and produce a compressed region with a density of 4 (g/m?s) . These
values verify the results presented in Figs. V-5 through V-9.

The next set of plots demonstrate the results that can be obtained by applying an
Eulerian code to the shock tube problem. The following parameters are used: length =

10. (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar=20, rhol = 1.0 (g/cm?®), rhor = 4.0

86

(g/cm3), sied = 1.0 (m?/s?), q0= 0.3 and dt = 0.025 (s). Our simulation is set up such
that 0.8 of the tube is filled with the less dense fluid and 0.2 is filled with the denser
fluid. This set up is necessary to parallel the situation simulated in Chapter IV. Unlike
the Lagrangian simulation, however, no mass matching is necessary in the Eulerian case.
As was previously stated, masses of zones in an Eulerian simulation are variable; only the
positions of zones are constant. Figures V-10 through V-15 are graphs of density within

the shock tube system at times of 0, 1, 2, 3, 4, and 5 seconds respectively.

Densities at Time 0 (s)

10

s.ln

890

09

a7 21 10 71 s

i Figure V-10

o0

Densities at Time 1 (s)

%Q

B.ln

00
?

ou ui 5.0 73 108

Figure V-11

87

33

ho

Densities at Time 2 (s)

e

= o 7.9) 73 10.0
Figure V-12

7] Densities at Time 3 (s)

o i iy % 2o
Figure V-13

N Densities at Time 4 (s)

¢ 0 23 SO i x’ 100
Figure V-14

40

Densities at Time 5 (s)

/\

v

\

<0

ol 2.3 31 73 10.0

Figure V-15

These graphs contain the same features as the Lagrangian graphs: a shock wave
moving to the left, a contact discontinuity between the two fluids that is also moving
to the left, and a rarefaction wave that is moving to the right. These features have the
same properties as those of the Lagrangian graph and are described by the same set of
fluid-dynamics equations.

Lagrangian and Eulerian simulations are also subject to the same’stability conditions.

At’low g0 values, the Courant condition is violated, as illustrated in Fig. V-16.

*1 Densities at Time 2, q0 =.05

50

B0

Ji0

Figure V-16

At high ¢0 values, the features are smeared out:

89

J.I 0

Densities at Time 2, g0 =.75

%0

L

T 1
(=3} 2.5 5,8 s 19.8

Figure V-17

If g0 is raised even higher, the diffusional stability condition is violated and the program

terminates.

Although the Lagrangian and Eulerian simulations share the same stability conditions,
they are quite different in the sharpness with which they resolve features at a given set of
parameters. We see this by comparing graphs of both these simulations at a time step of

2 (s) and a g0 of 0.3.

< Densities at Time 2 (s) . Densities at Time 2 (s)
= : ’ = = = - ” e
Lagrangian) Eulerian
Figure V-18

90

In this figure, we see that the features of the Lagrangian graph are much sharper than
those of the Eulerian simulation. The difference in sharpness is particularly noticeable for
the contact discontinuity, which is clear in the Lagrangian simulation but smeared out over
several zones in the Eulerian simulation.

The smearing of features in the Eulerian case is a result of the artificial diffusion
that is intrinsic to the donor-cell technique. In order to understand why the donor-cell
technique causes diffusion in this manner, as well as to understand why the Courant

_condition is present in an Eulerian simulation, we will have to make use of a method

known as truncation error analysis. This method will be discussed in Chapter VL.

91

VI. TRUNCATION ERROR ANALYSIS AND THE COURANT
CONDITION

A. Introduction

This chapter is unique in this book in that it is the only chapter in which we will
not write code. We will instead examine a technique known as TRUNCATION ERROR
ANALYSIS, which can be used to analyze the error of finite-difference approximations, and
we will apply this method to determine a condition that must be met to ensure numerical

stability of our fluid-flow model.

This chapter is also unique in that it is almost exclusively based on the manipulation
of partial-differential equations. As was the case before, the use of these equations means
that this analysis is not essential to the construction of simulations. As was stated in the
introduction, mastery of these equations is not a prerequisite to writing finite-difference
codes. This chapter does not present the reader with any additional stability conditions
or methods of representing finite-difference equations; its purpose is merely to clarify the

ones that have already been discussed.

Although not crucial to the writing of our programs, this discussion presents a method
of analysis that is important for a person dealing with finite-difference codes. It serves to
introduce a new method for examining the validity of our finite-difference approximations
and determining the constraints that must be met for our equations to be numerically

stable.

We will apply this method to a number of cases, but first let us return to a previously
discussed method for determining numerical stability. Using the test solution method
introduced in section III-B, we will address the question of the numerical stability of
the cell-centered finite-difference wave equation. This discussion will give us a familiar

approach to which we can compare our truncation error analysis calculations.

92

B. Numerical Instability of the Cell-Centered Approach

Consider the general form of the first order wave equation:

6—T+a—a£—0
Ot dr

Finite-differencing this equation gives

+1 _
kY Y SV, Sl SV, B

dt dz 0.

In the case where a cell-centered flux is used, where

(I7 +TH,)

T?L+1/2 = 5

J

Eq. (VI-2) becomes the cell-centered finite-difference wave equation:

+1
™ -17 +aT."IZZ+1_T."In—1 -0
dt 2dz

If we now use a test solution for T, choosing

T;" — Aeikjda:,rn ’

Eq. (VI-4) becomes

ik(j+1)dx ik(j~1)dz
Aeikjdx (,rn+1 _ 7‘"’) +aA,rn (ez (G+1)dz __ etk(i~-1))
dt 2dx
or
r—1 eikdz - e-—ikda:
+a =0.

dt 2dzx

We now define a constant z such that

ad;

de ™~

e

¥4

which allows us to rewrite Eq. (VI-7) as:
(ethdz _ gikdz)
2

r=1—z2

(VE-1)

(VI-2)

(VI-3)

(VI-4)

(VI-5)

(VI-6)

(VI-7)

(VI-8)

93

Using the mathematical identity, e* = cos @ + isinf, we obtain

r=1—1izsinkdz . (VI-9)

The magnitude of r is then

7| = V1 + 222sin? kdz . (VI-10)

This value is always greater than one, indicating that the solution will always diverge.

Hence, the cell-centered wave equation is unconditionally unstable.
C. Truncation Error Analysis

We will now approach the same problem of determining the numerical stability of
a wave equation that uses cell-centered differencing with another method of analysis.
Instead of using a test case, the numerical stability of our finite-difference equations will be
determine by truncation error analysis. In this method, partial differential equations are
finite-differenced, and a TAYLOR SERIES EXPANSION is used to determine the accuracy

of the finite-difference approximations.

A Taylor series expansion is based on Taylor’s theorem which states that for any

differentiable function f(z):
d 2 3
flo+do) = F(&) + 2 @) + T @) + (@) + (vi-11)

where f/, f”, ", etc., are the first, second, third, etc., derivatives of the function f.

Because T is simply a function of j and n, our variables can be represented as follows:

7 =T(j dz, nd{;)
TPt = T(j da, (n + 1) dt)
TP, =T ((j + 1)dz,ndt)
T, =T ((j - de,ndt) .

94

Expanding these values using a Taylor series and substituting the resulting terms into our

cell-centered wave equation, Eq. (VI-4), gives us

T’n + dt + dt2 32T Tn
i =+
T da:2 o2T aT , dz* 5° VI-12
(T.,?n + dm-é? 2 0z2) (T.,?n - dm% 2 an:T) ()

@ 2dz =0.

In this equation, all terms of order dz® or higher have been ignored. This equation can be

reduced to
or dté*r oT
Eﬁ'g‘ﬁ’i‘&g—@ (VI-13)
or
or oT dt 8T
We will ignore our —4 ?uT term for a moment, replacing it with an O(dt) to indicate
a term of order dt. Our equation becomes
or or
—a—t = —a—a; + O(dt) . (VI~15)
Differentiating this equation with respect to time gives
8T 0T
32 = %5251 + O(dt) , (VI-16)
while differentiating with respect to z yields
o*T 82T
il + O(dt) . (VI-17)
We can now use the value for % from Eq. (VI-17) to rewrite Eq. (VI-16):
o*T 32
or
8*T 82T
52 =% 5.2 + O(dt) , (VI-19)

95

which can be substituted into Eq. (VI-14) to obtain

8T 8T 1 , . 0°T 2
—% +a,—é; = ——2-a dt—aﬁ +O(dt) . (VI"20)

Ignoring the O(dt?) term, we see that we are left with a wave equation that includes a
diffusion term with a negative coefficient of conduction. In other words, if o = —%—azdt
and we ignore our O(dt?) term and the propagation term (aZE), we have

oT 8T
I . 9
5 = O 522 (VI-21)
Returning to our discussion of the stability of diffusion equations in Chapter III we

can now employ Eq. (III-14), rewritten as

dt

r=1- 40'3:-1;—2 . (VI-22)
Using the o from our wave equation, we see that
dt
r=1+ 2a2£§ . (VI-23)

_ From this expression we see that r will always be greater than 1, indicating the
unconditional instability of the centered approach. The error in this type of finite-difference
approximation causes a negative diffusion that causes the system to become numerically

unstable.

D. Truncation Error Analysis of the Donor-Cell Technique
Now let us apply this same form of analysis to a wave equation that is differenced

using the donor-cell technique. Consider a flow that moves from the left to the right, where

a>0, (VI-24)
then “
Tj-1/2 = Tjmt (VI-25)
Tiv12=Tj - (VI-26)

96

Using these values of T;_;/; and Tj1/, in Eq. (VI-2) gives

T+l _ T TN
j I J j—1 VI-
dt ra— (VI-27)

Expanding this equation using a Taylor series up to the second order terms yields

Tn + dt + dt2 32T Tn
dt —+

(T (Tp - do g+ %2 21%")) 0 (VI-28)
a =V,

dz

which can be reduced to

BT dt 62T 8T dz 8°T

Analysis similar to that of of Eqs. (VI-15) through (VI-18) gives the expression

O°T _ ,dT
8z~ " Bz2

+ O(dz) + O(dt) . (VI-30)
"This value can be substituted into Eq. (VI-29) to obtain

2
‘Z + agT (L2t + —ad:z:> Z f + O(dt?) + O(dzdt) . (VI-31)

By dropping our aax, O(dt?), and O(dtdz) terms, we are once again left with a

diffusion equation where

(1 Lo
o= (2ad:z: 59 dt) , (VI-32)

but this equation assumes that a is greater than zero; a more general o is
1 1
o= <§|a,|d:1: - —2-c_L2dt> . (VI-33)

In order for our equation to remain numerically stable,

r=1- 4aj—t <1. (VI-34)

97

or

dt
—do— . ;
0d:1:<0’ (VI-35)

which, assuming positive dt and dz, becomes
c>0. (VI-36)

Substituting our ¢ from Eq. (VI-33) into this equation gives us

o=1 |la} dz — Lo2dt >0 (VI-37)
2 2
or
|a| dt
1-——>0. (VI-38)

This equation is simply a statement of the Courant condition,

lv| dt
—<

1. IV-36
I (IV-36)

We see then that an Eulerian calculation that uses the donor-cell technique has the same
Courant stability condition found in Lagrangian codes.
E. Summary of Numerical Instabilities and Artificial Viscosity

Through the use of truncation error analysis to examine the accuracy of our finite-
difference approximation of the wave equation, we have shown that this approximation
represents not only the motion of a wave but a form of diffusion. In the cell-centered case,
the conduction coefficient of this artificial diffusion is negative, indicating a system that is

unconditionally unstable. This coefficient is

o= ——12—a2dt . (VI-39)

This instability can be avoided by using a donor-cell method, which yields a diffusion

coefficient

o= ——%azdt + % la| dz . (VI-40)

98

This method remains stable as long as the Courant condition is satisfied. This method is
flawed, however; for when we choose a case in which dt is very small compared to dz, o
becomes large, creating a large amount of artificial diffusion in the simulation. While this
diffusion does not create a numerical instability, it results in a less accurate simulation,
causing sharp boundary layers to become smooth.

In our simulations we will not attempt to avoid this lack of accuracy, but several
methods exist that avoid this problem. One of the more useful of these methods is the
ARTIFICIAL VISCOSITY technique, in which a cell-centered approach is used with an
additional diffusional term added to counteract the negative diffusion intrinsic to the finite-

difference approximations. Truncation error analysis of this method gives an equation in

the form
or oT 1 ,.8°T 0T
ot 95 = 5% dig Ty - (Vi-41)
If the coefficient of artificial viscosity v, is chosen, such that
1\ 5
Vg > 5] dt, (VI-42)

the numerical stability of the system can be maintained while increasing the accuracy of
solutions. This method of improving finite-difference codes is a direct result of truncation
error analysis.

Truncation error analysis can be used to determine the validity of finite-difference
approximations, indicate the conditions necessary to maintain numerical stability, and
describe methods by which the accuracy of solutions can be improved. Although it does
not have a major effect on the codes that we are writing in this series of exercises, it helps
to explain some of the reasoning that lies behind these programs. A versatile and powerful
tool, truncation error analysis is essential to the person who wishes to examine the basic

foundations on which finite-difference codes are based.

99

VI, TWO-DIMENSIONAL INCOMPRESSIBLE FLUID FLOW
A. Calculations in Two-Dimensions

Up to this point in this series of exercises, all problems have been one-dimensional.,
thus simplifying our simulations in a number of ways: their equations had only to take into
account changes in a single direction, their boundary conditions have existed at only two
points, and their arrays of variable values have been of a small, one-dimensional sort. For
the systems that we have been dealing with up to this point, a one-dimensional approach

has allowed us to simplify our problems while still generating results that were accurate.

However, few problems can be represented in a single dimension. Our one-dimensional
models assumed both cylindrical symmetry and radial uniformity, two qualities that are
rarely found in the same system. Many more systems can be represented by using two-
dimensional models. These models can represent any system that has uniformity in a single

dimension, including the azimuthal direction used in cylindrically symmetric situations.

The type of two-dimensional code that assumes cylindrical symmetry employs an 7-2
set of coordinates. In this type of simulation, cells are defined by two numbers, 7 and 2.
r represents the distance of a cell center from the axis of the cylinder, and 2 represents
the position of a cell center along that axis. The higher the r, the farther away from the

center of the cylinder; the higher the z, the farther down along it.

A second sort of two-dimensional code assumes translational symmetry in one
direction. While changes between cells in such a code may take place in two directions, all
quantities are assumed to be invariant in the third direction. It is this type of simulation

that we will examine in this chapter.

In this sort of code, an i-j set of cell counters are employed, with ¢ representing the cell
number in the horizontal direction and j representing cell number in the vertical direction.
The resulting two-dimensional array of zones, also known as a MESH, is made up of i X j

individual rectangles of length dz and height dy. This mesh appears in Fig. VII-1.

100

J+1
e, e —— Y e e—a—a
‘ :
—_ : ‘
J ! :
e B mmy E m IS w
. \
\
X \
\
:\.\\.\\.\\.\ e wwwwwwi
o \
\
3. '
. \
1
:" ““““““““ \
\
2 '
) \
) \
P i B B e e mmaey s IECNENESENENP NN a
‘ \
1
ayl 1 \
................ 1
L}
0 . . : ‘ : :
X : \ N ! v
: [L} N ! \
[, Lemaaaa L I SRR l 1
0 —1 5 2 3 | [+ 1
dx
Figure VII-1

Notice that each cell is referenced by two numbers: ¢ and j. The position of cell quantities
will now be referenced by two subscripts instead of one: [Quantity]; ;. Notice also that
there are now four one-dimensional arrays of fictitious zones: (4,0), (4,7 + 1), (0,5), and

G+1,5). These are needed to represent the two-dimensional boundary conditions.

101

We will be using this mesh to simulate incompressible fluid flow in two dimensions.
Our simulations will be Eulerian, allowing for a mesh of rectangles with fixed positions.
Three main variables will be used, as shown in the following table:

Pl; = p(1,7) = pressure per unit density
ufy /9, = u(i,j) = horizontal velocity
vp 12 = v(3,5) = vertical velocity
Note that pressure per unit density is represented at the cell centers, horizontal velocity at
the right and left walls of the cells, and vertical velocity at the top and bottom cell walls.
A mesh in which variables are configured in this manner is known as a STAGGERED

MESH. A pictorial representation of a staggered mesh zone appears in Fig. VII-2.

.Vu,j+1/2
@
,u|—1/2,j ®r Ui 12,
V.
i,j—172
4. J
Figure VII-2

Internal energy, density, and artificial (viscous) pressure arrays are not needed since

the flow is incompressible; and therefore there are no changes in density, no changes in

102

energy due to pdV work, and no shocks that would require an artificial viscosity. Velocity
in two directions and pressure per unit density are the only variables that are needed in
the equations that describe two-dimensional incompressible fluid flow.
B. The Equations of Two-Dimensional Incompressible Fluid Flow

To derive the transport equations of two-dimensional incompressible Eulerian fluid
flow, we begin with our principles of flux and conservation. Advective flux of mass is again

equal to density times velocity:
Mass Fluxagy = p velocity . (VII-1)

The total amount of mass moving across a boundary in a given time step is equal to the

mass flux multiplied by the area of the boundary multiplied by the time step:
A Mass = Flux Adt . (VII-2)

Applying this equation along with Eq. (VII-1) to a cell in the mesh gives the following
expressions for changes in mass due to flux across the left, right, bottom, and top cell

walls:

A Massjefy = pu;_1/2;W dydt (VII-3)

A Massyight = —pu;ir1/2,; W dy di (VII-4)
A Masspottom = pv;,j—1/2W dz dt (VII-5)
A Massop = —pv; jr1/2W dz dt . (VII-6)

In these equations, p is the constant value for the density of the fluid and W is the width
of a cell, its thickness in the third dimension. The change in mass is negative in Egs. (VII-
4) and (VII-6) because they represent mass being carried out of the cell by rightward
velocities through the right cell wall and upward velocities through the top.

Mass conservation tells us that the total change in mass is equal to the sum of the

masses that are fluxed across each of the boundaries:

A Masstotal = A Mass;ighs + A Massiess + A Massyop + A Masspottom - (VII-7)

103

For the incompressible Eulerian case, the total mass of a cell remains constant. Therefore,
AMassiotar = 0 - (VII-8)
Combining this equation with Eq. (VII-7) gives
A Massyight + A Massiess, + A Massiop + A Masspottom = 0 ; (VII-9)
or, using Egs. (VII-3)-(VII-6),
PW [—tsp1/2,58Y + Wim1/2,58Y — Vij41/202 + v; j—1/2dz] =0, (VII-10)
which reduces to
dy (wir1/2,j — i-1/2,5) + 0T (v j+1/2 — v; j-1/2) =0 (VII-11)

or

Ui+1/2,f — Ui-1/2,5 | Yi,j+1/2 ~ Y4,5-1/2
=0. VII-12
dz + dy ()

" Eq. (VII-12) is the two-dimensional finite-difference equation for Eulerian mass flux
in an incompressible system, one of the two major equations that will be used in our code.

Tt is closely related to the Eulerian one-dimensional mass flux equation, namely

Op Oou _y (V-37)

ot Oz
In two dimensions, Eq. (V-37) becomes

op Opu 0PV _

= VII-13
ot s Ty (VI-13)
which, assuming a constant p, becomes -
du Ov
- = VII-14
s T oy 0 (VIF-14)

which is a partial differential representation of Eq. (VII-12).

104

The second major equation that is used to simulate incompressible fluid flow is the
momentum equation. In a two-dimensional system, this equation becomes two equations,
one representing vertical momentum and one representing horizontal momentum. Each of
these equations is solved over a momentum cell that is staggered such that its center exists

where a velocity is directly represented. Two such momentum cells appear in Fig. VII-3.

j+1

vertical
momentum cell

i i+ 1

& 2 &5
& % 4
2 o
@ 25 &
& & o & 4
% S S & &
& o o & 2
s o o o -
7 2 & % o
o Ao 3 2 s
2 & 5 i~ %
o 2 5 e
W % & z & 5
\ o
o o &
4
o 5 e
o &5 25
e &
& &
o & &
& s &
& 25 “

horizontal momentum cell
Figure VII-3

Let us consider the case of the horizontal momentum zone, in which momentum is
in terms of u. Like the mass equation, the momentum equation that is applied to the

two-dimensional cell is very similar to the one-dimensional equation, Eq. (V-38):

dpu Opu® Bp+q)
ot s T o (V-38)

This equation is made up of three terms: the rate of change of momentum (%’%‘), an

advective term (%’%2-), and a pressure term (2(—21'—‘7)). These same three types of terms

105

appear in the two-dimensional equation but with several changes made to the advective
and pressure contributions.

Advective flux of momentum in two dimensions occurs in much the same manner
as advective flux of mass. There are four surfaces on a momentum cell across which
momentum can be carried: the left, right, top, and bottom cell walls. Just as mass flux
in Eq. (VII-1) was density times velocity, momentum flux across each of the surfaces in
the momentum cell is momentum density (Auid velocity X mass density) multiplied by

carrying velocity:
Momentum Fluxaqy = pvelocitygyiqvelocity arrying - (VII-15)

These advective fluxes are illustrated pictorially in Fig. VII-4.

(pUV) i+ 1/2, j+1/2

—— (pu2)i+1,]

=

i+ 1

(pu2) i, .
(PUV) i+ 1/2, j—1/2

Figure VII-4

106

PEETEE T L (6»--’4&/&\4% FT TS S {e.vvm:v‘. -
s 4

As was the case with mass flux, the total amount of momentum moving across a
boundary in a given time step due to advective flux is equal to the momentum flux

multiplied by the area of the boundary multiplied by the time step:

A Momentumagy, = Fluxag,Adt . (VII-16)

Using this equation to determine the change in the momentum of a cell 7 + 1 /2,7 due to

the fluxes shown in Fig. VII-4, we obtain

A Momentumagy,,,, = pui ;W dy dt (VII-17)

A Momentuma dvygn, = —puZyq, W dydt (VII-18)
A Momentuma dvyopsom = A(U0)it1/2,j-1/2W da dt (VII-19)
A Momentumady,,, = —p(uv)it1/2,j+172W dz dt . (VII-20)

These four equations can be combined to form an equation for the total change in

momentum due to advection:

- A Momentumadvye,, = W dtdy ((0u?)i; ~ (pu?)ir1,5)
(VII-21)

+ Wdtdz ((puv),-+1/2,j_1/2 — (puv)it1/2,541/2) -

Dividing both sides by the volume of a cell (W dz dy) to generate an expression in terms

of momentum density, we obtain

Apung, = dt [(pu?); ; —da(:pu:z)i+1,j + (puv)i+1/2,j-—1/2;:;(pu'v)i+1/2,j+1/2] (VIE-22)

or

Aptiagy _ (pu?)iv1,5 — (pu?)sg T (Puv)is1/2,541/2 = (PUV)it1/2,5-172 . (VIL-23)
dt dx - dy

which can be represented in partial differential form as

Opu _ Opu® Bpwv
dt)adv Oz dy - (VI-24)

107

In the two-dimensional momentum equation for the horizontal direction, the term

that is analogous to the advective term in Eq. (V-38) (Qé%z) is

_ (pu?)ir1y — (Pu?)ig _ (ouv)it1/2,5+1/2 = (PUD)it1/2,5-1/2
dz dy

or
_0pu? Opuwv
oz oy

The pressure term of Eq. (V-38) is written for two-dimensional incompressible flow

by first separating it into two components:

dp+q) _p 9q
— =t (VII-25)

The effect of the real pressure (p) on momentum in the x-direction in two dimensions is the
same as in one dimension; this term remains in the same form. The viscous pressure term
in two dimensions, however, is rewritten in terms of a true viscosity. This true viscosity
parallels artificial viscous pressure in a manner that can be seen by dividing the viscous

pressure equation into two terms:

9= , 04y
5z By

These terms can be rewritten using the equation for viscous pressure,

g7 =qopjc (u}-‘_l /2= Uit /2) if positive
or if negative g7 =0 (IV-24)
or
Upr — U
gz = —qo pcdzx (T’d:z: l)) (VII-26)

which appears in partial-differential form as

0
gz = —QopC dwé-z— : (VII-27)

108

The x-direction term becomes

a T 6
Y= = (pqo cdm_Z) , (VI-28)

%% __ 0 (MO cdy_“> , (VII-29)

When combined, these terms appear as

O0q: Ogy O du) 0 Ou
B + oy - om <pcd:z: 6:1:) 39 pcdz 5y) (VII-30)
which can be rewritten in the incompressible case as
0gz , Ogy _ du? ou?
oz oy P\ cdzo—s +qocdy 5) - (VII-31)

But the term that is used to represent viscosity in two dimensions is actually

Pu F%u
(35
where v is a constant known as the KINEMATIC VISCOSITY. The reason that this
constant is used rather than the gocdz and gocdy values in Eq. (VII-31) is to represent
the rate of diffusion of momentum in the fluid in an ISOTROPIC manner, a manner that
does not prefer one direction over another.

Our use of a real viscous term of this type is not meant to imply that dy = dz
but rather to represent diffusion in a way that is not preferential to any direction. The
constant v in this equation is the simplest manner for representing the physical phenomena
of viscosity, which parallels the concept of thermometric conductivity used in our equations
of heat transfer. Both these equations appear as a-coefficient times a second derivative:

aaz—T and pv <§if_‘_ + 82—“)
Ox2 0x2 Oy?2)’
and both represent the diffusive propagation of a quantity.

109

There are more complicated methods for simulating viscosity which attempt to
preserve the isotropy of the diffusion terms while reconciling the disparity between the
g equation and the diffusive terms. These methods are beyond the scope of this work,
however, and have never been fully successful. Therefore we will use a constant v.

Now that terms for advective flux and pressure (now pressure plus diffusion) have
been determined, a two-dimensional equation for Eulerian change in momentum in the

x-direction can be written

a_aptﬁ — adv term + pressure term = 0 (VII-32)
dpu Opu? Opuwv Op Pu Ou\
5 + 5 5y + 5~ P\ 52 + 5) = 0. (VII-33)

Because density is constant in the incompressible case, we divide by p to obtain

_ (VII-34)

du ?ﬁi duv 0P (82u Bzu)

wt et ey T as U\ T a2

where P is equal to p/p. Similarly, the equation for change in momentum in the y-direction
is

2 2 2
v Ouv @_ OP V(c’)'u 37)). (VIL-35)

Gt o Tay T oy U \Ga ' oy
These two equations, along with the mass equation, Eq. (VII-14) [in finite-difference form
Eq. (VII-12)] make up yet another form of the Navier-Stokes Equations and form our
mathematical model of two-dimensional Eulerian incompressible fluid flow.
C. Solving Two-Dimensional Fluid-Flow Equations
To solve the equations of two-dimensional incompressible fluid flow, we will make use
of a method that combines both explicit and implicit solving techniques. This method is

used because of a stability condition that is present in the pressure term in the momentum

equation.

110

This stability condition can be explained by examining the general equation for sound
speed. For an ADIABATIC system, meaning a system that contains no processes that

either absorb or generate heat, this equation is

dp
2 _ _
¢ = e (VII-36)
It can be manipulated to obtain
dp = c?dp . (VII-37)

The pressure term for the momentum equation(%-gg) can then be rewritten as

10p 2 8p

In an incompressible system p is a constant, meaning that gﬁ = 0. But, pressure
is not a constant, indicating that gﬁ # 0. We see then that ¢2 — oo, but the Courant

condition states that
(Jul + c)dt
— <1, VII-39
T ()
inciicating that our system will be unstable if pressures are computed explicitly.
Our one-dimensional fluid simulations have shown, however, that the advective terms

of the momentum equation can be solved explicitly without becoming unstable, and the

viscous terms are limited only by the diffusional stability condition:

vdt 1
E § (VH—40)
vdt 1
ZZ? < 5 . (VII—41)

While the pressure contributions in the momentum equations must be computed
implicitly, then, the rest of the terms can be computed faster using an explicit method.
While it is conceivable that all terms of these equations can be computed using an implicit
method, a better technique is to calculate the advective and viscous terms using an explicit

solver, then calculate the change in pressures with an implicit solver.

111

This calculation is done by first grouping together the advective and viscous terms of

the momentum equations. Equations (VII-34) and (VII-35) become

Using the finite-difference approximation of au and ‘g*t’, we obtain
U?jll/z j = Uiz, b < aaig; B %Lyﬁ v (g% * %)) % g—P (V44
vt e = Vigere T A (—%1;—” - ?;—: +v (% + g—;g)) —dt %—g . (VII-45)

We now define quantities & and ? such that
ou? Buv Pu 8%
~n+1
u?_*_l/zj —uz+1/23 +dt< %— —B'?-*"V (—a?'i'a—yi))

—n+1 d Suv Ov? 8%y 8%
U:J+1/2_vzﬂ+1/2+ t ’a—x'—Fy“Fl/ @'&'a—yz .

These terms represent the horizontal and vertical velocities at the next time step, barring

any contribution made by pressure. They allow us to rewrite our momentum equations as

oP
+1 —n+41
Uy = Trayag dt=— (VII-46)
opP
1 _
UZ;-+1/2 12;:1/2 dta—y- (VII-47)

In finite-difference form, % and v appear as

g1 dt uzz—!-l,j - ufg (wv)ig1/2,j+1/2 — (’Lw)z'+1/2,j—1/2

Uirjag = Yir1/2g — @& T dy

Uirs/2,j T Ui-1/2,5 — 2Uit1/2,5 Uit1/2,54+1 T Yir1/2,5—1 — 2Uit1/2,5
—v —v
dz? dy?
(VII-48)

—— & (uv)ir1/2,5+1/2 — (U0)i-1/2,541/2 V1~ Ve

Yij+1/2 = v, g+1/2 T dz + dy

Vit1,j+1/2 T Vim1,54+1/2 — 2V j+1/2 Vi j48/2 T Vij—1/2 — 2Vi5+41/2
—y —v
dz? dy?
(VI1-49)

112

t ¢
[N e s £80 s Dt ' | SO |

In these equations the advective terms can again be calculated using either a donor-
cell or cell-centered technique. In this case, a cell-centered approach is allowable because
the viscous term prevents numerical instability in a manner described in Chapter VI. This
approach results in a code that is able to resolve delicate physical phenomena that occur

at low viscosities.

The KARMAN VORTEX STREET, a type of turbulent fluid flow, is one such
phenomenon. This type of flow can be examined by simulating a system in which fluid
flows in from the top and bottom thirds of the left wall and out through the entire right
wall. At low viscosities, this system will form a fluctuating stream called a vortex street.

This phenomenon will be discussed in more detail later in this chapter.

Use of the donor-cell technique results in a code that is able to handle more violent
phenomena, such as the rushing of fluid over a stationary block. It allows for systems
at higher velocities and with more change in velocity to be simulated without becoming
numerically unstable but loses much of the precision of the cell-centered technique. Because
the Karman vortex street will not evolve with this imprecision, the cell-centered technique

is used in the examples in this chapter.

Using the appropriate technique to express the advective terms, two-dimensional
arrays of 4 and ¥ are computed using an explicit method. The resulting arrays are then used
to compute the velocities and pressures implicitly. The equations that are implicitly solved

are the mass equation (VII-12) and finite-difference versions of Egs. (VII-46) and (VII-47):

Py~ P!
+1 — sn+1 2+1, 2,
prtl _ prtl
+1 _ -ntl J+1)
Viiri/e = Vhjp1je — At (el R (VIL-51)

113

The function that converges to zero in the iterative solution is the mass equation. This
convergence is achieved by defining a quantity D;,; such that it is the difference between

the momentum equation and its desired value of zero:

Ui+1/2,5 — Ui—-1/2,5 4 Vi, j+1/2 — Vi, i—1/2

D; ;=
b dz dy

Because 4 and ¥ are calculated before any implicit calculations are done, they do not
change during the iterations. The vertical and horizontal velocities in our definition of D
are therefore functions only of pressures, as shown in Egs. (VII-46) and (VII-47). Newton’s
method [Eq. (I11-24)] can therefore be applied to the solution of the pressures with D(P)

replacing f(z). The resulting equation is

D (P)
PrY = PPt — —ap= . (VII-52)
T (@

(—g%)i,j is computed using the chain rule, which says that for a function

y = F(a(z), b(z) c(z) -..)
dy OFda OF% Ol (VIL-53)
dr = 8a dx ObOx Oc Oz ’
In our case this means

(?2) — 3Di,j 5“i+1/2,:i+ 0D; ; 6Uz'—l/z,j
OP/);; Ouitr2; OFi; Oui_1/2; OFi;

VII-54
OD;; 0Ovijt1/2 + dD;; v j-1/2 ()

Ovijr12 OPs; Ovijoi2 OF;

+

These partial-differential terms can be rewritten using Egs. (VII-50) and (VIL-51) and our

definition of D:
ODY _1(d\ (_1Y)(_dt),
oP /.. dz \dz dz dz
“ (VII-55)
1(d), (C1N(e
dy \ dy dy dy)’
which reduces to
oD 1 1
(57)., (@ as) (Ve

114

Consequently, our equation for the implicit updating of pressures is
)
PPS™ = PPd — BD; 5, (VII-57)

where
1

2dt (s + 3&2)

Through the use of this equation along with the % and ¥ equations [Egs. (VII-

B (VII-58)

48) and (VII-49)], two-dimensional incompressible Eulerian fluid flow can be accurately
represented. These equations make up a method that uses both explicit and implicit
solving techniques to simulate the motion of an incompressible fluid computationally.
D. Computational Implementation of Equations

Our program is once again structured in five major sections: setup, checks and
incrementations, boundary conditions, variable updating, and output; but the interaction
of these sections is slightly different from that of previous codes. Our two-dimensional

code is configured as in Fig. VII-5.

I st =stime.
[e S |

pt =ptime

Figure VII-5

115

Notice that in this figure, three different types of boundary conditions appear, along with
an explicit/implicit solver. Each of these will be discussed, but first let us examine the
setup routine.

This procedure includes the same time variables present in our previous finite-

difference codes (dt, pt, etc.) and the following additional variables:

ibar and jbar — — the number of interior zones in the x- and y-directions

xlen and ylen — — lengths in the x and y-directions

dx and dy ——— the horizontal and vertical lengths of a zone
anu ——————— the kinematic viscosity
P, u and v—— — —two-dimensional arrays of pressures and velocities

PO, u0, and vO— —the intial values of the P, u, and v arrays

beta——————— =t

p 2dt(p+227)
ur,ul - ————— the fuid velocities normal to the right and left walls
vt, vb—————— the fluid velocities normal to the top and bottom walls
Dtest —————— the accuracy to which D; ; should converge

In certain cases, output may be required at regular intervals beginning after a certain time.
(Every 10 seconds after 100 seconds have elapsed, for example.) To do this, an optional
variable btime can be used to represent the time that the program should begin to call
the output procedure. The check for output would then become an “and” statement that
checks both for pt ; ptime and st ; btime.

The setup procedure assigns all read in constants and calculate dx, dy, and beta.
Velocities and pressures should be set to their initial values. Dtest has the dimensions of
s~1, a velocity divided by a distance, and should be assigned a value of a characteristic
velocity of the system multiplied by a value between 1 /100 and 1/1000 and divided by a
length of a cell. For example, for a system where the major inflow of fluid was from the

left, 0.005 * ul/dx would be a reasonable value to assign to Dtest.

116

Optionally, a perturbation can be added to the initialization routine, which allows for
turbulent phenomena such as the Karman vortex street to develop more rapidly in our
simulations. A perturbation is added by assigning a pinwheel of velocities surrounding
a point somewhere near the center of the mesh: ¢ = /3, j = j/2, for example. In this

vicinity, velocities should be assigned:

Uiy1/2,; = perturb (VII-59)
Vig1,541/2 = perturdb (VII-60)
Uiy1/2,j41 = —perturb (VII-61)

Vi j+1/2 = —perturb , (VII-62)

where perturb is a velocity typical to the system. For example, in a system where the
major inflow of fluid is at the left wall, perturd could be equal to ul.
Flow velocities at the cell wall must be assigned so that the amount of inward flow is

equal to the outward flow. That is
WdyZuous + WdzZvow = WdyZui, + WdzXvi, (VII-63)

or

dyZuout + dxEvout = dyXttin + drTviy , (VII-64)

where Sugy: and Zvey are the sums of the velocities of all outward flowing zones and
Yui, and Dvy, are the sums of the velocities of all inward flowing zones. This constraint
is necessary to ensure the conservation of mass in an incompressible system and must be
applied according to the system that one wishes to represent. For example, if velocities at
the top and bottom are set to zero, inflow of fluid is from the bottom and top thirds of
the left wall, and outflow occurs all along the left wall, ur would be equal to %ul.

These velocities are assigned at the wall in an initial boundary condition procedure

that is called only once during the program. This procedure assigns the ur value to the

117

appropriate zones in the u(0,j) array, ul to the u (ibar,0) array, vb to v(i,0), and vt to
the v(i,jbar) array. In the Karman vortex street problem, for example, ur, vt, and vb are
assigned to all the elements of their respective arrays, and ul is assigned over the range
u(0,1) to u(0,jbar/3) and u(0,jbar-(jbar/3)) to u(0,jbar). A value of zero is assigned from
% +1toj— % — 1. Note that a value j — % is used rather than %—1 to preserve the symmetry
of the system in cases when j is not divisible by three. The initial boundary need not
assign pressures for the ghost zones, however, as the pressure values in the ghost zones are

never used.

The initial boundary condition routine that sets flow velocities in and out of the
system is contrasted with the tangential boundary condition routine, which is called at
the beginning of each time cycle. This routine sets the flow velocities in the ghost zones
that run parallel to the walls of the system: v at the left and right, and v at the top
and bottom. These velocities are usually assigned using a FREE-SLIP METHOD, which
assumes that fluid running parallel to the walls experiences no friction with that surface.
This sort of boundary condition is used in situations where the layer of fluid that is affected
by-friction with the wall is much smaller than a cell. In these cases the effect of friction is
negligible, allowing it to be approximated through the use of tangential velocities outside
the walls equal to the tangential velocities inside the walls. This condition is expressed in

the following equations:

u(3,0) = u(i, 1) (VII-65)
u(s, jbar + 1) = u(3, jbar) (VII-66)
v(0,5) =v(1,5) (VII-67)
v(ibar + 1,7) = v(ibar, 5) (VII-68)

which make up the tangential boundary condition routine that must be computed every

time cycle.

118

There is also a third type of boundary condition procedure, the outflow boundary
condition routine. This routine is called at every implicit iteration to update the velocities
at any wall at which outflow occurs. Its purpose is to assign outflow velocities that
accurately represent the outflow velocities of the system, while maintaining the balance
between inward and outward flow as shown in Eq. (VII-64).

In order to accurately represent the physical system, the outward flow at a given cell
wall must be proportional to the outward flow before that wall. That is

Uouti+1/2,j X Ui—1/2,5
Uout1/2,7 X U3/2,5
Vouti,j+1/2 X Vi 5-1/2
Vouti,1/2 X Vi,3/2 5
while also maintaining Eq. (VII-64).
By specializing to the case where there is no inward or outward flow at the top and

bottom walls, Eq. (VII-64) can be written as
dyXuzy 1/ 5 = dyXuy e (VII-69)

or

2’&;_,_1/2,_.,- = Eul/z,j . (VII—70)
We can now derive an expression for uzyy/o ;. AS uzyy/9,; is proportional to u;_y/s j,
Uzpi/e,; = AUi_1/2,5 5 (VII-71)

where A is a constant.

Substituting this equation into Eq. (VII-70) we obtain

A 2“{_1/2,‘1 = 2’?1,1/2,_7' (VH—72)
or
5 .
A= Y25 . (VII-73)
2uz_g /2,5

119

We then substitute this value of A into Eq. (VII-71) to obtain an expression for outward
boundary conditions for the Karman vortex street problem:

2u1/2,5
Uzt1/2,5 = Ui—1/2,5 (m . (VII-74)

This equation is applied to the array of right fictitious zones at every implicit iteration. It
describes the outward boundary conditions for the Karman vortex street problem.

Returning to the question of solving our equations using a partially-implicit method,
we see that the code that must be written has been described to a large extent. The variable
updating portion of the program is divided up into two sections: an explicit routine that
computes % and U, and an implicit routine that computes pressures and horizontal and
vertical velocities.

The explicit routine is simply a double loop that computes & and ¥ values for all cell
edges except for those at the boundaries of the system; @ and ¥ are calculated only once
each time step, using Eqgs. (VII-48) and (VII-49).

_ The implicit routine is similar to the solver used in Chapter III. This section consists
of a loop that iterates until the values of D have converged to within Dtest. At the
beginning of each iteration, a variable Dmax is assigned a value of zero. The program
then moves into a double loop that calculates D; ; for every point within the mesh and
stores the largest absolute value for D; ; as Dmaz. Pressures are reassigned according to
Eq. (VII-57), velocities are updated, and outflow boundary conditions are implemented.
A test is then made between Dmaz and Dtest: if D has converged to within Dtest, the
program moves to the next time step; if D has not yet converged, the loop iterates. This
implicit loop should not be repeated more than about 100 times. An example for the
coding of this loop is the following:

times = 0
100 Dmax =0

¢.. compute new D’s

120

do 200 i = 1, ibar
do 200 j = 1, jbar

D(ii J) = (U(i, j)'u(i'l, J))/dX + (V(ia j)-V(i, j'l))/dy

if (abs(D(i, j)).gt-Dmax) Dmax = abs(D(i, j))
200 continue
c.. compute P’s
do 300 i = 1, ibar
do 300 j = 1, jbar
P, j) = PG,) - (beta*DG, J))
300 continue
c.. compute u’s and v’s
do 300 i = 1, ibar-1
do 300 j = 1, jbar
u(i, j) = ubar(i, j) + (dt/dx)*(P(i, j)-P(i+1, J))
300 continue
do 400 i = 1, ibar
do 400 j = 1, jbar-1
v(i, j) = vbar(i, j) + (dt/dy)*(P(, §)-P(, j+1))
400 continue
times = times + 1
c.. reset boundary conditions
total = 0
do 500 j=1, jbar
total = u(ibar-1, j) + total
500 continue
do 600 j=1, jbar
u(ibar, j) = u(ibar-1, j)*(2./3.)*(jbar*ul/total)

121

600 continue
if ((Dmax.lt.Dtest).or.(times.gt.100)) goto 1000
goto 100
1000 return
end
The program should contain an output routine that represents the system in a way that

is meaningful to the user. One useful output technique is the plo.tting of STREAMLINES;,
lines that iqdicate the path along which the fluid is flowing. These are determined by

examining the direction of the motion of an arbitrary point in the fluid. Consider the

following case:

Figure VII-6

In this diagram, dS represents the displacement of the fluid at a point i,j over a time dt.
This vector is made up of two components, dz and dy. The values of dz and dy are the

horizontal and vertical velocities multiplied by the time step:

dz = udt (VII-75)
dy =vdt . (VII-76)

122

A function ¥(z,y) can be defined such that it is constant along the motion of the
fluid. Along d3, then,
dp=0. (VIL-77)

Returning to the mathematical identity expressed in Eq. (VII-53), we see that

dp = a”bd + % (VIL78)

Substituting values from Egs. (VII-75), (VII-76), and (VII-77) this equation becomes

Oy %

0= -3_— udt + —3— vdt (VII—79)
or
_ oY oY
0= 5 + By v. (VII-80)
To solve this equation for %_,ﬁ- and -g—'g, we substitute in the following values:
o
and
op
huth A VII-82
By Bu, (VII-82)

where A and B are new variables. Equation (VII-80) then becomes

—A(uw) + B(uv) =0 (V1I-83)
or

A=B. (VII-84)

If we choose A = B =1, Egs. (VII-81) and (VII-82) become

op :

B —v (VII-85)
and

oY

_ay = (VIL-86)

123

By using Eq. (VII-85) in the mass equation (VII-14), we obtain

o (), & [W\ _

% (5) ta (C5) = (VILED)
%y 0%
S0y~ 335y =0. (VII-88)

This equation indicates that if either of Egs. (VII-85) or (VII-86) is used to compute 9
over a system that satisfies the Eulerian mass equation, the other one will be automatically
satisfied. Values of 9, as described by either Eq. (VII-85) or Eq. (VII-86), are constant
along the direction of fluid flow. A contour plot of the two-dimensional array of ¥’s will
therefore indicate the shape of the flow in the system. This array is numerically calculated

by using ¢ values that exist at the cell corners:

psi(i,) = Yir1/2,5+1/2 - (VII-89)

Because velocities at the bottom cell wall are constant and therefore define a
streamline, psi’s along this boundary can all be set to a constant, 0 for example. The rest
of the psi array can be calculated using the finite-difference approximation of Eq. (VII-86),

namely

Yir1/2,5+1/2 — Yitr1/2,5—1/2
+1/2,j+1/ dy i+1/2,5-1/ = Uit1/2,5 (VII—QO)

or
Yiv1/2,5+1/2 = Yit1/2,5-1/2 + AYUir1/2,5 - (VII-91)

In code form this equation becomes
psi(L) = psi(ij-1) + dy * u(ij) - (VI-92)

Lines of constant psi can be plotted by using a contour plot routine, which will result
in graphs that indicate the motion of the fluid at any given time step. These graphs use
the reference frame where the obstacle is stationary but can be placed in the reference

frame of the fluid by calculating psi as
psi(i,j) = psi(i,ji-1) + dy * (u(i) -ur) . (VII-93)

124

Contour plots of ¥ in both reference frames appear in the results portion of this chapter.
The output procedure is the last section that must be written in our incompressible
two-dimensional Eulerian fluid-flow code. This code is structured as was shown in Fig. VII-
5. A version of this code that includes streamlines can be used to examine the Karman
vortex street problem, generating results such as appear below.
E. Simulation of the Karman Vortex Street
There are several different cases that can be examined using a two-dimensional fluid
code. By varying the dimensions of the object, the speed of the flow, and the viscosity
of the fluid, flow at various REYNOLDS NUMBERS can be examined. The Reynolds
number is a dimensionless quantity that measures the ratio of advective effects to viscous
effects in a system. For the Karman Vortex Street problem, it is calculated as

Re= h——bZ“ﬁ , (VII-94)

where hops is the height of the obstacle, v is the viscosity of the fluid, and u is the velocity

of the fluid at a point far away from the obstacle. In our case
Ugo R UT . (VII-95)

As the Reynolds number increases, the system is likely to become more and more turbulent.

At low Reynolds numbers (numbers lower than about 4), the flow is steady and exhibits
no flow separation. This behavior can be seen in Fig. VII-7 which is taken at a time of 25
(s) using the following parameters: xlen = 50 (cm), ylen 15 (cm), ibar= 50, jbar = 30, anu
= 1.25 (cm?/s), ul = 1.5 (cm/s), dt = 0.1 (s), and PO, u0, and v0 are all 0. The object
is 5 (cm) wide, taking up the middle third of the left wall. This system has a Reynolds

number of 4.

125

Streamlines at time 25
Reynolds Number = 4

Figure VII-7

Note that in this simulation dz is not equal to dy; this inequality demonstrates the fact
that these quantities need not be equal for accurate results to be obtained.

At slightly higher Reynolds numbers (numbers above 4 to about 40), a pair of
VORTICES form behind the object. These are areas where fluid is not moving along
with the main flow, but rather circling behind the object. At these Reynolds numbers, the
direction of the flow in some areas behind the object is opposite to that of the main flow
stream. A flow containing vortices is illustrated in Fig. VII-8, which is generated using the

same parameters as Fig. VII-7 except for anu which is 0.2 (cm/s?).

<>
-

Streamlines at time 25
Reynolds Number = 25

Figure VII-8

126

At Reynolds numbers between 40-500, the vortices become larger and begin to move
away from the object as is illustrated in Fig. VII-9 (anu = 0.02; all other parameters are

the same as in the previous graph).

Streamlines at time 25
Reynolds Number = 250

Figure VII-9

Notice that in this graph, the vortices are asymmetric. In nature, this asymmetry is
initiated by the presence of miniature “flaws” in the fluid. Numerically, this asymmetry is
a consequence of the perturbation that was added in the setup procedure.

"~ The vortices move away from the object one at a time in an alternating fashion,
creating a fluctuating stream, the Karman vortex street. Figure VII-10 shows the same
system as Fig. VII-9 but at a later time, when the Karman vortex street has has time to

develop.

Streamlines at time 50
Reynolds Number = 250

Figure VII-10

127

Note that the vortices that are shed from the object move downstream to the right with
the main fluid flow, and cannot be seen in this graph.

Figure VII-11 shows a fully developed street at a time of 100 (s). Other parameters are
the same as in the previous graphs, except for jbar, which has been lowered to 15 in order

to demonstrate that the vortex street can be simulated at relatively coarse resolutions.

Streamlines at time 100
Reynolds Number = 250

Figure VII-11

. The vortex street can be better seen by placing the streamlines in the reference frame
of the fluid, as if the object were moving and the fluid were stationary. This approach

results in graphs such as Fig. VII-12.

Y=
e

Streamlines at time 100
Reynolds Number = 250
U = 1.0 (fluid reference frame)

Figure VII-12

128

The fluctuations in the Karman vortex street occur at regular periods, as can be seen
in the next series of graphs, obtained using the same parameters as the previous graph.

Graphs appear in the reference frame of the object (ues = 0.).

— L =

Streamlines at ime 100 Streamlines at time 106.25
Reynolds Number =250 Reynolds Number = 250
Figure VII-13 Figure VII-14

e \va\\//v

;
5

—— /_\ —_——
Streamlines at time 112.5 Streamlines at time 118.25
Reynolds Number = 250 Reynolds Number = 250
Figure VII-15 Figure VII-16

Streamlines at time 125
Reynolds Number = 250

" Figure VII-17

129

Analysis of these graphs indicates that the stream is fluctuating with a period of roughly
15 seconds.

We can use this period to calculate the STROUHAL NUMBER, which relates the
period of the stream to the size of the object and the rate of the flow. The Strouhal

number is a dimensionless quantity that is calculated as

St = —Tobs (VII-96)

Uco Tstreet
where hops is the height of the obstacle, uq, is the velocity of the fluid at a point far away
(in our case u,), and Tstreet iS the period of one oscillation.

Experimentally, the Strouhal number in a Karman vortex street has been observed to
be about 0.20. For our computational system, we calculate a Strouhal number of about
0.33. This difference in values can be explained by examining the differences between the
laboratory experiments and our computational system.

In the laboratory, the Strouhal number is calculated by sending flow over a cylinder,
whereas the computational results are obtained by blocking off the flow in a portion of
a Bounda.ry. These two methods differ in that the fluid flow around the computational
“object” moves parallel to the main flow, whereas the fluid flow around the laboratory
cylinder moves outwards around the cylinder, spreading out before finally becoming parallel
to the main fluid flow. Consequently, the object simulated computationally corresponds

with a smaller experimental object. This effect is illustrated in Fig. VII-18.

S
O

|
|

Experimental Computational
Cylinder Object
Figure VII-18

130

Our experimental Stroubal number is then smaller than the number calculated
numerically. Assuming a ratio of about 2:3 between our real and computational objects,
our computational Strouhal number would then relate to a experimental number of about
0.22, a value consistent with observed data.

At very high Reynolds numbers (above about 500), miniature turbulent fluctuations
occur within the vortex street and begin to drown out the fluctuating stream itself. Our

computational results seem to simulate this case (anu = 0.005):

Streamlines at time 100
Reynolds Number = 1000

Figure VII-19

What we are actually observing in this graph, however, is not the turbulent fluctuations
that drown out the vortex street, but rather a numerical instability that results from a
violation of the diffusional stability condition. Viscosity has been reduced to a level at
which it no longer counteracts the negative diffusion intrinsic to the centered difference
momentum equation, and the solution becomes full of random highs and lows. This

instability can be seen clearly by placing the grapil in the reference frame of the fluid.

131

Streamlines at time 100
Reynolds Number = 1000
U = 1.0 (fluid reference frame)

Figure VII-20

We have seen that the Karman vortex street can be modeled computationally and
have discussed some of the theory associated with this phenomenon. We have also
examined some of the inaccuracies that can result from our numerical approximations.
In Chapter VIII, we will apply our two-dimensional fluid code to the simulation of more
complicated systems, examining the modeling of obstacles placed within the flow passage

itself and the simulation of heat flow.

132

VIII. ADDITIONS TO TWO-DIMENSIONAL FLUID CODE
A. Flow Regions with Obstacles

In this chapter we will be discussing several additional problems that can be modeled
using a two-dimensional fluid flow code. The first of these problems is one in which an
OBSTACLE is present in the flow region. For our purposes, we will define an obstacle as
an object that prevents fluid from flowing through a specified region. Unlike the object
simulated by the use of boundary conditions in the Karman v;>rtex street problem, the
obstacles that we will be examining in this section are found within the mesh and can be

placed adjacent to the walls or anywhere in the flow region.

Obstacles are simulated by creating a boundary that exists within the flow region.
For purposes of simplicity, we will limit the shape of our obstacles to be rectangles, but in
principle, obstacles can be of many different shapes. A diagram of a rectangular obstacle

appears in Fig. VIII-1:

jobt

jobb

jobl jobr
Figure VIII-1

133

In this figure, iobl and iobr are the i values at the left and right of the obstacle, and
jobb and jobt are the j values at the bottom and top of the obstacle. These can be chosen

to have values anywhere within the mesh, including adjacent to the walls.

Over the walls of the subregion described by these four values, the velocities normal
to the obstacle are set to zero, and the tangential velocities are set according to the desired
boundary conditions, for example, free slip boundary conditions. Values are assigned in

an obstacle routine that is called at every implicit iteration.

This routine is made up of two main parts, the first of which sets the normal velocities
to zero. This means that uop—1/2,; and Uopri1/2,5 are set to zero from jobb to jobt, and
Vi jobb—1/2 04 U; jobe+1/2 are set to zero from iobl to iobr. In this is done with two loops,

which appear as follows:
do 100 j=jobb,jobt
u(iobl-1,j) = 0
u(iobr,j) =0

100 continue

do 200 i=iobl,iobr
v(i,jobb-1) =0
v(i,jobt) =0
200 continue

Note that in this code, u(iobl-1,j) and v(i,jobb-1) are set to zero rather than u(iobl,j) and
v(i,jobb), because velocities exist at the right and top of the cells, whereas the normal

velocities at the bottom and left of the obstacle are at the bottom and left of the cells.

If free-slip boundary conditions are desired, tangential velocities at the obstacle walls

should be set to the value of the tangential velocities of the surrounding flow. The

134

assignments are similar to those of the wall tangential boundary conditions described in

the previous chapter. In this case

Viobl,j+1/2 = Viobl—1,j+1/2 (VIII-1)
and
Viobr,j+1/2 = Viobr+1,j+1/2 » (VIII-2)

from jobb+ 1/2 to jobt —1/2, and

Ui41/2,jobb = Uit1/2,50bb—1 (VIII-3)
and

Uit1/2,50bt = Uit+1/2,50bt+1 » (VIH‘4)

from iopr41/2 O Zobi—1/2-

Tangential velocities are not set to zero at the corner of the object because they would
act as normal velocities at these points. Equations (VIII-1) through (VIII-4) appear in
code form as:

" do 100 j=jobb,jobt-1
v(iobl,j) = v(iobl-1,j)
v(iobr,j) = v(iobr+1,j)

100 continue

do 200 i=iobl,iobr-1
u(i,jobb) = u(i,jobb-1)
u(i,jobt) = u(i,jobt+1)
200 continue
Note that in this code, the loops run from jobb to jobt-1 and iobl to iobr-1, again due to
the use of a staggered mesh with u’s and v’s that exist at the right and top cell walls.
With these two elements, the setting of the normal velocities to zero and the use of

free slip boundary conditions, a routine can be written that creates a rectangular obstacle

135

in any subregion of the mesh. Multiple objects can be simulated by multiple calls to the
obstacle routine, with jobbl, jobtl, iobrl, and iobll specifying the dimensions of the first
obstacle; jobb2, jobt2, iobr2, and iobl2 specifying the dimensions of the second obstacle;
etc. These calls must be made at every implicit iteration, resulting in a two-dimensional

fluid code as illustrated in Fig. VIII-2.

Initial B.C.

I st = stime.
pt =ptime
Tangential B.C.

|Obstacle 1 Giobb 1, jobt 1...)]

[Obstacle 2 (jobb 2, jobt 2...)|

| Obstacle n (jobbn, jobtn..) |

I Outflow B.C. I——

D .. <D

max test

Figure VIII-2

Our program can now be used to simulate a number of interesting situations. This
first series of plots uses the following parameters: -xlen = 40 (cm) ylen = 10 (cm), ibar =
40, jbar = 10, and ul = ur = 1.0 (cm/s). The obstacle parameters are jobb = 1, jobt =
5, iobl =11, and iobr = 15. The dimensions of the obstacle are 5 (cm) x 5 (cm), and it is

placed 10 cm down the flow passage.

136

Figure VIII-3 is taken at a time of 5 (s) with a viscosity of 1 (cm?/s). This results in

a Reynolds number of 5.

22

Streamlines at time 5
Reynolds Number =5

Figure VIII-3

If the viscosity is reduced to 0.1, so that the Reynolds number is 50, a vortex forms
behind the object. This is illustrated in Figs. VIII-4 through VIIL-6.

?ﬁ?

Streamlines at time 5
Reynolds Number = 50

Figure VIII-4

137

>a<
|

Streamlines at time 10
Reynolds Number = 50

Figure VIII-5

|
/

Streamlines at time 15
Reynolds Number = 50

Figure VIII-6

138

In these last three graphs, we can see the presence of a numerical instability that
occurs when fluid accelerates. A careful truncation error analysis indicates that the finite-
difference approximation of the momentum equation has a negative diffusion term that
is associated with the acceleration of the fluid. When the fluid is accelerating, as is the
case when the fluid moves over the object from the right, this negative diffusion results in
a numerically unstable solution. We can see this instability in the jagged streamlines in
this portion of the graph. When the fluid is decelerating, as is the case as the fluid moves
away from the object into the open flow channel, there is an additional positive diffusion.
Hence, this portion of the graph remains numerically stable.

As viscosity is again lowered, the contrast between these stable and unstable regions
becomes clearer. Figure VIII-7 illustrates the results of a simulation with a viscosity of

0.02 (cm?/s)

A

Streamlines at time 15
Reynolds Number = 250

Figure VIII-7

B. Heat Transfer
The second topic in our study of additions to a two-dimensional incompressible fluid

flow code is the modeling of heat transfer. This modeling requires the addition of a new

139

array of temperatures that exists at the cell centers, and must be declared and initialized

in the setup procedure. The resulting mesh is pictured in Fig. VIII-8.

Vi,j+1/2
® ®

Wi, j+ 12

Ri®Ti; ®uive;

Figure VIII-8

The equation that describes the evolution of temperature is similar to the two-
dimensional momentum equation, Eq. (VII-34). The two-dimensional temperature
equation is

2 2
OT ouT ovT _ <6T 8T>’ (VIILS)

= = il -
5 " 8z ' oy 522 T By
where o is once again the thermometric conductivity of the material.

This equation is made up of three major types of terms: the explicit change in
temperature with time (%L), the advective terms in both directions (%‘—f , %”g—), and
the diffusion term (a (%%T+%§)). These terms are the result of an analysis similar to
that used to derive the two-dimensional momentum equation in Chapter VII.

In finite-difference form, Eq. (VIII-5) appears as

140

Tt - T3 . (WT)iay2,5 = WD) 1y, N W42 = (WD)25 0y
dt dz ' dy

VIII-6
o (Tt Ty = 2055 | (T + 1550 = 2155 ()
dz? dy?
or
Tl — dt((“T)?—l/zj — W)y + @Iz j—1/2 = WD) 412
i, %
? ’ dz dy (VIIL7)

T frm o
+ ggp Ty + Ty = 2T05) + g (T + T — 2T))

Temperatures at cell walls are calculated through the use of the donor-cell method, by
creating two two-dimensional arrays: idnr and jdnr. These arrays are made up of integers
that are calculated at the cell walls. idnr is calculated from the u velocities at position
i+ 1/2,7 and is zero if the flow is from left to right and 1 if the flow is from right to
left. jdnr is calculated from the v velocities at position ¢, 7 + 1/2 and is zero if the flow is
upwards and 1 if the flow is downwards. These two arrays are then used in a double lookup

fashion, as was done in Chapter V. The advective terms of Eg. (VIIL-5), thus appear as

3;‘—5 = (u(L,j)*T(i+dnr(i,j),j) - w@-1,))*T(-1+idor(i-1,j),j))/dx
%vyz = (v(1,j)*T(i,j-+jdnr (L)) - v(i,j-1)*T({j-1+idorii-1)))/dy -

Equation (VIII-7) is implemented in a double loop just before the the explicit calculation
of % and ¥. The addition of this double loop is the first major modification that must be
made to our code to simulate the transfer of heat.

The second major modification is the addition of a buoyancy term to the ¥ equation.
This term represents the upward acceleration created by a decrease in density due to the
heating of the fluid. This upward acceleration is’equal to the gravitational force on the
system multiplied by the ratio of the density of the fluid to a given reference density:

_Pij
Po

?

141

where p; ; is the density at a point 4, j, po is the base density of the fluid, and g is the gravity

of the system, defined as negative in the downward direction. On Earth g = —9.8 m/s%.
This use of a change in density creates an apparent inconsistency between the

buoyancy term and the the rest of the terms in the vertical momentum equation. The

vertical momentum equation now appears as
2 2 2
%+%"+%=—%§+v<%+5‘%>—%g. (VIIL-8)
In this equation, all terms assume constant density except the buoyancy term. This
approximation is called the BOUSSINESQ APPROXIMATION for natural convection
problems. It can be used in cases where the driving forces for velocity are the result of
small changes in density. Here, the buoyancy term is O(dp) while the effect of changing
density on the other terms in O(dp?). Since dp is very small, dp? is negligible. For the
buoyancy term, the following analysis is used to express the driving force in terms of
temperature.
We begin with Eq. (IV-23):
p=(y—1pl. (Iv-23)

and rewrite I, the internal energy, as the temperature times the specific heat, TC,, to

obtain
p=(v—1)pC,T (VIII-9)
or, solving for p
p
= 11-10
= H-neT (VI-10)

Pressure in this equation is actually made up of two different pressures: the reference
pressure, or nominal pressure of the surroundings, and the dynamic pressure, which changes
according to the motion of the fluid. Because our pressure terms have only dealt with the
change in pressure, our p from Chapter VII was essentially payn, the dynamic pressure. In

Eq. (VIII-10) p is no longer p4y» but the sum of the nominal and dynamic pressures:
P = P + Pdyn - (VIH'll)

142

Substituting this term into Eq. (VII-10) gives us

__ Dn +Ddyn

But the nominal pressure of the system is much larger than the dynamic pressure, so we
can ignore pgyn in this equation and write

DPn

The substitution of this equation into our definition of the buoyancy term yields

P (+1fc T
=g (VIII-14)
Po GF)CTo

where T} is the reference temperature of the system. Assuming that the nominal pressure

is unchanging, this equation becomes

p T
—_—g=0g— . VIII-15
20I =97 ()
If we define a variable § such that
_T-T
6= T
then
T=To(1+9); (VIII-16)
and the buoyancy term becomes
P9 g
=t VIII-17
po 146 ()

By expanding the 73 term we obtain a series

1 — 1 _ 2 _ £3 -
1+6—1 64 6°—06°. (VIII-18)

Ignoring the terms of second and higher order, we can use this expansion to write our

Py T- To)]
Zx|1-— . VIII-19
o [(T g ()

buoyancy term as

143

If we look at this term in conjunction with the pressure term and expand pressure to

represent both the nominal and dynamic elements we have

3& HPdyn
___Po

EE A

To maintain atmospheric equilibrium, the nominal pressure must satisfy the equation

Pn =gpoy +C, (VIII-20)
where C is some constant. Equation (VIII-20) can also be written as
Dn c
— =gy+—. VIII-21
Po 9 Po ()
We can use this value in our reference pressure term to obtain
oz
2 =g. VIII-22
oy =9 ()

This g cancels with the g from the buoyancy equation, leaving

By To

oP T-To

If we choose Ty to be 273°K, then the buoyancy term becomes

T
9573 °

where T is in expressed in °C. This is more often written as

—g:BT)

where 8 = —,1.1,—0 = 52=. Our equation for 7 is then equal to the old 7 modified by a buoyancy
term,

Ubuoy = VUnoheat — gBTdt , (VIII'23)

where ¢ is negative for a downward force of gravity.

144

The third major modification that must be made to simulate the effect of heat in a two-
dimensional incompressible fluid is the implementation of thermal boundary conditions.
These conditions should be calculated once per time cycle in a procedure that is called after
the tangential boundary conditions. There are two types of thermal boundary conditions
that we will use: INSULATED and PRESCRIBED.

Insulated means that there is no heat fluxed across the wall in question. This situation

occurs when there is no temperature gradient across the wall:
Toutside = Tiuside - (VIII—24)

Insulated boundaries are contrasted with prescribed boundary conditions, which were
used in the one-dimensional heat flow problem. For this condition the temperature gradient

across the wall is chosen such that the temperature at the wall is a constant:
Toutside = 2L wan — Tinside - (VIII“25)

Together these two boundary conditions may be used, for example, to create a system
that is insulated on three walls and a portion of the fourth one but contains a HOT SPOT
which uses prescribed boundary conditions. This system would appear as in Fig. VIII-9.

Insulated (Tout = Tin)

Insulated
Insulated

I

Ins Prescﬁbed Ins
(Tout =2 Twall - Tin)

Figure VIII-9
145

Each of these sections of wall is described by assigning To,y: values to the appropriate arrays
in the system. For example, a procedure that implements insulated boundary conditions
along the top wall, the sides, and the left half of the bottom wall, and implements prescribed

boundary conditions at the right half of the bottom, appears as follows:
c.. insulated sides
do 100 j =1,jbar
T(0,§) = T(L.J)
T(ibar+1,j) = T(ibar,j)

100 continue

c.. insulated top and bottom
do 200 i =1,ibar
T(i,0) = T({,1)
T(i,jbar+1) = T(i,jbar)

200 continue

c.. hot spot
do 300 i = ibar/2,ibar
T(i,0) = 2*Twall - T(i,1)
300 continue
With these three major elements: the calculation of the heat transfer equation, the
use of a buoyancy term from the Boussinesq approximation, and the implementation
of insulated and prescribed temperature boundary conditions, heat transfer in a two-

dimensional incompressible fluid can be modeled computationally. A diagram illustrating

the interactions of these three elements appears below:

146

Start

ﬁetup [nitialize T's)l

| Initial B.C. |

I st = stime:
[oup K Tars RS Bl

pt=ptime ¢
Tangential B.C.

IThermal Equations |

lExp]icit: (Buoyancy Termﬂ

max test

Figure VIII-10

C. Convection Calculations

| Our two-dimensional fluid code that includes a heat transfer model can be used
to study the phenomenon of NATURAL CONVECTION. Natural convection is the
circulating motion of fluid between regions of different temperatures due to the difference
in the fluid density at each of these temperatures. It can be described by using the example
of an initially cold room in which a heat source is placed in one corner. The heat source
heats the air around it, consequently reducing the density of that air. The heated air then
moves upwards and across the ceiling, where it is cooled back to its original temperature.
Once again dense, the cool air moves down towards the floor as new heated air flows up
from the heat source. Finally, the dense air finds it way back to the heat source, and the

cycle is repeated. This cycle is illustrated in Fig. VIII-11.

147

I\ gas moves across
ceiling and is cooled

heated gas cool gas
moves up moves
downward

gas moves across
floor and is again heated'

-
|

Figure VIII-11

Using our two-dimensional fluid code with heat, we can generate results that
demonstrate this process. Figures VIII-12, 13, 14, and 15 are plots of streamlines of a
fluid experiencing natural convection. These plots use the following set of parameters: TO
= 0 (°C) ibar = 15, jbar = 15, xlen = 3 (m), ylen = 3 (m), anu = 1 x10™* (m?/s). All
ghost zones use insulated boundary conditions except zones 1-7 on the bottom wall, where

the wall is set to a prescribed temperature of 100°C.

148

Streamlines at time 5 (s) Streamlines at time 20 (s)
Figure VIII-12 Figure VIII-13
g
Streamlines at time 40 (s) Streamlines at time 60 (s)
Figure VIII-14 Figure VIII-15

149

Figures VIII-16 through VIII-19 are contour plots of temperature in this fluid at times
of 5, 20 40, and 60 seconds. These plots illustrate the flow of heat from the hot spot.

=\ =)

Temperatures at time 5 (s) Temperatures at time 20 (s

)

Figure VIII-16 Figure VIII-17

//)\\75\

Temperatures at time 40 (s) Temperatures at time 60 (s)

Figure VIII-18 Figure VIII-19

In a fluid in which natural convection occurs, the rate of heat flow is greater than that
of a fluid that is not in motion, because heat is not only being conducted but advected by
the circular motion of fluid. A ratio can be formed between the total heat flux in a system
and the heat flux due only to convection, such that

Total
= VIII-2
Nu Conductive Flux ’ (VIII-26)

where Nu is a dimensionless quantity called the NUSSELT NUMBER.
An example of a system for which the Nusselt number is often calculated is the

BENARD PROBLEM. This system is made up of a long, narrow flow passage that is

150

heated at the bottom, cooled at the top, and insulated along each side, as illustrated in

Fig. VIII-20.
cooled
insulated insulated
heated
Figure VIII-20

Parameters are variable, such that the Nusselt number in this system can be observed
at different RAYLEIGH NUMBERS. The Rayleigh number relates the magnitudes of the
buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh number is
calculated as:

—ah3
Ra = M_ , (VIII—27)

vo

where g is the acceleration of gravity (defined as negative if downward), h is the height
of the passage, AT is the difference in temperatures between the top and the bottom of
the passage, v is the viscosity of the fluid, ¢ is the themometric conductivity of the fluid,
and B is the volumetric coefficient of expansion, which for gases is the reciprocal of the
reference temperature <%5) .

The equation for the computational calculation of the Nusselt number can be derived

by examining the conductive and actual heat fluxes. In this system, the conductive heat

flux is calculated by Fick’s Law, expressed in terms of themometric conductivity:

U'p°b'(Tbot_Ttop)

S , VII-28
Ty ()

conductive flux =

151

where p is the density and b is the specific heat of the fluid. The actual flux of heat across
a given plane existing at a vertical position of j + 1/2 is made up of both conductive and

advective fluxes. This flux appears as

i i
YT —Tig+r 2 vigri/2Ts 4172
i=1

—p.p| 2=t _ 2
Actual Flux =p- b a = z . (VIII-29)

These equations can be substituted into Eq. (VIII-26) to obtain

i I
S Tii=Tiger Y vigris2Tige1s2
o i=1 i=1

Pl g 7 - 7

Nu= , VIII-30
o-p- b(Tbo;;ftoE) ()

which reduces to:

3 7
= d
j <Z Tij—Tijri— 342 ”i,j+1/2Ti,j+1/2)
=1 i=1

Nu = =
? (Tbot - :E:op)

(VIII-31)

" If we choose to compute the Nusselt number at the bottom and top of the system,

then we have no advective flux, and our equation becomes

i
= Z Tbot 112,1
Nubot = 27‘ = (VIII—32)
1 Thot ﬂop
and _
93 > T:3 Tiop
N _ 1=1 -~
Utop = . (VIIL-33)

% Thot — Trop
When both of these numbers have equal values, heat flow into the system from the bottom
is equal to heat flow out of the system through the top, and the system has reached a
steady state.

A toutine to compute Nusselt numbers can be added to the output portion of our

program. The code should be similar to the following:

152

ttot = 0.
btot = 0.
do 100 i=2,ibar+1
ttot = ttot - (tTmp-T(i,jbar+1))
btot = btot + (bTmp-T(i,2))
100 continue
nm = (2%jbar*dx)/(xlen*(bTmp-tTmp))
tnuss = ttot*nm

bnuss = btot*nm
Using this routine, we can calculate the Nusselt number at the top and bottom in
systems with various Rayleigh numbers. The next set of graphs are of a system with the
following parameters: ibar = 40, jbar=8, xlen = 5 (m), ylen = 1(m), g = -10 (m/s?),
sigma = 0.01 (m2/s?), anu = 0.01 (m?/s?), beta = 1/300 (1/°C), Tiop = 0 (°C). These
parameters correspond to a Rayleigh number that is equal to the Thottom X 333. At a
temperature of 1°C, the top and bottom Nusselt numbers converge to 1 as is shown in the

foll_owing graph:

Nyscelt Nysbers
:%O ﬁus

1e5

0,0

h.0 =0 30.1 £0 540
Tip= (a)

Nusselt numbers
Rayleigh number = 333

Figure VIII-21

153

In this system, heat transfer is purely by conduction.
At a bottom temperature of 5°C, the top and bottom Nusselt numbers converge at
a value of 2.33, indicating that the system has become more convective in nature. This

system is illustrated in Fig. VIII-22.

340 4.5

Nussal L Nuuoer s

o8

J

0.0

.o L;I.D 21!1.0 9!.0 4&.0 Sﬂ‘.D ED..D 7&0 !CILIJ Sl'i.!] LﬂlD.D LL"&II
TJrye Cal

Nusselt numbers
Rayleigh number = 1665

Figure VIII-22

Flow at this Rayleigh number appears as is shown in Fig. VIII-23.

©\0)0)

Streamlines at time 10 (s)
Rayleigh number = 1665

Figure VIII-23

154

Heat contours appear in Fig. VIII-24.

==t

Heat Contours at time 10 (s)
Rayleigh number = 1665

Figure VIII-24

At higher Rayleigh numbers, such as 2 x 10%, corresponding with a temperature
gradient of 67°C, the Nusselt number is even higher, but the Courant instability begins to

affect the calculation of these values, as can be seen in Fig. VIII-25

Nusselt Nurloors

60 Lo @m0 00 060 WO a@d 70 EL6 0.0 HLE U0
Ti.re (al

Nusselt numbers
Rayleigh number =2 x 10*

Figure VIII-25

155

Despite the presence of this instability, it is possible to use our code to calculate
Nusselt numbers at different Rayleigh numbers to within a reasonable degree of accuracy.

The data from one such study appears below:

Thot Nu Ra

.5 1.00 167

1 1.00 333

3 1.01 1000

4 1.40 1332

5 2.33 1665

10 3.03 3330

33 3.92 104

67 5.25 2 x 104

333 7.00 10°

1000 8.50 3.33 x 10°

If we compare these Nusselt numbers with numbers that have been generated from
numerous different experiments, we see that our computational values are very similar,
as can be seen in Fig. VIII-26. The experimental data for this graph is taken from S.
Chandrasekar, Hydrodynamic and Hydromagnetic Stability (Dover, New York 1961).

Computational and Experimental
Nusselt Numbers

L LR AL

Nusselt Number

—

100 1000 1E+4 1E+5 1E+6

—t
(11
D

Rayleigh Number

Figure VIII-26

156

In this graph, computational Nusselt numbers are plotted as circles and are connected
with a dotted line. Experimental values appear as a solid line. Discrepancies between
computational results and experimental results are most likely due to the coarseness of the
mesh used in these simulations and the fact that our mesh is two-dimensional whereas the
laboratory flow passage exists in three dimensions.
D. Two-Dimensional Compressible Flow

Our last topic in this chapter of additions to a two-dimensional Eulerian code is more
an extension of previous concepts than an additioﬁ of a new element to an already existing
code. An Eulerian two-dimensional compressible code is based on the same Navier-Stokes
compressible flow equations that were used in the one-dimensional Eulerian code, but

extended to two dimensions. In the one-dimensional code the equations were

_B_p Opu

En + B 0 (V-37)

Opu Opu? OP

S Tt 52 =0 (V-58)
ag;.r . agzl + Paamu —0. (V-59)
In two-dimensions the system of equations becomes
%% 4 %ﬁxg + %ﬂiz ~0 (VIII-34)
aap: aap;ﬂ 6ng + 3_1; ~0 (VIII-35)
8aptv N Bg:v 4 Bgzz " %S —0 (VIII-36)
ag;.r ang N agvyf i p (% N _g_z) o, (VIIL-37)

where P signifies total pressure (p + g) rather than pressure per unit density. Note that

the momentum equation becomes two equations when extended to two dimensions.

157

U ———_——— e e e — -

These equations are implemented in two dimensions much as they were in one. Six
two-dimensional arrays are created: u, v, rho, sie, p, and q. These are located as in

Fig. VIII-27.

sie P
rho® g

Figure VIII-27

These arrays are initialized to their desired values in an initialization routine. This routine
also sets time counters as was done in previous programs.

Boundary conditions are set such that each wall of the system acts in one of three
ways: as a rigid wall, a specified boundary, or an outflow boundary. Rigid walls are
represented by setting a normal velocity of zero in all cells along the desired boundary.
Specified boundaries are created by setting the normal velocity to some specified value as
well as supplying sie and rho values for this flow. These values can be set according to the

infinite-strength shock equations,

= IV-45
p P 1P0 ()
and
o2
I'=~po, (V-61)

set to the same values as the initial rho’s and sie’s in the mesh, or set to some other values,
such as those present in a rarefaction wave. Outflow boundaries are created by setting

the velocities normal to a wall equal to the normal velocities directly before the wall

158

(e.g., u(ibar,j) = u(ibar-1,j)). It is neither necessary nor desirable for outflow boundaries
to be calculated as they were in the two-dimensional incompressible case, because in the
compressible case, the amount of mass in the system is not a constant. Tangential boundary
conditions are not necessary for the case in which the viscosity does not include shear
stresses.

Obstacles can be included in a two-dimensional compressible code by using the same
process that was discussed in Section A of this chapter. Once again, it is not necessary
that tangential boundary conditions be included.

The two-dimensional Eulerian compressible transport equations are calculated sim-
ilarly to those of the one-dimensional Eulerian code. This calculation is done explicitly
with a routine that first calculates mass density, momentum density, and internal energy
density and then uses these values to determine new values of rho, sie, u, v, p, and q. The
equations that determine the new densities are finite-difference versions of Eqgs. (VIII-34)

through (VIII-37). These appear as

: (P g 25— (PO /05 | (0V)i50a/2 — (PV)T5-
+1 i+1/2,j i-1/23 ij+1/2 ij—1/2
iy =P —dt (Jz + & (VIII-38)
2\n 2\n n n
1 _ (ou*)E1; — (pu®)y | (Pu¥)iiapsiae — (PUV)iigps-1m
(pu)?-l-l/z,j = (pw)it1/2,5 — dt[iz + &

-+

Di+1,j — Dij 4 qi+1,5 — 9,5
dz dz

(VIII-39)

— 2 2
(o) EL = (p0) g — db (pu")?+1/2,j+1/2 (puv)?—lfz,j+1/2 + (pv2)Ei11 — (0V2)5;
i,5+1/2 1,§+1/ dz dy
+ Pij+1 — Dij + Gi,5+1 — 4i,j
dy dy

(VIII-40)

159

(PUI)?+1/2,J' — (pul)iLy/a; n (pVI)?,j+1/2 - (pVI)?,j—lﬂ
dzr dy

(pI)7f" = (pI)%5 — dt[

u” -yt . 7. — 7.
n 2+1/27.7 2_1/27.7 7'1.7+1/2 7'7.7'—1/2
+ (p + Q)’L,j (dz + dy) 3
(VIII-41)

where the bold terms are donor-cell terms, which can be calculated using either a series of
if/then checks or a double-lookup technique.

If a double-lookup technique is used, integer arrays of ones and zeros must be set for
six different circumstances: horizontal flux at right cell walls, vertical flux at cell tops,
horizontal flux and vertical flux at cell centers, and horizontal and vertical flux at cell

corners. These six different locations are illustrated in Fig. (VIII-28).

4 6
5 |
i+1/2, j+1/2
2
1 3
I .
ij i+1/2,
Figure VIII-28

Six arrays must therefore be defined for each of the six types of advective fluxes. We

then have: idnr and jdnr, which represent fluxes in the i and j directions at the cell centers

160

(1 and 2 in the previous figure); idnrw, which represent flux across the right cell wall (3);
jdnrw, which represents flux across the top of the cell (4); and idnrc and jdrnc, which
represent fluxes in the i- and j-directions at the cell corners (5 and 6). These donor-cell
arrays are calculated each time cycle and are used in the advective terms of the transport
equations according to the position and direction of the flux that is being represented.
After quantity densities are calculated using either a series of if/then statements or
a double-lookup technique, rho, sie, u, v are determined by setting the arrays equal to
the appropriate density arrays divided by the mass densities, if necessary. Then p and g
are determined from these arrays. In two dimensions the pressure equation is the same

polytropic equation of state,

;= (y=1Dp}I}; (IV-23)

but the q equation is modified to respond to velocities in both the i- and j-directions. The

two-dimensional q equation is

N Vij—1/2 ~ Vijt1/2
dx dy

or if negative ¢;; =0. (VIII-42)

n n
dz? + dy? (%‘—1,2,3‘ — Uir1/2,5

gri = qop;.;C)) if positive

Note that if dy is equal to dz and there is no vertical motion of the fluid, this equation is
identical to the one-dimensional g equation.

The output routine for a two-dimensional flow code can contain contour plots of
density, internal energy, pressure, and viscous pressure. Streamlines are rarely used in the
compressible case, however, because the divergence of the velocity is not equal to zero, and
therefore Eq (VII-88) is not valid.

The sections in this program interact in much the same way as did the sections in
the two-dimensional incompressible fluid code. Tlle two-dimensional compressible code is

structured as is illustrated in Fig. VIII-29.

161

Start

Figure VIII-29

st =stime

L

N
Setup
N
Initial B.C.
-
Output { TPests
pt =ptime
Qutflow B.C.

\

il

Obstacle 1

Obstacle 2

Obstacle n

Explicit

)
|4

End

E. Results of Two-Dimensional Compressible Flow

Using our two-dimensional compressible flow code, we can model a number of different
problems. One simple problem that can be simulated is the piston problem that was
discussed in Chapters IV and V. By specifying parameters such that there is variation of
flow parameters in a single direction, our two-dimensional code can be used to obtain the
same type of results we saw in our one-dimensional simulations. In fact, if they are set
to the same parameters, both the two-dimensional code and the one-dimensional Eulerian
compressible code should yield exactly the same results. Comparing these two codes is a

good method for removing errors from the two-dimensional code.

162

The two-dimensional code can also extend the piston problem, such that the shock is
moving down a flow passage with an obstacle in it. The following set of plots show the
effect of an infinite strength éhock moving down such a passage. Parameters are xlen= 30
(cm), ylen = 10 (cm), ibar = 75, jbar = 25, iobl = 21, iobr = 25, jobb = 1, jobt = 5, rho0
=1 (&z), sie0 = 0, gamma = 5/3, dt = .1(s), and ul = 1 (cm/s); rho’s and sie’s at the

input boundary are defined using the equations of infinite strength shocks.

Densities at time 10 (s)

Figure VIII-30

Internal Energies at time 10 (s)

Figure VIII-31

163

Pressures at time 10 (s)

Figure VIII-32

Notice that while the upper portion of this shock is passing over the obstacle, the bottom
portion of the shock is being reflected back towards the front of the flow passage. This
reflected shock becomes further detached as time progresses, as can be seen in the following

pressure plot.

Pressures at time 20 (s)

Figure VIII-33

In this plot we see that the reflected shock has moved upwards towards the top of the
passage and leftwards towards the inlet. The shock is reflected off the top of the passage,
and the shock and its reflection form a MACH STEM which will close off the incoming

flow, choking the channel. A Mach stem is a shock that is formed between a shock that

164

hits a wall and the resulting reflected shock. A Mach stem is always perpendicular to the

wall. It is illustrated in the following figure.

Mach stem

reflected
shock

shock

Figure VIII-34

The formation of a Mach stem is dependent on the angle at which the shock hits the top
of the flow passage. Experiments have found that if the shock reaches the top wall at an
angle of less than about 40 degrees, it will form a reflected shock but not a Mach stem and
will eventually reach a steady state. If the shock reaches the wall at an angle greater than
about 40 degrees; however, a Mach stem will form. In our plots we can scarcely see the
Mach stem due to the coarseness of resolution; we can, however, see its effect of choking

off the channel as is shown by the contour lines above the obstacle in the next figure.

-

Pressures at time 40 (s)
Figure VIII-35

165

A reflected shock that does not form a Mach stem can be generated by modifying our
program such that we are no longer dealing with an reflected infinite strength shock moving
over a stationary obstacle. Instead, we simulate the problem of an obstacle creating a shock
as it moves through stationary flow. This simulation is done by setting the velocities,
densities, and internal energies of the internal zones equal to the input values, as if one is
traveling in the reference frame of the obstacle.

Setting up the code in this way allows us to examine flows at high MACH NUMBERS.
The Mach number is the ratio of the velocity of a shock to the sound speed ahead of that
shock: '

sz

Csound

The lower the Mach number, the less intense the shock.
We can create shocks at any specified Mach number by using our equation for the

sound speed,
c=+v(v-1DI. (IV-26)

If we substitute this value into our definition of M, we obtain

M=——— (VIIL-43)

VAalr=DI

Solving for I, this becomes

,02

- M2y(y-1)
In the infinite-strength shock problem, input I’s were defined as ful?, causing the

I (VIII-44)

Mach number of the flow to have a maximum of \/_F—il_m In the moving obstacle case;

however, I can be defined at any specified value, allowing for flows of any Mach number
to be examined. For example by using Eq. (VIII-44), we can create a system with a Mach
number of 10 by specifying an initial internal energy of 0.009 cm? /s?. Input rho’s and
sie’s are set to rho0 and sie0 respectively, and initial velocities are set equal to the input
velocity at the left. These parameters correspond to the simulation of an obstacle that is

moving to the left. The results of this simulation appear in Figs. VIII-36 through VIII-41.

166

Densities at time 10 (s)

Figure VIII-36

Internal Energies at time 10 (s)

Figure VIII-37

Pressures at time 10 (s)

Figure VIII-38

L
R

167

Note that the shock formed in front of the obstacle is more swept back than the lower
Mach number shock (see Figs. VIII-30 through VIII-32). This shock hits the top wall at
angle less than 40 degrees and hence does not choke the channel. Instead it is reflected off
the top wall and reaches a steady state. This reflection can be seen in the following three

plots of pressure:

Pressures at time 20 (s)

Figure VIII-39

o~

Pressures at time 40 (s)

Figure VIII-40

168

-

Pressures at time 100 (s)
Figure VIII-41

Note that the slight upward turn of the shock in the region near to the wall is an effect of
the approximation of the actual shock by finite zones.

Another problem that can be modeled using a two-dimensional compressible flow code
is the wedge problem, in which a shock passes over a wedge of a specified angle and the
angle at which the shock reflects is measured. For this problem the difference between the
angle of the shock and the wedge can be determined using the following equation, which
can be found in LA-4700:

2+ (v — 1) Mg sin® 0
(y+1)MEsinfcosf ’

tan(f — o) = (VIII-45)

where @ is the angle of the shock, ¢ is the angle of the wedge, and My is the Mach number
of incoming flow. We can create a wedge of this type by making multiple calls to the
object routine and stacking these objects in a triangle shape. These following set of figure
are of a system with the parameters xlen= 5 (cm), ylen = 5 (cm), ibar = 50, jbar = 50,
M,y = 10, and with a wedge that begins in zone 11 and goes to the end of the mesh, ending
at a height of 20 zones, and corresponding to an angle of 27 degrees. Figure VIII-42 is a

contour plot of pressures in this system at a time of 50 seconds.

169

Pressures at time 50 (s)

Figure VIII-42

In this set of circumstances the predicted angle of reflection is approximately 38 degrees.
This angle is extremely close to the computationally calculated angle of 37 degrees.
If we now use the same set of parameters but for a wedge with a height of 10 zones

(corresponding to an angle of 14 degrees), we obtain the following results. Again a contour

plot of pressures is displayed.

170

Pressures at time 50 (s)

Figure VIII-43

For this set of circumstances, the analytical solution predicts an angle of 19 degrees whereas

the computational solution yields an angle of approximately 21 degrees.

" In this chapter, we examined three different modifications that can be made to a two-
dimensional incompressible Eulerian flow code and discussed some additional problems
that can be modeled with codes that include these modifications. In the next chapter,
we will again be making an addition to our compressible fluid code, but this additional
element will be different from the ones discussed in this chapter. Up to now, our equations
have followed directly from mathematical manipulation of equations derived from basic
physical principles, but this will not be the case in the next chapter. Instead, a complex
mathematical model will be constructed to successfully approximate rigorously derived
equations that are not able to be directly computed. Our turbulence transport equations
will contain many of the properties, but will no{: directly represent, the computational
calculation of the miniature fluctuations that are present in fluid flow of sufficiently high

Reynolds number.

171

IX. TURBULENCE TRANSPORT
A. Tensor Notation

Before we discuss the equations of turbulence transport, it will be helpful to first
examine a shorthand notation that can be used to express them. One such notation,
CARTESIAN TENSOR NOTATION, is based on the idea that a system will act in the
same manner regardless of the coordinates that are chosen to describe it. We can see
this property in the momentum equations (VII-34 and VII-35), where an equation that
expressed motion in the x-direction is coupled with a similar equation for motion in the
y-direction; Eq. (VII-35) is simply Eq. (VII-34) with the z’s exchanged with the y’s and the
u’s exchanged with the v’s. This same concept is also present in the heat equation, where
the advective and viscous terms are symmetric with respect to the x- and y-directions.

Cartesian tensor notation makes use of subscripts to express the general directionality
of a quantity without explicitly stating that it is in a particular x-, y-, or z-direction.
This concept can be demonstrated by an example such as the two-dimensional heat-flow

equation. In partial differential form, the heat-flow equation is Eq. (VIII-5):

OT T T _ (T T
ot Oz By — 9\ 522 oy?) -

Each of the u, v, z, and y terms in this equation is in reality a component of a vector,

(VIIL-5)

associated with either the x- or y-direction. If we let the symbol z represent a scalar (i.e.,
"no direction) length and u represent a scalar speed, we can represent lengths and velocities
in definite directions with subscripts. Lengths and velocities in the x-direction become z
and uz, and lengths and velocities in the y-direction become z, and u,. Equation (VIII-5)

would then appear as follows:

O owT 0wl _ (9T &T
ot ' Oz = OBz, 7\ 82 dx2

If we further replace u, with u1, uy with us, 2, with z;, and z, with zo, the equation

(IX-1)

becomes

oT 6u1T 8’U,QT 32T 82T>
i = (L5 + 22 . -2
5t oz + ozz (&v% + oz (1x-2)

172

From this form, our equation can be rewritten using general subscripts (%, j, etc.) rather
than specific numbered directions. This rewriting is done using the two major rules that
govern equations written in Cartesian tensor notation.

The first of these rules is that any repeated index indicates the sum of all the elements

in each of the available dimensions. For a three-dimensional system for example:

Opu; Opu dpu 0
pui _ Opur | Opus | Opus

dz; Oz Oz2 Ozs (IX-3)

This rule allows us to condense combinations of terms such as Q’ﬂ— + @2— into a single

term, a{;‘m
The second rule of Cartesian tensor notation is that any “free” (i.e., not repeated)

index in one term must be the same in every other term. For example, in two dimensions,

6puz- + 3puin _ oP

o T om; - om (X-4)
would become two equations:
) Opuy | Opui | Bpuiuz OP
ot 3:1:1 amz - 8171 (D(-‘S)
2
Opus + Opuiug + Opus _ 0P (IX-6)

ot o Ozo o Ozs
This rule of consistency of free indices coupled with the summation rule for repeated
indices forms the basis of Cartesian tensor notation. We can use this notation to express

Eq. (IX-2) as follows:

oT BuiT _ 0 oT
ER (3%’) ' ()
In a similar manner, both momentum equations,
Ou Ou?® OBuww OP . (0%u H%u
%%t mt () (VI-34)
and
dv Ouv Ov? oP 8%v 0%
5£+73—$-+5y———a—y+7/(w+a—yz> (VII-35)

173

can be written as one equation:

(IX-8)

8ui 4 8’uin _ oP Ty 0 Bu,
ot aSDj - 6:cz a.'L‘j 3.’17_7')

Notice that in each of these tensor equations [Egs. (IX-7) and (IX-8)], all the terms have
the same number of free indices.

Equation (IX-7) has no free indices in any of its terms; it is made up of scalars.
Such a scalar equation can be said to be made up of terms of TENSOR ORDER zero.
Equation (IX-8), on the other hand, has one free index in each of its terms and therefore
is made up of vectors, or first-order tensors. As the number of free indices increases in an
equation, its tensor order similarly increases. Tensors of any order may exist, but all the
terms of a given equation must be of the same order.

Cartesian tensor notation will be useful when discussing the equations of turbulence
transport. It greatly increases the clarity of these equations and simplifies the notation in
the complex derivations that are used to generate turbulence-transport models.

B. Turbulence Transport and K — ¢ Models

Before we examine the equations of turbulence transport, we must first define what
we mean by turbulence. Any flow can be divided into steady and fluctuating parts. For
our purposes, we will define TURBULENCE as the fluctuating part of that flow. The
underlying average velocities over which these turbulent fluctuations exist will be called
the MEAN FLOW.

Precisely what we define to be the mean flow and what we consider to be turbulence
is a matter of choice. In the Karman vortex street problem, for example, there exists
at low viscosities a fluctuating stream moving to the right. This rightward flow could be
considered the mean flow, whereas the up-and-down oscillations could be called turbulence.
But another definition could be chosen: both the rightward velocity and the up-and-down
motion could be considered part of the mean flow, whereas the miniature fluctuations that

are present within the up-and-down stream could be labeled as turbulence. Both of these

174

definitions are valid. Flow is divided into mean flow and turbulence, and the threshold
between these two types of flow is set at any arbitrary resolution.

In our simulations of turbulence, we will consider this threshold to be at the level of
resolution of the mesh. Flow that can be resolved through the use of u’s and v’s will be
mean flow, and fluctuations that are smaller than the area of a cell will be considered to be
turbulence. In principle, however, our turbulence equations can resolve fluctuations even
greater than the resolution of the mesh. Although this is rarely desired, it is interesting
to note that turbulence equations can be used to represent fluctuations at any scale.

Our turbulence model will not resolve the turbulent fluctuations themselves but rather
the TURBULENT KINETIC ENERGY per unit mass, the amount of kinetic energy per
unit mass present in the turbulent fluctuations. This two-dimensional array will be defined
at the cell centers and designated by a K. A variable, ¢, will also be calculated over the
mesh to represent the rate of dissipation of turbulent kinetic energy in different subregions

in the fluid. The resulting placement of variables on the mesh appears below:

Vij+1/2
@

Pi,j oKij ou;., 1/2,j
L]

Figure IX-1

The method of simulating turbulence that makes use of these variables is known as the
K — ¢ TURBULENCE MODEL, named after the two variables in its transport equations.
In order to derive an expression for the effect of K and € on the transport of

momentum, we begin with the momentum equation as expressed in tensor form (IX-8).

175

Each velocity and pressure in this equation is made up of a mean value and a fluctuating

value: ,
u; = U; +u;

P=P+ P,
where %; and P represent the average parts, and v} and P’ represent the fluctuating parts

of u; and P. Substituting these definitions into Eq. (IX-8) gives us

(IX-9)

o +uj) | Ot +ui)(g; +u;) 8P+ P) Y 82(@; + ul)
ot Ox; B Oz; dz?

J

or

%t o o, o, 0w, T 0n, ~ om om U \@@ e B0

J

Because the turbulent fluctuations are symmetric about the mean flow, the time averages
of the fluctuations (a, @}, P') are equal to zero. Therefore, all terms that contain a single
fluctuating factor are also equal to zero when averaged, and the time average of Eq. (IX-10)
can be written as

(IX-11)

ou; + Ou;u; + Ouju; QP . 8%4;
ot 823_7' 6:13_7' 8(1,‘1)

- ox?
This equation is almost identical to the original momentum equation, (IX-8) but contains
an additional term. While u; and u; are both equal to zero when averaged over time, the
time average of their product (W is not equal to zero, resulting in the %l_'? term in
Eq. (IX-11). (W is called the REYNOLDS STRESS TENSOR, abbreviated as R; ;.
This second-order tensor represents the effect of turbulence on the mean flow.
Computationally, this tensor is approximated by calculating a turbulent viscosity that
is added to the molecular viscosity to represent the total viscous forces on the fluid. To
make this approximation, we substitute the variable R;; for (Tu;) Equation (IX-11)
becomes

(IX-12)

du; , duu; P 9*u;\ OR;,
8t+8mj - 8$i+y< >—

N r% dz;

176

which is a somewhat limited case of the fluid-flow equation. It is valid only when v is a

constant and the fluid is incompressible. This equation is more properly written as

01; + Bﬁiﬂj . _615 + 0 0u; 3@7
ot 6a:j oz; a:L'j

VotV RL-,J) : (IX-13)

2

Using this general equation, we then make the approximation that

01i; + Bﬂj
Bzz:j 8:1:1

2
-Ri,j N —~Ut <) + -§K5m (D(—14)

where v; is the TURBULENT VISCOSITY, a viscosity that results from the presence of
turbulence in the system, K is the turbulent kinetic energy, and 6; ; is the KRONECKER
SYMBOL which is one if i equals j, and zero otherwise. The MODELING of R; ; in this
manner is a somewhat arbitrary decision. It is made because more rigorous representations
of this tensor are unnecessary for the accuracy to which we desire a solution. This
representation is chosen because it has the correct dimensions, is of the right tensor order,
and has been experimentally demonstrated to be reasonably accurate. This model is known
as the BOUSSINESQ APPROXIMATION for the Reynolds stress tensor. It is not to be
confused with the Boussinesq approximation for the momentum equation.

Because the §; ; term is absorbed in the pressure term, the Boussinesq approximation

allows us to rewrite Eq. (IX-13) as

(IX-15)

ou; 0wty _ _ P) 8%4;
ot ' O9z; O Y\ ox? |’
We calculate v; by using the variables K and e. In this equation K, the turbulent kinetic

2
energy, has units of energy per unit mass: l'f:—;%—. ¢ is the rate of dissipation of K, and its

units are those of energy per unit mass per unit time: h—n&%i. Because viscosity has units

time
of le—t’ﬁ;ﬁ, turbulent viscosity can be synthesized dimensionally as
K2
Ou_ ’

€

177

where C,, is a constant that has been experimentally determined to be about 0.09. Our

equation for v; at a point (7,7) on the mesh is then
K2,

Vt(i,j) = 009 J

€i,j

(IX-16)

Having related K and € to the momentum equation, we must also derive transport
equations for these two quantities. K is calculated by relating it to the Reynolds stress
tensor, and using the classical equation for kinetic energy:

L 2

Elinetic = 'é‘m'v . (IX—17)

Turbulent kinetic energy, which is expressed as kinetic energy per unit mass, is then

which can also be written as
K= %Ri,i . (D(—lg)

Using this equation for K in terms of the Reynolds tensor, we calculate K by first deriving
an equation for R; ;.

This derivation will not be carried out in detail in this work, but a short overview
is included to give some insight into the process: First, Eq. (IX-9) is multiplied by u_f,

to obtain an equation in terms of u 5= 2u;

5~ Then Eq. (IX-9) is written in terms of u; and

multiplied by u} to obtain an equation in terms of u; 83 Z. These two equations are added
and averaged to obtain an equation in terms of ZJ_;: + ;:—;: In this step, all equations
containing a single fluctuating term become zero. Then, by the chain rule [Eq. (VII-
53)], ;aat + Za;— becomes a_%?i, which is the time derivative of the Reynolds stress
tensor, %l. This equation is contracted to be in terms of R;; and divided by two. One
is then left with a transport equation for X which contains some terms that cannot be

computationally represented using only K and e. These terms are then modeled, resulting

in a final equation for the transport of K:

_ 0K auz 8Uj Buz
ot + O0z; Oz <(V+Vt)8:c) +(U+ ve) (0z; + B:L'i> O0z; B (1X-20)
S N =\ -~ ~ -~
I II III v 14

178

In this equation the term denoted by I represents the time rate of change of K, I represents
advection, III represents diffusion of turbulent energy, IV represents the generation of
turbulence by SHEAR FORCES (forces similar to friction that are caused by flows at
different velocities rubbing against each other), and V (e) represents the dissipation of
turbulence.

A transport equation for ¢ is “derived” by modeling an equation after the transport

equation for K. The € transport equation is

O¢ Ouze 0 [v+u; Oe € Ou; = Ouj\ Ouy
5t T Bz 8azk(e amk)+C€1K(V+Ut) (amj axz-> 5
N - RN 3y ’
I I III v (IX-21)

2

- e2? ’

N

1

where o, C1, Ces are constants which have been determined as a result of experimentation.

Typically,

e~ 1.3
Cea ~ 1.55
Cea=x20.
Equation (IX-21), like Eq. (IX-20) is made up of a rate of change term (I), an advection
term (II), a diffusion term (III), a generation term (IV), and a dissipation or dampening
term (V).

These two transport equations [Egs. (IX-20) and (IX-21)], combined with the equation
for turbulence viscosity [Eq. (IX-16)] make up the K — € turbulence model. We will
employ this model in a two-dimensional fluid-flow code to compute turbulence transport
computationally.

C. Computational Implementation of the X — e Turbulence-Transport Model

The K — € turbulence model is implemented by creating two new arrays: K and eps.
The values of these arrays are specified at cell centers as is illustrated in Fig. IX-1 in

Section B. Both two-dimensional arrays are initialized in the setup procedure. A typical

179

initial value for K is one-tenth of the energy per mass of the mean flow. In the Karman

vortex street problem, for example, initial K’s might be assigned such that

K0= (1—10-) (%uﬂ) : (IX-22)

A typical value of eps0, the initial value of the eps array, is K%/? divided by some
characteristic size of the turbulence of the system. For the Karman vortex problem, a
typical turbulence size is half the width of the obstacle. For this problem, the € array is

then initialized to
K0°%/2

(0.5)(hobs)

In addition to these two arrays, three other arrays are created for the turbulence viscosity

eps0 = (IX-23)

at the cell centers, the top of the cells, and the right cell walls. These are configured as in
Fig. IX-2.

anukKj

° ¢ anukKi

anuK

Figure IX-2

These arrays need not be initialized because they- will be calculated before they are ever
used in the program.
The u, v, ubar, vbar, and pressure arrays are implemented as they were in our

other two-dimensional simulations with the exception of the total viscosity (molecular

180

plus turbulent) being used rather than simply the molecular viscosity. Our turbulence
transport code will not contain a temperature array or equations of heat transport.
Besides the initialization of the K and eps arrays in the setup procedure, our turbulence
transport code contains three major sections that did not exist in the basic two-dimensional
incompressible code: the implementation of turbulent boundary conditions, the calculation
of turbulent viscosities, and the calculation of the K and € equations themselves. The

resulting code is structured as in Fig IX-3.

Setup (initialize K's &¢'s) |

| Initial B.C. |

pt=ptime

| Calculation of v* |

v

[K-SEuuations |

w
| Explicit (uses v?) |

Qutflow B.C.

Dma.x < Dtest

Figure IX-3

The turbulence boundary conditions will be reflective, with the values of K and eps at
the ghost zones equal to the values at the real zones directly adjacent to them. This

method is only an approximation of the true effect of a wall on the turbulence in a

181

system. Much more accurate boundary conditions exist, using WALL FUNCTIONS, that
carefully calculate more appropriate values for the ghost zones. Even these functions have
their limitations, however; and for turbulence to be completely modeled at a wall, each
component of the Reynolds stress tensor must be calculated separately rather than the
overall turbulent kinetic energy (K). Because our simulation is not overly concerned with
turbulence at the walls of the system, neither of these methods is necessary. A simple

reflective condition where

thost = Kreal (D('24)

and

€ghost = €real (D(‘25)

will prove sufficiently accurate for our immediate purposes. Two loops that carry out
these calculations along the top and bottom and along the edges of the mesh comprise the
turbulent boundary condition routine.

_ The routine to compute the total viscosities assigns values to the three turbulence
viscosity arrays (anuk, anuki, and anukj) by using K and eps values at the desired positions
to calculate v as in Eq. (IX-16) and adding the molecular viscosity. K’s and €’ s at cell

walls are calculated by averaging. The three equations for the total viscosities are

2

K; ;
(anuK);,; = *> =+ Vmolecular (IX-26)

2,7

Kij+Kivi;) 3
. 2
(a*nu-Kl)i+1/2,j = () + Vmolecular (IX'27)

€i,jT€i+1.j
2

N[

Kij+Kijt1
2

(a'nqu)‘i,j+1/2 = (=) + Umolecular - (IX—28)

€i,5+€i, 541
2

These should be carried out every time step, just before the program enters the routine

for turbulence transport.

182

The turbulence transport equations are calculated by computing Egs. (IX-20) and (IX-
21) at every point on the mesh. For this calculation local arrays of variables are employed

to represent each term in the equations. Equations (IX-20) and (IX-21) are then written

as

%—I: =—Ktl+ Kt2+ Kt3 —¢ (IX-29)
and

g% — —etl+ 2+ et3—etd (IX-30)

where Ktl = .agi‘l;i , Kt2= -é% ((1/+ z/t)g-xg;), Kt3 = (v+ut) (g—’zj} + g—gf) 3—%’ etl = %%‘:-,
- . . 2
et2 = 2- (y_-iia@l{_), et3 =Cag(v+ Ut) (-g—;‘; + -g%:-) g—;‘;, and et4 = Cea %7

oe Oxk

K and ¢ are calculated using the finite-difference versions of Egs. (IX-29) and (IX-30):

KM = K7 + db(— K17 + K27 + K37 — €7;) (IX-31)
and
it = b+ dt(—etll; + et2; + et3]; — etdl;) (IX-32)

which leaves us the issue of how each of the terms in these equations is calculated.

The advective terms in these equations (Kt1 and etl) are calculated by first computing
donor-cell arrays as was done in the two-dimensional heat-flow equation: Two arrays, idnr
and jdnr, are calculated. idnr is calculated from the u velocities at position i 4+ 1/2, j
and is zero if the flow is from left to right and one if the flow is from right to left. jdnr
is calculated from the v velocities at position 4,5 + 1/2 and is zero if the flow is upwards
and one if the flow is downwards. These two arrays are used to calculate donor cell in a
double-lookup fashion.

In finite-difference form Kt1 and etl are

(WE)1y25 — (WE)i a5 + OK)7j11/2 = (0K) 5172
dz dy

and

(u€)Tya/2,5 — We)iiy/a,; N (W) s1/2 = WETj—1/o

dz dy ’ (IX-34)

183

—_———— - R - - —

where each K and € at a cell wall is calculated using the donor-cell technique. In code form

these equations appear as

Kt1(1,j) =(u(i,j)*K(i+idnr(ij).j) -

& u(i-1,j)*K(i-1+idnr(i-1,j),j))/dx +

& (v(Li)*K(j+idnr(i,j)) -

& v(i-1,j)*K(i,j-1+jdnr(i-1,j))/dy
Epst1(i,j) =(u(ij)*Eps(i+idnr(i,j),j) -

& u(i-1,j)*Eps(i-1+idnr(i-1,j),j))/dx +

& (v(1,)*Eps(i,j+jdnr(ij)) -

& v(i-1,j)*Eps(i,j-1+jdnr(i-1,5))/dy

Kt2 and €t2 are written in finite-difference form as

K27, = vV + Vear/2,5)) (Kitr,5 — Ki,j)d;z(v * vi-1/2)) (Kig — Kic1g) |

(v + vi(s ja1/2) (Ko g1 — Ko j) — (v + vy(ij-172)) (Ko j — Kij—1)
dy?

von _ L | W vienayeg) (€ — €ig) — (v + Vi-1y2,5) (€0 — €i-1,9)
€ei = 0._6 dr2

+

(v + vis,54172)) (€541 — €6,5) — (V + vy j-1/2)) (€65 — €1,5-1)
dy?

In code form, this equation is written as follows:

Kt2(1,j)=((anuki(i,j)* (K (i+1,j)-K (i)

& + anuki(i-1,j)*(K(-1,§)-K(i,j)))/ (dx*dx))

& + ((anukj(i,j)* (K (L,i+1)-K (i)

& + anukj(i,j-1)*(K(1,j-1)-K(1)))/ (dy*dy))
Epst2(i,j)=((anuki(i,j)*(Eps(i+1,j)-Eps(i.i))

& + anuki(i-1,j)*(Eps(i-1,j)-Eps(i,j)))/ (dx*dx))

& + ((anukj(i,j)*(Eps(Lj+1)-Eps(ij))

& + anukj(i,j-1)*(Eps(i,j-1)-Eps(i,j)))/ (dy*dy))

184

(IX-35)

(IX-36)

& * (1/sige)
Kt3 is calculated by first expanding to obtain

Kt = (v +) <6ui +auj> Bu; =(U+Ut)l:(§_2£+ 3u> du,

Or; Oz;) Ox; oz ' 0z) Oz
du Ov\ Ou v Ou\ v v Ov)\ Ov
(55+5m')a—y+(55+55)52+(a—y+'az)a—y]- (30
This reduces to
ou\ > ou Ow\? ov\?

In finite-difference form, this equation appears as

2

n n

[T - U . n —ayn n T 2
(z+1/2,a z—1/2,3) +<ui,j+1 Ui j—1 , Yit1j Ui—1,j> n

2

" (IX-39)

G ”3:‘—1/2)2]
Wh_ere u at 4 and v at j are the average of u;;1/ and u;_1/2 and the average of v;11/2
and v;_1/o respectively. Note that the middle term involves differences taken across a
distance of 2 dz and 2 ddy, due to the positions at which v and v are defined. In code form
Eq. (IX-39) appears as the the following:
Kt3(1,j)= anuK(L,j) * ((u(ij)-u(i-1,))**2)/(dx*dx) +

& ((v(ig)-v(i,-1))**2)/(dy*dy) +

& (((u(ii+1)+u(-Li+1)-u(,i-1)-u(-1,j-1))/(4*dy)) +

& ((v(i+1,j)+v(i+1,j-1)-v(i-1,j)-v(i-1,j-1)) / (4*dx))) **2
€t3 is calculated using Kt3, where

€2,
€t3r; = 2L K137 . (IX-40)

= Lea7T-n,
K3

In code form, this equation is
Epst3(i,j) = cel * (Eps(i,j)/K(1.)) * Kt3(1,j)

185

et4 is simply calculated as

(523') :

K ?

n
27

or, in code form,

Epst4(i,j) = ce2 * Eps(i,j)*Eps(i,j)/K(i,j) -
This term is used along with the other ¢ terms to calculate the array of turbulence
dissipation rates.

The turbulence transport routine is made up of three major loops: the first to calculate
donor-cell arrays; the second to calculate Kt1, Kt2, Kt3, Epstl, Epst2, Epst3, and Epst4;
and a third to combine these terms using Eqgs. (IX-31) and (IX-32).

This routine, along with the turbulent boundary condition routine and the routine to
calculate total viscosities, makes up the K — ¢ turbulence model. The implementation of
these three procedures, along with the use of total viscosity wherever molecular viscosity
appears in the momentum and turbulence transport equations, is all that is necessary to
create a code that calculates turbulence transport.

D. Turbulence Transport and the Karman Vortex Street

Our incompressible code with equations of turbulence transport can be applied to the
Karman vortex street problem. In order to compare our results with those obtained in
Chapter VII, we can use the same set of parameters, namely: a flow passage 50 (cm) long
and 15 (cm) wide, flow around the obstacle at a rate of 1.5 (cm/s), an initial flow rate at
the right of 1 (cm/s), and a variable fluid viscosity.

The graphs presented in this section use these parameters on a grid of dimensions ibar
= 25 and jbar = 15. Initial K values and input K values are set to 0.01 (cm?/s?), whereas
initial and input € values are set such that the TURBULENCE SCALE is equal to 2 (cm).
The turbulence scale is a measure of the size of the turbulent fluctuations; it is represented

by an s and is calculated as

K3/2
§ = .

- (IX-42)

186

A typical turbulence scale at low Reynolds numbers is about one to one half the size
of a major feature, such as the obstacle. At high Reynolds numbers the turbulence scale
is more on the order of one-fifth to one-tenth of the size of a major feature.

In this first set of graphs, anu is set to 1; resulting in a system with a Reynolds number
of 5. Graphs appear at a time of 100 seconds.

Streamlines at time 100 (s)
Reynolds Number =5

Figure IX-4

e

K contours at time 100 (s)
Reynolds Number = 5

Figure IX-5

187

Eps contours at time 100 (s)
Reynolds Number =5

Figure IX-6

Notice that in these graphs, there is no flow separation, and turbulent fluctuations
are confined to the region where turbulence is being directly pumped into the system.
Turbulent kinetic energy cannot be sustained in this nonfluctuating system and is therefore
dissipated.

- At a viscosity of 0.2, the system begins to develop stationary vortices as can be seen

in Fig. 7.

/

~
——

Streamlines attime 100 (s)
Reynolds Number = 25

Figure IX-7

188

These vortices are better resolved in a run with a jbar of 30.

—_——
S
-,

Streamlines at time 100 (s)
Reynolds Number = 25

Figure IX-8

K and ¢ in a run using a jbar of 15 appear as follows.

=

K contours at time 100 (s)
Reynolds Number =25

Figure IX-9

189

Eps contours at time 100 (s)
Reynolds Number = 25

Figure IX-10

Again we see turbulence energy being dissipated by the system. Turbulence energy is
much stronger where it is being pumped into the system than it is anywhere else. At this
Reynolds number, however, turbulence energy reaches an area farther downstream than
it did in the first example. The Reynolds number has not yet been increased to the level
that turbulence is being generated by the system, but it is now sufficiently high for the
input turbulence to persist for an extended period of time.

- At a viscosity of 0.02 and a Reynolds number of 250, the system develops a Karman

vortex street. This can be seen in the following two graphs taken at a time of 100 seconds.

 —
N =
%

Streamlines at time-100 (s)
Reynolds Number = 250

Figure IX-11

190

Streamlines at time 100 (s)

Reynolds Number = 250
Fluid Reference Frame

Figure IX-12

K and ¢ at the same time appear as the following

K contours at time 100 (s)
Reynolds Number = 250

Figure IX-13

191

—/// T~

==

==

Eps contours at time 100 (s)
Reynolds Number = 250

Figure IX-14

In these graphs, turbulence is once again strongest where it is being pumped in, but
shearing forces farther down the street have created other regions of turbulence. The
Reynolds number has been increased to a point where turbulence not only persists but is
generated by the system.

~ The Karman vortex street can be simulated in another manner, by setting the initial
K’s and the K at the left to a higher value and allowing for the turbulence equations to
represent not only the small fluctuations within the stream but the large changes in velocity
of the stream itself The system then evolves into a situation where the turbulence kinetic
energy is high, thereby resulting in a high-turbulence viscosity. This viscosity lowers the
EFFECTIVE REYNOLDS NUMBER of the system, the Reynolds number as calculated
using the sum of the molecular and turbulence viscosities. The effective reynolds number is
in contrast to the MOLECULAR REYNOLDS NUMBER, which is calculated using only
the molecular viscosity. At a low effective Reynolds number, the resolved system does not
contained the Karman vortex street itself, but the-kinetic energy contained in this stream
is visible in the turbulence kinetic energies. Such a system is shown in the following set of
plots, which are taken at a Reynolds number of 250 and an initial K and input K of 0.225
(cm?/s?).

192

DN
_—

Streamlines at time 100 (s)
Molecular Reynolds Number = 250

Figure IX-15

g

K contours at time 100 (s)
Molecular Reynolds Number = 250

Figure IX-16

Eps contours at time 100 (s)
Molecular Reynolds Number = 250

Figure IX-17

193

In these plots, K values are about 0.17 (cm?/s?) whereas € values are about 0.016
(cm?/s®). These values result in a turbulence viscosity of 0.16 (cm?/s), corresponding to
an effective Reynolds number of 30, which is consistent with the type of resolved flow that

can be seen in Fig. IX-15.

It is hoped that the difference between the resolved kinetic energies in this and in
another calculation that has no equations of turbulence transport will be comparable to
the turbulent kinetic energy. This hypothesis can be tested by recording the resolved
kinetic energy and turbulent energy per unit mass of a turbulence transport calculation
and the resolved kinetic energy per unit mass of the second calculation at equal time
intervals. The difference between the two resolved kinetic energies can then be compared

with the turbulence kinetic energy.

Figure 18 shows a comparison of these two values for the parameters used in Figs. IX-

15-17.

difference between runs

AN

turbulence

average energies per unit mass

T 1 1 1
6D =D Y] 750 0.8 15 4

time in seconds

Comparisons of Fluctuating Energies

Figure IX-18

194

In this figure, we can see that the turbulent kinetic energy is in fact much less than the
difference between the two resolved kinetic energies. This difference is caused by the fact
that the turbulence equations are only able to model the fluctuations in the shear layer that
occurs behind the object. They are able to simulate the vortex street but underestimate
its effect in the top and bottom portions of the flow passage. In the resolved vortex street,
fluctuations in the center of the graph have large and immediate effects on the areas in
the top and bottom of the graph; these areas can be said to be CORRELATED. This
correlation, which can be clearly seen in Fig. IX-12, fails to be accurately represented by
the K — e turbulence model.

The problem is that the K — e model is a SINGLE POINT TURBULENCE MODEL,
meaning tﬂat it relies on the values of quantities directly surrounding a single point to
generate the turbulence values at that point. This type of model is in contrast with
the SPECTRAL TURBULENCE MODELS that are presently being developed. Such
models establish correlations between different regions in a fluid and attempt to simulate
turbulence in a much more detailed and accurate manner. The development of spectral
turbulence models is one of the many areas in which research is being done in the field of
computational fluid dynamics.

In this book we have examined the basics of finite-difference methods for numerical
fluid dynamics. The equations that we have studied, the terminology we have used, and the
techniques we have examined have been used for many years; yet the field is one in which
many developments are still being made. Finite-difference codes have given us the ability
to mathematically represent and study the behavior of physical systems with increasing
accuracy and complexity. Their research and development remains an active and exciting
field for those interested in the application of mathematics and computing to the study of

the world around us.

195

Glossary

Adiabatic system (VII-C). A system that contains no processes that either absorb or
generate heat. In an adiabatic system, both pressure and internal energy are functions
of density.

Advective flux (V-A). Flux that occurs as a result of the motion of fluid from one
region to another. An example of this type of flux is heat convection.

Artificial viscosity (VI-E). An additional diffusion term that is added to the finite-
difference ‘momentum equation in order to counteract the negative diffusion that is
intrinsic to this approximation of a partial-differential equation.

Benard problem (VIII-C). A problem involving a long, thin flow passage that is
heated at the bottom, cooled at the top, and insulated along the sides. The Nusselt
number can be calculated in this system in relation to the Rayleigh number.

Boundary conditions (II-B). Equations that represent the external conditions that
act on a system.

Boussinesq approximation for heat flow (VIII-B). The assumption in an incom-
pressible fluid code that all terms of the momentum equation can be modeled at constant
density except the buoyancy term. The Boussinesq approximation for heat flow is not
to be confused with the Boussinesq approximation for the Reynolds stress tensor. These
are completely independent concepts.

Boussinesq approximation for the Reynolds stress tensor (IX-B). The approx-
imation of the Reynolds stress tensor as

Ot; 6ﬂj 2
—Ut (axj + 8,’81) '+ 3K6'L,J)

where K is the turbulent kinetic energy and vy is the turbulent viscosity. The Boussinesq
approximation for the Reynolds stress tensor is not to be confused with the Boussinesq

approximation for heat flow.

196

Cartesian tensor notation (IX-A). A notation that makes use of subscripts to express
the general directionality of a quantity without explicitly stating that the quantity is in
a particular x-, y-, or z-direction. This notation is helpful in simplifying the equations
of fluid motion and aids in the complex derivations that are used to genérate turbulence
transport models, as well as many other models in physics.

Cell (II-B). An element of finite size that is used to represent the conditions at an
arbitrary position in a system. A cell is also called a zone.

Centered flux (V-B). An advective expression that uses the average of the values of
the quantities on both sides of the advective surface as the value of the advected quantity.

Coefficient of heat conductivity (II-B). A quantity that is proportional to the rate

at which a given material conducts heat across a temperature gradient. Its units are

(energy)
(length)(time)(temperature) °

Compressible fluid (IV-A). A fluid that is moved at speeds comparable to its sound
speed, causing it to change its density.

Conservation (II-A). The concept that mass, momentum, and energy are never
ciestroyed, only change form or move from one region to another.

Contact Discontinuity (IV-E). Any fluid discontinuity that moves with its fluid
elements, such as the fluid interface in a shock tube.

Correlation (IX-D). An interdependence between quantities not necessarily located
adjacent to each other.

Courant condition (IV-C). A numerical stability condition that occurs as a result of
the finite-difference approximation of the momentum equation. The Courant condition
is

|v]dt

Iz <1, (IV-36)

where v is (Ju] + ¢sound)-
Donor-cell lux (V-B). An advective expression that uses the upstream value of the

advected quantity.

197

Effective Reynolds number (IX-D). The Reynolds number as calculated using the
sum of the molecular and turbulence viscosities. See Reynolds number.
Error Function. A function that often results as a solution to a partial-differential

equation, the error function is defined as

erf(z) = -—%/e"”’zdx .
0

The error function can be calculated using the table at the end of Section III-E. It is
also called the probability integral.

Eulerian fluid-mechanics code (IV-A). A code in which zones remain fixed in space.
In this type of code, fluids move in and out of zones at various rates, causing the mass
contained in a particular zone to change as the simulation progresses. All physical
quantities are fluxed between cells, but the positions of the cells remain the same.

Explicit solving method (III-C). A solving method in which values at each new time
cycle are calculated directly from the values at the previous time cycle. This is in contrast
t_o the implicit solving method.

Fictitious zones (II-D). Finite-difference zones that exist beyond the normal bound-
aries of a system and are used in representing boundary conditions. Fictitious zones are
also called ghost zones.

Fluid (IV-A). A material that is infinitely deformable or malleable. A fluid may resist
moving from one shape to another but resists the same amount in all directions and in
all shapes.

Flux (II-A). The amount of a quantity passing through a unit area in a unit time.

Ghost zones (II-D). Zones that exist beyond the normal boundaries of a system and
are used in representing boundary conditions. They are also called fictitious zones.

Hot spot (VIII-B). A section of wall that contains a prescribed temperature boundary

condition in an otherwise insulated system.

198

- ———— e atanauddtosied pror—
s ¢

v e EIE [P STRE ' L;_w PRSI |

Implicit solving method (III-C). A solving method in which values at a new time
cycle are calculated based on the rate of change of values at this new time step. Values

at the old time step are used only indirectly. This is in contrast to the explicit method.

Incompressible fluid (IV-A). A fluid that moves at far subsonic speeds and does not

change its density.

Infinite-strength shock (IV-E). A shock that moves at a speed that is large compared
to the sound speed of the fluid ahead of the shock.

Insulated boundary condition (VIII-B). A boundary condition in which there is no
heat fluxed across the wall. It is achieved by specifying a zero temperature gradient

across the wall.
Isotropic (VII-B). The quality of not varying as a function of direction.

K — e turbulence model (IX-B). A turbulence representation that contains transport
equations for the turbulent kinetic energy per unit mass (K) and the dissipation rate of

that turbulence (e).

Karman vortex street (VII-C). A type of turbulent fluid flow that occurs in systems
in which a fluid within an appropriate range of velocities and viscosities flows around an
object. The Karman vortex street is a fluctuating stream with alternating eddies that is
c;,used by the shedding of vortices. It is also sometimes called the Von Karman vortex

street.

Kinematic viscosity (VII-B). The normal molecular viscosity of a fiuid; the kinematic
viséosity is produced in gases by the fluctuating departures of the velocities of the
molecules from some mean value. In liquids it is caused primarily by the intermolecular

forces.

Kronecker symbol (IX-B). A second order tensor that is designated as 6;;. The

Kronecker symbol is one if ¢ equals j and zero otherwise.

199

Lagrangian derivative (V-C). An expression for the rate of change of a quantity along
the motion of a fluid. It is equal to —g% + g%% where ¢ is the quantity that is changing.
The Lagrangian derivative is denoted as %;1 as opposed to %‘%.

Lagrangian fluid-mechanics code (IV-A). A fluid code in which the positions of
zones vary between time steps. As fluids are compressed and decompressed, the zones
move accordingly, maintaining an equal mass throughout the simulation. In a Lagrangian
calculation, the energies, momenta, and positions of the zones change from time step to
time step; only the mass contained by each zone is held fixed.

Mach number (VIII-E). The ratio of the velocity of a shock to the sound speed ahead
of that shock. The Mach number is defined as

v

M= .
Csound

Mach stem (VIII-E). A shock that is formed between a shock that hits an obstacle
and the resulting reflected shock. A Mach stem is always perpendicular to the obstacle.

Mass Matching (IV-E). In a Lagrangian calculation, the decreasing of the initial
volumes of the denser zones and the increasing of the initial volumes of the less dense
zones in a manner such that the masses of all zones are equal.

Mean flow (IX-B). The steady part of a fluid flow; the part of a fluid flow that is not
considered turbulence.

Modeling (IX-B). The approximation of a true transport equation with a more simple
equation that retains the properties of the original equation but is not algebraically
equivalent.

Molecular Reynolds number (IX-D). The Reynolds number as calculated using only
the molecular (kinematic) viscosity. See Reynolds number.

Natural Convection (VIII-C). The circulating motion of fluid between regions of
different temperatures due to the difference in the fluid density at each of these

temperatures.

200

Navier-Stokes Equations (IV-B). A general term for the equations that describe the
motion of fluids.

Nonadvective flux (V-A). Flux in addition to the advective flux that occurs when
quantities diffuse from one area to another. Examples of this sort of flux are pressure
flux in the momentum equation and work flux in the energy equation.

Nusselt Number (VIII-C). The ratio between the total heat flux in a system and the

heat flux due only to conduction:

Total Flux

Nu= Conductive Flux

(VIII-26)

Obstacle (VIII-A). An object that prevents fluid from flowing through a specified
subregion.

Prescribed-temperature boundary condition (VIII-B). A boundary condition in
which the wall exists at a prescribed temperature. For this condition the temperature
gradient across the wall is chosen such that the temperature at the wall remains at a
specified value.

Polytropic equation of state (IV-D). An equation that relates pressure to density

and internal energy in an ideal gas. The polytropic equation of state is
p=(y—1pI. (IV-23)

Polytropic gas constant. A variable that represents the ratio of specific heats in an
ideal gas. The Polytropic gas constant is designated by a =.

Probability Integral. See error function.

Rarefaction Wave (IV-E). A wave that occurs in a region of high density when a
barrier is removed between that region and a region of lower density.

Rayleigh number (VIII-C). A dimensionless.number that relates the magnitudes of
the buoyancy and viscous forces in a system. In the Benard problem, the Rayleigh
number is calculated as

3
Ro _ZPBAT

vo

(VII-27)

201

where g is the acceleration of gravity (defined as negative if downward), A is the height
of the passage, AT is the difference in temperatures between the top and the bottom
of the passage, v is the viscosity of the fluid, o is the thermometric conductivity of the
fluid, and B is Tio the inverse of the reference temperature.

Reynolds number (VII-E). The Reynolds number is a dimensionless quantity that
compares the advective versus the diffusive properties of a system. It can be used to
predict the tendency of a system towards turbulence. For the Karman vortex street

problem, the Reynolds number is calculated as

Re = Nobstico (VII-94)

v

where hops is the height of the obstacle, uo, is the velocity of the fluid far away from
the obstacle, and v is the viscosity of the fluid. As the Reynolds number increases, the
system is likely to become more turbulent.

Reynolds stress tensor (IX-B). A second order tensor that serves as a measure of
the turbulence of a system. The Reynolds stress tensor is equal to the ensemble average

of the product of the fluctuations in fluid velocities in two directions:

R,; = u;u; ,

where u and u; are first order tensors representing the fluctuations in velocities in the
i- and j-directions.

Shear force (IX-B). A force similar to friction that is caused by flows at different
velocities rubbing against each other.

Shock (IV-E). A rapid transition between two states that moves relative to the fluid.
It is also called a shock front.

Shock Front (IV-E). Same as a shock.

Shock Tube (IV-E). A tube containing two fluids, usually gasses, of different densities

that are used to study the properties of shocks and rarefactions

202

Single-Point Turbulence Model (IX-D). A turbulence model that relies on the
values of quantities directly surrounding a single point to generate the turbulence values
at that point. Such a model contains no correlations.

Spectral Turbulence Model (IX-D). A turbulence model that establishes correlations
between different regions in a fluid. Turbulence values at any given point are calculated
in conjunction with these correlations rather than using only the values adjacent to that
point.

Staggered mesh (VII-B). A fluid dynamics computational mesh in which some
variables exist at cell walls and others exist at cell centers.

Streamlines (VII-D). Lines that indicate the path along which the fluid is flowing.

Strouhal Number (VII-E). A dimensionless number that relates the period of the
stream to the size of the object and the rate of the flow. The Strouhal number is a
dimensionless quantity that is calculated as

St = —Tobs (VII-96)

Uoo Tstreet

where hops is the height of the obstacle, uy, is the velocity of the fluid far away from
the obstacle, and T is the period of the street. In a Karman vortex street, the Strouhal
number has been experimentally observed to be approximately 0.2.

Taylor-series expansion (VI-C). An expansion that uses Taylor’s theorem. In a

Taylor-series expansion, a function f(z + dz) becomes
d dz? dz
f@)+ TF @) + S @) + S @)+

where f/, f”, f'”, etc., are the first, second, third, etc., derivatives of the function f.
Tensor order (IX-A). A measure of the number of directional dimensions associated

with a quantity. A scalar, for example, has a tensor order of zero, indicating that it has

no directionality associated with it. A vector, having a single direction, is a quantity

with a tensor order of one. The Reynolds stress tensor, the product of two vectors, has

203

a tensor order of two. Higher order tensors exist with a number of directions equal to
their tensor order.

Thermometric conductivity (II-B). Notated by o, this quantity is equal to the
coefficient of heat conductivity of a material divided by its density and specific heat
(%) Its units are those of an area per unit time.

Time cycle counter (II-B). An integer that represents the number of time cycles that
have been calculated in a simulation.

Truncation error analysis (VI-A). A method that can be applied to determine the
error of finite-difference approximations. Truncation error analysis involves using a
Taylor series expansion on a finite-difference approximation and comparing the resulting
equation with the original partial-differential equation.

Turbulence (IX-B). The fluctuating portion of a fluid flow. The part of a fluid flow
that is not considered mean flow.

Turbulence scale (IX-D). A measure of the size of turbulent fluctuations. The

turbulence scale is denoted by an s and is calculated as
K3/2

— -
Turbulent kinetic energy (IX-B). The kinetic energy that is present in turbulent

(IX-42)

s =

fluctuations. Turbulent kinetic energy is often measured as turbulent kinetic energy per
unit mass which is denoted by K.

Turbulent viscosity (IX-B). Viscosity that results from turbulent fluctuations in a
fluid. It is denoted as v;.

Unconditionally unstable (V-B). Unstable regardless of the parameters that are
chosen.

Vortices (VII-E). Areas in a fluid flow where fluid is not moving along with the main
flow but rather circling in an eddy.

Wall function (IX-C). A function that is used to calculate K and e values at-the ghost

zones in problems where the turbulent conditions at the boundaries are important.

204

Zone (II-A). An element of finite size that is used to represent the conditions at an

arbitrary position in a system. A zone is also called a cell.

205

Acknowledgments

We would like to thank Margaret Findley for typsetting this work and creating the figures,
as well as Eric Harstad, Denise Hunter, and Patricia Mendius for help in editing, and
Thomas Adams and XHM for making the publication of this work possible. We would
also like to thank thank T-3, XHM, and Los Alamos National Laboratory for continuing

to support research programs for students in the sciences.

206

This report has been reproduced directly from the
best available copy.

It is available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62,

Oak Ridge, TN 37831.

Prices are available from

(615) 576-8401.

It is available to the public from the
National Technical Information Service,
US Department of Commerce,

5285 Port Royal Rd.,

Springfield, VA 22161.

“

Los Alamos

NATIONAL LABORATORY
Los Alamos, New Mexico 87545

