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CHAPTER 1

Introduction

If you have ever given up on a nuclear criticality calculation and terminated it
because it took so long to converge, you might find this thesis of interest. We develop
three methods for improving the fission source convergence in nuclear criticality
calculations for physical systems with high dominance ratios for which convergence
is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic
Acceleration (FDSA) Method are acceleration methods that speed fission source
convergence for both Monte Carlo and deterministic methods. The third method is
a hybrid Monte Carlo method that also converges for difficult problems where the

unaccelerated Monte Carlo method fails.
1.1 Criticality Calculations

The criticality of a system containing fissionable material is described by its
multiplication factor. The multiplication factor is the ratio of the number of neutrons
in one generation to the number of neutrons in the previous generation. A generation
is essentially the lifetime of a neutron. For finite systems, the multiplication factor
is denoted as Kegfective, OF koss. When a system is critical, it sustains a steady-state

chain reaction of nuclear fissioning, and k.;s=1. The average neutron population




in a critical system stays constant in time. A subcritical system has k.ss<1 and
the neutron population dies off in time. The neutron population in a supercritical
system, where k.s;>1, grows without bound in time [Dud76].

Knowledge of ks is necessary when designing nuclear reactors and handling
nuclear waste. With reactor design at a lull and waste production not, the latter
has become a dominant application for criticality calculations, or, more appropri-
ately, criticality safety calculations. Criticality has been a concern since the first
criticality experiments. Experiments are the best benchmarks for criticality safety,
but they are costly and specific only to the particular geometry of the experiment.
Hand calculations have been used for arrays of fissionable material [Tho73]. How-
ever, numerical computer methods are used almost exclusively for criticality cal-
culations at this time. Deterministic and Monte Carlo methods are both used.
However, because of complicated geometries and increasing computer power, Monte
Carlo methods are emerging as the tool of choice for criticality safety engineers. In
the United States, three production Monte Carlo computer codes are widely used:
MCNPTM 1 [Bri93][For94] from Los Alamos National Laboratory, KENO [Bow95]
from Oak Ridge National Laboratory, and MONK from AEA Technology in the
United Kingdom [Smi95]. VIM [Blo95] is used extensively at Argonne National
Laboratory. We have implemented one of our new methods, the Fission Matrix

Acceleration Method, in MCNP.

1.2 Difficulties with Criticality Calculations

For some systems, criticality calculations take an enormous amount of time to

converge. Both deterministic and Monte Carlo criticality calculations are based

I'MCNP is a trademark of the Regents of the University of California, Los Alamos National
Laboratory



on the source (or power) iteration method. A deterministic calculation is finished
upon source convergence, but a Monte Carlo calculation begins accumulating useful
random variable data only after the (fission) source is converged. The error in the
source iteration method decreases with each iteration, where the speed of the decrease
is dictated by the dominance ratio. The dominance ratio is the ratio of the second
eigenvalue to the first, or dominant, eigenvalue (k.ss). If the dominance ratio is near
unity, the source iteration error will decrease slowly, and thus convergence to the
dominant eigenmode (the converged fission source) is slow. Two types of systems
that have high dominance ratios (near unity) are large thermal reactors and arrays
of nuclear waste components. A system’s high dominance ratio is synonymous with
weak neutron communication between distant regions of the system.

Slow source convergence is less of a problem when the initial fission source guess
is very close to the converged fission source. However, sometimes knowledge of the
solution beforehand is evasive. Sometimes the typically available initial source shapes
(flat, or uniform, over the fissionable regions, or maybe a cosine shape) in a produc-
tion code are very different from the converged source shape. So, in practice, slow
source convergence can be quite troublesome. In fact, for some difficult problems,

Monte Carlo may never converge.

1.3 History of the Fission Matrix

The fission matrix is mainly associated with Monte Carlo criticality calculations,
but it also has applications in deterministic criticality calculations. The (z,7)th
element of the fission matrix is the probability that a fission source neutron born
in region j of the system causes the subsequent birth of a fission source neutron in

region 7. The fission matrix may be somewhat tediously estimated from a set of




deterministic calculations.

The fission matrix may also be estimated in a Monte Carlo calculation by keeping
track of what happens to the Monte Carlo-simulated neutrons. Each element (3, 7)
of the fission matrix is the number of neutrons produced in region ¢ due to neutrons
starting in region j divided by the number of neutrons starting in region j. Because
the fission matrix elements are ratios (and probabilities), they may be closer to truth
than the Monte Carlo fission source. For example, suppose the source in region j
is lower than its converged value. Both the numerators and denominators in the
fission matrix elements associated with region j will be lower than their converged
values. The errors tend to cancel out in the fission matrix elements, and are more
representative of the converged solution. Thus, the eigenvector of the fission matrix
tends to converge faster than the Monte Carlo fission source. Note that, because it is
spatially discretized, the fission matrix eigenvector does not converge exactly to the
spatially continuous Monte Carlo fission source. The eigenvector has a second—order

spatial truncation error [Kap58][Car75).

The idea of using the fission matrix as a separate and faster calculation was
developed by Morton [Mor56] and Kaplan [Kap58]. Morrison, Mihalczo, and Irving
of Oak Ridge National Laboratory implemented a fission matrix calculation into the
Monte Carlo code O5R [Mor66]. They used the number of iterations required to
converge the fission matrix eigenvector as a guide to know how many Monte Carlo
iterations it would take the regular Monte Carlo to converge. Both Mihalczo [Mih67)
and Mendelson [Men68] used the fission matrix calculations in calculations for real
systems. The Oak Ridge code, KENO, has the capability of performing fission matrix
calculations. Unfortunately, hardly anyone uses this option [Pet92]. We speculate

that the major reason this KENO option is largely unused is the user community’s



lack of familiarity with the fission matrix.

Both Kaplan [Kap58] and Kalos, et al. [Gre68] suggested using the fission matrix
eigenvector to adjust the regular Monte Carlo fission source distribution through vari-
ance reduction techniques (Splitting and Russian roulette). Carter and McCormick
[Car69] presented a method in which the regular Monte Carlo fission source dis-

tribution is adjusted by the ratio of successive fission matrix eigenvectors. They
demonstrated the potential acceleration by performing calculations that used dif-
fusion methods to simulate Monte Carlo. Kadontani, et al. [Kad91] attempted
accelerating the Monte Carlo fission source by setting it equal to the fission matrix

eigenvector at each iteration. These attempts met with limited success.

The big culprit behind these failures of Monte Carlo source acceleration methods
is the statistical noise inherent in the Monte Carlo algorithm. The acceleration
attempts may be carried over from successful deterministic methods, or they may just
be inherently deterministic, but whatever the reason, they cannot handle statistical
noise. However, Swaja [Swa72] successfully accelerated Monte Carlo fission source
convergence with Source Extrapolation, a deterministic acceleration method. He
filtered the statistical noise by a Kalman filter. Embedded in the Kalman filtering
process was the fission matrix to account for the dynamic state of the converging

source.

We consider a numerical acceleration method as a method that converges to a
solution equivalent to the unaccelerated solution, only faster. Since the fission ma-
trix is estimated in discrete space, it has a truncation error. Therefore, unless the
fission matrix has the same spatial discretization as the regular calculation, a direct
adjustment of the regular fission source to the fission matrix eigenvector is not an

acceleration method. (Depending on how the method of Kalos, et al. [Gre68] is




implemented, it may or may not be an acceleration method.) Monte Carlo calcula-
tions are usually performed in continuous space and the fission matrix is estimated
in finite discretized space.

The Fission Matrix Acceleration method derived in this thesis converges to the
regular, unaccelerated Monte Carlo fission source. It uses the fission matrix as a low-
order operator to determine an additive correction to the fission source. However, it

does require filtering the statistical noise.

1.4 The New Methods and Testing Their Feasibility

We develop three new methods that have not been tried before. The Fission Ma-
trix Acceleration method and the Fission Diffusion Synthetic Acceleration method
are accelerated versions of the regular, unaccelerated Source Iteration method. Each
iteration contains an additional step in which a low-order approximation to an exact
additive correction is applied to the fission source. Although each accelerated iter-
ation entails more work, the method accelerates the source convergence such that
significantly fewer iterations are required for convergence. The low-order approxi-
mations to the exact corrections are what differentiate the two methods: the fission
matrix and the diffusion approximation. The third method, the Hybrid Monte Carlo
method, is not an acceleration method, but rather a modified Monte Carlo source
iteration method. The source at each iteration is sampled not from the Monte Carlo
tracking, but from the solution of an elliptic equation, some of whose coefficients are
determined by the Monte Carlo simulation.

We determine the feasibility of the new methods by testing them on idealized
problems. The problems are far from reality, but nevertheless, they contain enough

“truth” to determine the merit and behavior of the methods.



Verification of the testbed’s validity is found by implementing the Fission Matrix
Acceleration method in the production code MCNP. Its behavior for a real, three-
dimensional, continuous-energy problem is the same as its behavior in the idealized
problems.

In a valid testbed then, we demonstrate that these methods are successful and
warrant further adaptation to real problems. Projected speedups will reduce compu-

tational time investments, thus permitting better evaluation of criticality scenarios.
1.5 Thesis Synopsis

We present an overview of the thesis.
Chapter II: Criticality Calculations

In Chapter II we begin with the general neutron transport equation and derive
the analytic fixed-source and the analytic criticality equations for one energy group,
isotropic scattering, and one-dimensional slab geometry. We also derive the adjoint
transport equation. We derive and present the numerical method of solution for
deterministic and Monte Carlo methods and the difficulties they have with high
dominance ratio problems. Lastly, we describe the fission matrix and how it is

estimated.
Chapter III: Fourier Analysis and Damped Acceleration

The acceleration methods we derive produce an additive correction for the fis-
sion source. We will find that sometimes the correction needs to be scaled back,
or damped, because applying the entire correction results in instability or highly
oscillatory behavior. Usually the oscillatory behavior is found in Monte Carlo cal-

culations and is due to the statistical noise. Sometimes deterministic acceleration




has to be scaled back if the system and solution are extremely heterogeneous or
contain severe transport effects. We do not have a direct theoretical justification
for this damping. However, we gain some indirect theoretical insight by looking
at Diffusion Synthetic Acceleration (DSA), an acceleration method for fixed-source
calculations. We find, through a Fourier analysis, that when the acceleration equa-
tion is discretized inconsistently with the transport equation, damping is required
for certain mesh sizes in order to inhibit instability. We note that, in methods for
accelerating the Monte Carlo fission source convergence, the acceleration equations
are inherently inconsistently discretized with Monte Carlo. Fission source conver-
gence acceleration methods are not amenable to this type of Fourier analysis, so we
use the inconsistently-discretized fixed-source analysis as a foundation for damping

fission source convergence acceleration.
Chapter IV: Experimental Fourier Analysis Tool

This shortest chapter in this thesis explains the tool we use to measure the conver-
gence of a fission source. The experimental Fourier analysis tool is used throughout

the thesis to gauge the convergence of various modes of the fission source.
Chapter V: Diffusion-Simulated Monte Carlo Calculations

In Chapter V we present Carter and McCormick’s acceleration method [Car69]
and propose an improvement to it. All neutron transport in this chapter is simulated

by diffusion calculations.
Chapter VI: Fission Matrix Acceleration Method

We develop the Fission Matrix Acceleration method in Chapter VI. We derive

it and explain the statistical filtering necessary for accelerating Monte Carlo. We



present the three one-dimensional slab geometry test problems that we use through-
out the thesis: a homogeneous slab, a uniform lattice, and a one-dimensional model
of the “kess of the world” problem. We present both deterministic and Monte Carlo
acceleration results.

We also extend the Fission Matrix Acceleration method to the production Monte
Carlo code MCNP and demonstrate the acceleration for the real, three-dimensional,

continuous energy- and space-dependent “k.ss of the world” problem.

Chapter VII: Fission Diffusion Synthetic Acceleration

Chapter VII contains the derivation of the Fission Diffusion Synthetic Accel-
eration (FDSA) method and the results for both deterministic and Monte Carlo

criticality calculations for the one-dimensional problems.

Chapter VIII: A Hybrid Monte Carlo Method for Improved Source Con-
vergence

Sometimes Monte Carlo does not converge to the correct fission source. An ex-
ample of a system where this is the case is the uniform lattice problem. Since a
true acceleration method converges to the unaccelerated solution, the method can-
not overcome inherent Monte Carlo deficiencies. We present a hybrid Monte Carlo
method in Chapter VIII that converges when regular, or accelerated, Monte Carlo

cannot. This method also results in reduced statistical noise.

Chapter IX: Summary, Conclusions, and a Look Ahead

In Chapter IX we summarize, draw conclusions, and list some activities for future

work.




CHAPTER I1

Criticality Calculations

This thesis investigates the acceleration of Monte Carlo (and, to a lesser extent,
deterministic) nuclear criticality calculations. Criticality calculations, due to the
presence of fissioning, are an extension of fixed-source calculations. We first present
the fixed-source neutron transport equation and sketch the derivation of its monoen-
ergetic, isotropic scattering, one-dimensional slab geometry form. We then introduce
fissioning to obtain the criticality form of the neutron transport equation that pro-
vides the groundwork for much of this thesis. We also present the diffusion equation,
an approximation to the transport equation. We use the diffusion equation and its

associated approximations to develop and study acceleration methods.

2.1 Analytic Equations

2.1.1 Analytic Fixed Source Neutron Transport Equation

A fixed-source calculation solves the neutron transport equation, which is a lin-
earized version of the Boltzmann equation [Cas67][Dud76]. The neutron transport
equation, for both fixed-source and criticality calculations, is a neutron balance equa-
tion. In general geometry, the time-independent fixed-source transport equation is

[Lew84],

10
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Q- Vii(r, B, Q) + Z(r, EY(r, E, Q) =

/ f Es(r,ﬂ’.Q,E'—>E)¢(r,E’,Q’)dQ’dE'+4—17T-Q(r,E) . (2])

where

© = direction of particle , (2.2)
r = position of particle , (2.3)
E = energy of particle , (2.4)
Zi(r,E) = total cross section (2.5)

= probable number of interactions a
particle at r with energy F undergoes
per unit path length , (2.6)

2s(r,Y - Q,E' — E)dQdE = probability per unit path length that a
particle at r with energy F’ traveling in
direction £’ scatters into dF about F

and dQ about (2.7)
f%Q(r, E) = external (independent of ) source
of particles , (2.8)
P(r, E,Q) = angular flux (2.9)
= on(r,E,Q) . (2.10)
Here
v = particle speed , (2.11)
n(r, E,Q) = particle density distribution |, (2.12)
and

n(r,E,Q)drdEdQ} = expected number of particles in dr about r
with energy dE about E and traveling in
direction df2 about © . (2.13)
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In this thesis, we make three simplifications to the neutron transport equation.
First, we consider only monoenergetic (or, one-group) problems, thereby eliminating
the dependence on E. Second, we consider only isotropic scattering. All angles are
equiprobable in isotropic scattering, so the dependence of ¥, on angle is eliminated.
Third, our analysis is restricted to one-dimensional slab geometry. These are harsh
restrictions and deviate greatly from reality, but they provide an appropriate plat-
form for methods development. If a method is successful under these simplifications,
extensions of it may be successful for higher-dimensioned, more complicated prob-
lems. In fact, we have successfully implemented the Fission Matrix Acceleration
method in MCNP and applied it to a three-dimensional, continuous energy problem.
(See Section 6.6.) The characteristics of the simplified, one-dimensional acceleration

method extend to the more complicated three-dimensional method.

Let us express the direction vector, €2, in spherical coordinates. We consider a
right-hand coordinate system with orthogonal unit directions (i,j, k) in the (z,y, )

directions. Then the direction vector, £2, emanating from the origin is

Q = Qi+Qj+0%k (2.14)

= sinfcosdi+sinfsingdj+cosfk (2.15)

V1—p2cosdi+/1—p?singj+pk , (2.16)

where

§ = angle between 2 and k , (2.17)

-
i

azimuthal angle (2.18)
angle between 1 and the projection of € onto the zy plane , (2.19)

p = cosf . (2.20)
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Then, for any function f(Q)=f(g, ), we have that

27 1 dud
L,rf (2)d0 = /¢=0 s f(e,@)dpds . (2.21)

An explicit expression for the monoenergetic scattering cross section is that of linearly

anisotropic scattering,
B0 0) = o (S0 +30-0'5,) (2.22)

where, for isotropic scattering, X;; = 0.
In one-dimensional slab geometry, there is no dependence upon y or z or the

azimuthal angle ¢. Thus, by renormalizing 1,

W) [ blo,n)db=2mb(an) | (2.23)

we obtain the monoenergetic, one-dimensional slab geometry transport equation for

isotropic scattering:

g (@) + Biablon) = 1 [ Saleiie i) + X 2y
where
Sa(e) = [ Sule k)i - (2.25)

For a slab of width L, 0 < z < L, the boundary conditions specify ¢ for incoming

directions,

PO, p) =4¥(p) , £>0 , (2.26)
b(Lp)=9¢"(w) , p<0 . (2.27)
2.1.2 Analytic Criticality Neutron Transport Equation

We obtain the one-group analytic criticality neutron transport equation for

isotropic scattering and one-dimensional slab geometry by introducing a fission term
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to Equation 2.24:

y-ga;’lﬁ(z, ©) + Zi(z)d(z, p) =

1 1 1vi 1
5. [ n)dr + 322D [ yenar . 2)

2 -1 2 k -1

where
Y#(z) = fission cross section (2.29)
= probability per unit path length that a particle at =

undergoes a fission (2.30)
v = average number of neutrons produced in a fission event , (2.31)
k= kess = Keprective (2.32)
= the multiplication factor |, (2.33)

For simplicity, we denote ¥, as X;. For our criticality calculations, we only consider
sources from fission, no external (either interior or incident) sources. Therefore, we

have vacuum boundary conditions:

$(0,p)=0, p>0 , (2.34)

¢(L’ ,LL) =0, p<0 . (235)

Since the source depends on %, Equation 2.28 defines an eigenvalue problem, where
k=k.s; is the dominant eigenvalue. k can be viewed as the number by which v
needs to be divided to make the system model critical, that is, where a nuclear
chain reaction is just sustainable. It follows that, for & > 1, the system model is
supercritical and the neutron population would grow in time. For k < 1, the system

model is subcritical and the neutron population would die out.

2.1.3 Analytic Diffusion Equation

Solving the transport equation is typically difficult. Employing the diffusion ap-

proximation in the transport equation yields the diffusion equation, which is simpler
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to solve. The diffusion approximation rests on the assumption that the angular flux

is linear in angle:
$(o, ) 5 (4o(z) + 3pr(0)) - (2.36)

Here we have defined

1
¢n(@)= [ pmpa,m)dn , n=0,1, (2:37)

where ¢o(z) is the scalar flux, ¢(z). Immediately, we substitute the scalar flux into

Equation 2.28 and obtain

(e, ) + Bl ) = SE(2)8() + 228 g@) . (29)

Now, we take the zeroth angular moment of Equation 2.38 by operating on it by

oL — (2.39)
and obtain
%951(:3) + Zi(z)do(z) = T,(z)do(z) + 1/2+(:v)¢0($) . (2.40)
Operating on Equation 2.38 by
1
[ O, (2.41)
we obtain its first angular moment,
8
5= [ #*9(e, 1) dut Sla)ba(z) =0 . (2.42)

Substituting the lineat approximation of ¥, Equation 2.36, into Equation 2.42, we

obtain

10
g'a;%(m) + Di(z)¢1(z) =0 (2.43)
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from which we obtain Fick’s Law,

1

$1(z) = —m%%(fc) : (2.44)

Substituting Equation 2.44 into Equation 2.40 and using the identity that the total

cross section is the sum of the scattering and absorption cross sections,

Zi(z) = Xs(z) + Zo(z) (2.45)

we obtain the diffusion equation:

g 1 0 vX¢(z)

_%.32_@7-8-;(]50(3) + Ea(x)¢0(m) = A ¢o($) . (246)

The boundary conditions are obtained by utilizing the linear approximation,
Equation 2.36, and the first moment equation, Equation 2.42, and integrating over

incoming directions. At the left side,

0 = /0 lmﬁ(ﬂ,ﬂ) dy (2.47)
= 560) [ mdp+20:0) [ 42 (2.48)

1 1
= Z¢°(O)+§¢l(0) (2.49)
0 = 4o0) - gzl - (2.50)

Similarly, on the right side,

0 = [ mb(L,p)du (2.51)
= 56D [ ndu+ 2u() [ 4 a (2.52)
1 1
= "Z¢0(L)+§¢1(L) (2.53)
0 = ¢0(L)+3—2%§5¢0<L) . (2.54)

These boundary conditions are commonly called the Marshak boundary conditions

[Bel70].
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Equation 2.46 is the diffusion equation. The diffusion equation and its associated
boundary conditions are obtained from the neutron transport equation by assuming
that the angular flux is linear in angle. The transport equation is a hyperbolic
equation, but the diffusion equation is an elliptic equation. Hyperbolic equations
are associated with wave propagation, giving rise to distinctly different domains of
dependence and zones of influence for a point in phase phase. Elliptic equations
are associated with diffusion processes where, for a phase space point, the domain
of dependence is equal to the zone of influence [Hir88]. For example, a localized
perturbation in a finite system would be propagated to the rest of the system in
finite time by the transport equation, while the diffusion equation would diffuse the

effects across the entire system instantaneously.

2.1.4 Analytic Adjoint Transport Equation

The solution of the adjoint transport equation is a valuable tool. Suppose a
system of volume V consists of a volume source of neutrons in a nonmultiplying
(nonfissioning) medium and a detector located some distance away from the source,
as shown in Figure 2.1. In the world of Monte Carlo, where individual particles are
simulated, the adjoint calculation is referred to as “running the particles backward
fr;)m the detector.” The adjoint solution is the system-wide importance at each point
in phase space for a particle to reach the detector [Bel70]. The three main uses for
the adjoint solution are perturbation calculations, Monte Carlo biasing [Lew84], and
variational ca.lcula.tion_s [Bel70]. We briefly present the adjoint equation because we

find it is necessary in our acceleration methods.

Given an operator R and the functions (z, ) and ¢*(z,p) that satisfy the

necessary boundary and continuity conditions, the adjoint operator R* is defined by




I
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detector
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Figure 2.1: Three-dimensional fixed-source system.

the following equation [Lew84][Bel70],

(¥, Rep) = (3, R*9")

where (-, -) is the inner product,

()= [ [ dpds

Suppose R is the criticality transport operator from Equation 2.28:

where

Mp(, ) = pgeth, ) + Bele)b(o, ) — 55u(a) [ ble) il

and

1
R=M-—'I;'N 3

Np(a,n) = 3v54(z) [ b(o,)du .

Then the criticality transport equation is

Ryp(z,p)=0 ,

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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which is called the forward problem in the adjoint context. Considering the fixed-

source part of R first, the adjoint of M is defined by

(4", My) = (3, M™p*) . (2.61)

Multiplying M by the adjoint angular flux, ¢*, and taking the inner product, the
form of M* is found as [Lew84]

MY (s, 1) = ~piaeth (@ 1) + De(e)" (o, 1) — 35(a) [ @) . (26)

The difference between the forward operator M and its adjoint, M*, is a negative
sign on the streaming term. Similarly, the adjoint of the fission operator N is defined

by
(¥*, N¢p) = (¢, N"p*) , (2.63)
where
% f % 1 1 * Il !
NY*(z, 1) = 5v54(e) [ ¥*(a,0)du’ . (264)

Since N=N*, N is self-adjoint. (When energy dependence is taken into account, the

fission operator is not self-adjoint.) The adjoint criticality transport operator is

1
R =M - —N" , (2.65)

Utilizing Equations 2.61 and 2.63, we see that, for Equation 2.55 to hold, we must

have

(3-7) @ Ng) =0 . (2.66)

Since the inner product is not zero for positive 1 and 3*, the forward and adjoint

eigenvalues must be equal,

F=k (2.67)

. ——————— . - SN - [ —. - -  ————————— -
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We will discover that we need the solution of the adjoint diffusion equation for the
Fission Diffusion Synthetic Acceleration method. Without energy dependence, the
diffusion operator in Equation 2.46 is self-adjoint. For a system with a non-reentrant
vacuum boundary, the adjoint boundary condition is zero for outgoing fluxes. This
boundary condition coincides with the physical interpretation of the adjoint flux as
the neutron importance. Neutrons escaping the system have zero chance of causing

a fission, therefore they have zero importance.

2.2 Numerical Methods for Solving the Neutron Transport
Equation

Analytically solving the transport and diffusion equations is possible only for
simple, idealized systems. Therefore, people resort to numerical, or computational,
methods to solve the equations on a computer. Computational methods are either

deterministic or stochastic.

Deterministic methods typically require discretizing the equations in every inde-
pendent variable and using finite differencing methods to approximate derivatives
of functions. An alternative to finite differencing is the finite element method, but
we will not consider that in this thesis. In neutron transport, a popular way to
discretize the angular variable is the discrete-ordinates, or Sy, method, where the
Gauss-Legendre quadrature set is used to approximate integrals over angle. The
main source of error in a deterministic method is the spatial discretization. For
finite spatial cells, the discre}‘.ized equation differs from the analytic equation by a

truncation error that should disappear as the spatial cells go to zero.

The Monte Carlo method is a stochastic method. Instead of solving a discretized

equation, the Monte Carlo method simulates actual particles. Using pseudo-random
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numbers, all events that a particle undergoes are sampled from known probability
density functions. The location, energy, and angle of a source particle are sampled
from a source distribution. The distance the particle travels to a collision, whether it
is absorbed or scatters, and its properties after a scatter are all sampled according to
probability density functions. Since Monte Carlo can handle the energy, spatial, and
angular variables continuously, it does not suffer from truncation errors. However,
since results are obtained by averaging the individual results from many particles,
all Monte Carlo solutions have statistical error.

The advantage of the Monte Carlo method is that it is able to model continuous
energy, space, and angle in irregular, complicated geometries. The advantage of
deterministic methods over Monte Carlo is that they have no statistical errors.

Figure 2.2 qualitatively shows how Monte Carlo and Sy compare. The Sy method
considers an infinite number of particles in a finitely resolved system. Monte Carlo
considers a finite number of particles in an infinitely resolved system. The “degree of
variable resolution” axis could also be, in some sense, “number of collisions.” Monte
Carlo particles either explicitly or probabilistically experience all of their collisions
from birth to death. However, in a discrete-ordinates calculation, the nth iteration

on the scattering source produces the nth-collided flux.
2.2.1 Deterministic Methods

By discretizing the independent variables, the integro-differential transport equa-

tion is converted to a system of equations amenable to solving on a computer.

Angular Discretization

For discrete-ordinates, or Sy, the angular variable, y, is divided into bins such

that particles only travel in discrete angles. The Sy Gauss-Legendre quadrature set
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Figure 2.2: A qualitative comparison of discrete-ordinates Sy and Monte Carlo.

defines the discrete angle, pi, and weight, wy,, in each bin. (An alternative to Sy
quadrature sets is the spherical harmonics, or Legendre polynomial approximations
(Pn). The Sy and Py_; equations are equivalent in one-dimensional slab geometry
[Lew84].) Integrals over angle are approximated in Sy by summations over the

quadrature set:

1 N
/_ BN Y (2.68)

m=1

In one-dimensional geometries, even-order quadrature sets are almost exclusively
employed. The even order quadrature sets are symmetric about, but do not include
p=0. They exactly integrate polynomials up to order 2N-1 [Bel70]. We use the

convention that the weights sum to 2:

N
Z Wy =2 . (2.69)

m=1
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Thus, the angular flux is converted from a continuous function to a discrete vector
whose NV elements at a particular point in space (and energy, if considered) are the

angular flux in each discrete angle. So, for ¢ =~ g,

PY(z, ) = Pm(a) = P(2) i) - (2.70)
The scalar flux, for instance, is approximated as
’ 1
8@) = [ dlo,m)du (271)
N
5 3 (o) um - 2.72)
m=1

Spatial Discretization

Spatially, the one-dimensional slab of width L is discretized by dividing it into

J cells, as shown in Figure 2.3. The interior cell edges are specified by z;41/2,

Figure 2.3: Discretized one-dimensional slab geometry.

1 < j £ J-1. The left boundary is denoted by zi/, and the right boundary by

Zy41/2- The cells have width &;,
hi = Zjs1p2 = Zjm1p2 (2.73)
with the cell center, z;, located at

1
Z;= 5 ($j+1/2 + .’Dj_1/2) . (2-74)
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Cross sections and any external fixed-sources in the interior of the system are to be
constant across a cell. The spatially discretized angular flux is assumed to reside on
the cell edges. The spatially analytic Sy transport equation for a particular direction

it (2) + Be(e (@) =
—Es(a:) S ba(e) wn + -ﬁ(—@ 3 tn(e) wn - (2.75)

n=1 n=1

Integrating Equation 2.75 over the jth cell or, specifically, operating on it by

hi,- /z z’”’"”(.) iz | (2.76)

12

we obtain
#—"f (¢m,5+1/2 - ¢m,j—1/2) + Xt i%m,;

1 vy
= _E 5,3 Z ¢n1.7 wn j,J Z ¢n,] Wy , (2.77)

n=1 n=1

where 1< m < N, 1 < 5 < J, and the cell-averaged angular flux for direction m is

Zjt1/2

Vg = Ym(z)dz . (2.78)

h.? T5—1/2

Differencing Scheme

Equation 2.77, together with specified incoming boundary conditions, consti-
tutes JN+N equations in 2JN+N unknowns ((J+1)N cell-edge fluxes and JN
cell-average fluxes). The required extra JN equations are auxiliary equations that
approximate Equation 2.78 and relate the cell-average flux to the cell-edge flux. A
common differencing scheme for the auxiliary equations, and one that we use in this

thesis, is the Diamond Differencing Scheme,

1
Prm,i = 3 (¢m,j-1/2 + ¢m,j+1/z) . (2.79)



25

The Diamond Differencing scheme is second order accurate, but it produces negative
fluxes in some cases, and attempts to alleviate the negativity may cause inaccuracies.
There are several other differencing schemes. For example, one new differencing

scheme that is positive and very accurate is a nonlinear characteristic scheme [Wal95).

Order of Accuracy

In Equation 2.77, the derivative of the angular flux is represented as a finite
difference. The finite difference method is based on the definition of the derivative

of 9 at z:

@ _ L Yot B~ (@)

7y = Al N (2.80)

Representing a derivative as a finite difference is an approximation. The order of the
accuracy of the approximation is determined by the power n, when the truncation
error goes to zero as (Az)™ [Hir88].

We use Taylor series expansions to show that both the Diamond Differencing
Scheme and the centrally differenced approximation to the first derivative of the flux
in Equation 2.77 are second order accurate. First, the Diamond Difference scheme,

for a particular angle m, is shown to be second order accurate as follows:

P = : (¢j—1/2 + ¢’j+1/2) (2.81)
= (¢( ;) — Mm’);’ + dz’é’(f’) ’;2 +O(r%)

+(z;) + d’/’(;"’) ;‘ + ‘pf(?) L O(h"')) (2.82)

=" $(z;) + O(F?) , (2-83)

where O(h") represents terms of, at most, order ™. Second, the centrally differenced

first derivative of the angular flux is, expanded in Taylor series, also shown to be
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second order accurate:

d’Sb;i ¢i+1/2 - 1/’_-i—1/2

= = . (2.84)
= (¢( 5) + d¢(;v’) Z + dzf(f’) i + O(®)

—b(z;) + d¢c§;j)g - dzfafj”')f‘; + O(h"’)) (2.85)

- d‘b(mﬂ) =0 L om?) . (2.86)

Fixed-Source Method of Solution

The method of solution for fixed-source, one-dimensional slab geometries is sweep-
ing left to right, considering the left-going angular fluxes separately from the right-
going angular fluxes. Equation 2.77 becomes a fixed-source problem if the entire

fission source is instead a fixed-source, @);, that is constant within each cell:

‘;: (¢m,g+1/2 ¢m,j—1/2) + Xt i%m,;

Yis,j E Y Wn+ Q5 . (2.87)

n=1

t\')li—'

The procedure is to guess the scalar flux for the scattering source, then lump the
scattering source and fixed-source together on the right hand side. Beginning at the
left boundary, for instance, a transport sweep is made to the right, one cell at a
time, for particles flowing to the right. Equations 2.87 and 2.79 are solved for the
exiting flux. Given the incoming flux, the exiting flux from the first cell provides the
incoming flux for the next cell. The procedure is repeated for each cell, marching
to the right boundary. Then a transport sweep is made from right to left, where
the equations are solved for the exiting lefi-going flux. Upon returning to the left
boundary, an updated scalar flux is available for each cell. Substituting the updated

scalar flux into the scattering source, the transport sweep is performed again. The
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whole sweep (back and forth) is repeated until the fluxes converge to within some

specified criterion.
Criticality Method of Solution

Solving the discretized criticality transport equation requires more work. Guesses
are made for the scattering source as well as for the fission source and the eigenvalue.
Just as in the fixed-source solution, the flux is converged for the scattering source.
This allows for updating the fission source. Then all the fluxes are normalized to the
fission source. Again, the fluxes are converged upon the scattering source, at which
time the fission source is updated. Thus, there is a hierarchy of iterations. The
iterations that converge the scattering source are called inner iterations and those

that converge the fission source are called outer iterations.
Solving the Discretized Diffusion Equation

For fixed-source problems, solving the discretized diffusion equation is similar to
solving the discretized transport equation. However, the resulting equations are not
explicitly dependent upon angle like the Sy equations. They form a tridiagonal sys-
tem that can be explicitly solved by matrix methods, such as Gaussian Elimination,
instead of iterating with transport sweeps. For criticality problems, the tridiagonal
system must be solved repeatedly until the fission source converges. That is, there
are only “outer” iterations in a criticality diffusion calculation. The explicit solving

of the tridiagonal matrix replaces the criticality transport “inner” iterations.
2.2.2 Monte Carlo Method

The Monte Carlo Method is based upon an entirely different model than deter-

ministic methods. Instead of solving equations that describe an infinite number of
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particles, Monte Carlo simulates enough individual particles to statistically describe
the actual number of particles. Typically, thousands or millions of simulated particles
represent an actual number of particles on the order of 10% to 10.

The relation between fixed-source and criticality calculations in Monte Carlo is
similar to the relation in deterministic calculations. Each “outer iteration” consists

of an entire fixed-source calculation.

Sampling from a Probability Density Function

Analog Monte Carlo is conceptually the simplest form of Monte Carlo. Analog
Monte Carlo is direct, explicit representation of particles. We consider analog Monte
Carlo for a fixed-source calculation. The foundation of Monte Carlo simulation
is sampling from probability density functions (pdf). Each event that a particle
undergoes is randomly sampled from the appropriate pdf. Therefore, the life of a
particle is a sequence of random events.

Suppose a probability density function (pdf) is p(y) defined on a<y<b. The pdf

must be positive or zero over the interval, so that
p(y) dy = the probability that y lies between y and dy, (2.88)
and the pdf is normalized over the range a<y<b,
/a bp(y) dy=1 . (2.89)
We see then that
/y ” P(y) dy = the probability that y lies between y; and y,. (2.90)

1

We define the cumulative distribution function (cdf), P(z), as

P(z) = /a “p(y) dy (2.91)

= the probability that y lies between a and =z, (2.92)
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so that

P(a) = 0 , (2.93)

P(®) = 1 . (2.94)

Given that we have available a pseudorandom number, €, between 0 and 1, we

can sample z from the cdf as follows:

¢=P@) = [ rw)dy . (295)

If z is not easily tractable from Equation 2.95, one may need to resort to rejection
techniques [Ham64][Car75][Kal86]. Rejection techniques may require many sampled

&’s before an z is found.

The Life of a Monte Carlo Particle

Let us traverse the lifeline of a Monte Carlo fixed-source particle. First, we must
sample the source. In one-dimensional slab geometry, suppose the source is isotropic
and uniform between £=3.5 and z=7.0 cm. The pdf for its location is

1

p(z) = 50=3z ° 3.5<z<6.0 , (2.96)

and the cdf is
P(z) = /ﬁ ,-,5 60—}3—5 dy (2.97)
- ?s% . (2.98)

Drawing a random number, ¢, setting it equal to P(z), and solving for z, we have
z=(6.0-3.5)¢(+35 . (2.99)
We sample its isotropic direction cosine, g, from a cdf obtained similarly as before

p=-14+2¢ . (2.100)
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Now that we know the particle’s initial location and direction, we must determine
how far it will travel to its first (next) collision. In order to determine the pdf
for this event, we consider the transport equation without scattering for a particle
traveling along the determined direction. We may, with no loss of generality, consider

a coordinate system along the direction of travel, and set y=1. Therefore, we have

dip(z)
dz

+Eab@)=0 , $(O0)=1 . (2.101)

The solution is

P(e) =™, (2.102)

such that the collision rate, and the pdf, is
Tih(z) = Dee~ ", (2.103)
The cdf for traveling a distance d is
d
P(d) = /0 See 2o ds (2.104)
Drawing a random number, £, setting it equal to P(d), we solve for d, obtaining,
1
d=—-—=Ih(1-¢ , (2.105)
it
or, since 1-¢ is distributed equivalently to ¢,
1
d=—=In(¢) . (2.106)
X

After transporting the simulated Monte Carlo particle to its collision site, we use
the cross sections to determine what happens to the particle. Assume, for simplicity,
that we have only absorption and isotropic scattering, so that the total cross section
is

=%+, . (2.107)
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With probability

s
bDs = E ] (2108)

the particle scatters, and with probability 1-p;, it is absorbed. The particle continues
its random walk until its death, through absorption or leakage out the system.
Implicit capture is a non-analog variance reduction technique that does not allow
the particle to be absorbed. Instead, the particles are assigned a weight (initially
one) and, at every collision, the weight is reduced, such that only p, of the weight
continues. If the system is highly scattering, the weight may become too low to
justify the computer time spent on it. Low weight particles are terminated by an

unbiased technique called Russian Roulette [Car75][Spa69).

Obtaining Monte Carlo Results

Information is weaned from the Monte Carlo method by running thousands or
millions of particles and accumulating random variable data of interest. For instance,
one may be interested in the flux in a region of the system, or the current across a
surface, or leakage out a boundary, etc. One may accumulate random variable data,

say gn, for events n=1,...N, where N is large, and build an average:

1 X
§= N Zgn ) (2.109)
n=1
where the average is an estimate of the true value g. Suppose the probability density

function of g is f(g) and g; is sampled from f(g). Then g is an unbiased estimator

of g if its expected value is g [Lew84]:

1 N

Elg] = E[jv-z_:gn] (2.110)
. N'n—l

- § 2 Blar] 2.111)

= E[g] 3 (2.112)
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where
EM=[:ﬁ@@, (2.113)
and

Elg:] = Elg] , (2.114)

since g, is sampled from f(g).

According fo the Central Limit Theorem [Kal86][Spa69][Car75][Lew84], § ap-
proaches a Gaussian, or normal, distribution, such that we can build a confidence
interval from §. A confidence interval is a range of values that contains, with prob-

ability p, the true value:

[§ —tpN-155 5 §+1pn-153] (2.115)
where
sz = estimate of the true standard deviation, o3,
of the mean, and (2.116)
t, = Student’s {-percentile for confidence level p .
and N-1 degrees of freedom. (2.117)

The sample standard deviation of the mean is obtained from the sample standard

deviation of the population with the following relation:

%=§%, (2.118)

where the sample standard deviation is [Lew84]

N (1& N\
Se=\N—1 (—]\7 ;gn - g) . (2.119)

The Central Limit Theorem states that g approaches a normal distribution as N—oo.

However, for finite IV, the distribution is not exactly normal. To build confidence
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intervals, the departure from a normal distribution is accounted for by the Student’s
t-percentile [Stu08][Ait57]. The Student’s t-percentile multiplies the estimated stan-
dard deviation and gives a confidence interval, in Equation 2.115, at the p confidence
level and for N-1 degrees of freedom.

The collision estimator for the scalar flux in a volume V is

hom et 3 2.120)
VR N&= ’

where w, is the total collided weight for the nth history. The collision flux estimator
is based on the expression for the average number of collisions per unit time in volume
V [Lew84]:

c=Viid . (2.121)

Monte Carlo Criticality Calculations

Just like in deterministic calculations, Monte Carlo criticality calculations have
“outer” iterations, each one consisting of a fixed-source calculation. In Monte Carlo,
the outer iterations are called cycles. The typical criticality procedure is to make an
initial fission source guess and run enough cycles to converge the source. These cycles
are called the inactive cycles, or settling cycles. The difference between determinis-
tic and Monte Carlo criticality calculations is that once the deterministic source is
converged the calculation is finished, whereas, Monte Carlo data accumulation can
begin only after the Monte Carlo source is converged. The cycles after the source is
converged are called active cycles. Deciding that the source is converged and active
cycles may begin is not an easy, well-defined task. It requires experience, knowledge
of the system and quality of the initial source guess, and luck.

During a cycle, the particle tracks determine the initial location of the fission

source particles for the next cycle. If, at a collision, a fission event occurs, and a
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fission particle is deemed to be born, then its position is banked (stored) until the
next cycle. At a collision, the fission weight, based upon the collision flux estimator,

is
vy

fission weight = Wn g - (2.122)
¢

Although there are other ways, the typical method involves dividing the fission weight

by the old (currently available) %.ss. Thus, at each collision,

Wy, lef
= b 2.123
1=t (2.123)

fission source particles are produced for the next cycle. For example, if y=0.7, a
source particle is produced with probability 0.7; or if y=1.2, one particle is produced
with probability 0.8, and two particles are produced with probability 0.2. The result
of scaling the fission weight by k.ss is that each cycle has roughly the same number
of histories. With cycles having the same number of histories, computational diffi-
culties of an increasing (problems with storage) or decaying (no particles!) source
are eliminated. However, the estimate of the scaled fission weight is biased, because
both the numerator and denominator are random variables, and the ratio of random
number averages is not equal to the average of the ratios [Elp85]. The bias is usually
insignificant because it is inversely proportional to the number of histories per cycle
[GasT75][Bow83][Bri86][Gel90][Gel91][Gel94].

We use three ke;; estimators [Lew84]: collision, absorption, and track length.
Contributions to the collision estimator are made at every collision, so that the

collision k.s; estimate at each cycle is

J9s . N M,
poollision _ §~ SR, 22 (2.124)
n=1mp=1 it

where there are IV histories in the cycle and M, collisions in the nth history. Con-

tributions to the absorption estimator are made at every absorption, so that, for N
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histories, the cycle absorption k.s; estimate is

N
pabsorption _ 3w, szf ) (2.125)

n=1

The cycle track length k.s; estimator is accumulated over distances traveled, not at

particular points. It is

N M
L vy
ptrack length _ Z Z L Wi, Z‘f , (2.126)
n=1mp=1 t
where M, is the number of track length segments, £, in the nth history. The cycle
kess estimators are averaged over the active cycles to give an average k.5 estimate

for each estimator type,

N
Etype — % S Etvee (2.127)

n=1

where “type” is collision, absorption, or track length.

Assuming a limited amount of computer resources, there are optimal values of the
number of histories per cycle and number of active cycles. The number of histories
per cycle should be large enough to diminish the bias in the k.ss estimate, but not
so large that only a small number of cycles can be run. Small numbers of cycles
may result in large estimated variances in %.ss, and, hence, meaningless confidence
intervals. Conversely, too many cycles may reduce the estimated variance enough
such that the bias is no longer negligible [Gel94].

Determining the number of cycles to skip (the number of inactive cycles) is not
a trivial task. It depends on the quality of the initial fission source guess, the domi-
nance ratio of the system, and the computational parameters (and model). Usually,
it is difficult to know for sure if the source is converged. Section 2.3 discusses com-
putational difficulties and this thesis addresses accelerating source convergence and

decreasing the number of necessary inactive cycles.
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2.3 Calculational Difficulties

Monte Carlo criticality calculations sometimes have difficulties that manifest
themselves in inaccurate results or unacceptably large computer times to achieve
accurate results. These difficulties may originate from the actual physical system
being modeled, or from computational situations, or both. In this section, we dis-
cuss sampling and the dominance ratio of the system. Generally, if a problem is
inadequately sampled, or if the dominance ratio is close to unity, there will be com-
putational difficulties. The discussion regarding the dominance ratio applies equally

to deterministic criticality calculations.
2.3.1 Sampling Difficulties

When parts of phase space are not sampled adequately, the solution is likely to be
inaccurate. Such an inaccuracy is considered a bias due to an improper model. The
best example of this sampling difficulty is G. Elliott Whitesides’ “k.ys of the world”
problem [Whi71]. Whitesides used a Monte Carlo code to obtain kss for a 9 X 9 x 9
array of plutonium spheres. All the spheres were identical with radii of about 4 cm
and separated by 60 cm. The entire array was surrounded by a water reflector. This
array is a loosely-coupled, subcritical system with k.;; ~ 0.93. Whitesides found
kess as about 0.93 with 300 histories per cycle. He undoubtedly did not obtain the
correct fission source shape, because the spheres are very independent and there were
not even enough histories per cycle to have one particle in each sphere! However,
since this problem is similar to a homogeneous, infinite medium, the value of kegs
is not highly dependent upon where the particles are located. When there is little
communication between the spheres, the k.ss of the system is about the ks of an

individual sphere. Indeed, Whitesides obtained the correct k. 75

B e e .y =
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However, when Whitesides replaced the center sphere of the model with a larger,
critical sphere, he obtained what he called the “k.ss of the world” problem. The name
comes from the fact that the world is about critical since it has critical reactors, but
if you were not near a critical reactor, it would be difficult to calculate the critical
k.ss. After 200 active cycles [Dic76], his Monte Carlo estimate of k.;; was about
the same as before. With so few particles, the hot center sphere was not detected.
In this problem, the fission source shape is very important. It is highly peaked at
the hot center sphere-very different from a typical initial flat source guess. Once
the particles can “see” the hot center sphere, the Monte Carlo ks estimate begins
drifting upward toward unity. In addition to the poor sampling in this problem, the

system has a high dominance ratio, resulting in slow convergence.

2.3.2 Dominance Ratio

The dominance ratio is the ratio of the second highest eigenvalue to the domi-
nant eigenvalue, k.ss. In a source (or power) iteration method, the dominance ratio
dictates the rate of the slowest error decay, that of the lowest order error mode.
When the dominance ratio is near one, the low order error decays very slowly, thus

requiring many iterations for convergence.

Rate of Convergence for High Dominance Ratios

To demonstrate the relevance of the dominance ratio in source iteration, we in-

vestigate its effect on the rate of convergence. We consider the transport equation,

Ty = Sp+oxFY (2.128)
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where

T = Q-vo(r,E,Q) +oir, EYp(r, E,Q) , (2.129)
Sy = / / oy(r, ¥ - @, E' — E)(r, B, Q') dS¥ dE' | (2.130)
Fy = f / vos(r, B')b(r, E', Q') d dE" . (2.131)

We manipulate Equation 2.128 as follows,

(T-8)y i—szb (2.132)

b = %(T——S)‘IXF;Z) , (2.133)

and we operate on both sides by F, obtaining an analytic integral transport equation,

Fy = %F(T —S)IyFp . (2.134)
Equivalently,
1
f=ZLf, (2.135)
where
f = f(r) = F¢ = fission source |, (2.136)
L = F(T —S) 'y = integral fission operator . (2.137)

The integral fission operator is represented in discrete space by the fission matrix L.

The Source Iteration method is represented by introducing iteration indices to

Equation 2.135,
. . 1 .
f(z-i-l/Z) — mLf(’) , (2.138)
fE) Gy (2.139)

Bi+) JLfOdr _ k(i)f fFEYDdr
[ f@dr " [ f@dr

(2.140)
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This satisfies

n~1 1
= H k(i)Lnf © . (2.141)
=0

The integral fission operator L has distinct eigenvalue solutions,

fm=kiLfm y k=i >k >k>--- . (2.142)

Suppose the initial source guess for the source iteration, Equations 2.138 to 2.140,

is a linear combination of the distinct solution eigenvectors [Lew84],

fO = Yaf . (2.143)
£

Then, from Equation 2.142,

LrfO =Y ok fy = ailkffi+ ki o+ akffe . (2.144)
Z

£2

We see see that as n — oo, k(™ converges to the dominant eigenvalue,

Bt J(eakT™ f1 + Yusg k™ fo)dr

2.145
J(eak? f1 + Eysy k7 fo)dr (2.143)
n+1
KT (alf 1+ X1 0 (7’5‘1‘) fz) dr
= N\" (2.146)
RS (eafi + Tesrcn ()" o) dr
— kasn—oo . (2.147)
Also, the fission source converges to the dominant eigenfunction,
1r)" 7 n )"
(F1) 79 = mhital)rhi+Ta(Z) f (2.148)
1 £>2 1
— ofiasn— o0 (2.149)

where

p= 7{:—1' (2.150)
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is the dominance ratio. Reducing an error of order 1 in Equation 2.148 to order

€ < 1 requires
_loge
“logp

iterations. For example, reducing an error by three orders of magnitude in a system

N

(2.151)

with dominance ratio 0.99 requires 688 iterations.

False Convergence

With a dominance ratio near unity, the source iteration method converges so
slowly that it may appear to be converged, when in fact it really is not. A typ-
ical measure of convergence is the vector norm-say the £, norm, the maximum
value-of the difference between two successive fission source iterates. Then, from

Equations 2.148 and 2.149, the apparent error at iteration n, a,, is
a, = f0— -1 (2.152)

" k, (n) ks (n~-1)
= p" (P—l)a2f2+z (k—l) _(E) afe (2153)

£>2

whereas the real error at iteration n, r,, is

Tn = alfl — f(n) = —pna2f2 - z (kl) azfg . (2.154)

2 ky

Considering only the leading terms of r, and a, and taking the vector norms, we
see that, for dominance ratios near unity, the real error may be significantly greater

than the apparent error:

Il »
L e | for 1—px1 . 2.155
llaall = T—p P (2155)

Two types of systems that tend to have dominance ratios near unity are large
thermal nuclear reactors and isolated arrays of barrels of nuclear waste. We shall
demonstrate how the dominance ratio approaches unity as a reactor becomes larger,

and as elements of an array are increasingly separated.
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Large Thermal Reactors

The dominance ratio is an indicator of the neutron communication between dis-
tant regions of the systems: the higher the dominance ratio, the weaker the commu-
nication. In general geometry, the diffusion equation for a homogeneous multiplying

medium, V, with zero scalar flux at the extrapolated boundary &V is

z
—DV* $(r) + Zad(r) = —L4(x) , reV (2.156)
#(r)=0, redv , (2.157)
where
D = L. diffusion coefficient , (2.158)
32#
Yy = X;— [ioXs = macroscopic transport cross section |, (2.159)
o = average scattering angle cosine . (2.160)

Let us consider, as a solution of Equation 2.156, the solution 1, (r) of the homo-

geneous differential equation [Dud76]

V*%n(r) + Bigpa(r) =0 , reV (2-161)

Yu(r) =0, reév , (2.162)

where the eigenvalues are arranged as B; < B; < B; < ---, and the eigenvectors are

orthonormal:
[9a)m@)dr = 61 (2.163)
Comparing Equations 2.162 and 2.157, we observe that t,(r) satisfies the boundary

condition of the diffusion equation, Equation 2.156, and, upon substitution, becomes

— D 7 % (r) + Sethn(r) = VZ ! Ya(r) . (2.164)
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From Equation 2.161, we see that

— D 7% ¢n(r) = DBZ¢,(x) , (2.165)
so Equation 2.164 becomes
2 2]
DE2a(x) + Eatbalr) = ZL4u(r) . (2.166)

From Equation 2.166 we have that the k-eigenvalues are

Ilzf

b = DB +%,

(2.167)

The two largest k,’s occur for the two smallest bucklings, B2 (the eigenvalues of the

homogeneous differential equation). Therefore, the dominance ratio p is

_k _ Z,+DB?

= k—l T+ DB2 (2.168)

For a one-dimensional homogeneous slab of extrapolated width L, the eigenfunc-

tions of the homogeneous differential equation are [Dud76]

Pa(z) = cos Brz (2.169)
with corresponding eigenvalues
2 nr\2
B = (I') . (2.170)

Substituting these homogeneous equation eigenvalues (bucklings) into the general
geometry expression for the dominance ratio, Equation 2.168, we obtain

_%.+D(5) 1?5, 4 Da?
P 4D ()~ TP+ Dia?

(2.171) .

Suppose ¥; = 1.0, ¥, = 0.7 (including fission), £, = 0.3 (isotropic scattering),
and v%; = 0.8. Then Figure 2.4 shows, as the slab width increases, how k. increases

toward k., and how the dominance ratio asymptotically increases toward unity.
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Lffects of Increasing Slab Thickness
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Figure 2.4: Diffusion theory expressions of the dominance ratio and %.ss show how
kess approaches k., and how the dominance ratio approaches unity as
the homogeneous slab width increases.

Arrays of Isolated Fissionable Materials

Another type of system that typically has a dominance ratio near unity is an ar-
ray of components, such as separated cans of nuclear waste. Using a one-dimensional
discrete ordinates code, we consider the effects of increasingly separating array com-
ponents on the dominance ratio. Consider two identical 2 cm slabs of fissionable
material, each with ¥; = 1.0, ¥; = 0.7 (isotropic scattering), and vy = 0.8. Fig-
ure 2.5 shows that as the slabs are separated by an increasing width of scattering
material, communication weakens, the dominance ratio approaches unity, and (in
this case) k.ss decreases. The very high dominance ratio problems proved to be
difficult for the code. When the dominance ratio is near one, the first and second
eigenvalues are nearly the same. In this case, the first two eigenstates become less
distinct, and the code may try to converge to some linear combination of the first

two eigenstates.
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Lffects of Separating Two Slabs
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Figure 2.5: Several deterministic discrete-ordinates calculations show that as two
slabs are separated by an increasing width of scattering material, k.;s
approaches that of a single slab and the dominance ratio approaches
unity.

2.4 The Fission Matrix

The fission matrix, f.v, may be estimated in different ways, for instance, by a
Monte Carlo calculation, a set of diffusion calculations, or a set of discrete-ordinates
transport calculations.

A fission matrix obtained from a Monte Carlo calculation is merely a matter of
bookkeeping. When a fission source particle is born, its cell of origin is logged, say,
cell j. After transport, suppose this particle produces a subsequent fission source
particle in cell :. This production would be accumulated for element (z,5). After
all the particles in the cycle are completed, each element is divided by the source in
cell j, such that each element (z, ) is the probability that a particle born in cell j

produces a subsequent fission source particle in cell 2,

i fission weight produced in  due to a source in j
ij =

(2.172)

source in J
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The numerator of ftij does not directly contain source normalization. It is the fission
weight from which source neutrons are sampled, not the actual simulated particles.
Therefore, an element (%, ) of the fission matrix may have a nonzero contribution,
but because of sampling, no simulated fission neutrons are actually produced in cell
2. The fission weight is equivalent to the incremental contributions made to the k¢
estimator. Succinctly, then, the numerators of the fission matrix elements are the
k.ss estimates in cell ¢ due to a particle originating in cell j. Thus, we may have as
many different types of fission matrices as we have k.sy estimator types. We may
have a collision fission matrix, an absorption fission matrix, and a track length fission

matrix.

Accumulating Monte Carlo data for a single cycle produces a cycle fission ma-
triz. From the cycle fission matrix comes the dominant cycle eigenvector and cycle
eigenvalue. One may obtain an average cycle eigenvalue over many cycles. The
problem with the cycle fission matrix is that it is based only upon the number of
histories per cycle. The number of histories per cycle may be enough for the M cells
in the modeled system, but not enough for good statistics in the M? elements of
the fission matrix. Additionally, the bias in the fission matrix elements, and hence
the eigenvalue, is more prevalent when the number of histories is small. The bias is
a manifestation of each fission matrix element being the ratio of the average of the
numerator and the average of the denominator. Generally, the average of a ratio is
not equal to the ratio of the average numerator to the average denominator [Elp85].
Experience has shown that this bias is usually positive, that is, the cycle fission

matrix dominant eigenvalue is higher than the true eigenvalue.

The cumulative fission matriz diminishes the bias in its elements more so than

does the cycle fission matrix. Instead of accumulating numerator and denominator
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data over just a single cycle, the data are accumulated over all the cycles up to that
point. The better statistics in the numerator and denominator result in reduced
bias in the fission matrix elements. Even if the fission source is not converged, the
data accumulated for the fission matrix is expected to be accurate since the fission
matrix elements are probabilities. The validity of this statement is diminished when
the fission source is not adequately sampled. The disadvantage of the eigenvalue of
the cumulative fission matrix is that it is difficult to estimate its error in a simple,
traditional manner. Eigenvalues from successive‘cycles are not independent. An
attempt to propagate the errors through the source iteration determination of the
dominant eigenstate seem cumbersome. However, some propagated error estimates

have been proposed [Kap58].

The fission matrix is also deterministically obtainable. Instead of bookkeeping,
though, this approach requires a separate fixed source calculation for each cell in
the system. For a single calculation, a unit source is placed in one cell. If the
calculation is a cell-edge diffusion calculation, it may require distributing the source
between two cell-edges. Upon completion, there is a system-wide response to that
unit source in the one cell. Scaled by the fission cross section, this response provides
one column of the fission matrix. Then the calculation is repeated for each cell in
the system. In this thesis, we use diffusion calculations instead of discrete-ordinates
transport calculations, because our ultimate intended use is acceleration and the
diffusion calculations are faster. Also, in practice, most criticality problems tend to

have fairly isotropic scattering.

Because the fission matrix resides on a spatially discretized system, it suffers from
a discretization error. For example, with vacuum boundary conditions, the fission

matrix’s flat fission source in the boundary cell overestimates the leakage. Therefore,



47

the eigenvalue of the fission matrix is not equal to the true eigenvalue.




CHAPTER III

Fourier Analysis and Damped Acceleration

3.1 Motivation

A Fourier Analysis is a way to determine the stability and speed of convergence
of an iteration method. If the error for any particular mode, or frequency, grows
with each iteration, the method is unstable. The rate at which the most dominant
error mode decays gives the speed of convergence. The analysis requires an infinite,
homogeneous medium and is only applicable to a linear method.

We will find that our fission source acceleration methods are unstable, or highly
oscillatory, if the full additive correction is made at each cycle or iteration. Thus
we damp the additive correction, adding only a portion of it. Unfortunately, since
criticality calculations are nonlinear, we do not have the luxury of using a Fourier
analysis to see the stabilizing effects of damping. Instead, we turn to fixed source
acceleration methods, namely Diffusion Synthetic Acceleration (DSA). If the DSA
method is discretized in an “inconsistent” way, it may suffer instabilities [Ree71]. We
will show that damping the DSA additive correction can alleviate these instabilities.
The discretization that causes the DSA instabilities is similar to the discretization we
are forced to use in Monte Carlo fission source convergence acceleration. Therefore,

we use the DSA results as a theoretical foundation for damping the Monte Carlo

48
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fission source acceleration correction.

3.2 Transport Equation

The fixed-source, monoenergetic transport equation with isotropic scattering in

one-dimensional homogeneous slab geometry is
0Y(z, 1 1
b | sb(o,n) = £5.60) +3Q0) (3.1)
where ¢(z) is the scalar flux. Since the Fourier Analysis requires an infinite, homo-

geneous medium, we will not concern ourselves with boundary conditions.

3.3 Source Iteration

The Source Iteration method comes from introducing iteration indices to Equa-

tion 3.1. Its two steps are

/L%W“’ 2z, p) + Zp¥ (2, p) = -12-23425“)(:6) + %Q(m) , (3.2)
$(z) = gerin() = [y gy (5.3

We want to Fourier-analyze the errors in the Source Iteration method. Denoting the

error E(z,p) as the difference between the 1 of successive iterations,
B (g, p) = ¢ (2, p) — p¥ )z, ) (3-4)

and subtracting Equation 3.2 at iteration £-1/2 from Equation 3.2 at iteration £+1/2,

we obtain

0 1 1 e
”,6_$_E(l+1/2)($, ) + ZtE(e-H/z)(z’ n) = 523 /;1 E¢A) (z,0) (3.5)

where we have assumed constant cross sections. Equation 3.5 tells us that we may

interpret ¢ and ¢ in Equation 3.2 and 3.3 as the iteration errors so long as

Qz)=0 . (3.6)
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Recognizing that ¢**® is the eigenfunction of the errors and w the eigenvalue, we

introduce into Equations 3.2 and 3.3 the following Fourier separation of variables

ansatz
Q(:I)) =0, (3’7)
. ¢¥ = Wl | (3.8)
¢(£+1/2) — wla(ﬂ)ei)\a: , (3.9)
and obtain
s
a(p) = o (3.10)
= [ a(wd (3.11)
w = [ apdp . .

Substituting Equation 3.10 into 3.11, multiplying and dividing by the complex con-
jugate, and dividing numerator and denominator by X2, we obtain an expression for

the eigenvalue w of the method,

— 1 23 _ 1 ES(Et -_— Z.ILA)
c ! dp
T 2 )al@x (3.13)

where A is in units of cm™ in Equation 3.12 and, in Equation 3.13, ) is in units of

mfp~? and

c= —E—s = scattering ratio . (3.14)
¢

The maximum eigenvalue, called the spectral radius, of the method measures the
decay (or growth) of the dominant error mode. A spectral radius greater than unity
implies error growth, or instability, and a spectral radius less than unity dictates the
slowest error decay. For Source Iteration,
sup lwj=¢c , (3.15)
A

so it is stable since ¢ < 1, but extremely slow for ¢ near 1 and X & 0.
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3.4 Diffusion Synthetic Acceleration

The idea behind the Diffusion Synthetic Acceleration (DSA) Method is to calcu-
late an approximation to the exact correction to the angular flux at each iteration.

To that end, the exact correction at iteration £ is

4 (z, p) = P(z, p) — Pz, p) (3.16)

where 1(z, pt) is the exact angular flux satisfying the transport equation in a homo-

geneous medium,

0 1 1
pa- (@ k) + Beb(z, p) = 5Bed(2) + 50(2) (3.17)
1

#a)= [ ¥(emdu . (3.18)
Subtracting Equation 3.2 from Equation 3.17 yields an equation for the exact cor-

rection,

4 (¢+1) (¢+1) 1 ! (&+1)
Pag9 (@) + g (2 ) — 5B /_ A CYOL
= 25, ($9(z) - $0(z)) (3.19)
where
1

$421(a@) = [ e, wdp . (3.20)

Solving Equation 3.19 for g¥+1)(z, 1) and adding it to the most recent angular flux

results in the exact angular flux:

1/)(:1:, F‘) = 1/’(2_’-1/2)(3:) /“) + g(£+1) (m, l‘) ) (3'21)

and the calculation is finished. Unfortunately, Equation 3.19 is just as difficult to

solve as the original Source Iteration problem, Equation 3.2. Therefore, we take the
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diffusion approximation of Equation 3.19. First, we define

1
() = f_ . pmg N (z, p)dy

and assume that the exact correction is linear in angle,

g (z,p) ~ = ( £ (@) + 3 (2)))

Operating on Equation 3.19 by

1
L OLE
and
1
/_ kGl
we obtain
2 {59(@) + B (@) - B A8 )
=3, (¢19(z) - 40(2))
and

1
'a% B9 (@, m)dp + Zef{ (2) = 0

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Using the linear approximation of g, Equation 3.23, in Equation 3.27 produces an

expression for fi,

1 90
f§l+1) ((B) — _32 a l+1) (.’D)

(3.28)

which, when substituted into Equation 3.26, yields the diffusion approximation to

Equation 3.19, the acceleration equation,

a1 9
8:1:323

=3, ( (+1/2) () — ¢(‘).(a:))

£+1) (m) + E (£+1)( )

s ey r -»—.vw.--'_lv.gi i . f.r—m;v.‘r).*f’&&;

(3.29)
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The DSA method, without considering boundary conditions, consists of a trans-

port source iteration, Equation 3.2; calculating the most recent scalar flux,

<;3(11+1/2)(w)= /_ 11 ¢(£+1/2)(z, p)dp ; (3.30)

calculating the correction from Equation 3.29; then applying it to the most recent

scalar flux
$(z) = $EA@) + 5 (3.31)
and continuing this sequence until convergence.
As was performed for the Source Iteration method, we may Fourier analyze the

DSA method (assuming constant cross sections) and obtain [Lar84]

_ c)? 1 Py(p)
© = [,\2 +3(1— c)] /_1 T1 a2 (3-32)

_ =2 1 Bw
- [zt/\2+3za] /_11+,\2p2d" : (3:33)

Here P,(p) is the second Legendre polynomial,

3u?—1
2

Py(p) = (3.34)

The spectral radius of the DSA method is less than or equal to 0.2247¢ [Lar84], so
it is stable and converges for all ¢. The eigenvalues of both the Source Iteration and
DSA methods are shown in Figure 3.1. One can see that DSA entirely removes the
low order (A = 0) error modes. These are the modes with which Source Iteration has
the most difficulty. Additionally, the DSA eigenvalue is always less than the Source

Iteration eigenvalue for all w, so DSA will always converge faster.

3.5 Consistently Discretized DSA

The analytic equations for the Source Iteration and DSA methods are useful only

to a certain degree. Systems more complicated in the way of materials and geom-

e ————————— ————
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TFourier Analysis of Analytic SI and DSA
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Figure 3.1: Eigenvalues of the Source Iteration and DSA methods for c¢=1.0.

etry require discretizing the analytic equations and solving them on a computer.
How does one go about discretizing the transport and diffusion equations in DSA?
It turns out that independently discretizing each equation, using one’s favorite dis-
cretization schemes, may lead to instability when the mesh sizes are greater than
about 1 mfp. In 1977, Alcouffe [Alc77] showed that DSA is unconditionally stable
for the diamond-differenced Sy if the diffusion equation is discretized consistently
with the transport equation. Instead of deriving the analytic DSA equations and
independently discretizing the transport and diffusion equations, the diffusion part
of the DSA equation is derived from the discretized transport equation. Larsen de-
vised a four-step method of consistently deriving the discretized DSA equations for
other transport differencing schemes [Lar82]. The spectral radius of the consistently
discretized DSA schemes are the same as the analytical DSA, namely 0.2247¢, for all

mesh sizes.



38

3.6 Inconsistently Discretized DSA

With the previous paragraph having little good to say about inconsistently dis-
cretized DSA, why on earth would anyone use it? There are at least two good

Treasons:

e The system being modeled is complicated such that the consistently discretized

DSA equations are simply not practical, or

o A deterministic method is being used to accelerate a Monte Carlo transport

method and the equations are inherently inconsistent.

The last item suggests that instabilities may exist when trying to accelerate Monte
Carlo with a deterministic correction. We show here that this damning quality of
inconsistently discretized DSA is stemmed by damping the DSA correction.

Analytically, the damped DSA equations are
0 +1/2) (e+1/2) 1o 4@y 2 L
paat' (@ ) + BTz, p) = 58,67 (2) +5Q(2) (3.35)

1
$(a) = [ e, uydu (3.36)
0 1 0 ,en) (£41) (£+1/2) ©®

~ gl @+ S0 @) =5 ($@) - 69) ,  (3.37)
$¥(2) = g0 (@) 4 oY (3:38)

where f in Equation 3.38 is the damping factor that defines the method:
B= 0 Source Iteration |, (3.39)
0<B< 1 Damped DSA , (3.40)

= 1 DSA . (3.41)
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Now we spatially discretize our system such that z; are the centers and z;4;/, are
the edges of uniform cells of width k. The angular variable is discretized using the

Sn (N even) Gauss-Legendre quadrature set such that

1 N
f &S (3.42)

- m=1
Pn = —[N-nt1 (3.43)
Wym = WN-ntl (3-44)

N
2 = D> wm , (3.45)

m=1

where w,, is the weight (approximating du) and g, approximates y in the m** an-
gular bin. Discretization of the transport equation requires auxiliary equations to
relate the cell edge angular fluxes to the cell center angular fluxes. These auxiliary
equations constitute a differencing scheme. Many differencing schemes exist, but
we will look solely at the Diamond Differencing scheme, where the cell center an-
gular fluxes are the average of the two cell edge fluxes. The diffusion equation is
centrally differenced. The inconsistently differenced, damped DSA equations for a

homogeneous medium are as follows:

Um 441/2 £ f2 E e
b (i o) may P = 20 o, aan
PER = 2 (p40, g gErimy (3.47)
¢§z+1/2) _ E ¢(£+1/2) , (3. 48)

n=1
241 2+1 41 2 2 fi

32 s (A0 -2 4 £59) 4 D0 = 5, (HP - 40) , (3.49)
(£+1) ¢(£+1/2) +8 fJge+1) ] (3.50)

Into Equations 3.46 through 3.50 we introduce the Fourier separation of variables

ansatz,
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Q =0, (3.51)
¢§l) = whes | (3.52)
¢7(’5:§1/2) = wlane® | (3.53)
¢7(7f:§}'_/12/)2 = Wibpeoinr (3.54)
¢§_e+1/2) = wiuei (3.55)
J(z+1) = wivei , (3.56)

(where the zero source appears because the fluxes are interpreted as flux errors), and

dividing by
wherei (8.57)
we obtain
HEm iARf2 _ —iAR/2 _ 2
b (e &) 4 Dyt = > (3.58)
1 . .
Gm = b (242 4 ) (3.59)
N
U= awn , (3.60)
n=1
- v(e”‘h—2+e'i’\h)+2v—2(u-——l) (3.61)
3%,h2 T o '
w=u+pv . (3.62)
Setting
6 = Ah/2 (3.63)
and making use of the identities
8 _ —if
sinf = 6—2;— , (3.64)
0 —if
cosf =T~ (3.65)

2 ?
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we find that
T, cos? @
T nf\; cos? § + iz p2, sin’® g (3.66)
and
Se + BE; + 55z sin?0) u — BT,
w= ( ﬁ 3k ) ﬁ (3.67)

S+ SZ;:T sin® @
Unlike the analytic eigenvalue, the damped DSA eigenvalue is periodic with pe-
riod
27

T= = (3.68)

so we consider |A| < ¥, 0r 0 < X < Z. At the lowest frequency, A = 0, the eigenvalue

w, from Equation 3.67, varies linearly with £,
2
wheo = (1~ B2 (3.69)
¢

from w = 0 for DSA and w = ¢ = % for Source Iteration. At the highest, most

oscillating frequency, we find

B,

Wr=Z =
I I h Ea"“ 3E‘ih2

(3.70)

In order for the method to be stable, we must have the spectral radius less than or

equal to 1. This stipulation limits the mesh size according to the following equation:
w2 (6415 - 1)<3 - (3.71)
P 3

We delightfully see from Equation 3.71 that damping the DSA allows stability with
larger mesh sizes.

Figure 3.2 shows that, for a mesh size of 4/3 and ¢ = %:1.0, the Source Iteration
method (8 = 0) converges slowly for the low frequencies and that DSA (8 = 1.0)
becomes unstable at the high frequencies. Damping eliminates the instability at the

high frequencies for § =0.2, 0.4, and 0.6. Stability has the compromising price of
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Fourier Analysis of Damped DSA

14 T T I I

12 c=1.0, N=32, h=4/3 /—
. /£

8= 0.0 (S)

Figure 3.2: The inconsistently discretized, damped DSA eigenvalues for various fre-
quencies A and damping factors S.

reduced acceleration. The optimal S accelerates the most without going unstable.
Figure 3.3 shows the DSA spectral radius from the Fourier analysis. The optimal
beta~the beta for which the spectral radius is minimized—is about 0.429.

Figure 3.4 shows how, at the highest frequency A = %, increasing the mesh size
h for B = 1.0 will induce instability at a little over a mean free path thick. Damping
(decreasing B) allows larger mesh sizes. For comparison, Figure 3.5 shows that the
threshold mesh size is more advantageously sensitive to the scattering ratio (with
B=1.0) than to B. That is, assuming the scattering ratio is variable, the method
stabilizes faster for decreasing ¢ than for decreasing 8. This behavior is verified by

Equation 3.71.
3.7 Numerical Results

To verify the results of the Fourier analysis, we demonstrate, as a function of

mesh size, the stability of the following methods using Diamond Differencing:
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Analytic Spectral Radii for Damped Inconsistent DSA
2.0 T T T T T

spectral
radius

04| h=4/3 .
0.2 | : -
0.0 1 ) 1 1 1

0.0 0.2 0.4 . 0.6 0.8 1.0

Figure 3.3: The spectral radii for inconsistently discretized, damped DSA eigenvalues
for various values of 3. The optimal beta is depicted at about 0.429.

Fourier Analysis of Damped DSA
3.0 T T ! T T T T T T

2.5

20 c=1.0, N=32, A=n/h
lw] 1.5

1.0

0.5

0.0

00 02 04 06 08 10 12 14 16 1.8 20
h, mfp

Figure 3.4: Damping the inconsistently discretized DSA allows for larger mesh size
before instability sets in.
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Scattering Ratio Effect on DSA Stability
3.0 T T T I T T T T T

c=1.0

2.0 | B=1.0, N=32, A = n/h -

00 02 04 06 08 1.0 12 14 1.6 18 20
h, mfp

Figure 3.5: For inconsistently differenced DSA (8=1.0), the scattering ratio has a
larger effect on the threshold (to instability) mesh size than does S.

e unaccelerated Source Iteration,
e accelerated with consistently differenced DSA, and

e accelerated with inconsistently differenced DSA,

e 3=1.0
e 3=0.6
e B=04.

We analyze a 40 mfp homogeneous slab with a nearly normal incident beam on the

left edge. Using an Ss; quadrature set, the incident angular flux, o, is

Py = 22 (3.72)

9
H32W32

such that the current is unity. The right edge of the slab is a vacuum. The scattering

ratio of the slab is 1.0. Using a convergence criterion of 10~° for the relative error, we
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use mesh sizes of 0.0625 cm, 0.125 cm, and so on, doubled, up to 8.0 cm, for a total
of 8 cases. The unaccelerated source iteration took approximately 3080 iterations
to converge for all cases, except for the 8.0 cm mesh size, where it required 3400
iterations to converge. Figure 3.6 shows the experimental spectral radii for both the
consistently and inconsistently discretized DSA. The expression for estimating the

spectral radius is

LI = g,
1670 — ge[f;

(3.73)

where || - || denotes the £; norm. For the full correction, § = 1.0, the inconsistently
discretized DSA is unstable for mesh sizes of 1.15 cm and larger. For larger mesh

sizes, damping instills stability, whereas it diminishes the gain for smaller mesh sizes.

Stabilizing Effects of Damping Inconsistent DSA

1] LA 21t

spectral
radius

Consistent DSA

0.1 1.0
mesh size, cm.

Figure3.6: The experimental spectral radii for inconsistently discretized, damped
DSA for increasing mesh size and for various values of 3.

For a specific mesh size, there is an optimal  that results in the minimum spectral
radius. Figure 3.7 indicates that the optimal § is about 0.4. This figure generally

agrees with the plot of the optimal § from the analytic Fourier analysis, Figure 3.3.
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Experimental Spectral Radii for Damped Inconsistent DSA
2.0 T T T T T

spectral
radius

c=1.0
04 h=4/3 —
0.2 - slab width=600 mfp =
0.0 1 1 1 1 1
0.0 0.2 0.4 s 0.6 0.8 1.0

Figure 3.7: For a mesh size of 4/3 mifp, an optimal § exists such that the spectral
radius is a minimum for inconsistently discretized DSA.

We conclude by noting that if a cell-edge differencing scheme was used for the
diffusion equation in DSA instead of a cell-center differencing scheme, the method
would have a wider range of stability. To apply the DSA correction, the cell-edge
corrections are averaged before adding to the transport flux, which reside on the
cell centers for diamond-differencing. The result of averaging the corrections is the

reduction of the high order errors, those that cause the method’s instability.




CHAPTER IV

Experimental Fourier Analysis Tool

We have demonstrated the analytic Fourier Analysis applied to Diffusion Syn-
thetic Acceleration. The analytic Fourier Analysis is not directly applicable to real
problems because it requires an infinite, homogeneous medium. Moreover, it requires
a linear method. These reasons exclude it from application to criticality problems.

We present an ezperimental Fourier analysis that, in the vein of the analytic
analysis, indicates the stability and convergence of the various modes of the solution.
In one-dimensional slab geometry, the fission source f(z), 0 < z < 2L, may be

represented by the Fourier series [Spi68]

flz)= + 1;1 (an cos 222 4 b, sin n7Irla:) ) (4.1)

where the series converges to f(z) where f(z) is continuous, and to the average
of f(z) where f(z) is discontinuous; f(z) is periodic on the interval, such that

f(z+2L) = f(z); and the coefficients are

nwre

=— / f(z)cos ——d:z: , (4.2)
br, / f(z)sin Z"lr-fclzzz . (4.3)
In Equation 4.1, the » = 1 terms represent the fundamental mode, and n > 2

represent the higher modes. Note that, for each n, the sine and cosine may be

64
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written as [Kap84]
J%an(Lx+7) , (4.4)

where

v+, (4.5)

A, =
an = Apsiny , (4.6)
b, = Ajcosy . (4.7)

Computationally, to gauge the convergence of the various modes of the fission
source, we extract the individual Fourier coefficients of the fission source in a fashion
similar to that of Equations 4.2 and 4.3, utilizing Equation 4.5. Let us consider a
one-dimensional slab of width X with M cells, each of width Az, and discrete values
f9 of the fission source in cell m at iteration, or cycle, £. The Fourier coefficient for

the n** mode at iteration, or cycle, £ is

M -1
FO(nr) = —;-(— S ré sin-Tﬂr—(n;{[—ﬂ Az (4.8)
m=1
1 X . NI
N o= /0 fO(z) mn—X—d:z:, (4.9)

wheren=1,2,..., M.

Plotting the Fourier coefficient of a particular mode as a function of iteration, or
cycle, we observe the convergence of that mode when the plot levels off. The slope
of the plot as it is converging gives an idea of the speed of convergence. However,
unlike the usual Fourier analysis for an infinite medium, the boundary effects here
keep the modes from being entirely independent.

We will use the experimental Fourier analysis to gauge the convergence of both
deterministic and Monte Carlo criticality methods, and to show the effects of accel-

erating the fission source convergence.




CHAPTER V

Diffusion-Simulated Monte Carlo Calculations

It is no secret that the statistical noise is the main culprit plaguing a potential
Monte Carlo criticality acceleration method [Swa72]. Pedagogically then, let us
investigate potential Monte Carlo criticality acceleration methods using diffusion
theory to simulate the transport theory. This was the route taken by Carter and
McCormick [Car69] to examine their proposed Monte Carlo acceleration method.
Diffusion theory possesses no statistical noise, but the success of an acceleration
scheme in diffusion theory gives an indication of potential success in transport (Monte
Carlo) theory.

Realizing the success of Mihalczo [Mih67] with the fission matrix approach (that
is, simply using the eigenvalue of the fission matrix), Carter and McCormick incor-
porated this information into the actual criticality calculation. After each iteration,
they adjusted the newly acquired source in each cell by the ratio of that cell’s fis-
sion matrix eigenvectors from successive iterations. We will explain their method,
propose a modification to their method, and compare both to the unaccelerated case.

Carter and McCormick present the continuous, analytic, integral transport equa-

tion as

S(r) = % [r@rsE e (5.1)

66
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where S(r) is the fission source,  is the eigenvalue, and K(r,r’) is the number of
fission source particles produced per unit volume about r due to a particle born at
r’ [Car69] Introducing iteration indices produces an analytic source iteration scheme

representing the Monte Carlo method,
§O(x) = [ K(e,¥)Se) ' (5.2)
k™) ’

The kernel K(r,r') is approximated in discrete form by the fission matrix L™ whose

(2,7)th element, at iteration n, is

J; [; K(r,r")SeD(x") &' Pr
J; S=1(x") B! ’

LY = (5.3)

where the indices on the integrals indicate the volume of cell 2 or j. The fission
matrix L™ depends on the fission source at iterations n and n — 1, so it, too, is
iteration dependent. L(™ is analogous to the cycle fission matrix in Monte Carlo.

The eigenstate of L™ satisfies
1
f(n) = m'_|:‘(71')J¢'(1'z,) . (5.4)

Here f(™ is the dominant eigenvector and % is the dominant eigenvalue of L™ at
iteration n.
Carter and McCormick proposed, without derivation, the following acceleration

method:

1 ()
SO = 75 ; ( f{i_l)) /J K(r,r')SD() &' (5.5)

We propose a slight variation to Carter and McCormick’s method by replacing

the correcting ratio in Equation 5.5 with

(n)
(£) »
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to obtain
(n)
SO =3 ( S(n_n) [E@rseDE S (5.7)

where

S¢D = /, SE=1)(p1) @By (5.8)
is the cell-averaged source in cell j at iteration n. This modification ties the acceler-
ation more closély to the source being accelerated. The correcting ratio modifies the
magnitude of the fission source in each cell and the transport kernel K controls the
shape of the fission source within each cell.

The kernel K(r,r') represents Monte Carlo or deterministic, say discrete ordi-
nates, neutron transport. Numerically, let us represent K(r,r’) by a fine-grid fission
matrix, K, whose elements are K;;. We calculate K by a series of fixed-source dif-
fusion calculations. Each calculation has a unit source in one cell. The response to
that unit source is converted from a scalar flux to a fission source by multiplying
by vos. One calculation with the source in cell j produces the jth column of K.
If there are N cells in the system, N calculations are required. The unaccelerated

source iteration method is represented by

1 -
S™ = = S EStY (5.9)
2

We effectively normalize the source iteration by dividing the right hand side of Equa-

tion 5.9 by k™, given recursively by

-1y J ST Pr'

E) — &
k I S@=1)(x") g3r!

(5.10)

The coarse-grid fission matrix is obtained from Equation 5.3 as a fission source-

weighted collapse of the fine-grid fission matrix,

Liel [Ez'ek K S§n—l)]
Tia S

I = (5.11)




69

For instance, if there are 4 fine cells and 2 coarse cells, with coarse cell 1 containing

fine cells 1 and 2, and coarse cell 2 containing fine cells 3 and 4, the first row of L is

(K + K21)S£n_1) + (K2 -+ K22)S£n_1)

A% , 5.12
11 S&=D 1 gD (5.12)
ng) _ (K + Kza)ng—l) + (Kia + K24)S£n-1) (5.13)

Sgn—l) + Sén—l)
We ihvestiga,ted these two acceleration methods on a one-group, one-dimensional

slab of thickness 60.0 cm with vacuum boundaries. The physical parameters, with

isotropic scattering, are

% = L0cm™ | (5.14)
S, = 03cm! , (5.15)
vY; = 0.30713574 cm™ . (5.16)

This constitutes a critical system when the slab is 20 mfp thick [Kap74]. The slab
was made larger so as to incur a larger dominance ratio of about 0.991. To make the
acceleration more visible, we began with a very poor initial fission source distribution:
flat in the left half of the slab and zero in the right half. The convergence requirement
was 1.0 X 105 and false convergence was taken into account, by multiplying the

convergence requirement by (1 — p), where p is the spectral radius, estimated by

”,5’(71'1-1) - ,5’(‘”)”00
p= Hs(n) _ S(n—l)“oo .

(5.17)

The fine-grid fission matrix is calculated on 0.5 mfp cells, or 120 cells total.

Figure 5.1 shows the number of iterations required for convergence for varying
numbers of coarse-grid cells. For too few coarse-grid cells, there is not enough res-
olution to provide significant acceleration. For too many coarse-grid cells, the poor

initial fission source guess makes more of a significant impact on the coarse-grid
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fission matrix and inhibits acceleration. The modified method has a much greater

range of effectiveness over the number of coarse-grid cells. With the number of com-

Iterations to Convergence

cenanannd e eeeas A eeienad e eeeeenae | P, .
1000 | -
" Carter-McCormick —— ]
Modified Carter-McCormick == 4
Source Iteration **-= 7
number 1
of i
iterations
100 |- -
1 1 1 1 1 ] |
0 10 20 30 40 50 60

number of coarse-grid cells

Figure 5.1: Acceleration behavior (iterations to converge) for the Carter-McCormick
and Modified Carter-McCormick methods with varying number of coarse-
grid cells.

putational operations going up as N® with the number of coarse-grid cells, N, fewer
iterations with a larger matrix may take more computer time. The computer times
on a Sun SPARC20 workstation are shown in Figure 5.2.

We shall also look at the experimental Fourier mode convergence for the unaccel-
erated case, the Carter-McCormick method with 4 coarse-grid cells, and the Modified
Carter-McCormick method with 10 coarse-grid cells. Figures 5.3, 5.4, and 5.5 show
the convergence of the first three experimental Fourier modes. They show that the
Carter-McCormick method is wildly oscillatory before it converges. The Modified
Carter-McCormick method is also oscillatory, but to a lesser degree.

In the next chapter, we discuss damping, or reducing an additive correction to

keep an acceleration method from becoming unstable. If it should become necessary
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Computer Time to Convergence
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60.0

cou 500

time
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20.0 brecceefeceecaceenseraeanedieeeioasseanacuccensescsssnnonsn o

Carter-McCormick =——
10.0 Modified Carter-McCormick =— -
0.0 f) 1 1L

S?urce Iteratlion ceee
number of coarse-grid cells

Figure 5.2: Acceleration behavior (computer time) for the Carter-McCormick and
Modified Carter-McCormick methods with varying number of coarse-grid
cells.

for stability reasons to damp a multiplicative correction -, we note that it may be

damped, or made closer to unity, by the following operation:

T4
r+1 °

v - (5.18)

where r > 0.
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TFourier Mode Convergence
0.85 T T T T

First Mode, F(x)

0.80

e = coaone s

0.75 X

Forof -

unaccelerated - +- -1
, Carter-McCormick —+—
0.65 ¥ Modified Carter-McCormick =e— i
0.60 - -
0.55 ] 1 1 1
0 50 100 150 200 250

iteration

Figure 5.3: Convergence of the first experimental Fourier mode for the unaccelerated,
Carter-McCormick, and Modified Carter-McCormick methods.

Fourier Mode Convergence
1 ] 1 1

. unaccelerated *-*-
0.60 R ""-.., Carter-McCormick —+— -
e Modified Carter-McCormick =~

0 50 100 150 200 250
iteration

Figure 5.4: Convergence of the second experimental Fourier mode for the unacceler-
ated, Carter-McCormick, and Modified Carter-McCormick methods.
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Fourier Mode Convergence
1 I I 1

unaccelerated *¢- - -
Carter-McCormick =+—
Modified Carter-McCormick —e— _

Third Mode, I(3)

0 50 100 150 200 250

iteration

Figure 5.5: Convergence of the third experimental Fourier mode for the unacceler-
ated, Carter-McCormick, and Modified Carter-McCormick methods.




CHAPTER VI

Fi_ssion Matrix Acceleration Method

Criticality calculations utilizing unaccelerated source iteration require many iter-
ations or cycles to converge the fission source for high dominance ratio problems. We
wish to remedy this downside of source iteration by devising a method to accelerate
the fission source convergence. The approach we take is to derive equations for the
ezact corrections to the fission source at any iteration or cycle. After adding the ex-
act correction to the fission source, we arrive, in one iteration or cycle, at the exact
solution, and the calculation is finished. However, realizing that solving for the exact
correction is just as difficult as the original problem, the equations for the correction
are approximated in some fashion so that they are much simpler to solve. With an
approximate correction, the overall method will not converge in one iteration, but it
can accelerate convergence and overcome the extra time spent computing the cor-
rection. This procedure is common. Diffusion Synthetic Acceleration is an example

of this approach.
6.1 Derivation of the Fission Matrix Method

For clarity and continuity, we repeat the steps for obtaining the integral transport

equation. We begin with the monoenergetic, one-dimensional integro-differential

T4
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transport equation with isotropic scattering. We consider a slab of width L with

vacuum boundaries,

WD) 15 (ayie ) = 5 (500 + ) [wein . e
1/’(07 I‘L) =0, p>0, (62)
P(Lyp) =0, p<0 . (6.3)

For simplification, we define the transport operator T as the leakage and collision

terms,

Y(z, 1)
Oz

TY(z,p) = p + Zu(z)P(z, 1) (6.4)

the scattering operator S as the inscattering term,

SU(e,n) = 55:(a) [l p)ip (6.5)

and the fission operator F' as the fission source,

Poe.n) = 322 [ e, iu . (6.6)

We manipulate the transport equation, first by moving the inscattering term to the

left hand side,
1
(T = S)(a,p) = 7 Fo(2, 1) (6.7)
then operating on both sides by (T — S)~1, to obtain

$(o,) = (T~ ) Fh(a,) . (6.5)

Operating on both sides of Equation 6.8 by the fission operator F, we obtain an

integral transport equation,

f(z) = Lf(2) (69)




76

where
f(z) = Fo(z, p) (6.10)
is the fission source, and

L =F(T - S)™ (6.11)

is an integral operator acting only on the spatial variable. (We approximate L by
the fission ma,tr.ix, as we shall see later.) The integral form of the transport equation
in Equation 6.9 best describes the Monte Carlo criticality method. It is also fitting
for a type of diffusion calculation where the operator L is approximated by a matrix
whose elements are estimated by diffusion theory.

The analytic form of the source iteration method is represented by introducing

iteration indices to Equation 6.9, the integral transport equation,

1 1
f(l’*‘z) — mLf(‘e) , (6.12)
FED = plsd) (6.13)

We desire the exact additive correction, g“+1, to the most recent source iteration

fission source, f(z"'%), that results in the exact fission source. Using Equations 6.9

and 6.12, we formulate g®) as follows:

S = f_ ferd (6.14)
1 1

- sz_f(l+§) (6.15)

_ %L( - flerd) +%Lf(z+%)_ flerz) (6.16)

Collecting the g**) terms onthe left and rearranging the right hand side, we obtain
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- %L) S = %L Ferd) _ plesd) (6.17)
- (%L _pfed (6.18)
- (%L _ I)%L 7@ (6.19)
_ %L (%L 70 _ f(a) (6.20)
-1 (% Flerd) _ k_%‘T f(f)) . (6.21)

This is an exact equation for g#+1), the additive correction to the most recent fission
source estimate, f¢*+3). This equation is as complicated and difficult to solve as the
original problem in Equations 6.12 and 6.13. Therefore, we shall approximate it.
We must approximate the analytic quantities in Equation 6.21. The quantities
fO(z), f&32)(z), and g+ (z) are all densities of fission source particles at z. (The
correction g is more appropriately a fission source correction density.) We convert
the fission source particle densities to vectors of cell-average quantities by discretizing

the system, operating on them by the projection operator P, and normalizing, such

that, in cell j,

A = PifO) , (6.22)

“](£+1/2) = P;f&1(g) | (6.23)

The projection operator P in a deterministic calculation amounts to integrating in

space over cell 7,

j‘}z) = P? e f(l)(a:) = /z o fO(z)dz . (6.24)

In a Monte Carlo calculation, the quantities f©(z) and f (z+%)($) are collections of

particles whose discrete locations are represented by :z:,('e) and :z:,(”l/ ®). The Monte
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Carlo projection operator amounts to summing up the fission source particles in cell

J»
f,@ — pg}m f(z) (z) = Z7z§f} , (6.25)

where
1, ngz) €cell 5
T8 = (6.26)
7 0 , otherwise .

The operator L is approximated by the fission matrix, L, whose (2,J)th element is
the probability that a neutron born in cell j produces a subsequent source neutron in
cell 7. In a Monte Carlo calculation, L may be estimated from the Monte Carlo data
by mere bookkeeping during the calculation. Another way to estimate the fission
matrix is through a series of diffusion calculations. Each diffusion calculation has a
source in the jth cell and the fission production over the entire system produces the

jth column of the fission matrix. Whatever way it is calculated, the fission matrix

has dominant eigenvalue k: and eigenvector f , such that

f=3Lf . (6.27)

o)

We will also find the adjoint eigenvector useful. It is obtained from the adjoint fission
matrix, which is the transposed fission matrix, since the elements of the fission matrix

are all real. Therefore, we have
% 1. * fa
= ZL . (6.28)

Substituting the aforemeritioned approximations for their analytic counterparts,

Equation 6.21 becomes

1ee, N T T
(I—-I.;L)g(£+1)=L( f (£+;)—mf(z)> ) (6.29)
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where §(t+1) = flt+1) _ f(#+3) i5 the cell-averaged correction. Since f¢+3) is known,
solving for §(*+1) is equivalent to solving for f¢+), the updated fission source.
Unfortunately, Equation 6.29 does not automatically have a solution. Utilizing
the Fredholm-Alternative Theorem [Kre78], we obtain a solvability condition by tak-
ing the inner product of both sides of Equation 6.29 with the adjoint eigenvector,

f*. The left hand side is, by Equation 6.28, identically zero,

eor— Lpvefern _ fesd) o ((r_ Limype (pern) _ fesd)
(7 @- e — ferdy) = (@- £Enf, (70 - ferdy) (630

= 0 , (6.31)
giving us the solvability condition,
oy _ 4o (f= LieD)
k = e (6.32)
(- Lf@)
* Lk 4=
e (L f* +2))
= k — (6.33)
(L, f@)
P A(l-l-%)
- k(l)(_fL_) (6.34)

(7 7)

For arbitrary discrete vectors ¢ and b, we define the inner product as
J

(a,0) = ; ab; . (6.35)
Using the value of £¢+1) from Equation 6.34 in Equation 6.29, we solve for §¢+),
the additive correction. The value of the additive correction is not unique, since any
multiple of the fission matrix eigenvector, f, added to the correction is also a solution
of Equation 6.29. Therefore, we make §**!) unique by requiring it to be orthogonal
to the adjoint fission matrix eigenvector. Operationally, this condition is satisfied by

setting the additive correction to §i+%), where

Gl — e _ (J; ff(:;)) f* (6.36)
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such that

(F, 885 = (f*, 8% — (F+,§%D) (6.37)

=0 . | (6.38)

The additive correction §¥t%) is used to update, or accelerate, the most recent
fission source. As explained in Chapter III, the correction is scaled by a “damping”
factor B, 0 < B < 1, to enhance stability. The resulting method is unaccelerated
source iteration with # = 0, and full acceleration with 8 = 1. The additive correction

is converted to a multiplicative correction by the following approximation,

FED = plE+3) 4 galed) (6.39)
(e+1) (£+1)
In a deterministic calculation, the fission source is multiplied by the multiplicative

correction factor. In a Monte Carlo calculation, depending on the departure of the

multiplicative correction factor from unity, the individual fission source particles are
either killed, cloned, or left untouched.

The analytic fission matrix acceleration method is unbiased. It converges to
the unaccelerated result since the right hand side of Equation 6.29, and hence the
correction, go to zero as the source converges.

The steps for the fission matrix acceleration method are summarized as follows:

1. Perform a transport cycle, Equation 6.12,
e+d) _ L £
FE2) = WLf( ), (6.41)
2. Calculate the eigenstate of the fission matrix and adjoint fission matrix,

f= _Lf = %IZ* . (6.42)
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3. Calculate k(4+1), the solvability condition from Equation 6.34,
fx B £+%
B k(z)w

— 6.43
(f+, f®) (643)
4. Calculate the fission source correction using Equation 6.29,
Lavaess) _ ¢ 1 pest 1 e
(I_ZL)g(H:L(mf( 2)__k(_£)f( )) . (6.44)
5. Apply the correction using Equation 6.40 ,
A(4+1)
(¢41) o f+3) °
f S A (1+'3f(£+%)) . (6.45)

and return to step 1 for another cycle.

6.2 Obtaining and Using the Fission Matrix

The fission matrix, ]3, may be computationally obtained in a number of different
ways as described in Section 2.4. We will focus on the Monte Carlo and diffusion
fission matrices. Any type of fission matrix may be used to accelerate any type of
criticality calculation. A Monte Carlo-obtained fission matrix may be used to accel-
erate a Monte Carlo calculation. A diffusion-obtained fission matrix may be used to
accelerate a diffusion calculation or a Monte Carlo calculation. Other combinations,
though not necessarily practical, are possible.

Using a cumulative Monte Carlo fission matrix results in a fission matrix, available
while the calculation is in process, that statistically improves in accuracy each cycle.
The Monte Carlo fission matrix is easily accumulated on the typically complicated
Monte Carlo cells; it does not require a regular spatial grid.

If a series of diffusion calculations is used to estimate the fission matrix, that set
of calculations need be performed only once at the beginning of the computation,
thereby eliminating step 2 of the fission matrix method at every cycle. The diffusion

fission matrix has the advantage of containing no statistical noise.
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6.3 Filtering the Monte Carlo Statistical Noise

Implementing fission matrix acceleration in a Monte Carlo calculation may also
require “filtering” the statistical noise, whether the fission matrix is from Monte
Carlo or diffusion. The statistical noise occurs in the driving term—the residual of
successive fission sources—of the correction equation, Equation 6.40. The statistical
noise tends to ﬁave a high frequency which can affect lower frequencies through the
acceleration and induce instability. We discuss three ways to filter the statistical

noise:
¢ diffusion filter
e looping
e chopping

— local

— global .

The diffusion filter (for Monte Carlo) selectively smooths the high frequency
fluctuations in a function, say, p(z). The strength of the filter depends on a user-
chosen parameter o? and produces the smoothed function, say, v(z). The filter

equation is a second-order, diffusion-like equation:

L) 4 10) = pla) (6.46)

4(0)=4(L) =0 . (6.47)

The filter behaves like the diffusion equation. It smooths out high-order fluctuations

in a function while leaving the low-order components untouched. It preserves the
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zeroth moment of the function (or, conserves the neutrons). An assumed form of

p(z),
plz) =€ (6.48)

demonstrates how the smoothed function ~(z), the solution of Equation 6.46, has

damped high frequencies:

(z)
)= Ty

(6.49)
The filter allows low frequencies (A = 0) of p(z) to pass by unscathed, whereas the
filter suppresses high frequencies of p(z).

The smoothing operation defined by Equation 6.46 is applied to f¢*+3) and F®
on the right side of Equation 6.29. Note that to apply the diffusion filter, we must
impose a spatial grid and discretize Equation 6.46.

There are many, many other kinds of filters similar in spirit to the diffusion filter.
One filter might simply consist of replacing a value at a point with the average of it
and all the surrounding values.

The other two filters, looping and chopping, are more specific to our acceleration
methods. Loopingis an attempt to filter the driving term of the acceleration equation,
Equation 6.29, by multiplying it by the fission matrix » times. The acceleration

equation then becomes

1 £\ a(f. 1 A\" . 1 £(¢ 1 1 (£
(I— .ZL)g( +1) — (ZL> L (k(£+1) fle+z) Z(T)f( )) ) (6.50)

The effect of multiplying the right hand side by the fission matrix is to damp out
the high frequencies, just as the hyperbolic transport equation does. However, larger
values of n produce more filtering, or damping, and, adversely, less gain in accelera-

tion. More than likely, there are problematic optimal values of n. We did not make
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a lot of use of this filter, because, in one-dimensional slab geometries, the diffusion
filter seemed more effective. Looping is attractive in problems with complicated
geometries because it does not require a regular spatial grid.

Local chopping is the simple task of limiting the multiplicative correction, §(¢+7),
to below a ceiling of a and above a floor of 1/a, where a is real and ¢ > 1. Local
chopping may produce a bias because it does not preserve any qualities of the correc-
tion; portions of the correction may be limited according to a, while other portions
are not limited. Note that, even when local chopping is not employed, zero always
acts as a floor because we do not keep track of negative particles.

Global chopping is similar to local chopping, except,that it determines the damp-
ing factor, B, that keeps the most offending multiplicative correction (the smallest or
largest) above the floor or below the ceiling. Then it recalculates the entire correc-
tion with this value of . While global chopping does not instill the bias that local
chopping may, its acceleration gain may be seriously diminished.

Whatever type of filtering is used, it is not independent of the damping factor 3.
In Equation 6.40, 8 damps out the correction for all frequency modes. If filtering is
absent, a lower value of § may damp the offending high frequencies, but it also cuts
back the low-order gain in acceleration. If filtering does its job and smooths the high
frequency noise, § may be increased, resulting in stability and greater acceleration.
It is evident that there are, interdependently, optimal degrees of filtering and values

of damping.
6.4 Test Problems

We consider three different monoenergetic, one-dimensional slab geometry prob-

lems, each with isotropic scattering. All three have vacuum boundaries. The first
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is a 60 mfp homogeneous slab with ¥;=1.0, ¥,=0.7, and vX; = 0.30713574 cm™,

as shown in Figure 6.1. These physical parameters are such that the slab is critical

Homogeneous Slab

60 cm

3

Fuel: Z4=1.0, £4=0.7, vZ4=0.3071

Figure 6.1: Homogeneous slab test problem: 60 mean free paths thick with a scat-
tering ratio of 0.7 and dominance ratio of about 0.991.

when it is 20 mfp thick [Kap74]. We consider a thicker slab so that the dominance
ratio is closer to unity. The dominance ratio is about 0.991. The k.;; of the system
is about 1.02082. Both these values were obtained from a fine mesh, Ss, calculation.

The second test problem is a uniform lattice. The fissionable fuel regions are
made up of the same material as in the homogeneous slab. The fuel regions are
each 2 cm thick and are separated by 1 cm thick regions of absorbing material with
a scattering ratio of 0.001. The material at the boundaries is another 1 cm slab of
absorber material. There are 19 fuel elements as shown in Figure 6.2. The dominance
ratio of this problem is about 0.996, according to a fine-mesh Ss; calculation. k.yy

is about 0.59852.
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The third test problem is a one-dimensional representation of the “k.ss of the

world” problem [Whi71]. The “kes; of the world” problem is a 9x9x9 array of sub-

critical plutonium spheres, except for the middle critical sphere. The problem is

itably poor

1s 1nev

a difficult one for Monte Carlo calculations since the sampling

due to the small percentage of important fissionable material, located in the center

sphere. Also, the usual initial flat source is very far from the converged source, which
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Figure 6.3. The k.7 of the system is 0

For reference, a single regular fuel element surrounded by 1 cm slabs of absorbing

material has a k.55 of about 0.4436. A hot fuel element surrounded by absorber has
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a k.zs of about 0.5881.
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Hot Fuel: Zy= 1.0, I 0.7, uEf= 0.4071

Fuel: =10, =07, vE,=0.3071

[ ] Absoer: E=1.0, Zg=0.001, vE,=0.0

Figure 6.3: One-dimensional representation of the “k.ss of the world,” consisting of

the uniform lattice with the center element replaced by material with
vy = 0.4071

6.5 Fission Matrix Acceleration Results

We present results using different variations of the fission matrix acceleration
method. First we use a diffusion fission matrix on a coarse grid to accelerate a fine-
grid diffusion fission matrix calculation in the homogeneous slab problem. This is a
setup similar to that used for the Carter-McCormick method. These results give us
an idea of what to expect for more sophisticated castings of the acceleration equation.
Second, we present the results of using a diffusion fission matrix to accelerate Sy
transport calculations for all three test problems. Third is a demonstration of a

Monte Carlo calculation accelerated with a Monte Carlo fission matrix. In the next
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section, we show the results of implementing Monte Carlo fission matrix acceleration
into the production Monte Carlo code MCNPZ¥ [Bri94] and performing a calculation

on a model of the actual 3-dimensional “k.ss of the world” problem.

6.5.1 Diffusion Fission Matrix-Accelerated Diffusion

We use a fine-grid diffusion fission matrix to simulate transport source iteration.
Acceleration is delivered through a coarse-grid diffusion fission matrix. There are
(at least) two ways of obtaining the coarse-grid diffusion fission matrix. The first
is to simply estimate it through a series of diffusion calculations on the coarse grid.
Therefore the diffusion fission matrix is precalculated—calculated before the source
iteration begins. The adaptation of this type of diffusion acceleration to discrete-
ordinates and Monte Carlo is straightforward. The second way to obtain the coarse-
grid diffusion fission matrix is by a source-weighted collapse of the fine-grid fission
matrix at each iteration. This was the method used in the chapter investigating
Carter and McCormick’s method. The analogous fission matrix in a purely Monte
Carlo calculation is the cycle fission matrix. Effectively, though, it behaves like the
cumulative fission matrix because it becomes more accurate each iteration (cycle).

Nevertheless, we will call this the “cycle” diffusion fission matrix.

Unlike the Carter-McCormick and Modified Carter-McCormick methods, the dif-
fusion fission matrix-accelerated diffusion calculations are stable over all coarse-grid
cell sizes. The iterations and computing time required for convergence using the
diffusion fission matrix are shown in Figure 6.4 for the homogeneous system. As the
coarse grid becomes finer, fewer iterations are necessary. However, more computing
time is required for the larger matrices in the acceleration equation. The optimal

number of coarse mesh cells for 120 fine mesh cells is 20, resulting in a speedup of
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Meshing Effects in Diffusion Fission Matrix-Accelerated Diffusion

1000 E

; 120 fine-grid cells :

N 100 ¢ iterations to converge E
1terations, 3
cpu time ]
(seconds) ]
’ 10 E

1k cpu seconds to converge a

E 1 ! I 1 ] { E

0 20 40 60 80 100 120
number of coarse-grid cells

Figure 6.4: The iterations and time required for convergence of a diffusion criticality
calculation when the coarse-grid diffusion fission matrix is precalculated.

28.

The iterations and computing time required for convergence when using the “cy-
cle” diffusion fission matrix are shown in Figure 6.5. Again, the necessary number
of iterations for convergence decreases for increasing number of coarse mesh cells.
The minimum time necessary for convergence occurs for 10 coarse mesh cells, for a
speedup of 10.5. Compared to the precalculated diffusion fission matrix, the “cycle”
diffusion fission matrix acceleration requires fewer iterations to converge, but each it-

eration requires calculating the fission matrix and its eigenstate, so computing times

are longer.

Figure 6.6 shows the convergence of the first and second Fourier modes for un-
accelerated diffusion, precalculated diffusion fission matrix acceleration, and “cycle”
diffusion fission matrix acceleration. The accelerated cases are for the optimal coarse

mesh cell size. The expected value of the second Fourier mode coefficient is zero be-

cause the system is symmetric.
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Meshing Effects in “Cycle” Diffusion Fission Matrix-Accelerated Diffusion
| ) 1 | | 1

1000 3
120 fine-grid cells
iterations to converge .
100 £ -
iterations, -
cpu time .
(seconds) ]
10 ¢ E
cpu seconds to converge -
1 3 ] 1 i i 1 1 E
0 20 40 60 80 100 120

number of coarse-grid cells

Figure 6.5: The iterations and time required for convergence of a diffusion criticality
calculation when the coarse-grid diffusion fission matrix each cycle by
the source-weighted collapse of the fine-grid fission matrix.

Fourier Mode Convergence:
1.00 | Diﬁ‘usio? Fission Matrix lAccelera.tion of l'l)iﬁ’usion

Homogeneous Slab
0.80 [azes First Mode, F(m)

unaccelerated ><— ._
diffusion fission matrix acceleration —
“cycle” fission matrix acceleration --- -

0.60 fo

0.40 f+

Second Mode, F'(27)
0.20

Initial source uniform in left half

0.00

0 50 100 150 200

iteration

Figure 6.6: The convergence of the first and second Fourier modes for unaccelerated
diffusion source iteration, precalculated diffusion fission matrix accelera-
tion, and “cycle” diffusion fission matrix acceleration.
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Flux in Homogeneous Slab
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Figure 6.7: The converged flux for the homogeneous slab problem.
6.5.2 Diffusion Fission Matrix-Accelerated Discrete Ordinates Transport

The converged flux corresponding to the converged fission source for the homo-
geneous slab is shown in Figure 6.7. We use an S3; quadrature set for this problem
and break the system into 240 uniform fine mesh cells. The convergence criterion
for the fission source (£o norm) is 10~%. We begin with an initial source containing
2/3 of the source in the left half and 1/3 in the right half with each half distributed
uniformly. This is a deliberately bad source guess, chosen to demonstrate the efficacy
of the method. We calculate the diffusion fission matrix on a coarse grid with any-
where from two cells up to the number of fine mesh cells. As the number of coarse
grid cells decreases, the amount of material smearing, or homogenization, increases,
which may or may not be beneficial. Note that if the initial source was flat for this
symmetric problem, two coarse cells would provide no acceleration. As we increase
the number of coarse cells (more resolution), the acceleration requires fewer itera-

tions to converge, as shown in Figure 6.8. However, acceleration work for N coarse
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Meshing Effects in Deterministic Fission Matrix Acceleration
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Figure 6.8: Effect of the number of coarse mesh cells in the Diffusion Fission Ma-
trix Acceleration of discrete ordinates transport. Although the number
of iterations required for convergence decreases with more coarse mesh
cells, more cells require more work and an optimal exist such that the
computing time is minimized.

cells increases as N3, so, as Figure 6.8 also shows, an optimal number of coarse mesh
cells exists, such that the computation time is minimized. We found for all three test
problems that the optimal coarse mesh cell contained eight (22) fine mesh cells. Also,

damping was not required for these deterministic problems; reducing 8 decreased the

acceleration.

Figure 6.9 shows the convergence of the Fourier coefficients for the first and
second modes. For 30 coarse mesh cells, the accelerated case requires 18 iterations to
converge, whereas the unaccelerated case requires 723 iterations. Since the problem
is symmetric, the expected value of the second Fourier mode coefficient is zero upon
convergence. Comparing the running times on a Sun SPARC20 of 106 and 3.15

seconds, the acceleration realized a speedup of 33.7.

The second test problem is the uniform lattice. This is a very difficult problem
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Fourier Mode Convergence:
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Figure 6.9: The first and second Fourier mode coefficients for unaccelerated and dif-
fusion fission matrix accelerated discrete ordinates for the homogeneous
problem.

with dominance ratio 0.996. Beginning with a flat initial source and 464 fine mesh
cells, the unaccelerated discrete ordinates required 434 iterations (227 seconds) to
converge. The converged flux is shown in Figure 6.10. Using 58 coarse mesh cells,
the fission matrix acceleration method required only 18 iterations (12.6 seconds) to

converge, giving a speedup factor of 18. The Fourier mode coeficient convergence is

shown in Figure 6.11 for the first and third modes.

The third problem is the one-dimensional “k.;; of the world” problem. The
converged flux for this problem is shown in Figure 6.12. For an initial flat source,
Figure 6.13 shows the convergence of the first and third Fourier mode coefficients.
The unaccelerated calculation took 66 iterations and 35.5 seconds to converge, and
the diffusion fission matrix accelerated Ss, with 58 coarse mesh cells and B =1 took

15 iterations and 9.3 seconds for a speedup of 3.8.
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Flux in Uniform Lattice
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Figure 6.10: The converged flux for the uniform lattice test problem.
6.5.83 Fission Matrix Accelerated Monte Carlo

If Monte Carlo contained no statistical noise, the results of accelerating Monte
Carlo criticality calculations would be similar to those of accelerating deterministic
criticality calculations. Unfortunately, the statistical noise, which is high-order, is
propagated by the acceleration into low-order errors. This undesirable phenomenon
is not overcome even when using a diffusion fission matrix instead of a Monte Carlo
fission matrix. The driving term of the acceleration equation is the primary source
of the noise. We use the diffusion filter in the cases presented here. Increasing the
density of particles in important regions of a system reduces the statistical noise
and therefore reduces the need for filtering. Validity of this statement is found by
comparing the Monte Carlo results for the homogeneous slab and the one-dimensional
“kegy of the world” problem later in this subsection. The latter calculation appears

nearly deterministic in nature due to the small important fissionable component.

We first apply the Monte Carlo fission matrix acceleration method to the 60 cm
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Fourier Mode Convergence:
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Figure 6.11: The first and third Fourier mode coefficients for unaccelerated and diffu-

sion fission matrix accelerated discrete ordinates for the uniform lattice.
homogeneous slab. Figure 6.14 shows the convergence of the first and second Fourier
modes for both the unaccelerated and accelerated cases. For both cases, the initial
source had 2/3 of the particles in the left half and 1/3 of the particles in the right
half of the slab. There were 60 uniform 1 cm cells and 5000 histories per cycle.
For this symmetric system, the second Fourier mode has expected value zero. The
unaccelerated case takes approximately 110 cycles to converge. The diffusion filter
parameter was held constant over the cycles, o = 5.0. Since the fission source is
smooth and slowly varying over space, a relatively higher value of o? is possible.
For heterogeneous problems, the filter could undesirably smooth out actual physical
fluctuations in the fission source. The all-mode damping () of the correction is
held at a constant 0.2 for the first three cycles, then it drops off exponentially.
Convergence of the accelerated case takes about 20 cycles. Comparing the computer

times at this cycle and the unaccelerated cycle 110 gives a speedup of 5.0.

The second problem is the one-dimensional simulation of Whitesides’ “k.ss of
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Flux in 1-D “k.ss of the world” Problem
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Figure 6.12: The converged flux for the one-dimensional “k.ss of the world” test
problem.
the world” problem [Whi71]. For 5000 histories per cycle in 58 mesh cells, the ini-
tial source was flat across the entire system. The driving terms of the acceleration
equation were filtered by the diffusion filter with o® = 5n/(n + 10). Thus, the fil-
ter parameter starts out at about 1/2, then approaches 5. If the filter parameter
is too large, the combined filtering and acceleration will not sufficiently overcome
the artificial discontinuity at the center of the slab in the initial fission source. In
some underdamped cases, the fission source oscillates about the initial artificial dis-
continuity. Because eventually and effectively there was a high density of particles
in the important fissionable regions, the calculations appeared nearly deterministic.
Therefore the full correction (8 = 1.0) was possible. Figure 6.15 shows that unac-
celerated Monte Carlo converges on the hot component in about 35 cycles, whereas
the accelerated Monte Carlo takes about 6 cycles. The computational time speedup

is about 4.8.

Compared to the second problem, the acceleration in the first problem is more
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Figure 6.13: The first and third Fourier mode coefficients for unaccelerated and diffu-
sion fission matrix accelerated discrete ordinates for the one-dimensional
“kess of the world” problem.

sensitive to the damping and filtering parameters, 8 and o?. The difference occurs
due to the different particle densities in the important fissionable volumes. The
“kess of the world” simulation, upon convergence, has a very large particle density
in the hot component and a low particle density elsewhere, and appears almost
deterministic. (In a deterministic calculation, filtering is not required and, unless it
is severely heterogeneous, neither is damping.) The large homogeneous system has
more statistical noise, so the filtering becomes very important. The filter may not
smooth the fission source optimally, and the noise that the filter does not remove

must be damped out. Therefore, the parameters o and 8 are not independent.

Accelerating the Monte Carlo source convergence in the uniform lattice test prob-
lem is a very difficult task. Acceleration with this geometry is definitely possible as
evidenced by the deterministic test problems. The acceleration method is unbiased,

meaning that it yields the same converged solution as the unaccelerated method,
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Fourier Mode Convergence in a Homogeneous 60-cm. Slab
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Figure 6.14: Convergence of the first and second Fourier modes for unaccelerated
Monte Carlo and filtered and damped accelerated Monte Carlo in a
homogeneous slab.

only faster. However, unaccelerated Monte Carlo has inherent difficulties converg-
ing the source for high dominance ratio problems consisting of a lattice of identical
components. For example, if there were two identical critical reactors separated by a
large distance, all the particles in a Monte Carlo simulation would eventually end up
in one of the reactors. (This example is attributable to Tom Booth of Los Alamos
National Laboratory.) The basis for this comment lies in the fact that the two-reactor
example has a dominance ratio very near unity. Each reactor is expected to have
the same number of particles. However, because of statistical noise, one reactor will
almost always have more particles than the other. Furthermore, in a high dominance
ratio problem, regions that have a population of particles higher than expected will
tend to maintain that high p~opula,tion. The end result, after many cycles, is that

one reactor is depleted of Monte Carlo particles.

The uniform lattice problem possesses similarities to the two-reactor example.
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Fourier Mode Convergence in 19-Component System with 1 Hot
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Figure 6.15: Convergence of the first and third Fourier modes for unaccelerated
Monte Carlo and filtered and accelerated Monte Carlo in a one-
dimensional “%,ss of the world” simulation.

The absorber regions in our uniform lattice are fairly thin, so all the particles will
not collect in a single fuel element. Still, we see collections of adjacent fuel elements
persistently maintaining their too large or too small populations. In an unaccelerated
case, we ran 5000 histories per cycle, began with a flat source guess, skipped 30
(inactive) cycles, and ran 200 active cycles. The flux, which is still not converged
after 200 active cycles, is shown in Figure 6.16 at that cycle. The very small error
bars indicate that the population in each fuel element is not changing very much.
Over 10’s or 100’s of cycles, the fission source would appear converged, when, in fact,

it really is not.

Accelerating the Monte Carlo calculation for the uniform lattice meets with lit-
tle success. Filtering this system is different than filtering a homogeneous system.
Here, it is as if there are two frequencies that the filtering should target: the high

frequencies due to the statistical noise within the fuel elements, and the low frequen-
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Unaccelerated Monte Carlo Collision Flux in the Uniform Lattice
2.5 T T T T T

2.0 F

1.5 -

flux

1.0

0.5

0.0 1 1 [} 1 1 1

0 10 20 30 40 50
X, cin.

Figure 6.16: The Monte Carlo collision flux in the uniform lattice after 200 active
cycles.

cies describing the global shape. The accelerated method essentially arrives at the
state of incorrect populations faster, although it may not arrive at the same state
as the unaccelerated method because of statistical noise. So, for this system, the

acceleration appears unable to overcome the inherent shortcomings of Monte Carlo.

6.6 Fission Matrix Acceleration in MCNP

The fission matrix acceleration method is extendible to more complicated Monte
Carlo simulations. We demonstrate the acceleration method as implemented in
MCNP, a general-purpose production Monte Carlo code. MCNP is able to model
complicated three-dimensional geometries, and simulates transport with continuous
energy.

The modified version of MCNP uses only the Monte Carlo fission matrix. The
Monte Carlo fission matrix is obtainable on the typically complicated cells that make

up an MCNP geometry and is fully self-contained in the code. Using a diffusion
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fission matrix would require a grid, as opposed (or in addition) to complicated Monte
Carlo cells, and linking to a production diffusion theory code. The grid would not
necessarily have to be involved in the particles tracking; it could simply overlay the
complicated Monte Carlo cells. So, a diffusion fission matrix in a production Monte
Carlo code is possible, but much more complicated than a self-contained Monte Carlo
fission matrix. These same arguments apply to not being able to practically use the
diffusion-like filter. Instead, we employ the looping filter, where the driving term of
the acceleration equation is multiplied by the fission matrix to reduce some of the
statistical noise. Although not employed, chopping is certainly possible, too.

The test problem we consider for the modified version of MCNP is the “k.; of the
world” problem, a 9x9x9 array of subcritical plutonium spheres with center sphere
critical and the whole array surrounded by a water reflector. A three-dimensional ren-
dering of the system without the inner surface of the water reflector is shown in Fig-
ure 6.17. Notice the larger, critical sphere in the center. This rendering was done by
Ken Van Riper of Los Alamos National Laboratory using Sabrina™ 2 [Van93][Lee94].
MCNP also does two-dimensional geometry plotting; a two-dimensional cross section
through the center of the geometry is shown in Figure 6.18.

The problem used 5000 histories per cycle with the initial source locations at
points in the center of each of the 729 spheres. Twenty cycles were allotted to
converge the source, followed by 100 active cycles. Twenty cycles is not nearly
enough to converge the source, but it is a typical number used by criticality safety
people running Monte Carlo codes. The onset of fission matrix acceleration was
deferred 20 cycles just~to make sure that sampling would have no adverse effects on

the fission matrix elements. Each fission matrix element contained one sphere. The

2Sabrina is a trademark of the Regents of the University of California, Los Alamos National
Laboratory




102

S
Oo <
9o
£
$8
j;;é’
&

S e
R L R S R S S
00008990 R 9080002000083000599005590
0000 SR R08380508506588¢
0000 0 R AR R 3R 8388 888805888

&

Og
o,

§ § § § § &§ § ¢§

|

Figure 6.17: Three-dimensional rendering of the “k.s; of the world” problem without
the inner water reflector surface by Sabrina. The larger critical sphere
is located in the center.

value of 20 was probably conservatively large. We employed no filtering and set the

damping factor to

B=09e"3"20 = 5590 (6.51)

so that, on the first cycle that was acceleration, cycle 21, the damping factor was
0.9¢~1/2 and dropped off exponentially. Since we do not have a regular grid, we do
not have the luxury of using the informative experimental Fourier analysis to gauge
convergence. Other measures exist, though. Figure 6.19 shows the cycle value of

the collision k.;; estimator at each cycle. After cycle 20, engaging the acceleration
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Figure 6.18: MCNP plot of a 2-D cross section of the water-reflected array problem
with the larger, critical sphere in the center.

very quickly puts more particles into the important center sphere. The collision
kess jumps immediately to critical and oscillates around 1.0. By cycle 43, B was
small enough so that no additional particles would be killed or cloned, and the
acceleration automatically shut itself off. It takes unaccelerated MCNP about 90
cycles to converge. Figure 6.20 shows the number of particles in the center critical
sphere as a function of cycle. The acceleration may have overshot the correction
a little at first, and, since §.was decreasing, it could not as quickly correct the

overshoot.
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MCNP Cycle Collision kess in the “kesy of the World” Problem
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Figure 6.19: The cycle collision %.ss estimator for unaccelerated and fission matrix
acceleration MCNP on the “k.ss of the world” problem.

The three-combined k.ss estimator is a linear least squares combination of the
average collision, absorption, and track length estimators [Urb95]. The average kess
estimators equally weight the cycle kess estimates from each active cycle. There-
fore, in the unaccelerated case, the poorly converged k.s; estimates in the early
active cycles contaminate the average, and hence, the three-combined, k.s; estima-
tors throughout the entire run. Figure 6.21, when compared to Figure 6.19, shows
the contamination on the three-combined k.s; estimator due to the unconverged
source.

MCNP contains statistical checks that help the user assess the quality of the
calculation [For94]. The unaccelerated case alerted the user that the first and sec-
ond half three-combined k.;; estimates did not agree at the 99% confidence level,
indicating a drift due to an unconverged source. In the fission matrix accelerated
case, the cycle track length k.s; estimates did not pass the normality check. This

failed test is understandable since the the acceleration began at the beginning of the
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Figure 6.20: The number of source points in the center critical sphere of the “k;;y

of the world” problem for unaccelerated and fission matrix accelerated
MCNP.

active cycles. Ideally the acceleration should converge the source before the active
cycles. Fortunately, MCNP gives the results for any number of cycles skipped. For
the accelerated case, the minimum standard deviation occurred at 23 cycles skipped,
giving a 95% confidence interval of [0.9972,1.0033], meaning that the precise value of
kess lies within this range with 95% confidence. The minimum standard deviation
for the unaccelerated case occurred at 116 inactive cycles and 4 active cycles, giving
a 95% confidence interval of [0.9854,1.0247]). However, four cycles is nowhere near
enough cycles to consider in the averaging. This statistical check is another indica-
tion to the user that the unaccelerated case has problems. The three-combined k.

estimate by cycles skipped is shown in Figure 6.22.

6.7 Summary and Discussion

The Fission Matrix Acceleration method is obtained by deriving an exact correc-

tion to the fission source from an integral form of the transport equation. Applying
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1.02 T T T T T

1.00

0.98

three 0.96
combined

kesr  0.94

1
e

0.92

unaccelerated <« -
Fission Matrix Acceleration — -

T

0.90

0.88 1 1} ] 1 1
20 40 60 80 100 120
cycle

Figure 6.21: The three-combined k.ss estimator for unaccelerated and fission matrix
acceleration MCNP on the “k.ss of the world” problem.

the exact correction yields the exact solution and concludes the calculation in one

cycle or iteration. If not impossible, obtaining the the exact correction is impracti-

cal. The fission matrix, on the discretized system, provides an approximation to the

exact kernel and makes the method practical.

The Fission Matrix Acceleration method is designed to reduce the number of
deterministic iterations, or Monte Carlo inactive cycles—those required to converge
the fission source. It works best when the initial assumed fission source is far from
the true fission source. This method is also efficient for systems with high dominance
ratios. These are systems for which unaccelerated Monte Carlo would require many

inactive cycles to converge the source.

We first posed the acceleration in the form where a coarse-grid diffusion fission
matrix was used in accelerating a fine-grid diffusion fission matrix. Two different
ways of obtaining the coarse-grid fission matrix resulted in speedups of 11 and 28 for

the homogeneous slab test problem.
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Figure 6.22: The three-combined %.; estimator for unaccelerated and fission matrix
acceleration MCNP as a function of cycles skipped for the “k.;; of the
world” problem.

Next we used the diffusion fission matrix to accelerate discrete ordinates transport
calculations. Speedups ranged from 3.8 for the “k.ss of the world” problem to 34 for

the homogeneous slab.

Applying fission matrix acceleration to Monte Carlo calculations is yet another
example of trying to make a Monte Carlo calculation behave like a deterministic
calculation. The major deterrence to success is Monte Carlo’s statist.ical noise. The
perfect example is the Monte Carlo criticality calculation itself, where Monte Carlo
is made to adhere to source iteration. One repercussion is a bias in the eigenvalue.
Luckily, the bias is inversely proportional to the number of histories per cycle, and
usually negligible [Gas75][Bow83][Bri86][Gel90][Gel91][Gel94]. Asaoka, et al. had
some success applying coarse-mesh rebalancing to Monte Carlo eigenvalue calcula-
tions [Asa74]. Accumulating data over coarser meshes implies more particles and

less statistical noise. Swaja accelerated Monte Carlo source convergence through
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Chebyshev extrapolation [Swa73]. However, Swaja found it necessary to filter the

statistical noise with a Kalman filter.

If it was possible to totally eliminate the statistical noise in a Monte Carlo criti-
cality calculation, Fission Matrix Acceleration applied to Monte Carlo would behave
similarly as in a deterministic calculation. Otherwise, the acceleration magnifies the
high-order noise. In practice, we eliminate as much of the statistical noise as possi-
ble, so as to approach the deterministic characteristics. Some type of filter is used to
reduce the high-order fluctuations in the driving term of the acceleration equation.
Additionally, a damping factor § damps all frequencies of the additive correction.
The selection of filtering and damping parameters is not automated. Acceleration
success can be quite sensitive to these parameters for some problems. The param-
eters are not independent. If the filtering does not adequately rid the calculation
of statistical noise, the damping will need increasing (lower 3). Unfortunately, the
damping also reduces the low-order acceleration gain. Too much filtering could intro-
duce artificial and incorrect trends in the calculation that would manifest themselves

in large oscillations.

For Monte Carlo, the resulting speedups for the homogeneous test problem and
the one-dimensional “k.ss of the world” problem were about 5. Monte Carlo criti-
cality code users traditionally perceive source convergence in terms of inactive cycles
instead of computer time. They are accustomed to performing, say, 10 to 30 inac-
tive cycles, so even a modest speedup of 5.0 is very beneficial in obtaining accurate

solutions for these types of systems.

The Fission Matrix Acceleration method cannot, however, overcome some inher-
ent deficiencies in Monte Carlo criticality calculations. The Fission Matrix Acceler-

ation method is essentially unbiased-it arrives at the same solution as the unacceler-
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ated calculation, only faster. Due to statistical noise, unaccelerated Monte Carlo has
difficulties with the uniform lattice problem in that it may not converge to the cor-
rect source. In this case, the acceleration simply finds an incorrect source quicker. In

Chapter VIII, we present a hybrid method that, since it is not unbiased, overcomes

these difficulties.

6.8 Related Techniques for An Improved Initial Source

When the variations of the fission matrix acceleration are in place in a computer
code, there exist other easy ways to obtain an initial source. For instance, the source
can be started according to the diffusion solution. A drawback of this technique is
that the diffusion solution may not adequately describe a system with many transport
effects. In fact, for a system similar to the uniform lattice, except that it had much
thicker absorber regions, the diffusion calculation would break down if the cells were
not fine enough.

Another technique for an improved initial source is to use the eigenvector of the
fission matrix. A diffusion fission matrix would provide an eigenvector immediately.
A Monte Carlo fission matrix would have a suitable eigenvector after a few initial
cycles. We implemented this type of source initialization by running a head start
cycle that consisted of a very large number of histories. The initial source for the
head start cycle would require at least a flat distribution so that all fissionable regions
are sampled. The fission matrix should only have second order errors because the
elements depend on the source shape over a cell instead of over the entire system
[Car75]. After the head start cycle, the acceleration coding was used to sample from
the very large number of source points according to the eigenvector of the fission

matrix. After the head start cycle, each cycle contained a smaller, practical number
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of histories. This type of source initialization fails if the eigenvector fails. An example
of where the eigenvector fails is a system like the “k.ss of the world” problem except
that, instead of one, two hot cells are present. Due to statistical noise and poor
communication between the fuel cells, the eigenvector would not adequately detect

both hot cells.



CHAPTER VII

Fission Diffusion Synthetic Acceleration Method

We now present a different form of the source convergence acceleration method,
called Fission Diffusion Synthetic Acceleration (FDSA). FDSA involves a different
form of the transport equation and a different low-order approximation than the
fission matrix acceleration method. Instead of beginning the derivation with an
analytic integral equation, we consider the integro-differential transport equation for
the analytic and source iteration cases. We subtract these to obtain an equation
for the exact correction to the angular flux. This equation is just as difficult as the
source iteration problem, so we solve its diffusion approximation. Instead of using
the fission matrix and its forward and adjoint eigenstates, this method requires a
forward and adjoint diffusion calculation prior to the deterministic or Monte Carlo
criticality calculation. Analytically, however, FDSA is equivalent to the diffusion

fission matrix acceleration method.

7.1 Derivation-of Fission Diffusion Synthetic Acceleration

We begin with the analytic integro-differential transport equation for a slab of

width L, isotropic scattering, and vacuum boundary conditions. Using the operators
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defined in Equations 6.4, 6.5, and 6.6, we have

T (2, ) = S(, ) + Fb(a, 1) (7.1)
P0,p) =0, p>0 , (7.2)
"/)(L: ﬂ) =0, p<0 . (7'3)

The source iteration equations are obtained by introducing iteration indices to Equa-

tions 7.1, 7.2, and 7.3,

1
Tz, ) = Sz, p) + w5 Bz, pr) (7.4)
7)[’(“-1/2)(07 F") =0, ©> 0 ’ (75)
¢(£+1/2)( Lip)=0, p<0 . (7.6)

We desire the exact angular flux correction,

g (z, p) = P(z, p) — V(2 p) . (7.7)

Subtracting Equation 7.4 from Equation 7.1 yields an equation for the correction g,

1 1 1
g+ (z,1)—S gt (z,p) — Z:[;Ig(£+1) (z,p) = %—F¢(£+1/2)(:v, ) — WF@L’@) (z,8) »

(7.8)

and likewise for the boundary conditions,
g 0,m) =0, p>0 , (7.9)
g (L) =0, p<0 . (7.10)

Equation 7.8 is just as difficult to solve as Equation 7.4 ; therefore, we approxi-

mate it. First, we define

#@) = [ ez, wip (7.1)
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where ¢+ (z) = ¢{*1)(z) is the scalar flux, and
@) = [ g (e, by
and assume that the exact correction is linear in angle,

1
9, 1) m 5 (F4 () + 30 (2))

Operating on Equation 7.8 by

' d
/. O)du
and
1
IO
we obtain
() 4 Bu(e)f40(@) - B @) () - L2 piee
Yz vis(z
_v _f( ) (£+1/2)( ) J('z()) (l)(w) ;
and

o
o |, #2640 (@, m)d + Tu(@) (@) = 0

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

Substituting the linear approximation of g, Equation 7.13, into Equation 7.17, we

obtain an expression for fi,

1 0
(£+1)(m) — 32 (z) az O-e-l-l)( )

(7.18)

which, when substituted into Equation 7.16, yields the diffusion approximation to

the acceleration equation, Equation 7.8:

66z321(m) arcfélﬂ)( =) (2 (=) - V2£;$)> (e

2 vy
_ Vk(z-fla):) $EF112) () _ k;(fz()fv) $9(z) .

(7.19)
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The boundary conditions, called Marshak boundary conditions [Bel70], are obtained

using the linear approximation, Equation 7.13, and Equation 7.18. On the left side,

0 = /0 " g0 (0, 1) dp (7.20)
1 1 3. 1
= S0 [ pdp+SF00) [ wdp (7.21)
- lfé‘“)(onlff‘“)(m (7.22)
= fle) gy _ 2 9 )

and on the right side,

0
0 = [ mg®(L,p)dp (7.24)
_ 1 ) 0 3 (e41) o .
= KW [ pdu+SH@) [ #dy (7.25)
1 1
= —f@)+ 341 (7.26)
_ e 2 o (e41)
0 = (L )+32 (0)5a (L) . (7.27)

In Equation 7.19, k4 is the dominant eigenvalue from the adjoint diffusion equation

(with vacuum boundaries),

T 5 ) + Ee)dile) = L

¢a(z) - (7.28)

Equation 7.19 does not automatically have a solution. We specify £¢+1) to satisfy
the solvability condition, which is obtained by multiplying the acceleration equation,

Equation 7.19, by the adjoint diffusion flux and integrating over space,

[ 660 [- 2 )+ (2ute) - Z) )] s
=W / $3(z) (vE1(2) /) (2)) dx—;—% f $3(0) (v21(2)49(2)) dz .(7.20)

The left side of Equation 7.29 is zero, giving us a value of £¢t1) for the solvability

condition,

B+ — (z)f $3(z)vEy(z)p 2)(3’)‘1‘”
J $i(z)vEs()¢\(z)dz

(7.30)
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After solving Equation 7.19, we see that fy(z) is not unique, since any multiple of

the forward diffusion solution may be added to it,

£V (@) = fED (@) + Ada(z) (7.31)

where ¢, is the solution of the forward diffusion equation,

ST 5 ) + Eul)bule) = L) (7.32)

Therefore, we make the correction unique by requiring that the additive correction

be normal to the adjoint diffusion flux,

[ 851 P(@)dz =0 . (7.33)

As in the fission matrix acceleration method, we damp the additive correction, if

necessary, and convert it to a multiplicative correction factor,

vEi()¢D = v8(a) (B (w) + $447(2)) (7.34)
> él"i'l)
~ 3 f(a,)¢(£+1/2) (1 + ﬁV f?g-{llz) (x)) : (7.35)

where f+1/2) i the fission source vX #(z)¢%+1/2) projected onto a cell. The projec-
tion causes the approximation between Equation 7.34 and Equation 7.35.

Let us summarize the steps for Fission Diffusion Synthetic Acceleration. Steps
1 and 2 are performed only once before the calculation begins. The iterations, or

cycles, proceed over step 3 to 6:

1. Calculate the solution of the forward diffusion equation, Equation 7.32,

S EE et Rk =2 e sy

2. Calculate the solution of the adjoint diffusion equation, Equation 7.28,

STt + B = H ) .
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3. Perform a transport iteration or cycle, Equation 7.4,
Tz, ) = SPE Dz, 1) + 375 F¢ (e,8) (7.38)

4. Calculate £+, the solvability condition from Equation 7.30,

pe+) (e)f $5(2)vEs(z) /D (z)dz

7.39
S (=) (2) (e e (7:39)
5. Calculate the fission source correction using Equation 7.19 and 7.33,
a 1 (£+1) vY f (:c) (l +1)
32 3%(a) Ba:f (2) + { Zala) (=)
vis(z 1/2 z

= k(Z-Sl))¢(£+1/2)( ) — f( )¢(z)( ), (7.40)
[#@ @) =0 . (7.41)

6. Apply the correction using Equation 7.35 ,

(£+1)
vos(z)etY) =~ vZ4(z) gt/ (1 +ﬂy2f(12.{2,2) (a’)) . (7.42)

and return to step 3 for another iteration or cycle.
7.2 Implementing FDSA

The Fission Diffusion Synthetic Acceleration method requires less computer stor-
age since it does not require toting around fission matrices. FDSA has the advantage
that its diffusion equation may be performed in multigroup, regardless of whether
the transport is multigroup Sy or continuous energy Monte Carlo. The actual ac-
celeration is collapsed to one energy group and is still dependent only on space, just
as in the fission matrix method. Greater accuracy may be achieved from using a

multigroup diffusion acceleration equation. The disadvantages are that it requires
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more pre-calculation and requires a spatial grid on which to perform the diffusion-like
acceleration calculation.

In the deterministic realm, we are faced with the same dilemma that occurs in
DSA (Chapter IIT): How should we discretize the equations? Inconsistent discretiza-
tion is the most straightforward procedure, where the transport equation and the
diffusion-like acceleration equation are discretized any desired way. As in DSA, in-
consistent discretization may induce instabilities for large mesh sizes. Consistent
discretization arises when FDSA is derived from the already-discretized transport
equation. While having more desirable features, consistent discretization is not al-
ways feasible in higher dimensioned, more complicated systems. Moreover, how
exactly does one consistently discretize Monte Carlo FDSA? The concept appears to

have no clear meaning.

7.2.1 Consistently Discretized FDSA
We consider a slab of width L divided into J cells that are not necessarily uni-

form. We use Diamond Differencing and Sy angular quadrature and consider vacuum

boundaries. The discretized transport equation is

vy
% (9S50, — #SE0) + Syl — Es, E¢‘ Ty, = Higl | (7.43)

2k %

I Y O Rl AR (7.44)
boii) = 0, pm>0 , (7.45)
Yol = 0, pm<0 , (7.46)
SO Sy, (7.47)

m=1

where, again, w,, are the angular quadrature weights such that

N
Y wn=2, (7.48)

m=1
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and the j = 1/2 subscripts indicate cell-edge quantities and the j subscripts indicate
cell-average quantities.
We begin the FDSA derivation by defining the transport corrections on the cell

centers and cell edges,

Ing) = Pmi—ti D (7.49)
241 f)
9fn§+)1/2 = Ymjrfz— ¥, :',1/12/)2 ) (7.50)

such that adding g to the most recent angular fluxes results in the exact angular
fluxes. Let us subtract Equations 7.43 to 7.47 from the exact problem (that is,
Equations 7.43 to 7.47 without iteration indices). We obtain a problem for the exact
angular flux corrections,

/l {2 2+1 {2 e+1/2
hg (gT(n:’J-]-;-)I/Z gf(n-l;—)ll'l) +Z Jg7(n-:‘.‘;1) 25: Z Pn,Wn + ESJ Z ¢7(¢:1/ )

n=1 'n=1

vZ vh vy v,
— fJ g 2k(g ¢(£) fa Z ¢(£+1/2) w,, _2_]:, E ¢(z+1/2) , (7.51)

n=1 n=1
where the last term was added and subtracted to easily get the equation in the
following form:

(&+1) (e+1) (e+1 +1 sz z+1
h] (gms]+1/2 gm,]—1/2) +EJ mrJ ) Es.1 E ( ) - Z ( ) Wn

n=1 n=1

)IFS %
_ Y2y Z¢7(1+1/2) Wy, — vag; ¢(£) , (7.52)

% 2 0%
£+1 £ £
g’ = 3 (g;jﬁl,z +950 ) (7.53)
a =0, pm>0 (7.54)
ga(vffrl-;)-l/z =0, pm <0, (7.55)

m=1
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Adding the exact correction to the most recent angular flux yields the exact angular

flux
Yumig = Yo 4 g (7.57)

or, integrated over angle, it yields the exact scalar flux,

é; = (z+1/2) n E g(£+1) . (7.58)

m=1
Solving this problem gives the exact (discretized) result in one iteration. Not unex-
pectedly, we find that this problem is as difficult to solve as the original problem.
Thus, at this point, we have gained nothing. The remedy is to take the diffusion

approximation of the acceleration. We define

o = Z 9& N, (7.59)
m=1

(&) X )

15 = 2 Hmfmy Wm (7.60)
m=1

and assume the angular flux correction is linear in angle,

g(z+1) ( féf,“) . f1(3+1)) . (7.61)

Next, we operate on Equation 7.52 by

> ()om (7.62)

m=1

and obtain

)
7&1_( (£+1) (e+1) ) + 3 7D, 8 v f, Y24 giex)

1,7+1/2 ~ J1,j-1/2 0,j

vY;. vy ]
= - kf1‘¢§'£+1/2) k(zj)eJ ¢, 1<5<T . (7.63)

Operating on Equation 7.52 by

N
2 b (Ym (7.64)

m=1
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and using the linear approximation in Equation 7.61, we obtain

1 241 241 241
= Sai/e — o) + Bt =

3h;

Operating on Equation 7.53 by the same two operators yields

@+1) _ l( (e+1) (z+1) )
0,7 9 0,J+1/2 1—1/2 ’
(e+1) _ l( (e+1) (z+1) )
1,5 - 2 1).7"‘1/2 1.7—1/2

, 1S7<J .

(7.65)

(7.66)

(7.67)

Now we look to approximate the boundary conditions. Multiplying Equation 7.54

by pmwy, and integrating (summing) over positive fn,, we find the partial incoming

current for the left boundary, where we utilize the linear approximation for g,

0 = Y ¢ uw,

ﬂm>0
-~ £+1 241
=3 Z Hm ( (51/2) + 3/‘mf1( 1/2))
#m>
+1 £+1
= ( E Bm W m) (1/2) 4 = f( 1/2) y
2m>0
since
1 1
Z /-‘:zwm=§ Z ﬁ‘:zwm=§
#m>0 a]lﬂ'm
Setting

=2 E Em W,
2m>0

we have as the left boundary condition,
f(?/lz) +9 f(fl'*}lz)
Similarly, the right boundary condition is

+1 41
’YNch J+i/2 + 2f, :f J+1/2

(7.68)

(7.69)

(7.70)

(7.71)

(1.72)

(7.73)

(7.74)
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The scalar flux is accelerated by
¢ =g 15 (7.75)

Equations 7.63, 7.65, 7.66, 7.67, 7.73, 7.74, and 7.75 constitute 4J + 2 equations
in 4J +2 unknowns. Now we want to eliminate fl(l'*'l) from these equations. First, we
substitute Equations 7.66 and 7.67 into Equations 7.63 and 7.65 so the corrections

all reside on the cell edges. This substitution yields the following two equations,

( (1) (+1) ) _ M( (D) | fler) ) sz,y ( £ e )

1,i41/2 = J1,i-1/2 2 \T0d+/2 T 0,4-1/2 o1/ T Joss
vEs;h; 22 :
L g kﬁ) EEGN 1<i<T,  (176)
(£+1) (1) \ _ _T2 () (¢+1) j
( 1i4ife T f ,3_1/2) = 3Tk ( 0,5+1/2 0,:‘—1/2) y 1S5<J . (7.77)

Adding and subtracting Equations 7.76 and 7.77 produces two different equations:

¢ S5k Taghi\ (e , VSpihs o
2f(,:-+11) = ( 5 I: i _ 2:: g ( é,;i-_’_ll)/z + f(:—l1)/2) kJ 3 ¢§ +1/2)
_vEghi g 2 (&+1) (+1) )
kO 7 T 3%,k ( og+i/2 = J ,,_1/2) , 17 J (1.18)
2 (-e+1) _ E ,]h sz,j (£+1) (£+1) ) VZf’th (£+1/2)
fiip = 0,.1+1/2 Joi-ifa — ;
sz o__2 (¢42) (¢41) :
+ k(;) ¢ 3% h; ( 0412~ [ ,,_1/2) , 17T (7.79)

In order to eliminate f1(£:-|-11) /2> We shift the indices in Equation 7.79 from j —1/2 to

7 +1/2 such that the range of applicable j is shifted to 0 < j < J—1. Equating the

expressions and rearranging yields the acceleration equation,
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1 ( (£41) (£41) ) n 1 ( E+1)  _ c(e+) )

————3Et b 0,54+3/2 — Jo,+1/2 E 0,j4+1/2 0,5-1/2
1 vh Foi+l h i+1 441 £+1
+Z [(Ea,j+1hj+1 - __jkd—J ( cg,g+3)/2 (,a+1)/2

)
b (s - 220 (e 4 502,
)

17 1 fs
=3 [’é@?ﬁ (vZrisahsadisi ™ + vEyshidy ™D

1 .
k(g) (sz,3+1h3+1¢.7+1 + sz,dh ¢ )] , 1S5 < J-1 ’ (7'80)

Note that we introduced the diffusion eigenvalue, k4, on the left side of Equation 7.80
and k#+1), the eigenvalue satisfying the solvability condition, on the right side. Sub-
stituting Equations 7.78 and 7.79 into Equations 7.73 and 7.74, we obtain the left
and right boundary conditions,
2 41 1)) , 1 sz,1h1 41 1
Wi 1+/12) - 32 Ry (f (3/2) f3 172)) 5 (za:lhl - ) ( 53/2) f3 1+/2))

VZf,1h1 (z+1/2) V):'f,lhl (0
k(m) A (7.81)

) 241 £
'ny(.}:l_i/Z + 3%, Jh (fé:f*-;-l/z fé;—liﬂ)
1 vXzghy 7 :
# g (Barhs 20 (10504 112,
vEy b (e+1/2) _ VEf,J ks (@
= LI I (7.82)

Equations 7.80, 7.81, and 7.82 constitute a tridiagonal system for the cell-edge

scalar flux corrections. Finally, substituting Equation 7.66 into Equation 7.75, we

have the correction as

241 £+1/2 £ f;

) = gD 4 (f( PRI i A (7.83)
7.2.2 Inconsistently Discretized FDSA

We obtain “inconsistently discretized FDSA” when the transport and acceleration

equations are discretized independently. The discretized transport equation and
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boundary conditions are given in Equations 7.43 through 7.47. We discretize the
acceleration equation, Equation 7.19, in a usual way by integrating it from cell-center
to cell-center, with half-width cells at the left and right boundaries. For uniform cell

width h, we obtain in the interior of the slab,

f( +1)

:3_1/2

32t,_1h

1 1 h
+ l32t3—1h + 35k + 5 (2 -1+ Xa; — k (E.f,J—l + Efg))] (51;-11)/2

f(5+1)
32 h70It3/2

h 1 et12) ®
= -—2- [llzf,:i ( JACZEY) ¢0,J X0 ¢0,j)

1 1 .
+ vEf541 (Wcﬁc(fﬂf) - -,c—(5¢8f3-+1)] , 1555 J-1 (7.84)

and for the left and right boundary conditions,

1 h vy 1
o+ (a220) 2] -

381k 2 k4 381k 0iH3/2
_ Vb (1 eymy 1
D) (k(!r+1)¢5 k(£)¢ ) ’ (7.85)
(e41) h vEs,7 (e41)
3%, hf‘”'-l/2 [32 h+2(2 ke ) ]f 0.J+1/2
_ vEsgh (e+1/2) ®
= (k(£+1)¢ kwgs ) . (7.86)

Solving Equations 7.84, 7.85, and 7.86 yields the correction on the cell edges. The

correction is applied to the scalar flux by Equation 7.83.
7.3 Fission Diffusion Synthetic Acceleration Results

We consider all three test problems for deterministic FDSA, and the homogeneous
problem and “k.y of the world” problem for FDSA applied to Monte Carlo. We defer

our attack on the inherent difficulties Monte Carlo has with the uniform lattice to the
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Hybrid Method in the next chapter. We make no differentiation between consistently
and inconsistently discretized FDSA because, unexpectedly, they perform virtually

the same.
7.3.1 Deterministic FDSA Results

First, we consider the homogeneous slab as shown in Figure 6.1. Using 60 cells
and starting 2/3 of the source in the left half and 1/3 in the right half, the determin-
istic FDSA method (FDSA applied to discrete ordinates) converges in 6 iterations,
while the unaccelerated discrete ordinates method requires 722 iterations. The com-
putational speedup was 77. For comparison, the Diffusion Fission Matrix took 10
iterations and 5.7 times longer than FDSA. The convergence of the first and second
Fourier mode coefficients are shown in Figures 7.1 and 7.2, respectively.

Deterministic Fourier Mode Convergence for Homogeneous Slab
T T T T

50 First Mode
60 mesh cells

48 | FDSA (6 iters)
diffusion fission matrix (10 iters)

a6 f

Fm) unaccelerated (722 iters)

42 .
Initial source: % in left half, £ in right half
40 -
38 ] i 1 |
0 50 100 150 200

iteration

Figure 7.1: The convergence of the first Fourier mode coefficient in the homogeneous
slab problem for unaccelerated discrete ordinates, Fission Diffusion Syn-
thetic Acceleration, and, for comparison, Diffusion Fission Matrix accel-
eration.

Second, we investigate FDSA on the uniform lattice problem, which is shown in
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Deterministic Fourier Mode Convergence for Homogeneous Slab

14 T T T T
19 Initial source: £ in left half, 1 in right half |
10 -
8 ) -
F(2r) Second Mode unaccelerated (722 iters)

6 [ 60 mesh cells

2 [t FDSA (6 iters) -
diffusion fission matrix (10 iters)

0 50 100 150 200
cycle

Figure 7.2: The convergence of the second Fourier mode coefficient in the homoge-
neous slab problem for unaccelerated discrete ordinates, Fission Diffusion
Synthetic Acceleration, and, for comparison, Diffusion Fission Matrix ac-
celeration.

Figure 6.2. The discrete ordinates calculation was performed on 464 cells and the
acceleration was performed on 116 cells in the 58 mfp system. Again, the initial
source was 2/3 in the left half and 1/3 in the right half. The unaccelerated dis-
crete ordinates required 853 iterations to converge and FDSA required only 9, for a
computational time speedup of 87.5. The Diffusion Fission Matrix acceleration, for
comparison, took 12 iterations and took about 4 times longer than FDSA. The first

and second Fourier mode coefficient convergence is shown in Figure 7.3.

Third, we look at the one-dimensional “k.ss of the world” problem, which is
shown in Figur.e 6.3. Both the transport and acceleration are on 464 uniform cells
in the 58 cm system. This problem was unique for deterministic FDSA because it
was the only deterministic problem that required damping. A possible reason that
damping was necessary is that the initial source is far from the converged source, the

latter of which tends to have no diffusion characteristics. In lieu of showing another
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Deterministic Fourier Mode Convergence in Uniform Lattice
1 T T T T

FDSA (9 iters)
0.8 - DFMA (12 iters) unaccelerated (853 iters)

0.6 - First Mode, F(m) -
464 fine-mesh cells, 116 coarse-mesh cells
0.4 Initial Source: £ in left half, § in right half

Second Mode, F(27)

0.2 |
KFD%?%; ﬁ(;ir?s)lters) unaccelerated (853 iters)

1] 1 ! !

0 20 40 60 80 100
iteration

Figure 7.3: The convergence of the second Fourier mode coefficient in the uniform
lattice problem for unaccelerated discrete ordinates, Fission Diffusion
Synthetic Acceleration, and, for comparison, Diffusion Fission Matrix
acceleration.

Fourier plot, we show in Figure 7.4 the iterations and computer time necessary for
convergence as a function of damping. The optimal 8 was 0.6, for a paltry speedup

of 2.

7.3.2 Monte Carlo FDSA Results

We apply Monte Carlo FDSA to the homogeneous slab problem. We begin with
2/3 of the source in the left half of the slab and 1/3 in the right half and run 5000

histories per cycle. The diffusion filter parameter is

2 5n

@ =n+10

(7.87)

a? starts out small so the filtering does not accentuate the artificial (high frequency)
step in the initial source.
Figures 7.5 and 7.6 show the first and second Fourier mode coefficient convergence

for unaccelerated Monte Carlo and for FDSA with § held constant at 0.06. These
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Damping Effects in Deterministic FDSA for the “k.s; of the World” Problem
70 T T T T

60 464 fine- and coarse-mesh cells

iterations
50

iterations and 40 [
cpu time (s) ...,
to converge 30 e

20

10 n

0 i i [} ]
0 0.2 0.4 0.6 0.8 1
damping factor, 8

Figure 7.4: The damping effects on the iterations and computer time to converge for
deterministic FDSA applied to the “k.ss of the world” problem.

problems required severe damping, as one would have expected from inconsistently
discretized FDSA. Holding § constant shows how the acceleration converges the
source in about 10 or 15 cycles. After that, one can see how the high order statistical
noise is translated into lower order fluctuations by the acceleration. Ideally the
acceleration should have been shut off after about 13 or 14 cycles.

Setting the damping factor so that the acceleration is tailored to shut off after the
source is converged eliminates the adverse effects of trying to accelerate an already-

converged source. Therefore, for the next case, we set 8 as

B = 0.1exp(—5.0max(0,n — 11)) , (7.88)

so that B = 0.1 for 11 cycles then goes to zero almost immediately. Convergence
of both the first and second Fourier mode coefficients for this case are shown in
Figure 7.7. The speedup obtained from the times at the unaccelerated 100th cycle
and the FDSA 10th cycle was about 9.3.
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" Fourier Mode Convergence for Monte Carlo in Homogeneous Slab

0.84
0.82
0.80
0.78
0.76
F(=) 0.74
0.72_ -0 —
0.70 FDSA: =0.06 +—
0.68 [~ 60 mesh cells -
0.66 Hf Initial source: Z in left half, 1 in right half 5000 hist/cyc -
0.64 I [} ] 1
0 50 100 150 200
cycle

Figure 7.5: The first Fourier mode coefficient convergence for the homogeneous slab
with unaccelerated Monte Carlo and FDSA with 8=0.06.

Lastly, we apply Monte Carlo FDSA to the one-dimensional “k.yy of the world”
problem. Damping appeared unnecessary as there was little difference between
B=1.0 and 8 = 0.6. The Fourier mode coefficient convergence is shown in Fig-
ure 7.8. Just as with the Fission Matrix Acceleration, the Fourier coefficients seemed
almost deterministic because of the high ratio of particles to important fissionable
material volume. Comparing the computer times at the unaccelerated 36th cycle

and the FDSA 6th cycle, the speedup was about 6.1.

7.4 Summary and Discussion

The Fission Diffusion Synthetic Acceleration (FDSA) method accelerates source
convergence by utilizing the diffusion approximation of the exact correction to the
angular flux. It is similar to the Fission Matrix Acceleration method in that an
exact acceleration equation is approximated. Whereas the Fission Matrix Accelera-

tion method uses the fission matrix as an approximation, FDSA uses the diffusion

et ——- - T ——
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Fourier Mode Convergence for Monte Carlo in Homogeneous Slab
0.8 T T

1

Second Mode
0.6 - B=0 — 4
FDSA: 8 =0.06 4+

0.4 Ff
0.2F -
F(2r) 0
-0.2

-0.4 R L - 60 mesh cells -
] 5000 hist/cyc
-0.6 - -
Initial source: 2 in left half, 1 in right half

[} 1 1

0 50 100 150 200
cycle

-0.8

Figure 7.6: The second Fourier mode coefficient convergence for the homogeneous
slab with unaccelerated Monte Carlo and FDSA with 8=0.06.
approximation—an assumption that scattering is linear in angle. The differences were
mostly subtle for the types of problems we considered. However, in the deterministic
realm, FDSA required damping for the “k.;; of the world” problem. For all other de-
terministic problems, the optimal acceleration occurred for # = 1. When applied to
the “k.ss of the world” problem, FDSA required damping regardless of whether the
initial source was flat or had 2/3 in the left half of the slab and 1/3 in the right half.
The reason FDSA required damping for that problem is probably because the con-
verged source is very “undiffusion-like,” and the initial source contained unphysical

high-order components at the center of the slab.

We surprisingly found that inconsistently and consistently discretized determin-
istic FDSA performed essentially the same. This finding is inconsistent (no pun
intended) with the discretization behavior observed in fixed-source DSA. One reason
may be that the linear fixed-source Fourier analysis results do not apply to the non-

linear eigenvalue calculation. On the other hand, FDSA applied to Monte Carlo met
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Fourier Mode Convergence for Monte Carlo in Homogeneous Slab

1.00 T T T T T
First Mode, F(7)
0.80
0.60 ' unaccelerated — 60 mesh cells
FDSA: = 0.1exp(—5max(0,n — 11)) +— 5000 hist/cyc
0.40 - 2_. _5n -
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— n+l10

0.20

0.00

Initial source: Z in left half, 1 in right half -
1 ] |

-0.20 |

0 20 40 60 80 100
cycle

Figure 7.7: The first and second Fourier mode coefficient convergence for the homo-
geneous slab with unaccelerated Monte Carlo and FDSA with $=0.1 for
11 cycles and essentially zero thereafter.

expectations and behaved like inconsistently discretized FDSA, in that it required
(often severe) damping.

For the deterministic FDSA calculations, speedups were about 2 for the “k.ss
of the world” problem, 77 for the homogeneous problem, and 88 for the uniform
lattice. For FDSA applied to Monte Carlo, speedups were 6 for the “k.ss of the
world” problem, and 9 for the homogeneous problem. We did not attempt the
uniform lattice problem. The Monte Carlo calculation speedups may be somewhat
misrepresented because all Monte Carlo calculations, as a default, estimate the fission
matrix eigenstate at each cycle.

Compared to the Monte Carlo Fission Matrix method, FDSA has the disadvan-
tage of requiring a grid and more precalculation. However, it has the advantage of

requiring less calculation at each iteration or cycle.
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Fourier Mode Convergence:
Fission Diffusion Synthetic Acceleration of Monte Carlo
1 ] t [ ] 1 1 ] 1

1-dimensional “k.ss of the world”
10  ——————— e
/ .......... First Mode, F(r)
il FDSA: ar0 ]
7 . : f=1.0 —
0.00 .
Initial source: 2/3 left, 1/3 right
-0.50 .
"+«.......Third Mode, F(3)
-1.00 - 1 ! ! ! 1 1 1 ! 1 7

0 5 10 15 20 25 30 38 40 45 50
cycle

Figure 7.8: The first and second Fourier mode coefficient convergence for the “k.ss
of the world” problem with unaccelerated Monte Carlo and FDSA with
p=1.0.




CHAPTER VIII

A Hybrid Monte Carlo Method for Improved
Source Convergence

Unlike the hybrid method in this chapter, the Fission Matrix and Fission Diffu-
sion Synthetic Acceleration Methods are essentially unbiased. That is, they converge
to the unaccelerated solution. Converging to the unaccelerated solution is a desir-
able feature of an acceleration method, unless the unaccelerated method itself has
difficulties converging to the correct solution. Such is the case with Monte Carlo
criticality calculations for arrays of identical, isolated, and weakly-coupled fission-
able components. This type of system has a high dominance ratio. Because of
statistics, components in the high dominance ratio system having more particles
than expected, will tend to continue having more particles. In fact, for a lattice
with no communication between its components, as the number of cycles approaches

infinity, all the particles could end up in one component.

We propose a hybrid Monte Carlo method that overcomes this inherent deficiency
in Monte Carlo criticality calculations. The hybrid method follows the same format
as unaccelerated Monte Carlo by simulating particles on a cycle-by-cycle basis. How-
ever, the source for each cycle comes not from the fission sites sampled in the previous

cycle, but from the solution of a modified diffusion equation whose parameters are

132
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estimated by Monte Carlo. The modified diffusion equation tends to have smaller
statistical errors than regular Monte Carlo. The hybrid method produces two sets
of solutions: the modified Monte Carlo solution and the modified diffusion equation
solution. Since the hybrid method’s Monte Carlo solution is not exactly the same
as the regular Monte Carlo solution, the hybrid method is not really an acceleration
method.- In other words, it is not unbiased. The cause of the bias from the regular
Monte Carlo method is that the hybrid method has a spatial truncation error. We
will find, however, that the biased nature of the hybrid method is quite beneficial for
a lattice of weakly coupled components.

This hybrid method is based upon the Quasi-Diffusion method, which was first
proposed in the deterministic arena by Gol’din [Gol64] and successfully applied with

newly derived boundary conditions by Miften and Larsen [Mif93].

8.1 Derivation of the Hybrid Monte Carlo Method

Once again, we begin with the monoenergetic, one-dimensional integro-differential
transport equation with isotropic scattering. We consider a slab of width L with vac-

uum boundaries,

3¢($7 k) VT L 5 (a)b(a, ) = % (E (2) + I/Ef(-’l’)) /¢($,” Ydp (8.1)
¢(0,ﬂ)=0 » £>0 (82)
(i) =0, p<0 . 3)

Defining ¢,, the angular moments of the angular flux %, as

bol@) = [ 9o (64
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where ¢y is the scalar flux, we integrate the transport equation, Equation 8.1, over

angle and obtain

d¢1 (9’)

vYis(z
+ D) = (2u0) + ) ute) ©5)
Multiplying Equation 8.1 by x and integrating over angle, we obtain

d¢2 (m)

+ Bi(z)fu(z) =0 , (8.6)
from which we set

bi(z) = —Eim) Wla) (8.7)

Substituting Equation 8.7 into Equation 8.5, we obtain, without approzimation to

the transport equation,

d %
d:l} ) ( )d ¢2($) + Ea($)¢0($) d ‘f(w)qS ( ) (8.8)
Next, we define an “Eddington factor,” A,,
Do) = 28) _ L1 (@ 1) 9)

T do(z) (=, p)dp
Multiplying and dividing the first term in Equation 8.8 by ¢o(z), and multiplying
and dividing the other two terms in Equation 8.8 by Ay, we obtain an elliptic equation

for Az(z)édo(z):

dczlz:E @) & /\2( Yoo(z) + Ej(( )))\2( Yo(z) = 1];?:((:)))\2(1:)%(:1:) . (8.10)

The boundary condition at £ = 0, as derived by Miften and Larsen [Mif93], is

found by integrating Equation 8.2 over g > 0 and manipulating as follows:
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0 = /0 lmb(ﬂ,/u)dﬂ— /_ OIW(O,#)d#

+ /0 " (0, 1) dp + /_ 01 (0, p)dp (8.11)
= /o ' |l (0, w)dps + /_ 01 |l2b(0, p)dps

+ /0 * (0, g)dp + /_ 01 b (0, m)dp (8.12)
= [ Ikt [ (0, i (819)

Now, we define an Eddington factor for the boundary,

(S el (0, p)dp
/\1(0)_( 11%(0, p)dp )

We also rewrite Equation 8.7 at £ = 0 by multiplying and dividing the right hand

(8.14)

side by ¢o(0), and substituting Equation 8.9 to obtain

1

$1(0) = —m%)\z(o)%@) . (8.15)

Noting that the last term in Equation 8.13 is ¢;(0), we substitute Equations 8.14
and 8.15 into Equation 8.13, obtaining the left boundary condition,

0= X (0)60(0) ~ 5,755 722 (O0) (8.16)

or, multiplying both sides by A;(0)/A1(0),

0= 22(0)0) ~ 3 (00 (8.17)

The right boundary condition, found in a similar fashion, is

0= M(D(D) + T2 Ca(D(D) .19

Equations 8.10, 8.17, and 8.18 constitute a modified diffusion problem, derived,

without approximation, from the transport problem, Equations 8.1, 8.2, and 8.3. The
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hybrid method involves estimating the Eddington factors A, and A; with accumulated
data from the Monte Carlo simulation. The solution of Equation 8.10 provides the

distribution from which the subsequent cycle’s fission source is sampled.

8.2 Implementing the Hybrid Method

During the Monte Carlo simulation, data are accumulated for estimating the
Eddington factors. For example, on the left boundary, A, is the ratio of an angle-

weighted surface current estimate and a surface flux estimate [Lew84],

Ly |1:(0)}wi(0)
A2(0) = = , 8.19
O = S w0/ 1)) (6.19
and )\; is the ratio of a particle current estimate and a flux estimate at the surface,
EI‘Y_—1 w,-(O)
21(0) = t , (8.20)
i (wi(0)/1:(0)])

where N is the total number of particles and w; is the weight of particle . Required
for every cell m in the system, ); is obtained as an average of the angle squared,

weighted by the track length flux estimate,

K(i
o = P Ek(g)-):l(/‘z?‘eiwi)k(i)m
m K(: ?
T e (G0)igym

where £; is the track length in cell m for track k(z) of particle :.

(8.21)

For two reasons, the variance in the estimates of Ay and A; is expected to be
less than the variances associated with the regular Monte Carlo estimates of flux.
First, the A’s are constrained between zero and one, while flux values throughout the
system may differ by many orders of magnitude. Second, the statistical errors would
tend, in some sense, to cancel out, since the A’s are ratios of similar quantities.

The method entails running enough cycles of regular, unaccelerated Monte Carlo

to get good cumulative estimates of A\; and A;. Then these estimates are used in
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the modified diffusion equation, Equation 8.10, whose solution requires a simple
diffusion solver with modified cross sections. The solution is obtained on the cell-
edges, allowing the Monte Carlo fission source for the next cycle to be sampled
according to a linear fit in each cell.

This hybrid method gives two sets of solutions (flux, fission source, eigenvalue,
etc.) of the system, one from the Monte Carlo simulation as usual, and one from the
modified diffusion equation. In addition to truncation error [Mif93], the latter has a
statistical error associated with it, but this error is less than the error of the Monte

Carlo solution.

8.3 Results of the Hybrid Monte Carlo Method

We apply the hybrid method to the uniform lattice test problem, whose domi-
nance ratio is approximately 0.996. The initial source contains 2/3 of the particles
in the left half, and 1/3 in the right. The Eddington factors are accumulated over 30
inactive cycles, with 5,000 histories per cycle before the hybrid method is engaged.
The Monte Carlo is performed using 58 meshs cells, with survival biasing (weight cut-
off of 10™*), and the hybrid diffusion calculation is made on 464 cells. In Figure 8.1,
the experimental Fourier analysis shows the first and second Fourier modes, includ-
ing the converged values from an S3; discrete-ordinates calculation. Once engaged,
the hybrid method converges faster, and, upon convergence, has smaller statistical
fluctuations.

Figure 8.2 shows the Monte Carlo collision fluxes from the unaccelerated and hy-
brid cases. It is evident that the Monte Carlo flux of the hybrid method is converged
with its global cosine shape, while the unaccelerated Monte Carlo flux still retains

initial source effects. The one-standard deviation error bars on the unaccelerated
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Fourier Mode Convergence in the Uniform Lattice Problem

0.8
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Figure 8.1: Convergence of the first and second Fourier modes for unaccelerated
Monte Carlo and hybrid Monte Carlo in the uniform lattice test problem.

Monte Carlo flux show how the variance is grossly underestimated due to the lack
of convergence and the high dominance ratio. Even so, the standard deviations of
the hybrid Monte Carlo flux were nearly a factor of two smaller. Given that the
unaccelerated flux error is underestimated, the actual factor of reduction is much
larger than the apparent factor of two. We cannot easily quantify this actual factor
because the unaccelerated fission source is not even converged.

For this problem, where the fuel cells are identical and the system is large, the
eigenvalue, an integral quantity, is not overly sensitive to the fission source shape.

Thus, the method shows no apparent improvement in estimating the eigenvalue.
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Monte Carlo Flux in the Uniform Lattice Problem
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Figure 8.2: Collision flux estimate after 230 total cycles for unaccelerated Monte
Carlo and hybrid Monte Carlo in the uniform lattice test problem.




CHAPTER IX

Summary, Conclusions, and Future Work

9.1 Summary and Conclusions

We have presented three new methods possessing improved source convergence
properties in criticality calculations for systems with high dominance ratios. The
three methods are the Fission Matrix Acceleration method, the Fission Diffusion
Synthetic Acceleration (FDSA) method, and a Hybrid Monte Carlo method. Cur-
rently, practical Monte Carlo and deterministic criticality calculations are based on
the source iteration method, which converges very slowly for systems with high dom-
inance ratios. In fact, for some difficult problems, the Monte Carlo method will not
converge to the correct solution. Systems that have high dominance ratios are those
that have weak neutron communication between their distant regions. Typi;:al high
dominance ratio systems are large thermal nuclear reactors and arrays of barrels of
nuclear waste.

The Fission Matrix Acceleration and FDSA methods are unbiased acceleration
methods. They converge to the same solution as the unaccelerated calculation. Both
methods approximate an exact acceleration equation for the fission source. Solving
the approximate equation yields an additive correction for the fission source. The

acceleration requires extra work at each iteration or cycle, but the source convergence
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is accelerated by requiring fewer iterations or cycles.

The Fission Matrix Acceleration equation uses the fission matrix as a low-order
operator in approximating an exact acceleration equation. The fission matrix may be
estimated deterministically or by Monte Carlo. Fission Matrix Acceleration may be
implemented in different ways. For instance, a diffusion fission matrix may be used
to accelerate diffusion, discrete-ordinates, or Monte Carlo calculations. A Monte
Carlo fission matrix can be used to accelerate a Monte Carlo calculation. The latter
implementation is important because the absence of a deterministic acceleration
equation deems a regular spatial grid unnecessary. Unfortunately, the statistical
noise is amplified by the acceleration method and, therefore, needs to be filtered out.
To do this we use a diffusion-like filter that requires a regular spatial grid, but filters

exist that do not require a regular grid.

We test the feasibility of all three methods in a testbed consisting of idealized
problems. Although these problems are far from reality, they contain enough realistic

properties to serve as a valid testbed.

We have applied the Fission Matrix acceleration to three one-dimensional test
problems. These were a homogeneous slab, a uniform lattice array, and a one-
dimensional model of the “k.ss of the world” problem. Their dominance ratios are
0.991, 0.996, and 0.823, respectively. For deterministic calculations, we observed
computational time speedups of about 20-34 for the homogeneous slab and uniform
lattice problems. The deterministic speedup for the 1-D “k,; of the world” problem
was only 3.8 because the dominance ratio is not very high and, hence, there is little
gain to be had. The speedups for Monte Carlo fission matrix acceleration were about
5 for the homogeneous slab and the 1-D “k.;; of the world” problem. The uniform

lattice problem proved too difficult for unaccelerated-and therefore, accelerated—
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Monte Carlo to converge to the correct fission source.

We have implemented the new Fission Matrix Acceleration method in the pro-
duction Monte Carlo code MCNP. Applied to the three-dimensional “k.s; of the
world” problem, results for the “real” problem were impressive. Fission matrix data
were accumulated for 20 cycles after which the acceleration was turned on. The
accelerated Monte Carlo solution converged in about 3 to 4 cycles, while the un-
accelerated Monte Carlo required another 70 cycles. The dominance ratio of the
three-dimensional “k.ss of the world” problem is about 0.92, which is higher than
its one-dimensional representative test problem. The similarity of the method’s be-
havior in this real problem to that in the simplified problems verified the validity of

the testbed of idealized problems.

The Fission Diffusion Synthetic Acceleration (FDSA) method is similar to the
Fission Matrix Acceleration method except that the acceleration equation is ap-
proximated by using the diffusion approximation. This acceleration method can be
applied to discrete-ordinates or Monte Carlo transport and it requires a grid for
solving the diffusion-like acceleration equation. FDSA requires less storage than the
Fission Matrix Acceleration method. Applied to Monte Carlo, we saw speedups of
6 to 9. For deterministic calculations, we saw speedups of 77 and 88 for the homo-
geneous slab and uniform lattice, and a speedup of only 2 for the 1-D “k.ss of the

world” problem.

The strength of the diffusion-like filter is controlled by a parameter . The filter
is intended to remove the high-frequency statistical noise from accelerated Monte
Carlo calculations. We often found it necessary to damp the additive correction with
a parameter B that varied between 0 and 1. Damping scales back all frequencies

of the correction. The parameters « and § are not independent. If the filtering
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does not remove enough noise, then the entire correction may have to be damped.
Using B to do the work of filtering and keep the acceleration stable results in a loss
of acceleration, because the low frequencies of the acceleration are scaled back also.

Unfortunately, the selection of @ and S is not automated.

Unaccelerated Monte Carlo was unable to converge for the uniform lattice test
problem. In this case, attempts to accelerate convergence with an unbiased accel-
eration method also failed. We presented a Hybrid Monte Carlo method that is
not an unbiased acceleration method because it does not converge to the unacceler-
ated Monte Carlo fission source due to its second order truncation error. Therefore,
quantifying speedup is difficult, except to say that the Hybrid Method converges
while, practically, the unaccelerated Monte Carlo does not. The Hybrid Monte Carlo
method has a truncation error, but in the uniform lattice problem, it proved supe-
rior in converging the source and greatly reducing the statistical error. The method,
for this problem, realized nearly a factor of two reduction in the apparent standard
deviation of the collision flux estimate, but a much larger reduction in the actual

standard deviation.

In conclusion, we have successfully accelerated fission source convergence in both
deterministic and Monte Carlo criticality calculations. By filtering statistical noise,
we have incorporated deterministic attributes into the Monte Carlo calculations in
order to speed their source convergence. We have used both the fission matrix and
a diffusion approximation to perform unbiased accelerations. The Fission Matrix
Acceleration method has been implemented in the production code MCNP and suc-
cessfully applied to a real problem. When the unaccelerated calculations are unable
to converge to the correct solution, they cannot be accelerated in an unbiased fashion.

A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calcu-
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lation to overcome these deficiencies. The Hybrid method additionally possesses

reduced statistical errors.

9.2 Future Work

We now discuss a few items from the potentially endless list of “things to do.”

1. Automate the selection of o and 3. We know that as the number of Monte
Carlo histories per cycle increases, the calculation appears more deterministic
and filtering requirements diminish. So, « should be inversely proportional to
the number of histories per cycle. The damping factor 8 may be dependent on
the dominance ratio, p. If the dominance is near unity, very little information

is gained each iteration or cycle. So, it may be that 8 ~ (1 — p).

2. Implement a Kalman filter. The diffusion-like filter we use spatially smooths
the fission source. For a severely heterogeneous system, spatial smoothing may
introduce unphysical and unwanted errors. A Kalman filter would determine

the optimal fission source in a region based on all previous cycles.

3. Use powers of the fission matrix. For high dominance ratio problems where
little information is gained each cycle, it may be that one cycle or iteration is
too small of a “snapshot” to get a view of the big picture. If instead of collecting
the fission matrix over one cycle, suppose its n-th power was collected over n
cycles. Then the acceleration could be applied every n cycles and be more

effective. See Appendix A for a brief discussion.

4. Implement FDSA in a marriage between a deterministic production code and

a Monte Carlo production code.
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5. Combine FDSA and the Hybrid method.

6. Accelerate the fission matrix. Currently, the fission matrix is estimated af-
ter the unaccelerated cycle or iteration. Thus, the acceleration effects do not
show up in the fission matrix until the next cycle or iteration, and, then, only

implicitly. Accelerating the rows of the fission matrix may prove beneficial.

7. Further investigate using the adjoint fission source as an importance function,
as suggested by Goad and Johnston [Goa59]. We considered using an impor-
tance function inversely proportional to the adjoint fission source during the
inactive cycles to speed convergence, and proportional to the fission source
during the active cycles to reduce the system-wide variance. However, initial

results were not encouraging.

8. Study the adaptation of Halton’s sequential Monte Carlo methods [Hal94] to

criticality calculations.
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APPENDIX A

Using Powers of the Fission Matrix

If the fission matrix is accumulated from Monte Carlo results, the possibility
exists to use multiple powers of the fission matrix in source convergence acceleration.
The advantage of using the fission matrix to the, say, n-th power to accelerate source
convergence is that it has a smaller dominance ratio. If, for instance, the dominance
ratio of the fission matrix is p, the dominance ratio of the fission matrix to the
n-th power is p". For systems with high dominance ratios, this modification in the
fission matrix acceleration may prove useful and maybe even benefit the cases where
unaccelerated Monte Carlo has difficulty converging to the correct solution.

After three cycles of source iteration (accelerated or otherwise) we would have

1
fip = +Lfo (A.1)
0
1
fap2 = k_Lfl/Z ) (A.2)
1/2
1
fs2 = rLfs/z (A3)
3/2
1
= ———I3%, . A4
Foakayaka” ° (84)

The last equation may be written

sz = %Kfo ) (A.5)
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where

1 1
K = —— I3 . A.6
Z Farauako (A.6)

The elements of the matrix K would be constructed from the cumulative produc-
tion in cell  at cycle m due to a source in cell j at cycle (m — n) and the source at
cycle (m — n). ‘This method would require extra storage because the normally-used
single power fission matrix would still be required. The construction of K would
require at least a uniform source in its initiating cycle.

The derivation of a fission matrix acceleration equation follows:

F=fun = TLE = fa (A7)
= XL(f ~ fap) + 3 LFspa— o - (49)
So,
(I~ 2007 = fon) = 3Lfsp—foro (49)
= 2Lfyp—3Kf (A.10)
= %L(%K fo) = %K fo (A11)
- (%_—L - I)(—}K fo) (A12)
- %K(%L _ Do (A.13)
= FK(zLfs—fo) (A.14)
S LT (A15)

Then, as before, the appropriate spatial projections are made and the particular

solution for the correction is obtained by setting % equal to

b UiKAR) _ o (5 3K )

(f*, 3K fo) - (f*s fs/2) (4.16)




149

Here, f* is the eigenvector of the adjoint L. The determination of & would require
an extra matrix multiply, since K fi, is not explicitly known.

The idea is that the fission source for the i-th cycle can be accelerated by using
a fission matrix to the n-th power and the fission sources from the ( — n)-th and
(¢ — n + 1)-th cycles. Extra storage would be required, as well as bookkeeping over
n cycles, not just one.

This approach could enhance stability and possibly reduce some of the cycle-to-
cycle correlation effects. It would only be applicable to the case where the Monte

Carlo fission matrix is used.
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APPENDIX B

Poetic Summary

I needed to know &

had computer time to burn
needed Monte Carlo
nowhere else to turn

sampling and pdf’s
those are its wares

I like Monte Carlo

even though it has errors

I made up the input

so nice and clear

“I'll get me that number,”
I said without fear

material and densities
cross sections to discern
I guessed at a source
and hit carriage return

I waited and waited

for that thing to converge
killing the job

was my greatest urge

Along came Ed Larsen )
luckily sooner than later
he said all I need

is a low-order operator
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“I’ve been talking to Art
we've got the fix

just get yourself

a good fission matrix!”

so, hold the Mt. Dew
no shootin’ the breeze
that run is completed
it converged with ease

what once took hours
now takes minutes
who can believe it?
it’s gotta be nuts!

but proof of spare time
before you sits

I tried to write poetry
yep. it’s the pits
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