LA-12979-MS

Finite Element Analysis of the
1-40 Bridge Over the Rio Grande

RECk)y
APR 0 2 190
OS%TI

LosAlamos MASTER

NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.




Edited by Ann Mauzy, Group CIC-1
Photocomposition by Joyce A. Martinez, Group CIC-1

Cover photo: The first bending modes calculated for the eastern
three spans of the I-40 Bridge. The top figure corresponds to a
numerical simulation of the undamaged bridge, and the bottom figure
corresponds to a numerical simulation of the final stage of damage.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither The Regents of the University of California, the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the
University of California, the United States Government, or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of The Regents of the University of
California, the United States Government, or any agency thereof. The Los Alamos National Laboratory
strongly supports academic freedom and a researcher’s right to publish; therefore, the Laboratory as an
institution does not endorse the viewpoint of a publication or guarantee its technical correctness.



LA-12979-MS

UC-000
Issued: January 1996

Finite Element Analysis of the
I-40 Bridge Over the Rio Grande

C. R. Farrar
T. A. Duffey
P. A. Goldman
D. V. Jauregui
J. S. Vigil

Los Alamos MALTE

NATIONAL LABORATORY
Los Alamos, New Mexico 87545

e e e e e e e ——— - ——






TABLE OF CONTENTS

ABSTRACGT .ottt ettt ee e st e s et s e ne e e b e s sreeseeeestssstesste s st seneessneesseeennesnes 1
[ INTRODUGTION ......coitittetesteste e rte et sttt sae e e e s e sebeeaesssesnessbsssaeeseesneseeens 2
[l. DESCRIPTION OF THE [-40 BRIDGES.........cotitiieeiecieeceeeeecereeeeeere et 4
Il. SUMMARY OF EXPERIMENTAL RESULTS ..ottt 6
[1l. A. Ambient Vibration TeSHNG .....ccceeeceeiiiecieeeeeeeeeee et 9
Il1. B. Forced Vibration Testing, Undamaged ............oocoivieeiiieeieiieeeeeeeeeeeeeeeeeeenns 15
[1l. C. Forced Vibration Testing, Damaged ..........cccoceeiveeceeeeeireeecee e 22
[ll. C. 1. Damage DeSCHptON .....c.covviiiiiiiie ettt 23
. C. 2. Experimental Procedure and ReSURS ..........ccceeevveeeeevriicieeeeeieeene. 25
IV. DETAILED FINITE ELEMENT ANALYSIS ....oioeeeeeeeecee ettt cene e 32
[V. B. Undamaged SHUCIUIE ....c.eeeireeieeeeeeeeeeee e s 34
IV. C. Damaged STIUCIUIE ......ec.veeeeeieeiereeceste sttt r et n e 39
IV. D. Detailed Finite Element Results Compared to Experimental Results ........... 41
V. SIMPLIFIED FINITE ELEMENT MODEL .....uviiiiieeeceeeeeceeee et 49
V. A. Modeling Flexural BERAVIOT ........coccuiieieeecieeeceeeetee et 52
V. B. Modeling Torsional BENAVIOL ........ccccevieeeceiiiieieieeeee e e 54
V. B. 1. Torsional Rigidity ........cceervueeeiimeiiiiiecciecieeeeeecre et ene e 55
V. B. 2. Analytical Method for Locating the Shear Center ..........ccccoceueenee.. 58
V. B. 3. Numerical Method for Locating the Shear Center.............cccuueeue...... 63
V. B. 4. Numerical Method for Determination of the Warping Constant
and Sectorial Moment.........cccoooviieeeeecieceeeeeee e 73
V. C. Modeling the Mass DistribUtion.........ccccovieuieeeeciiiceceee e 78
V. D. Kinematic Constraints and Boundary Conditions...........ccccoeevevreceeeecineeinreeene 80
V. E. Flexural-Torsional COUPIING ......ccueeuiiriieeceecieeceeecee et et 80
V. E. 1. Uncoupled Torsional Vibrations..........cccccueevvveieeceieeiieeceecceee e 81
V. E. 2. Coupled Flexural-Torsional Vibrations .........ccccceevveeeeeeieieeecceeeennn, 82
V. F. Summary Of Beam EXamples .........cccoeveeereieecieeieceeeceeeree e 85
V. G. Summary Of The I-40 Bridge Model .........ccuveeeeeecieeeecceee e 91
V. H. Simplified Finite Element Results Compared to Experimental Results.......... 92
V1. SUMMARY & CONCLUSIONS .....coooiiiiectecee ettt ettt s 96
ACKNOWLEDGMENTS .......ooocieieiteeiereiesieeite et eer et eese e sae s ae s s 98
VIIL REFERENGES ...ttt ettt ettt s s s e s ae e eaneas 98
v



APPENDIX A: CALCULATION OF EQUIVALENT BEAM PROPERTIES
FORTHE [-40 BRIDGE ........ooiiiiec e s s 101

APPENDIX B: CALCULATION OF SHEAR-CENTER LOCATION

FOR THE [F40 BRIDGE ..ottt s 108
APPENDIX C: CALCULATION OF THE WARPING CONSTANT AND

SECTORIAL MOMENT FOR THE 1-40 BRIDGE........coeooeiiiiecec e, 120
DISTRIBUTION ...ttt ettt e e s e e e s e e e s e s e s saas s 127

Vi



—
.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

LIST OF FIGURES

[-40 Bridges over the Rio Grande in Albuquerque, New MeXico. ......cccceevvveeeecnnennn. 3
Elevation view of the portion of the eastbound bridge that was tested. .................... 4
Typical cross-section geometry of the bridge. .....cccovevvereeeeneveeecceeee e, 5
Bridge SUDSITUCIUNE. ...ccoccmeieieiiie ettt e 5
Connection detail found at the abutment and Pier 3 that allows longitudinal
dISPIACEMENT. ... e s 6
Connection detail found at Pier 2 that allows longitudinal displacement. ................. 7
Connection detail found at Pier 1 that constrains longitudinal displacement. ........... 8
Data acquisition SYSIEM. .......ccccciireiirccre e 10
Accelerometer [0CatIONS. ...t e e e 10
First flexural mode identified from ambient vibration data, test titr. ....................... 11
First torsional mode identified from ambient vibration data, test t1ir. ..................... 12
Second flexural mode identified from ambient vibration data, test titr. .................. 12
Third flexural mode identified from ambient vibration data, test t1ir. ......ccovvvueneeeneee 12
Second torsional mode identified from ambient vibration data, test titr. ................ 13
Third torsional mode identified from ambient vibration data, test t1tr. .................... 13
Schematic depiction of the Sandia shaker. ..........cccoooiee e, 16
The Sandia shaker in place on the 1-40 Bridge. ..o vvecceiomimeeeecceeeee e, 17

First flexural mode identified from undamaged forced vibration data,

TESEHTBM. e 18

First torsional mode identified from undamaged forced vibration data,

L0 0 A 1 (PP PRPUPPPP 18

Second flexural mode identified from undamaged forced vibration data,

LE2T= A A 1 { TP PPPPPPPPPP 19

vii



21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

Third flexural mode identified from undamaged forced vibration data,
(ST G SO OO 19

Second torsional mode identified from undamaged forced vibration data,

[(2S] 0 0 1 ] { PP UU PP UPPPPPUUPRPRURRRIN 20
Third torsional mode identified from undamaged forced vibration data,

L1211 0 G (O S 20
First stage of damage: two-foot cut at the center of the web. ........cccccevvviiiiennenn. 23

Second stage of damage: six-foot cut from the center of the web to the
POOM FlANGE. .o e e 24

Third stage of damage: six-foot cut in the web and cuts through half the
bottom flange on either side of the Web........cccuvviiiiiiiic e, 24

Fourth stage of damage: six-foot cut in the web and cut through the entire
DOHOM FlaNQE. e e e e 25

FRF magnitude measured at location S-3 during each of the damaged forced
vibration tests compared with the FRF measured at location S-3 during the
undamaged forced vibration test (test t16tr). ...ceeiiiiiree e 26

FRF magnitude measured at location N-7 during each of the damaged forced
vibration tests compared with the FRF measured at location N-7 during the

undamaged forced vibration test (test t16tr). .....oovvvevveeeeeeeee s 27
The first flexural mode measured after the final damage stage, test t22ir. ............ 30
The first torsional mode measured after the final damage stage, test t22tr. .......... 30
The second flexural mode measured after the final damage stage, test t22tr. ...... 30

Shell element model of the W40X328 beam, first bending modes,

and first torsional MOde. .......cooueiiiiiii ettt 33
Idealized bridge Cross-section gEOMELIY. .......uveeiiiiiiiiiieeiiiiiiieieee e 35
7032 DOF model of the [-40 Bridge. ....cooeeeieeiiiiie ettt 35
Model that was analyzed to determine spring constants. ...........ccccccceveeiereeeeeeeeenn. 36
Methods used to simulate the damage introduced to the I-40 Bridge. .................. 40

viii



38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

First flexural mode calculated with finite element model BR3W. .....ccovevevvneevennnnn.ns 42

First torsional mode calculated with finite element model BR3W. ......................... 42
Second flexural mode calculated with finite element model BR3W. ...................... 43
Third flexural mode calculated with finite element model BR3W. .......................... 43
Second torsional mode calculated with finite element model BR3W. .................... 44
Third torsional mode calculated with finite element model BR3W.. ........................ 44
First lateral flexural mode calculated with finite element model BR3W. ................ 46
The first flexural mode calculated with finite element model that simulates

the final damage Stage. .......ooeeerviicceeeeee e 46

The first torsional mode calculated with finite element model that simulates
the final damage Stage. ...ccocvviieeiiee e 47

The second flexural mode calculated with finite element model that simulates

the final damage Stage. .......cov i e 47
Example of a beam of two materials and its transformed section

FEPIESENTALION. veiiiiiic et e s e e 52
Hlustration of out-of-plane deformations caused by warping. .......cccccceveerveeurenene.. 55
Cross section of a three-material beam. .........cocoeeeiiiiecie e 56
Equivalent linear spring analogy for torsion of multi-material cross sections. ....... 56
Approximate torsional model of a composite cross section

(from Heins and Kuo, 1979). .....oo it 59
Approximate 1-40 Bridge geometry used to locate the shear center. .................... 60
Cantilever beam representation of 1-40 Bridge cross section. .......c.cccceceuveeeveennn... 61
Shear stress distribution and shear flow in I-40 Bridge approximation................... 61
Finite element model used to determine the shear-center location........................ 63
Channel section used to develop numerical procedure. .........ccccoeeeeeevveeeeveeeennnn. 64



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

B-2.

B-3

C-1

A general thin rectangular element making up the cross section of a beam. ........ 67

Branched cross section used to verify numerical procedure for locating the

Yol I g or=) 01 (=) CUUR TR OO PRRR 69
Shear flow and shear stress distribution in the branched cross section. ............... 70
Flow based on HeiNS’ METhO. .. ..ottt ettt e e eesssaesnnenes 70

Wide flange W 36 X 359 beam used to verify numerical method of evaluating

the warping constant and statical warping moment. ........ccccoovviiiiiiiiiiiinnnnnnennn 76
Beam with two axes of symmetry undergoing torsional vibration. .................c...... 81
Channel CroSSs SECHOMN. ......uuiiiiieeiiieeereeeeeeeee et e s e n e e 84
Cross-section geometries used in beam verification problems. .........cccccovveneeen. 86
Finite element meshes of the beams used in the verification problems. ............... 86
Method to locate the shear center of a channel cross section. .........cccccooveunnnennn. 91
First flexural mode calculated with the simplified beam finite element model. ...... 94
First torsional mode calculated with simplified beam finite element modeil. .......... 94
Second flexural mode calculated with simplified beam finite element model. ....... 94

Third flexural mode calculated with the simplified beam finite element model. ..... 95

Second torsional mode calculated with simplified beam finite element model. ..... 95

. Third torsional mode calculated with simplified beam finite element model . ........ 95
. Calculation of moments of inertia. .......cccoeeveiiiiiiicii 104
. Nomenclature for shear center determination. ...........ccccooeevviiiiiininniinnn, 112
Shear stress resultants in the approximation of the I-40 Bridge cross section. ........ 112
Shear flow directions modified for incorporation with Heins’ numerical method. ..... 113
Nomenclature for warping constant and statical warping moment calculation. ...... 120



VI.

VII.

VIII.

Xl.

XIl.

XIIl.

XIV.

LIST OF TABLES

Resonant Frequencies and Modal Damping Values ldentified from Ambient
Vibration Response in the Global Y-DireCtion ..........cccevecceereciieesennccreccee e 14

Resonant Frequencies and Modal Damping Values Identified from Ambient
Vibration Response Compared with Similar Quantities Identified from Forced
ViIbration TESES. ...uueiiieeiieitercrcrer et ree s e ssree e s s er e s s eabe e e s sanae s snsnnnenans 21

Modal Assurance Criteria: Mode Shapes Identified from Ambient Vibration

Test t1tr Compared with Mode Shapes ldentified from Forced Vibration Tests

on the Undamaged Structure, TeSt 1161 ..., 22
Summary of Forced Vibration TESIS ........vvecrernieeerrenrieeeeee e 28
Resonant Frequencies and Modal Damping Values Identified from Ambient
Vibration Response Compared with Similar Quantities Identified from

Undamaged and Damaged Forced Vibration TEStS ......cceeeveviveeriiiinciienieenicceee 29

Modal Assurance Criteria: Undamaged and Damaged Forced Vibration Tests .... 31

Comparison of Beam Dynamic Properties Calculated by ABAQUS with
Closed-Form Solutions: Free Boundary Conditions ..........ccceececciiinriciinnciineennnne 34

Degrees of Freedom Constrained at the Nodes on the Bottom Flange
of the Plate Girders Directly over the Piers and Abutment in Each Finite

EIemMent MOEL .......eeeiirrieireer et sree e s str e s s s st e e s e sbae e e s ne e e e nnnas 38
Comparison of Dynamic Properties Identified By the 7032 DOF Model

with the Dynamic Properties Identified by the 35,160 DOF Model ....................... 39
Comparison of Analytical and Experimental Modal Analysis Resulis................... 41

Modal Assurance Criterion Comparing the Measured Mode Shapes from the
Undamaged Bridge with Mode Shapes Calculated by Finite Element Analysis ... 45

~

Resonant Frequencies Measured on the Damaged Bridge Compared with
Resonant Frequencies Calculated by Finite Element Analyses of the
Damaged Structures Using Model BRBW ...t 48

Modal Assurance Criterion Comparing the Measured Mode Shapes from the
Damaged Bridge with Mode Shapes Calculated by Finite Element Analysis ....... 48

Spreadsheet for Calculation of Shear-Center Location ...........cccccoovniciiiicinnnnienns 71

Xi




XV.

XVI.

XVII

XVIII.

XIX.

A-1

A-2

A-3

A-4

A-5

B-1

B-2

B-3

C-1

C-2

C-3

Spreadsheet for Calculation of Warping Constant

and Sectorial MOMENT ... e 75
Summary of Static Results from Beam Examples ........cccocvciiieicinenniineresceeeens 88
Summary of Dynamic Results from Beam Examples .......cccccceeeeeeeiiienenicccnnnenn, 90

Summary of Input Values for the Simplified Beam Element Model
Of the 140 BriAge «eeeeieeeiiee ettt e e et e e e s e e e e e s 92

Comparison of Simplified-Beam-Model Analytical Modal Analysis Results
with Experimental Modal Analysis Results and Detailed Finite Element

Analytical Modal Analysis RESUILS ........coooverieiiiiciieeeee e 93
Cross-Section Properties of Steel MemMDbDErS .........eevvviiiiiiiieiiiiiiieeiiieeeeeeeeeis 101
Transformed Areas and Centroids ........coooiieeeeiiiiiiiieecerereeer e 102

Area Moments of Inertia About Local Centroid and Distance to
Transformed Cross-SecCtion CentrOid. ... ..ccvveevve it eeeeeerrereeeeeesensreeernssenssensres 104

Torsional Constants and Shear Moduli for Members Making up the
[-40 Bridge Cross SECHON ......coii ittt et 105

Parameters Needed to Calculate the Equivalent Mass Density for the
[-40 Bridge Cross SECHON .....cuvuiiiiiieieeee e e e e e e e e 106

Spreadsheet for Numerical Calculation of I-40 Bridge Thin-Flange Section
Shear-Center LOCAtION .......c.uuuiiiiiiiiiiiiiiieeiee et eaaaeaaeas 115

Spreadsheet for Numerical Calculation of 1-40 Bridge Thick-Flange Section
Shear-Center LOCAtIoN .......ccuuiiiiiiiiiieiee ettt 116

Spreadsheet for Numerical Calculation of 1-40 Bridge Thin-Flange Section
(including stringers) Shear-Center LOCation .........cooovcveeeeiiiiincieeeeee e, 118

Spreadsheet for Numerical Calculation of 1-40 Bridge Thin-Flange Section
Lol g=T(o] at= 1 I o o] o 1= Y o =T SO RUTURI 121

Spreadsheet for Numerical Calculation of [-40 Bridge Thick-Flange Section
TOrsional Properties...cccoivii ittt ettt e e e e s e e s e 122

Spreadsheet for Numerical Calculation of 1-40 Bridge Thin-Flange Section
(including stringers) Torsional Properties .......ccccceeeveciiieeeenicrrieeee e, 123

Xii



FINITE ELEMENT ANALYSIS OF THE 1-40 BRIDGE OVER THE RIO GRANDE

by
C. R. Farrar, T. A. Duffey, P. A. Goldman, D. V. Jauregui, and J. S. Vigil

ABSTRACT

In the 1960s and 1970s numerous bridges were built in the U.S. with a design similar to
those on Interstate 40 (I-40) over the Rio Grande in Albuquerque, New Mexico. These
bridges were built without structural redundancy and typically have only two plate girders
carrying the entire dead and live loads. Failure of either girder is assumed to produce
catastrophic failure of the bridge; hence, these bridges are referred to as fracture-critical
bridges. The Federal Highway Administration (FHWA) and the National Science
Foundation (NSF) have provided funds to New Mexico State University (NMSU) through
the New Mexico State Highway and Transportation Department (NMSH&TD) and The
Alliance For Transportation Research (ATR) for evaluation and testing of the existing
fracture-critical bridges over the Rio Grande.

Because the 1-40 Bridges over the Rio Grande were to be razed during the summer of
1993, the investigators were able to introduce damage into the structure-in order to test
various damage identification methods and to observe the changes in load paths through
the structure caused by the cracking. To support this research effort, NMSU contracted
Los Alamos National Laboratory (LANL) to perform experimental modal analyses, and to
develop experimentally verified numerical models of the bridge. A previous report
(LA-12767-MS) summarizes the results of the experimental modal analyses. This report
summarizes the numerical analyses of the bridges and compares the results of these
analyses to the experimental results.

Finite element models were developed with varying levels of sophistication. The most
refined model, which discretized the individual longitudinal and vertical stiffeners on the
plate girders, used a mesh with approximately 35,160 degrees of freedom (DOF) to model
the structure exclusive of the piers. Additional elements were subsequently added to model
the concrete piers. A second model of intermediate refinement that neglected the
stiffeners and modeled the plate girders with fewer elements used 7032 DOF to model the
structure above the piers. Mode shapes and resonant frequencies identified with these
models were identical. After adjusting the kinematic constraints that tie the bottom flange
of the plate girder to the piers, the results from the 7032 DOF model were shown to be in
agreement with the dynamic properties measured on the bridge (less than 5% error in
resonant frequencies). Systematic model updating procedures were not employed when
attempting to correlate the finite element results with experimental resuits.

These numerical models simulate composite action between the concrete deck and the
supporting steel girders. The agreement with measured data indicates that the bridge was
exhibiting composite action even though shear studs were not present. The 7032 DOF
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model also predicted the measured changes in the dynamic properties that resulted from
the damage. To obtain this correspondence with measured data, only the geometry of the
model was changed to reflect the damage. The implication is that from a structural
dynamics viewpoint the actual damage did not introduce a discernible nonlinearity into the
structure.

The major portion of this study focused on the development of a 1687 DOF model that
uses individual beam elements to model the entire bridge cross section. This model
required the development of a method to determine the torsional properties (torsional
constant, warping constant, sectorial moment, shear center, and mass moment of inertia)
of an open, thin-walled cross section of two materials. Because the finite element code .
used does not allow the polar area moment of inertia to be specified explicitly, a method of
calculating an equivalent mass density and cross-sectional area had to be developed to
accurately model both the flexural response and the torsional response. The dynamic
mode shapes predicted by this simple model were consistent with those measured on the
bridge, but the resonant frequencies showed some error. Because of the limited numbers
of DOF, this type of model can be exercised extensively on a PC (typical of the computing
environment at most smaller consulting engineering firms) to study the response of the
bridge to time-varying inputs such as seismic or wind loading.

Now that the 7032 DOF model has been benchmarked against experimental data in both
the undamaged and damaged condition, it will be used to compare different damage iden-
tification algorithms that have been reported in the technical literature. The results of this
comparison will be summarized in a subsequent report.

I. INTRODUCTION

In the 1960s and 1970s numerous bridges were built in the U.S. with a design similar to
those on Interstate 40 (I-40) over the Rio Grande in Albuquerque, New Mexico, Fig. 1.
These bridges were built without structural redundancy and typically have only two plate
girders carrying the entire dead and live loads. Failure of either girder is assumed to
produce catastrophic failure of the bridge. Because of this lack of redundancy, the bridges,
which have been found to exhibit fatigue cracking from out-of-plane bending, are referred
to as fracture-critical bridges. The Federal Highway Administration (FHWA) and the
National Science Foundation (NSF) have provided funds to New Mexico State University
(NMSU) through the New Mexico State Highway and Transportation Department
(NMSH&TD) and The Alliance For Transportation Research (ATR) for evaluation and
testing of the existing fracture-critical bridges over the Rio Grande. The project is intended
to develop and field test new nondestructive testing technology and to create a detailed
bridge management data base for this class of bridges. The NSF is providing funds to
investigate the seismic capacity of bridges such as these that were built before the
adoption of modern seismic design standards.
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Because the bridges over the Rio Grande were to be razed during the summer of 1993,
the investigators were able to introduce simulated fatigue cracks, similar to those observed
in the field, into the structure in order to test various damage-identification methods and to
observe the changes in load paths through the structure caused by the cracking. To
support this research effort, NMSU contracted Los Alamos National Laboratory (LANL) to
perform experimental modal analyses, and to develop experimentally verified numerical
models of the bridge. Scientists from the LANL's Condensed Matter and Thermal Physics
Group (MST-10) applied state-of-the-art sensors and data acquisition software for the
modal tests. Engineers from the LANL's Engineering Analysis Group (ESA-EA) conducted
ambient and forced vibration tests to verify detailed and simplified finite element models of
the bridge. Forced vibration testing was done in conjunction with engineers from Sandia
National Laboratory (SNL) who provided and operated a hydraulic shaker.

This report summarizes the numerical models of the bridge and compares results
obtained with these models to the measured dynamic properties of the bridge. The
numerical models were developed for three purposes. First, they were used to study
instrumentation options for the experimental portion of this study. Second, a study was
made to see if a very simple beam element model could be developed that would accu-
rately predict the global dynamic response of the bridge. Such models will be very useful
for designers because they provide a computational tool with which to examine the
dynamic response of the bridges to a wide variety of load conditions that can be analyzed
efficiently in a PC computing environment. Finally, the benchmarked finite element models
can be used to make an extensive comparison of various damage-identification algorithms.

Il. DESCRIPTION OF THE I-40 BRIDGES

The existing I-40 Bridge over the Rio Grande consists of twin spans (there are separate bridges
for each traffic direction) made up of a concrete deck supported by two welded-steel plate
girders and three steel stringers. Although plans for the bridge show studs welded to the
flanges of the outer stringers, studs were not found when the concrete deck was removed.
Loads from the stringers are transferred to the plate girders by floor beams located at 20-ft
intervals. Cross-bracing is provided between the floor beams. Figure 2 shows an elevation
view of the portion of the bridge that was tested. The cross-section geometry of each bridge is
shown in Fig. 3, and Fig. 4 shows the actual substructure of the bridge. It should be noted that
the actual bridges have concrete crash barriers on either side of the concrete slab. These
crash barriers were not shown in the original drawings for the bridge.

|~—39 .9m (131 ft)——l——49 7m (163 ft > 83 -Om (131 ft)—
Pinned Slopg

xxxxxxxxxxxxxxxxxx

N 7 R A 1 A . | A B B _—
/ <
gx_p_ EXP —————— -= Abutment
Ground
/ Level
Spllce Plate Splice Plate
Pier 3 Pier 2 z Pier 1

Fig. 2. Elevation view of the portion of the eastbound bridge that was tested.
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Fig. 3. Typical cross-section geometry of the bridge.
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All subsequent discussions of the bridge will refer to the bridge carrying eastbound traffic,
particularly the three eastern spans, which were the only ones tested.

lll. SUMMARY OF EXPERIMENTAL RESULTS

This section provides a brief summary of the experimental results that were obtained from
both ambient and forced vibration tests performed on the 1-40 Bridge. Forced vibration
tests were performed when the bridge was in an undamaged state and after each of four
incremental levels of damage had been introduced. A detailed summary of these tests
and the results that were obtained are given by Farrar, et al., (1994).
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Fig. 5. Connection detail found at the abutment and Pier 3 that allows
longitudinal displacement.
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lil. A. Ambient Vibration Testing

Following the preliminary measurements made in March 1993, ambient (traffic) vibration
tests were conducted on June 28 and 29, July 7 through 9, and August 31, 1993. These
tests were intended to identify the structure’s resonant frequencies, modal damping, and
the corresponding mode shapes. Wind was light during all ambient vibration tests and was
not considered a significant input source.

Traffic had been funneled onto the two northern lanes during these tests. Significantly
different traffic flow could be observed at various times when data were being acquired.
During morning and afternoon rush hours the traffic would slow down considerably thus
producing lower-level excitations in the bridge. At midday the trucks crossing the bridge at
high speeds would cause high-level excitations that would often over range some of the
data acquisition channels. The ambient vibration test conducted on August 31 was done
just before the forced vibration tests when all traffic had been removed from the eastbound
bridge. For this test the ambient vibration source was provided by the traffic on the
adjacent new eastbound bridge and the existing westbound bridge. This vibration was
transmitted through the ground to the piers and abutment. During all ambient tests, no
attempt was made to characterize the input to the bridge.

The data acquisition system used in these tests, Fig. 8, consisted of a computer
workstation which controlled 29 input modules and a signal processing module. The
workstation was also the platform for a commercial data-acquisition/signal-analysis/modal-
analysis software package. The input modules provided power to the accelerometers and
performed analog-to-digital conversion of the accelerometer voltage-time histories. The
signal-processing module performed the needed fast Fourier transform calculations. A
3500-watit AC generator was used to power this system in the field. Integrated-circuit,
piezoelectric accelerometers were used for the vibration measurements. Twenty-six
one-inch square aluminum mounting blocks were dental-cemented to the inside web of
the plate girder at mid-height and at the axial locations shown in Fig. 9. Within a span the
three blocks were equally spaced in the axial direction. Accelerometers were mounted
on the blocks with a 10-32 stud, in the global Y direction as shown in Fig. 9. These
accelerometers had a nominal sensitivity of 1 V/g, a specified frequency range of
1-2000 Hz, and an amplitude range of 4 g’s. Two conductor, PVC-jacketed 20-gauge
cables ranging from 70 ft to 291 ft connected the accelerometers to the input modules. The -
cables were supported by the catwalks located along each plate girder, tied off, and dropped
down under the bridge to the van that housed the data acquisition system.

To circumvent the drawbacks of the methods used in previous ambient vibration tests
reported by Abdel-Ghaffar and Housner (1978), an ambient vibration system identification
method developed at SNL was applied to the measured response data obtained on the
I-40 Bridge. James, Carne, and Lauffer (1993), have shown that for an input, which is not
measured but assumed to be white noise, the cross-correlation function between two
response measurements (the inverse Fourier transform of the cross-power spectra (CPS))
is the sum of decaying sinusoids, and these decaying sinusoids have the same damped
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resonant frequencies and damping ratios as the modes of the system. Therefore, the
cross-correlation functions will have the same form as the system’s impulse response
function, and, hence, time-domain, curve-fitting algorithms such as the polyreference
method (Vold and Rocklin, 1982) or complex exponential method (Ewins, 1985) can be
applied to these functions to obtain the resonant frequencies and modal damping exhib-
ited by the structure. These curve-fitting methods have the ability to identify closely spaced
modes and, in general, provide a more accurate method for estimating damping than the
half-power bandwidth method. Mode shapes are determined from magnitudes and phases
in the CPS at the identified resonant frequencies relative to a specified reference channel.

Sampling parameters were specified that calculated the CPS from 64-s, 32-s, or 16-s time
windows discretized with 1024 samples. Therefore, the CPS were calculated for frequency
ranges of 0-—6.25 Hz, 0-12.5 Hz, and 0-25 Hz. Typically, 100 averages were used to
calculate the 0-6.25 Hz CPS, 30 averages were used to calculate the 0-12.5 Hz CPS, and
75 averages were used to calculate the 0—25 Hz CPS. Frequency resolutions of 0.015625
Hz, 0.03125 Hz, and 0.0625 Hz were obtained for the 0-6.25 Hz CPS, the 0-12.5 Hz CPS,
and the 0-25 Hz CPS, respectively. Hanning windows were applied to the time signals to
minimize leakage, and AC coupling was specified to minimize DC offsets.

Test t1tr
Mode 1
F=2.39Hz

Fig. 10. First flexural mode identified from ambient vibration data, test t1tr.
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Test t1tr
Mode 2
F=2.92 Hz

Test t1tr
Mode 3
F=3.42 Hz

Test t1tr
Mode 4
F=3.96Hz

Fig. 13. Third flexural mode identified from ambient vibration data, test t1tr.
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Test t1tr
Mode 5

Test titr
Mode 6
F =4.56 Hz

Fig. 15. Third torsional mode identified from ambient vibration data, test t1tr.

The mode shapes for the first six modes identified from test t1tr are shown in Figs 10
through 15. Table | summarizes the resonant frequencies and modal damping values
calculated from the different tests where the global Y direction response was measured.
Both parameters were calculated in a global manner using a complex exponential
curve-fitting method, that is, each measured CPS was used to estimate the parameter,
and the mean value from the 26 measurements was then calculated. These mean values
appear in Table I.
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TABLE |
Resonant Frequencies and Modal Damping Values Identified from Ambient
Vibration Response in the Global Y-Direction
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/
Test* |Damp. (%) [Damp. (%) |Damp. (%) [Damp. (%) |Damp. (%) [Damp. (%)
titr
0-6.25 Hz 2.39/ 2.92/ 3.42/ 3.96/ 410/ 4.56/
100 Ave. 1.28 1.18 1.00 0.94 1.58 1.56
S-2 Ref.
t2tr
025 Hz 2.43/ 2.98/ 3.51/ 3.97/ 417/ 4.64/
75 Ave. 2.39 2.52 1.06 1.20 1.79 1.29
S-2 Ref.
t10tr
0-6.25 Hz 2.42/ 2.93/ 3.46/ 3.99/ 4.12/ 4.61/
100 Ave. 1.15 1.18 0.85 0.70 0.59 0.97
S-6 Ref.
t11tr
0—-25 Hz 2.42/ 2.99/ 3.51/ 4.03/ 418/ 4.70/
75 Ave. 2.15 1.78 1.37 1.74 1.52 1.18
S-6 Ref.
115tr
0-12.5 Hz 2.52/ 3.04/ 3.58/ 410/ 417/ 4.71/
30 Ave. 1.28 0.38 0.89 1.08 0.92 0.60
S-2 Red.
* The test designation is followed by the frequency range of the CPS, the number of averages used
to estimate the CPS, and the reference channel location that is shown in Fig. 9.

These results showed that ambient vibration from traffic provided an adequate source of
input for identifying the dynamic properties of the bridge. The results obtained with SNL's
ambient vibration system identification method were repeatable (resonant frequency
values measured with traffic on the bridge did not vary more than 3%) and were
independent of the selected reference measurement. This method allowed closely spaced
modes such as Modes 4 and 5 to be identified, and this method identified the associated
modal damping values. During test t15tr, when traffic was not on the bridge, generally
higher frequencies were measured for each mode as compared to the results from tests
when traffic was on the bridge. These higher frequencies are attributed to the reduced
mass of the system that resulted from removing the traffic from the bridge.

Other observations made during these tests are that doubling the frequency resolution
had little effect on the identified resonant frequencies. However, the increased frequency
resolution did improve the ability to identify the closely spaced modes. Damping values
were particularly sensitive to the increased frequency resolution, and these values
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appeared to decrease with the increased frequency resolution. The modes were lightly
damped with modal damping values ranging from 0.4% to 2.59%, and can be accurately
approximated as real modes. Phase angles were typically close to either O or 180
degrees. Background sources of ambient vibration from traffic on the adjacent bridges
were of sufficient magnitude that the dynamic properties of the structure could be deter-
mined by measuring the response to this excitation source as was done in test t15ir.

lll. B. Forced Vibration Testing, Undamaged

From August 31st through September 2nd, 1993, a series of forced vibration tests were
conducted on the undamaged bridge. Eastbound traffic had been transferred to a new
bridge just south of the one being tested. The westbound traffic continued on the original
westbound bridge. SNL provided a hydraulic shaker that generated the measured force
input. Excitation from traffic on the adjacent bridges could be felt when the shaker was not
running. Wind, although not measured, was not considered significant during these tests.

The Sandia shaker consists of a 21,700-lb. reaction mass supported by three air springs
resting on top of 55-gallon drums filled with sand. A 2200-Ib. hydraulic actuator bolted
under the center of the mass and anchored to the top of the bridge deck provided the input
force to the bridge. A schematic of the shaker is shown in Fig. 16, and Fig. 17 shows the
shaker in place on the bridge. A random-signal generator was used to produce a uniform
random signal that was band-passed between 2 Hz and 12 Hz before inputting the signal
to an amplifier. The amplifier gain was controlled manually to provide an approximately
2000-Ib. peak, random force input. An accelerometer mounted on the reaction mass was
used to measure the force input to the bridge. This indirect force measurement gives the
total force transferred to the bridge through the 55-gallon drums as well as the actuator.
The shaker was located over the south plate girder directly above point S-3 in Fig. 9. The
accelerometer used to measure force was oriented such that a positive force corresponded
to the positive global Y direction shown in Fig. 9. The level of excitation during the forced
test was less than the levels produced by the large trucks passing the bridge, but it was
higher than the level of excitation produced by cars.

Forced vibration tests were conducted using a random input so that ESA-EA personnel could
perform experimental modal analyses of the bridge. In this context experimental modal
analysis refers to the procedure whereby a measured excitation (random, sine, or impact
force) is applied to a structure, and the structure’s response (acceleration, velocity, or
displacement) is measured at discrete locations that are representative of the structure’s
motion. Both the excitation and the response time histories are transformed into the frequency
domain in the form of frequency response functions (FRF, the Fourier transform of the
response normalized by the Fourier transform of the input). Modal parameters (resonant
frequencies, mode shapes, modal damping) can be determined by curve-fitting a Laplace
domain representation of the equations of motion to the measured frequency domain data
(Ewins, 1985).
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Fig. 16. Schematic depiction of the Sandia shaker.
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Fig. 17. The Sandia shaker in place on the [-40 Bridge.

The data acquisition system, mounting blocks, cabling, accelerometers, and generator used
for the forced vibration tests were identical to those used for the ambient vibration tests.
An additional input module was used to monitor the accelerometer located on the reaction
mass. Sampling parameters were specified so that responses with frequency content in the
range of 0—12.5 Hz could be measured. All computed frequency domain quantities were based
on 30 averages with no overlap. A Hanning window was applied to all time samples used in
these calculations.

A rational-fraction, polynomial, global, curve-fitting algorithm in a commercial modal analysis
software package (Structural Measurements Systems, 1987) was used to fit the analytical
models to the measured FRF data and to extract resonant frequencies, mode shapes, and
modal damping values. Figures 18 through 23 show the first six modes of the undamaged
bridge identified from these data. A comparison of these figures with Figs 10 through 15 reveal
that the dynamic properties identified from the forced vibration tests are similar to those
identified by the ambient vibration tests.
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Test t16tr
Mode 1
F=248 Hz

Fig. 18. First flexural mode identified from undamaged forced vibration daia, test t16tr.

Test t16tr <
Mode 2 < _
F =2.96 Hz -5
Y
X

Fig. 19. First torsional mode identified from undamaged forced vibration data, test t16tr.
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Test t16tr
Mode 3
F=3.50Hz

Fig. 20. Second flexural mode identified from undamaged forced vibration data, test
t16tr.

Test t16tr
Mode 4
F=4.08 Hz

Fig. 21. Third flexural mode identified from undamaged forced vibration data, test t16tr.
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Test t16tr
Mode 5
F=417 Hz

Fig. 22. Second torsional mode identified from undamaged forced vibration data, test
t16tr.

Test t16ir
Mode 6

Fig. 23. Third torsional mode identified from undamaged forced vibration data, test
t16tr.
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Table Il compares the resonant frequencies and modal damping values determined from
the ambient vibration tests with those determined during the forced vibration tests. The
forced vibration test is designated t16ir in this table. From this table it is evident that the
dynamic properties measured during the forced vibration test fall within the range of those
measured during the various ambient vibration tests. The dynamic properties measured
during the forced vibration tests are nearly identical to those measured during ambient
vibration test t15tr that was conducted immediately before the forced vibration test.
Although the damping values show considerable scatter in terms of percent differences for
particular modes, the average modal damping values for tests t15tr and t16tr, 0.86% and
1.13%, respectively, are consistent. Typically, engineers will assume the same damping
value, specified to one significant digit because of uncertainties associated with this
parameter, for all modes when performing a dynamic analysis. This practical consider-
ation again shows that the damping values identified are consistent within the accuracy
that damping is usually specified.

TABLE Il
Resonant Frequencies and Modal Damping Values ldentified from Ambient
Vibration Response Compared with Similar Quantities Identified from Forced
Vibration Tests
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Freq. (Hz)/ [Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ [Freq. (Hz)/ |Freq. (Hz)/
Test |Damp. (%) |Damp. (%) |Damp. (%) |Damp. (%) {Damp. (%) |Damp. (%)
titr 2.39/ 2.92/ 3.42/ 3.96/ 4.10/ 4.56/
(ambient) 1.3 1.2 1.0 0.94 1.6 1.6
totr 2.43/ 2.98/ 3.51/ 3.97/ 417/ 4.64/
(ambient) 2.4 2.5 1.1 1.2 1.8 1.3
t10tr 2.42/ 2.93/ 3.46/ 3.99/ 4.12/ 4.61/
(ambient) 1.2 1.2 0.85 0.70 0.59 0.97
t11tr 2.42/ 2.99/ 3.51/ 4.03/ 418/ 4.70/
(ambient) 2.2 1.8 1.4 1.7 1.5 1.2
t15tr 2.52/ 3.04/ 3.53/ 4.10/ 417/ 4.71/
(ambient) 1.3 0.38 0.89 1.1 0.92 0.60
t16tr 2.48/ 2.96/ 3.50/ 4.08/ 417/ 4.63/
(forced) 1.1 1.3 1.5 1.1 0.86 0.92

A modal assurance criterion (MAC), sometimes referred to as a modal correlation
coefficient (Ewins, 1985) was calculated to quantify the correlation between mode shapes
measured during different tests. The MAC makes use of the orthogonality of the mode
shapes to compare either two modes from the same test or two modes from different tests.
If the modes are identical, a scalar value of one is calculated by the MAC. If the modes are
orthogonal and dissimilar, a value of zero is calculated. The MAC that compares mode i
and j has the form
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where (d)k is an element of the mode-shape vector and the asterisk denotes complex
conjugate. The value of the MAC does not actually quantify the correlation between modes.
Ewins points out that, in practice, correlated modes will yield a value greater than 0.9, and
uncorrelated modes will yield a value less than 0.05. The MAC is not affected by a scalar
multiple.

MAC(i,j) = (1)

The MAC can be applied to compare the mode shapes from the forced vibration tests with
the modes determined during the ambient vibration testing. Table 11l shows such a com-
parison with the ambient-vibration, mode-shape data obtained during test t1ir. Table Ili
shows that similar mode shapes are being identified in each case. Modes 4 and 5, which
are closely spaced and which were difficult to identify during several ambient vibration
tests did not always show good correlation with the modes determined during the forced
vibration tests.

TABLE Il

Modal Assurance Criteria:
Mode Shapes Identified from Ambient Vibration Test t1tr Compared with Mode Shapes
Identified from Forced Vibration Tests on the Undamaged Structure, Test t16tr

Mode/test 1/416tr 2/t16tr 3/t16tr 4/t16tr 5/t16tr 6/t16tr
1/41tr 0.989 0.008 0.000 0.004 0.002 0.001
2/t1tr 0.004 0.985 0.000 0.001 0.001 0.004
3/t1tr 0.002 0.003 0.984 0.000 0.009 0.001
4/t1tr 0.005 0.002 0.001 0.901 0.102 0.009
5/t1tr 0.000 0.001 0.005 0.066 0.917 0.005
6/t1tr 0.001 0.003 0.002 0.004 0.004 0.984

lll. C. Forced Vibration Testing, Damaged

From September 3rd through 11th, 1993, four different levels of damage were introduced
into the middle span of north plate girder. Forced vibration tests similar to those done on
the undamaged structure were repeated after each level of damage had been introduced.
Weather conditions during these tests were similar to those reported for the forced vibra-
tion tests. Background sources of vibration were also similar.
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lil. C. 1. Damage Description

The damage that was introduced was intended to simulate fatigue cracking that has been
observed in plate-girder bridges. This type of cracking results from out-of-plane bending of
the web and usually begins at welded attachments to the web such as the seats
supporting the floor beams. Four levels of damage were introduced to the middle span of
the north plate girder close to the seat supporting the floor beam at midspan. Damage was
introduced by making various torch cuts in the web and flange of the girder. The first level
of damage consisted of a two-foot-long cut through the web approximately 3/8-in-wide
centered at midheight of the web. Next, this cut was continued to the bottom of the web.
During this cut the web, on either side of the cut, bent out of plane approximately 1 in. The
flange was then cut halfway in from either side directly below cut in the web. Finally, the
flange was cut completely through leaving the top 4 ft of the web and the top flange to
carry the load at this location. The various levels of damage are shown in Figs. 24
through 27.

Fig. 24. First stage of damage: two-foot cut at the center of the web.
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Fig. 25. Second stage of damage: six-foot cut from the center of the web to the
bottom flange.

Fig. 26. Third stage of damage:

six-foot cut in the web and cuts through
half the bottom flange on either side of the
web.
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Fig. 27. Fourth stage of damage: six-foot cut in the web and cut through the entire
bottom flange.

lil. C. 2. Experimental Procedure and Results

Experimental modal analyses were repeated after each level of damage had been intro-
duced. The experimental procedures and data acquisition equipment used were identical
to those used for the undamaged forced vibration tests summarized in Section Ill. B. Table
IV summarizes the forced vibration tests that were performed.

FRF magnitudes for locations S-3 and N-7 are plotted for each level of damaged and
compared to the similar FRFs measured on the undamaged structure in Figures 28 and
29, respectively. The figures show that little change in the resonant frequencies and widths
of the resonance (damping) occur until the final stage of damage is introduced.
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TABLE IV

Summary of Forced Vibration Tests

Test Frequency No. of Date/Time |Dynamic Range Damage
Designation Range (Hz) Averages Accelerometers | Description
/ Force
Transducer
t16tr 0—25 30 Sept. 2, 1Vp,3.16 Vp | undamaged
11:08-11:33
AM
t17tr 0-12.5 30 Sept. 2, 2:25—-[1 Vp,3.16 Vp | 2 fi cut at the
2:40 PM center of the
web
t18tr 0—-12.5 30 Sept. 3, 12:00|2 Vp, 6.31 Vp 6 ft cut in the
-12:46 PM web to the
bottom flange |
t19tr 0—-12.5 30 Sept. 7, 9:32-2Vp, 6.31 Vp | bottom 6 ft of
9:55 AM the web and
half of the
flange cut
t221r 0—12.5 30 Sept. 8, 9:562—(3.98 Vp, 6.31| bottom 6 ft of
10:17 AM Vp the web and
entire flange
cut

Table V summarizes the resonant frequency and modal damping data obtained during
each modal test of the damaged bridge. Also shown in Table V are similar results from the
ambient vibration tests and the undamaged forced vibration test. No change in the
dynamic properties can be observed until the final level of damage is introduced. At the
final level, test t22tr, the resonant frequencies for the first two modes have dropped to
values 7.6 and 4.4 percent less, respectively, than those measured during the undamaged
tests. It is of interest to note that changes of similar magnitude are observed between the
two ambient vibration tests performed on the undamaged structure at different times. For
modes where the damage was introduced near a stress node for that mode (Modes 3 and

5) no significant changes in resonant frequencies can be observed.
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TABLEV
Resonant Frequencies and Modal Damping Values Identified from Ambient
Vibration Response Compared with Similar Quantities Identified from Undamaged
and Damaged Forced Vibration Tests
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Test  |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |[Freq. (Hz)/ |Freq. (Hz)/

Damp. (%) |Damp. (%) |Damp. (%) |Damp. (%) {Damp. (%) |Damp. (%)
titr 2.39/ 2.92/ 3.42/ 3.96/ 4.10/ 4.56/
(ambient) 1.28 1.18 1.00 0.94 1.58 1.56
t15tr 2.52/ 3.04/ 3.53/ 4.10/ 417/ 4,71/
(ambient) 1.28 0.38 0.89 1.08 0.92 0.60
t16tr 2.48/ 2.96/ 3.50/ 4.08/ 417/ 4.63/
(forced, 1.06 1.29 1.52 1.10 0.86 0.92

undamaged)

t17tr 2.52/ 3.00/ 3.57/ 412/ 4.21/ 4.69/
(foqcset%ufgtef 1.20 0.80 0.87 1.00 1.04 0.90
t18tr 2.52/ 2.99/ 3.52/ 4.09/ 4.19/ 4.66/
(fozrflzdé ;f)ter 1.33 0.82 0.95 0.85 0.65 0.84
t19tr 2.46/ 2.95/ 3.48/ 4.04/ 414/ 4.58/
(fogﬁdé :t;tef 0.82 0.89 0.92 0.81 0.62 1.06
t22tr 2.30/ 2.84/ 3.49/ 3.99/ 415/ 4.52/
(f%?g:?élalger 1.60 0.66 0.80 0.80 0.71 1.06

Table VI shows the MAC values that are calculated when mode shapes from tests t171r,
t18tr, t19tr, and t22tr are compared to the modes calculated from the undamaged forced
vibration test, t16tr. The MAC values show no change in the mode shapes for the first
three stages of damage. When the final level of damage is.introduced, significant drops in
the MAC values for modes 1 and 2 are noticed. These two modes are shown in Figs. 30
and 31 and can be compared to similar modes identified for the undamaged bridge in
Figs. 18 and 19. When the modes have a node near the damage location (Modes 3 and 5),
no significant reduction in the MAC values are observed, even for the final stage of dam-
age, and a plot of this mode shape from test t22ir, Fig. 32, shows no change from the
corresponding undamaged mode, Fig. 20. Examination of mode shapes from tests t17ir,
t18tr, and t19tr reveal no change from the undamaged mode shapes shown in Figs. 18
through 23, as would be indicated from the MAC values shown in Table VI.
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Test t22ir
Mode 1

Test t22ir
Mode 2

Fig. 31. The first torsional mode measured after the final damage stage, test t22tr.

Test t22tr
Mode 3
F=349 Hz

Fig. 32. The second flexural mode measured after the final damage stage, test t22tr.
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TABLE VI

Modal Assurance Criteria:

Undamaged and Damaged Forced Vibration Tests

Modal Assurance Criteria t16tr X t17tr
Mode 1 2 3 4 5 6
1 0.996 0.006 0.000 0.003 0.001 0.003
2 0.000 0.997 0.000 0.005 0.004 0.003
3 0.000 0.000 0.997 0.003 0.008 0.001
4 0.004 0.003 0.006 0.984 0.026 0.011
5 0.001 0.008 0.003 0.048 0.991 0.001
6 0.001 0.006 0.000 0.005 0.005 0.996
Modal Assurance Criteria t16tr X t18tr
Mode 1 2 3 4 5 6
1 0.995 0.004 0.000 0.004 0.001 0.002
2 0.000 0.996 0.000 0.003 0.002 0.002
3 0.000 0.000 0.999 0.006 0.004 0.000
4 0.003 0.006 0.005 0.992 0.032 0.011
5 0.001 0.006 0.008 0.061 0.997 0.004
6 0.002 0.004 0.000 0.005 0.005 0.997
Modal Assurance Criteria t16tr X t19tr
Mode 1 2 3 4 5 6
1 0.997 0.002 0.000 0.005 0.001 0.001
2 0.000 0.996 0.001 0.003 0.002 0.002
3 0.000 0.000 0.999 0.006 0.006 0.000
4 0.003 0.005 0.004 0.981 0.032 0.011
5 0.001 0.006 0.004 0.064 0.995 0.003
6 0.002 0.002 0.000 0.004 0.009 0.995
Modal Assurance Criteria t16tr X t22tr
Mode 1 2 3 4 5 6
1 0.821 0.168 0.002 0.001 0.000 0.001
2 0.083 0.884 0.001 0.004 0.001 0.002
3 0.000 0.000 0.997 0.005 0.007 0.001
4 0.011 0.022 0.006 0.917 0.001 0.048
5 0.001 0.006 0.003 0.046 0.988 0.002
6 0.005 0.005 0.000 0.004 0.009 0.965

31

et e ————— e e - ——— - [ —




IV. DETAILED FINITE ELEMENT ANALYSIS

Detailed finite element analyses were performed before the experimental modal analyses
to aid in the selection of instrumentation locations and to give indications of the frequen-
cies associated with the lower modes of the structure. All calculations were performed
with the ABAQUS finite element code (ABAQUS User Manual (1994) ) on a CRAY Y-MP
computer. Mesh generation and post-processing were done with PATRAN (P3/PATRAN
User Manual (1992)) on a Silicon Graphics workstation. In addition to providing informa-
tion that would aid in the selection of instrumentation options, these models can be used in
conjunction with experimental modal data to obtain an indirect indication of the composite
action exhibited by the bridge. Another use of these models was to ascertain the degree of
nonlinearity that the structure exhibited after each stage of damage. Finally, these detailed
finite element analyses were subsequently compared to results obtained with simple beam
models of the bridge to assess the accuracy of the beam models.

IV. A. Preliminary Calculations

Before analyzing the bridge structure, the ABAQUS finite element code was exercised on
a beam problem to verify that, for a well-defined problem, the dynamic properties pre-
dicted by ABAQUS agreed with closed-form solutions. A W40x328 beam 600-in. long was
modeled five ways :

1. Using the 3-node general beam section elements, where the analyst must enter all
relevant cross-section properties. These properties were obtained from an American
Institute of Steel Construction Manual (AISC (1989)).

2. Using the 3-node |-section beam elements, where the cross-section dimensions are
specified and ABAQUS calculates the cross-sectional properties.

3. Using 8-node shell elements to model the web and flange. The mesh for this model is
shown in Fig. 33 along with the first bending (strong and weak axis) modes and the first
torsional mode.

4. Using 8-node shell elements to model the web and beam elements to model the flange.
Nodes for the beam elements are located at the centroid of the flange and constrained
to the corresponding nodes representing the top and bottom edge of the web.

5. Using 8-node shell elements to model the web and beam elements to model the flange.
Nodes that form the top and bottom edge of the web are used to define the flange as
well, and the centroid option is used to define the location of the centroid of the flange.

In all cases, the beam was modeled with ten elements along its length. Generic steel
material properties of Egieel = 29,000,000 psi, Vsteel = 0.3, Usteel = 0.284 Ibm/in3, were
specified in these analyses. Free boundary conditions were specified at each end of the
beam.
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Fig. 33. Shell element model of the W40X328 beam, first bending modes, and first
torsional mode.

Results from modal analyses were compared with closed-form solutions given by Blevins
(1979) to verify that ABAQUS was accurately calculating the dynamic properties of this
beam. The closed-form solution for the resonant frequencies associated with free
boundary conditions are

A [El
= (B
b =52 uA,and (2)

L E1C)
TR T

where f, = the bending mode frequency in Hz,
(A)2 =22.4 for Mode 1 (a factor to account for boundary conditions, see Blevins
(1979)),
L = the length of the beam,
E = the modulus of elasticity,
| = the cross-sectional area moment of inertia,
A = cross-sectional area,
f; = the torsional mode frequency in Hz,
J = the torsional constant for the cross section,
G = the shear modulus,
1L = the mass density, and
Ip = Polar moment of inertia about the center of mass.
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It should be noted that the expression for the torsional frequency is only exact for circular
cross-sections.

Table VIl summarizes the results obtained. From these results it is evident that all methods
of discretizing the beam give comparable results for the calculated dynamic properties of
the beam.

TABLE VI

Comparison of Beam Dynamic Properties Calculated by ABAQUS with Closed-
Form Solutions: Free Boundary Conditions

Resonant Frequency (Hz)
MODE | closed form | model 1™ model 2 model 3 model 4 model 5
1st Torsion 5.08 5.07 531 5.03 5.40 543
1st weak 8.10 8.09 8.37 8.06 8.12 8.12
axis bending
1st strong 32.5 31.6 32.1 30.2 29.9 30.0
axis bending

" Model refers to the elements and options used to discretize the beam as discussed in Sec. IV A.

IV. B. Undamaged Structure

As shown in Fig. 34, the cross section of the I-40 Bridge shown in Fig. 3 has been
idealized as consisting of the following components:

1. A concrete slab of constant thickness with a cross-sectional area equivalent
to that of the actual slab shown in Fig. 3.

2. Two steel plate girders.

3. Three steel stringers.

4. Steel floor beams (not shown in Fig. 34)

After the beam study was complete, detailed, finite element models of the bridge were
developed. The first model uses 8-node shell elements to model the web of the plate
girder and the concrete deck shown in Fig. 34. Three-node beam elements were used to
model the stringers, floor beam, and flanges of the plate girder. Twenty-node continuum
elements were used to model the concrete piers. Horizontal and vertical stiffeners on the
plate girder, the diagonal bracing, and the concrete rebar were not incorporated in this
model. Generic material properties were used. The steel material properties used in the
preliminary beam study (see Sec. IV. A) were also used in this model. The concrete
properties used were
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f, = 4000 psi,

E, = 570004, = 3,600,000 psi,

ve=0.2, and
g = 145lbm/ft3,

This model had 7032 DOF describing the bridge structure above the pier. Fixed boundary
conditions were specified at the base of the piers. No attempt was made to model the soil
medium underneath these piers. The mesh for this model is shown in Fig. 35.

|
Symmetry
| Plane
- 261" >
L ,
[ 8.7"
A *
21 WF 62 21 WF 62—
0.375"—»{|a— 1‘790-0 —
120° - 180.0" >
1.5" or 2.625" < < 1.5" for Thin Girder i
(top & bottom) 2.625" for Thick Girder
Y t L .
? ::] 21.0" For Thin Girder
or
240" For Thick Girder Drawing not to scale

Fig. 34. Idealized bridge cross-section geometry.

Note:
Springs are connected to the top of the pier,
7 and are not connected to the plate girder.
X

Fig. 35. 7032 DOF model of the [-40 Bridge.
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Fig. 36. Model that was analyzed to determine spring constants.

Six versions of this model were made. The difference between these versions lies
primarily in the way that the connections between the bottom flange of the plate girder and
the top of the piers or the abutment, shown in Figs. 5-7, were modeled. Another variation
in these models was the addition of spring elements, fixed to “ground” at one end and
connected to the top of Pier 3 as shown in Fig. 35. These springs were intended to simu-
late the stiffness added to this pier by the next section of the bridge that shares this pier
with the section being analyzed and tested. To obtain the stiffness constant for these springs,
the bridge model was fixed at one end, and Pier 3 was removed. All nodes corresponding
to the free end were constrained to move uniformly. Loads were applied to this end in the
three global directions as shown for the Z direction in Fig. 36. The calculated deflections
of this end corresponding to the applied load provide the information necessary to
approximate the stiffening effects that the next section of the bridge has on Pier 3. By
providing a spring at both pier columns, these springs also stiffened the pier torsionally
about all three axes. The individual spring constants calculated were

kg = 18.1 x 103 Ibs/in.,

ky = 7.21 x 103 Ibs/in., and

k, = 245 x 103 Ibs/in.

The six versions are summarized below with a brief description of their distinguishing

features. The global directions discussed below refer to those shown in Figs. 5 through 7
and Fig. 35.
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BR3W

BR3WB

BR3WC

BR3WD

BR3WDSP

BR3WEQ

At the abutment, nodes at the bottom plate girder flanges were constrained
against translation in the X and Y directions. Rotations about the Y and Z
axes were also constrained at these locations. These constraints were
intended to simulate the connection detail shown in Fig. 5.

The nodes corresponding to the bottom of the plate girder at Piers 1, 2 and
3 were constrained to have the same translation in the X, Y, and Z directions
as the nodes representing the top and center of the respective pier column.
The detail of the connections at these piers are shown in Figs. 7, 6, and 5,
respectively. Connections at Piers 2 and 3 would, in theory, allow relative
translation in the Z direction between the plate girder flange and the pier.
However, it was assumed that the levels of excitation were not sufficient to
overcome the friction forces at these locations and, hence, this DOF was
constrained. At all the piers, no constraints were imposed on the rotational
DOF. Springs to simulate the stiffening effects of the other portion of the
bridge sharing Pier 3 were not used.

Identical to BR3W, but translation in the Z direction of nodes corresponding
to the bottom plate girder flange at the abutment were also constrained. In
theory, to account for thermal expansion, this connection allows for motion
between the bottom web of the plate girder and the abutment in the Z
direction. Observations made when the air temperature was significantly
different showed that the connection appears to behave as intended.
However, it was again assumed that the levels of excitation produced by the
shaker were insufficient to overcome the friction at this connection.
Therefore, translation in the Z direction was constrained.

Identical to BR3W, but nodes at the top and center of the pier columns
directly under the plate girder were fixed against rotation about the Y and Z
axes. This condition forces the bottom of the plate girder to rotate with the
top of the pier in these directions. The actual connections at these locations
(Figs. 5 through 7) provides this restraint.

Identical to BRSWC, except that the translation in the Z direction was
constrained at the abutment.

Identical to BR3WD, but with the spring elements shown in Fig. 35 and
discussed above were added.

At the nodes on the bottom of the plate girder that correspond to the support

at the abutment, boundary conditions similar to those used in BRSWDSP
were again used.
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The nodes corresponding to the bottom flange of the plate girder over the
center of Pier 1 were constrained to translate with the center node at the top
of the pier in all three global directions. These nodes were also constrained
to rotate together about the Y and Z axes. For this boundary condition, shell
elements had to be added to the top of the pier.

Similar constraints were applied to the nodes at the bottom flange of the
plate girder over the center of Piers 2 and 3 in an attempt to simulate the
connection details shown in Figs. 5 and 6. Translation of the plate girder
relative to the piers was not constrained in the Z direction at Piers 2 and 3.
The springs were used with this model.

The boundary conditions associated with these different models are summarized in Table
VIII.

TABLE VI

Degrees of Freedom Constrained at the Nodes on the Bottom Flange of the Plate
Girders Directly over the Piers and Abutment in Each Finite Element Model

Model Abuiment Pier 1 Pier 2 Pier 3
BR3W 1,2,5,61 (1,2,3)2 (1,2,3)2 (1,2,3)2
BR3WB 1,2,3,5,6 (1,2,3)2 (1,2,3)2 (1,2,3)2
BR3WC 1,2,5,6 (1,2,3)2, 5,6 (1,2,3)2,5,6 (1,2,3)2,5,6
BR3WD 1,2,3,5,6 (1,2,3)2, 5,6 (1,2,3)2,5,6 (1,2,3)2,5,6
BR3WDSP3 1,2,3,5,6 (1,2,3)2, 5,6 (1,2,3)2,5,6 (1,2,3)2,5,6
BR3WEQ3 1,2,3,5,6 (1,2,3,5,6)2 (1,2,5,6)2 (1,2,5,6)2

1The 1, 2, and 3 directions correspond to transiation in the X, Y, and Z directions
shown in Fig. 34, respectively; the 4, 5, and 6 directions correspond to rotation
about the X, Y, and Z axes shown in Fig. 35, respectively.

2 These DOFs were constrained to the corresponding DOF at the node directly
below on the top of the pier. For rotational DOFs, this constrain required the
addition of shell elements to the top of the pier.

3 Springs added to Pier 3.

A second, more detailed model was constructed, identical to the first, but with a more
refined mesh. Beam elements that model the horizontal and vertical plate-girder web
stiffeners were added to this model. This more detailed model uses 35,160 DOF to model
the bridge deck and supporting steel structure. A modal analysis was made with the same
material properties as those specified in the 7032 DOF model. Because the refinements
to the model were for the bridge structure rather than the piers, the 7032 DOF model was
modified to remove the piers and a corresponding modal analysis was performed. Note
that all six 7032 DOF models are the same when the connection to the piers and abutment
are not modeled. Boundary conditions that constrained all translational DOF were
specified in both models at locations where the bottom plate-girder flange would normally
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connect to a pier or abutment. The spring elements discussed above were not used in
either model. Results from these two modal analyses are summarized in Table [X. These
results indicate that the 7032 DOF model predicted almost identical dynamic properties as
those given by the 35,160 DOF model. Based on these results, it was decided that all
subsequent detailed finite element analyses would be done with the 7032 DOF model.

TABLE IX
Comparison of Dynamic Properties Identified By the 7032 DOF Model with the
Dynamic Propetties Identified by the 35,160 DOF Model
7032 DOF Model 35,160 DOF Model
Frequency Generalized Frequency Generalized
Mode (Hz) Mass (Hz) Mass
1 2.82 1828 2.81 1784
2 3.77 1277 3.78 1225
3 3.81 988.2 3.79 963.7
4 3.88 584.4 3.87 562.0
5 5.11 1578 5.09 1484
6 5.23 1551 5.20 1473
7 5.48 756.4 5.39 738.6

IV. C. Damaged Structure

The 2nd, 3rd, and final damage states described in Sec. lll. C. 1. were simulated by
adding additional nodes and elements to the finite element representation of the web and
bottom flange of the plate girder in the vicinity of damage as shown in Fig. 37. These
modifications were made to model BR3W, and the new finite element models correspond-
ing to the 2nd, 3rd, and final damage states are designated BRSWC1, BR3WC2, and
BR3WCS3, respectively. This method of modeling the damage changes the geometry only
and does not introduce nonlinearities into the model. Therefore, a linear modal analysis
can be performed to ascertain the effects of this damage on the dynamic properties of the
structure. Before performing this modal analysis, dead-weight loading was applied in a
static analysis of the undamaged model and the model corresponding to the final stage of
damage. The relative deflection at the node representing the bottom flange at the cut
location was calculated. During the experiments, the deflection of the bottom flange of the
plate girder at a location adjacent to the cut was measured after the final stage of damage
had been introduced. The measured deflection from the undamaged position was 0.81 in.
The finite element model predicted a deflection of 0.29 in., a considerable difference. This
lack of correspondence between the measured response and the finite element prediction
is assumed to result from local yielding around the cut tip that produces a “hinge” allowing
more rotation in this vicinity and, hence, larger deformation. To accurately model this
effect, a very refined mesh in the vicinity of the cut tip is needed, and plasticity must
beadded to the model. Although the bridge appears to be responding with reduced stiff-
ness in this region, the dynamic response will not show the same reduced stiffness effects
because the modulus of the yielded material does not change significantly from the
material that has not yielded.
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To model the second damage level, nodes 3' and 3" are defined, and a

new beam element, 3-3'-3" is defined with similar cross-section properties
as 1-2-3 and 3-4-5.

To model the third damage level, beam 3-3'-3" is given cross-section

properties for a flange that has 1/2 the thickness of elements 1-2-3
and 3-4-5.

To model the final stage of damage, beam 3-3'-3" is removed completely.
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Fig. 37. Methods used to simulate the damage introduced to the 1-40 Bridge.



IV. D. Detailed Finite Element Results Compared to Experimental Results

Results of the finite element analyses are compared to experimental results in terms of
resonant frequencies and mode shapes for both the damaged and undamaged bridges.
Undamped modal analyses of the different finite element models were run. These
analyses provided estimates of the resonant frequencies and mode shapes of the bridge,
which subsequently could be compared to similar measured quantities. Table X compares
the results from the modal analyses of numerical models described in Sec. IV. B. with the
experimental results obtained from forced vibration tests on the undamaged structure
(see Sec. lll. B.). Because accelerometers were mounted only in the vertical direction,
experimental results concerning lateral modes of response were not obtained. Therefore,
the average percent difference listed in Table X is for the vertical flexural modes and the
torsional modes only.

TABLE X

Comparison of Analytical and Experimental Modal Analysis Results
Resonant Frequency (Hz)

Experiment| BR3W [BR3WB |BR3WC |BR3WD |BR3WDSP [ BR3SWEQ

Mode 1 2.48 2.59 2.59 2.59 2.59 2.63 2.58

Mode 2 2.96 2.78 2.87 2.79 2.88 2.90 2.88

Mode 3 3.50 3.71 3.47 3.71 3.47 3.50 3.44

Mode 4 4.08 4.32 4.11 4.00 4.11 4.23 4.12
Mode 5 4.17 3.96 4.20 4.33 4.21 4.25 4.21
Mode 6 4.63 4.50 4.70 4.56 4.94 4.94 4.77
Ave. % Diff. -- 5.08 1.88 6.39 2.77 3.39 2.24

From resonant frequencies identified in Table X, it is evident that all the models are
accurately predicting the measured response of the structure. In terms of an average
percent error with the measured values of resonant frequencies, the models designated
BR3WEQ and BR3WB provide the best approximation to the measured response of the
bridge. Model BR3W has calculated the measured Mode 5 at a lower frequency than the
measured Mode 4. When the translational constraints in the Z direction at the abutment
are removed, the other numerical models also interchange these modes. The discrepan-
cies with experimental results shown in Table X, which are considered small, are primarily
caused by the idealization of the boundary conditions and the use of generic material
properties for the concrete portion of the bridge.

The modal assurance criterion, Eq. 1, can be used to compare the analytical and mea-
sured mode shapes. To make this comparison, the components of the analytical mode
shape vectors corresponding to translation in the vertical direction at locations similar to
the accelerometer locations (see Fig. 9) were extracted from the finite element analysis to
form a mode-shape vector that could be directly compared to the experimentally mea-
sured mode shapes. Table XI compared the modes determined from the finite element
models with those identified during the undamaged forced vibration test (116tr). The six
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mode shapes identified by the finite element model BR3W that correspond to the experi-
mentally measured mode shapes (Figs. 10 through 15) are shown in Figs. 38 through 43.
The vertical bending modes are independent of the torsional response as was shown both
in the analytical mode shapes and in the experimentally measured mode shapes. As can
be seen in Table XI, the model designated BR3W predicts the measured mode shapes
most accurately in spite of the fact that it has interchanged modes 4 and 5. Similar corre-
spondence can be obtained with the other finite element models if the Z translational DOF
at the abutment are left unrestrained. When this boundary condition is specified, the other
finite element models also interchange modes 4 and 5.

Fig. 39. First torsional mode calculated with finite element model BR3W.
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Fig. 40. Second flexural mode calculated with finite element model BR3W.

Fig. 41. Third flexural mode calculated with finite element model BR3W.
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Fig. 43. Third torsional mode calculated with finite element model BR3W.

Figure 44 shows the first lateral mode identified by this finite element model. This mode
shows coupling between the lateral bending response and the torsional response as
predicted by the coupled equations of motion that are developed in Sec. V. E. 2. Gere and
Lin (1958) have shown that the predominately torsional modes are not as affected by the
coupling as the predominately lateral bending modes. This result is evident in the finite
element mode shapes; however, measurements were not made to verify this result
experimentally.
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TABLE XI

Modal Assurance Criterion Comparing the Measured Mode Shapes from the
Undamaged Bridge with Mode Shapes Calculated by Finite Element Analysis

Modal Assurance Criteria t16tr X BR3W
Mode 1 2 3 4 5 6
1 0.992 0.001 0.000 0.001 0.003 0.000
2 0.003 0.983 0.000 0.001 0.002 0.008
3 0.001 0.000 0.993 0.001 0.002 0.000
4 0.001 0.000 0.001 0.035 0.960 0.000
5 0.000 0.000 0.001 0.978 0.005 0.029
6 0.001 0.001 0.000 0.001 0.018 0.954
Modal Assurance Criteria t16tr X BR3WB
Mode 1 2 3 4 5 6
1 0.992 0.001 0.012 0.002 0.000 0.000
2 0.003 0.987 0.000 0.001 0.001 0.440
3 0.000 0.000 0.906 0.274 0.001 0.000
4 0.012 0.002 0.041 0.744 0.024 0.000
5 0.000 0.022 0.011 0.003 0.819 0.020
6 0.001 0.001 0.001 0.013 0.219 0.577
Modal Assurance Criteria t16tr X BR3WD
Mode 1 2 3 4 5 6
1 0.992 0.001 0.012 0.002 0.000 0.001
2 0.003 0.983 0.000 0.001 0.001 0.099
3 0.000 0.000 0.906 0.274 0.001 0.000
4 0.012 0.002 0.041 0.744 0.023 0.005
5 0.000 0.029 0.011 0.003 0.819 0.048
6 0.001 0.001 0.001 0.013 0.221 0.801
Modal Assurance Criteria t16tr X BRSWEQ
Mode 1 2 3 4 5 6
1 0.991 0.001 0.013 0.001 0.000 0.000
2 0.003 0.987 0.000 0.001 0.001 0.305
3 0.000 0.000 0.897 0.278 0.001 0.000
4 0.013 0.002 0.047 0.741 0.024 0.001
5 0.000 0.023 0.011 0.003 0.820 0.001
6 0.001 0.001 0.002 0.013 0.219 0.696
Modal Assurance Criteria t16tr X BRSWDSP
Mode 1 2 3 4 5 6
1 0.994 0.001 0.004 0.001 0.000 0.001
2 0.003 0.986 0.000 0.001 0.001 0.087
3 0.001 0.000 0.946 0.179 0.001 0.000
4 0.006 0.002 0.020 0.832 0.025 0.006
5 0.000 0.024 0.011 0.003 0.832 0.062
6 0.001 0.000 0.001 0.014 0.209 0.792
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Based on a comparison of both the resonant frequencies and the mode shapes, it was
decided that the numerical model designated BR3W showed the best correlation with the
measured dynamic properties. This model was subsequently modified to simulate the
damage as discussed in Sec. IV. C. Results of modal analyses performed with these modi-
fied finite element models are compared to corresponding experimental modal analysis
results from the damaged structure in Tables XIl and XIII. Figures 45 through 47 show the
first three modes calculated by the finite element model that simulates the final stage of
damage.
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Fig. 45. The first flexural mode calculated with finite element model that simulates the
final damage stage.
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Fig. 46. The first torsional mode calculated with finite element model that simulates the
final damage stage.
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Fig. 47. The second flexural mode calculated with finite element model that simulates
the final damage stage.

Table XIl shows that the resonant frequencies do not change appreciably (greater than the
frequency resolution) until the final stage of damage has been introduced. This result is
shown in both the experimental data and the numerical calculations. No change in the
mode shapes can be seen until the final stage of damage as is indicated by both the
analytical and experimental mode-shape data summarized in Table XIII. It is of interest to
note that after the final stage of damage, Modes 1 and 2 determined by finite element
analysis showed the same percent drop in resonant frequency from their undamaged
state as the corresponding drops in resonant frequencies measured on the bridge.

47



Resonant Frequencies Measured on the Damaged Bridge Compared with
Resonant Frequencies Calculated by Finite Element Analyses of the Damaged

TABLE Xl

Structures Using Model BR3W

3rd level of damage | final level of damage
6 ft cut in web, 6 ft cut in web,
2nd level of damage, | cut through half of the cut through entire
6 ft cut in web bottom flange bottom flange
Mode Measured | BR3BWC1 | Measured | BR3WC2 | Measured | BR3WC3
1 2.52 2.59 2.46 2.59 2.30 2.44
2 2.99 2.78 2.95 2.78 2.84 2.72
3 3.52 3.71 3.48 3.71 3.49 3.71
4 4.09 4.33 4.04 4.33 3.99 4.27
5 4.19 3.96 4.14 3.96 4.15 3.96
6 4.66 4.50 4.58 4.50 4.52 4.46
TABLE XIlI

Modal Assurance Criterion Comparing the Measured Mode Shapes from the
Damaged Bridge with Mode Shapes Calculated by Finite Element Analysis

Modal Assurance Criteria

t18tr X BR3WC1

Mode 1 2 3 4 5 6
1 0.988 0.002 0.000 0.001 0.004 0.000
2 0.001 0.989 0.000 0.005 0.001 0.011
3 0.000 0.000 0.994 0.001 0.002 0.000
4 0.011 0.001 0.000 0.015 0.980 0.002
5 0.000 0.000 0.014 0.977 0.005 0.019
6 0.001 0.012 0.000 0.001 0.012 0.950

Modal Assurance Criteria t19tr X BR3WC2

Mode 1 2 3 4 5 6
1 0.994 0.000 0.000 0.001 0.005 0.000
2 0.001 0.988 0.000 0.004 0.001 0.011
3 0.000 0.000 0.994 0.001 0.002 0.001
4 0.011 0.001 0.000 0.012 0.983 0.002
5 0.000 0.000 0.010 0.982 0.005 0.017
6 0.001 0.006 0.000 0.002 0.011 0.962

Modal Assurance Criteria t22tr X BR3WC3

Mode 1 2 3 4 5 6
1 0.981 0.005 0.001 0.000 0.001 0.002
2 0.025 0.973 0.000 0.002 0.007 0.007
3 0.000 0.000 0.996 0.000 0.001 0.001
4 0.016 0.000 0.001 0.007 0.947 0.074
5 0.000 0.000 0.008 0.986 0.007 0.011
6 0.002 0.004 0.001 0.001 0.049 0.878
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The numerical models show that Mode 3 did not change from its predamaged configura-
tion even after the final stage of damage was introduced. Also, the resonant frequency
associated with this mode is unchanged by the damage. Damage was introduced near a
node for this mode, and it is evident that damage at such a location has little appreciable
effect on this mode. This result was verified by the experimental data, which also showed
no change in Mode 3, from its undamaged state, after the final level of damage had been
introduced.

All the finite element models simulate composite action between the concrete deck, the
stringers and the plate girders. The correlation between both the ambient and forced
vibration experimental results and the finite element results indicate that, at the levels of
excitation produced by traffic or by the Sandia shaker, the bridge is exhibiting composite

behavior even though no shear studs were provided. '

Other analyses of three-span continuous bridges reported in the technical literature show
flexural mode shapes similar to those identified in our study (Lee, Ho and Chung (1987),
and Raghavendracharm and Aktan (1992)). Raghavendracharm and Aktan also state that
the second and third flexural modes have considerably higher participation factors than
the fundamental flexural mode. Similar results were obtained with the finite element
models reported herein. This qualitative correlation of the results reported herein with
results from similar analyses made by other investigators lends further credibility to the
accuracy of the numerical models developed during this study.

V. SIMPLIFIED FINITE ELEMENT MODEL

When compared with experimental results as discussed in Section IV. D., it is evident that
the detailed finite element model of the I-40 Bridge described in the previous section
provides an accurate model for calculating the dynamic response of the bridge. However,
the detailed model suffers from complexity and size, as structural elements are intricately
modeled using shell elements. A more simplified and practical model using a single beam
element to represent the cross section of the bridge, which still accurately models the
global dynamic response characteristics of the bridge, is desirable. Modeling of the 1-40
Bridge using a simplified beam, finite element model vastly reduces the DOF compared to
the shell element model. This simplified model makes the determination of the modal
response of the.bridge on a microcomputer, as opposed to a mainframe, more practical.
The development of such a model is presented in this section.

Certain confounding factors make the representation of the bridge by simple beam
elements ' somewhat difficult. These factors include

1. The composite (steel and concrete) nature of the bridge construction.
2. The presence of but a single axis of symmetry in the cross section.

3. The dynamic nature of the bridge response.
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Implications of the above factors are that some flexural and torsional modes of response
will be coupled, and that determination of the shear center, warping constant, sectorial
moment, and the torsional constant of a thin-walled, open, noncircular composite cross
section will be required.

In this section, the methods of modeling the dynamic flexural behavior of the bridge are
first discussed, followed by a summary of the methods for modeling dynamic torsional
behavior, appropriate modeling of the mass distribution for bending and torsion, and a
discussion of kinematic constraints and boundary conditions needed to tie the beam
elements representing the bridge cross section to the beam elements representing the
piers. Flexural-torsional coupling details are also discussed, followed by a summary of
results from a series of increasingly complex beam examples. These beam examples
were used to verify the accuracy of the methods that were applied herein and
subsequently used to develop the simple beam model of the 1-40 Bridge. Finally, a
summary of the beam model of the |-40 Bridge is presented. This beam model is based on
the idealized cross-section geometry shown in Fig. 34 and discussed in Sec. IV. B.

The ABAQUS Finite Element Program was selected for the refined-shell-element model of
the 1-40 Bridge as well as for the simplified beam-element modeling presented in this
section. The program is representative of a class of sophisticated, general purpose, finite
element packages commercially available to the technical community. Therefore, the
development which follows regarding consistent input for the simplified beam model is
representative of the input considerations needed for most other finite element software
packages as well.

The following are the input parameters (with units assuming mass as a derived unit,
L =length, t = time, f = force) for the ABAQUS beam model (Beam General Section) which
are relevant to the discussion here:

A = Beam cross-sectional area (L2)

11, o2 = Area moments of inertia of the beam cross section about the
centroidal axis (L4)

J =  Torsional constant (L%)

T =  Sectorial moment (L4)

Ty =  Warping constant (L®)

T =  Mass density (f-t2/L4)

E =  Young’s modulus (f/L2)

G =  Shear modulus (f/L2)

X0, Yo =  Shear-center location relative to the centroid (L)

When thermal effects are neglected and the 11 and 22 axes define the principal moments
of inertia (that is, the products of inertia are zero), ABAQUS calculates the forces acting on
a beam as
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N=E(Ae, +Tgx), (4)

m,, = El, x,,, (5)
m,, = El,¥,,, (6)
T=G(Jo+I,w), and ()
W =E(T,e, +ToX), (8)

where N = axial force,
€ = axial strain at the centroid,
y, = axial strain caused by twisting of the beam,
m44 = moment about axis 1,
K41 = curvature change about axis 1,
mas = moment about axis 2,
Koo = curvature change about axis 2,
T = torque about the longitudinal axis,
¢ = angle of twist,
w = warping amplitude, and
W = the bimoment that produces warping.

A detailed summary of the beam-element formulation for thin-walled open sections can be
found in the ABAQUS Theory Manual (1994).

It is necessary that the above input be consistent with the composite nature of the cross
section, the presence of only a single axis of symmetry in the cross section, and the fact
that dynamic response is occurring with coupled bending and torsional beam response.
While it may not be possible to precisely model all aspects of the composite beam with the
above input parameters, the purpose of this section is to demonstrate how the beam can
best be modeled.

The discussions below focus on developing the input parameters for the beam elements
representing the bridge deck and supporting steel beams. Similar methods were applied
to develop equivalent beam representations of the concrete piers. In these developments
the reinforcement in the piers was neglected.
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V. A. Modeling Flexural Behavior

Flexural stiffness of the composite cross section is modeled by developing an “equivalent”
or “transformed” cross-sectional area using well-known techniques as discussed in Popov
(1968). Assuming compatibility of strains at the interface of the two materials, the transfor-
mation is accomplished by adjusting the dimensions of the cross section parallel to the
neutral axis, about which bending is assumed to occur, by a factor equal to the ratio of the
elastic moduli of the materials in the cross section. For example, consider a cross section
consisting of material 1 and material 2, for which respective elastic moduli are E4 and Ep,
with E1 > E». The original and transformed cross sections are shown in Fig. 48 for the case
in which an equivalent model is constructed in terms of Material 1. In this case, the forces
on both elements are unchanged by the simultaneous modification of the modulus and
width of material 2. However, because the cross section is now of a single material, strength-
of-materials beam behavior and associated concepts again apply. This method provides
an exact single-material representation of a multimaterial beam’s flexural response sub-
ject to the limitations of strength-of-materials beam theory (linear elastic response, small
deformations, etc.).
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Fig. 48. Example of a beam of two materials and its transformed section representation.
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The resulting centroidal axis location found from the centroid of the transformed cross-
sectional area is then the correct neutral axis for bending. Similarly, the area moment of
inertia of the transformed section about this neutral axis is appropriate for modeling the
flexural response. While the stresses are incorrect for the transformed material (they have
to be adjusted by the modular ratio), the bending moment is correct. The process can be
repeated about the orthogonal axis, again resulting in the correct bending moment about
that axis. A linear superposition argument then justifies simultaneous bending about both
axes. |t is straightforward to show that the total transformed area for bending about one
principal axis is equal to the transformed area for bending about the orthogonal axis.

The procedures for representing the composite bridge cross section as a simple beam for
the purpose of calculating the dynamic flexural response are listed below. Note that shear
deformation and rotary inertia effects are not considered in this development.

1. The composite cross section of the bridge is transformed into a single material
as discussed above.

2. The centroid of the transformed section is determined.

3. The moment of inertia about the centroidal axis is determined for the
transformed section. This moment of inertia and the modulus of the single
material used to represent the bridge define the flexural stiffness of the bridge.

4. An equivalent mass density of the bridge is determined such that the
transformed section will have the same mass per unit length as the original
section. Rotary inertia effects are not considered when calculating this
equivalent mass density.

5. The process (1-3) is repeated for bending about the orthogonal principal axis.

For the beam model of the 1-40 Bridge, this method provides the location of the centroidal
axis and the two area moments of inertia about the centroidal axis, l11 and Iss (Ix and ly,
using axes labels in Fig. 34) for each of the two cross sections modeled. Detailed
calculations for centroidal axis locations of the transformed bridge cross section and
moments of inertia of the transformed sections about these axes are presented in Appen-
dix A where the bridge has been modeled as an equivalent steel cross section. Numerical
values of these parameters are summarized below in Section V. G. The concrete deck is
assumed to be uncracked, and reinforcing steel is ignored. These effects tend to be
self-canceling. Compatibility of strains at the concrete-steel interface is assumed in the
development given above. This compatibility implies that the bridge is assumed to exhibit
composite action. Although this method will give the appropriate transformed cross-
sectional area, this area will have to be adjusted based on mass distribution consider-
ations for torsion discussed in Section V. C. At this point, the ABAQUS input values of |4
and Iz (Iy, and ly, using axes labels in Fig. 34), the centroidal axis location and, by implica-
tion, E have been determined for the beam model of the I-40 Bridge cross section.
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V. B. Modeling Torsional Behavior

Certain torsional properties must be supplied as input to the simplified beam element
model; and these torsional properties can be difficult to determine, particularly for a multi-
material, thin-walled, branched cross section. In the subsequent discussions a “branched
cross section” refers to a cross section that can not be described by a single, continuous
path coordinate. It is the purpose of this section to develop the necessary background on
torsion and to illustrate procedures for determining the torsional input parameters required
by the beam-element model. Included in this section are discussions of the types of
torsion that must be modeled, the method used to determine the torsional rigidity of the
bridge cross section, analytical and numerical methods to locate the shear center, a
numerical method used to determine the warping constant and sectorial moment of the
cross section, and sample problems used to verify the accuracy of these methods.

As discussed in numerous sources, e.g., Galambos (1968), Heins (1975), and Boresi, et
al. (1978) torsion can be separated into two distinct categories: pure or St. Venant torsion
and warping torsion. With a few notable exceptions (solid and hollow circular cross
sections), cross sections that are initially plane no longer remain plane when torsion is
applied, but rather undergo warping deformations. If a cross section is free to warp, the
applied torque is resisted by purely torsional response only. However, if these warping
deformations are restrained to any degree, the applied torque is resisted by a combination
of pure torsional response and warping torsional response.

Out-of-plane distortions which are caused by the application of a torque do not induce any
normal stresses as long as constraints to these warping displacements are not introduced.
If warping is restrained, however, normal stresses will be induced which, in turn, induce a
warping torsional moment. This moment is in addition to the pure torsional moment.
Warping deformations can be constrained in one of two ways: by certain constraints on
the end conditions, that is, by fully fixing the end of the torsion member so that out-of-plane
deformations are restricted, or by a variation of the resultant torque along the longitudinal
axis of the member.

An illustration of these out-of-plane deformations is shown in Fig. 49. The hollow circular
cylinder does not warp when a torque is applied. Based on equilibrium considerations,
shear stresses in the plane of the cross section are accompanied by internal shear stresses
along the length of the cylinder. When a longitudinal slit is made in the tube, it is
transformed from a tube into a thin-walled open section, and with the application of a
torsional moment, warping deformations occur. The longitudinal shear stress on the newly
exposed face is no longer present, so the face deforms upward with the mating face
deforming downward. In this case only pure torsion occurs unless these warping
deformations are restrained, say by a restraint at the lower boundary (as an example,
welding the tube to a rigid plate).

54



y U \/

Fig. 49. lllustration of out-of-plane deformations caused by warping.

Varying the resultant torque along the longitudinal axis of the member also results in the
constraint of warping deformations. Again, consider the thin-walled circular section with a
longitudinal slit, Fig. 49, but this time as it undergoes general elastic vibrations. There are
constraints to the warping deformations caused by changes in generalized inetrtial forces
along the length of beam.

Based on the observation discussed above, it appears essential to account for warping
torsion when performing a dynamic analysis of the |-40 Bridge. Notwithstanding the fact
that the ends of the section of the bridge analyzed may be modeled as “simply supported
for torsion,” that is, allowed to freely warp at the boundaries, dynamic torsional vibrations
will cause varying degrees of partial or complete constraint depending on the torsional
mode and location along the longitudinal axis. Before calculating the cross-sectional
properties related to warping, the equivalent torsional rigidity of the cross section is
determined.

V. B. 1. Torsional Rigidity

Expressions are readily available for the torsional rigidity of both individual and built-up,
thin, noncircular members made from the same material (Boresi, et al, 1978). However, in
the case of the |-40 Bridge, the cross section is composed of steel and concrete members.
Most advanced strength-of-materials texts do not discuss how the combined torsional
rigidity should be determined for such cross sections. For example, consider the
multimaterial beam cross section shown in Fig. 50. The beam is assembled from
individual components such that it functions as a single beam. In other words, all
components undergo the same angular twist, ¢, or angular twist per unit length, 6 = ¢/L,
when subjected to some resultant torque, T.
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Fig. 51. Equivalent linear spring analogy for torsion of multi-material cross sections.

56



The torsion of a composite structural member is analogous to the case of linear springs in
parallel, as shown in Fig. 51. For this simple analogy, the total force, F;, is the sum of the
3 forces, F1, Fo, and F3, exerted by the individual springs,

Ft = F1 + F2 + F3_ (9)
Also, the displacements of the 3 springs are equal to x, so
Fi = KiX + Kox + Kax. (10)

The stiffness (force for unit deflection) of the system is then

E)(‘-=K1+K2+K3, (11)

the sum of the individual stiffnesses. Therefore, the total generalized force (torque in this
case) is equal to the sum of generalized forces for each element, and the generalized
displacement of each of the elements (the angle of twist per unit length, 6) is the same.

Assuming linear elastic behavior, the relationship between applied torque and the angle of
twist per unit length resulting from pure torsion of a single-material cross section is

T = GdJde, (12)
where G is the shear modulus, and J is the torsion constant of the cross section.

By the above analogy, the torsional rigidity of the n individual members are additive, hence
n
T
e ZGiJi ; (13)
i=1
where G;j and J; are the shear modulus and torsional constant for the i th material.

The cross section of the 1-40 Bridge is modeled as a composite section using Eq. 13 to
calculate torsional rigidity. Individual torsional constants are determined using handbook
values (AISC (1989)) or the well-known formula for a section built up from thin rectangular
plates (Boresi, et. al, 1978),

J=2%bit?, b, > 10t,, (14)
=1

where b; is the length of a thin rectangular section making up the cross section, tjis the
corresponding width, and n is the number of thin rectangular members making up the
cross section. For sections where bjis not greater than 10t;, the coefficient of 1/3 must be
reduced as discussed in Oden and Ripperger (1981).
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in addition to defining an equivalent torsional rigidity, the shear center, warping constant,
and sectorial moment for the equivalent beam must be found in order to accurately model
the torsional dynamic response of the bridge using a single beam element. The shear
center in a straight, uniform-cross-section beam is that point in the cross section through
which the load must pass if there is to be no torsion in the beam (Boresi, et al, 1978). The
relationship between shear center and center of twist is discussed by Stephen and Maltbaek
(1979). These authors show that for a thin-walled, open-section cantilever beam of
constant thickness, the shear center and center of twist coincide. Because the warping
constant and the sectorial moment are defined with reference to the shear center, the next
portion of this development will focus on determining the location of the shear center.

V. B. 2. Analytical Method for Locating the Shear Center

Specification of the shear center and the warping constants (as discussed previously) are
required when the torsional response of a thin-walled open beam is sought. Galambos
(1968) developed equations and procedures for determining these quantities for the case
of single-material members. McManus and Culver (1969) extended the work of Galambos
(1968) to a general composite, open, thin-walled beam and presented the resulting
expressions in series form for the case of a cross section consisting of a series of flat
plates, each of a different material. Heins and Kuo (1972a, 1972b) developed approximate
equations for the evaluation of shear center and torsional’ constants of a single-girder,
concrete-slab member. Briefly, the composite section shown in Fig. 52 is transformed into
the idealized, single-material torsional model in Fig. 52 by converting the concrete slab to
an equivalent area of steel. Note, however, that unlike the “equivalent section” method for
bending of composite sections discussed in Section V. A., the torsional equivalent-steel
section is approximate, based on the theory of torsion for thin-walled sections.
Unfortunately, while the simplified expressions are extremely useful, there appears no way
of extending them to more complicated structural cross sections. Kollbrunner and Basler
(1969) present a detailed discussion on built-up, open cross sections, including a tabular
procedure for determining warping constants. They also briefly allude to the treatment of
composite cross sections. Finally, Heins (1975) presents extensive numerical procedures
based on the work of Galambos (1968) for determining warping torsional properties.

Notwithstanding the availability of numerical procedures for determining the shear center
and warping constants, the methods are difficult to apply and require great care to prevent
errors. For that reason, the shear center for the I-40 Bridge cross section is first
determined in closed form in the following section using standard methods given by Gere
and Timoshenko (1990).
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Additional simplifications to the idealized cross section of the 1-40 Bridge shown in Fig. 34
are now made so that the methods of Gere and Timoshenko (1990) can more easily be
applied:

1. The cross section is transformed to a single-material cross section by
multiplying the thickness of the concrete slab by the modular ratio, n = E¢/Es,
based on procedures discussed in Kollbrunner and Basler (1969) and Heins
and Kuo (1972).

2. The three steel stringers (21 WF 62) are ignored as their contribution to
torsional response will be slight.

3. The transformed concrete slab is considered as a “thin” rectangular element, as
justified experimentally by Heins and Kuo (1972).

4. The top flanges of the two girders are ignored, as justified by Heins and Kuo
(1972).

The resulting simplified equivalent, “all steel” cross section is shown in Fig. 53.

The beam cross section shown in Figure 53 is singly symmetric. Thus both the centroid
and shear center will lie on the axis of symmetry. In order to determine a sign convention
for shear flow, consider that the idealized bridge cross section shown in Fig. 53 is that of a
cantilever beam subjected to a concentrated end load as shown in Fig. 54. The end load is
assumed to pass through the as-yet-determined shear center.
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Fig. 53. Approximate 1-40 Bridge geometry used to locate the shear center.
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a. Cantilever Beam

F1> F2

b. Segment A showing direction of shear stresses

Fig. 54. Cantilever beam representation of [-40 Bridge cross section.
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Fig. 55. Shear stress distribution and shear flow in I-40 Bridge approximation.
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A small element labeled “A” is cut from the bridge deck as shown in Fig. 54. Force F4 is greater
than force F» because the bending moment increases toward the fixed end of the beam. For
equilibrium, element A requires a shear force in the direction shown on its bottom surface. This
force results in the shear stress, 1y, shown in Fig. 54. Moment equilibrium of element A
requires a downward transverse shear force on its front face resulting in the shear stress, Ty,
shown in Fig. 54. The magnitude of the shear stress, 1, can be determined using standard
strength-of-materials analysis (Gere and Timoshenko, 1990) as

. =_V|x?v (15)
y

if it is assumed that shear stresses, 7, are directed along the centerline of the cross section
and are of constant magnitude across the wall thickness. Here, Vy is the resultant shear
force acting on the cross section in the x-direction, ly is the moment of inertia about the
centroidal y-axis, t is the section thickness at the location where 7 is being evaluated, and
Qy is the first moment of area of the cross section from s = 0 to S (See Fig. 54) measured
with respect to the neutral axis.

Following Gere and Timoshenko (1990) the procedure is to

1. Determine the direction of the shear flow in each segment of the cross section
by inspection.

2. Determine the magnitudes of the shear stresses at all points in the cross
section. (The general shape of the shear stress distribution is shown in Fig. 55).

3. Determine the resultant shear forces in each segment of the cross section.

4. Apply statics to determine the location of the shear center.

A detailed summary of the application of steps 1 through 4 is presented in Appendix B.
Corresponding shear-center locations, e, measured from the center of the transformed
concrete slab, are

Thin-flange section: e =23.63in.
Thick-flange section: e =33.55 n.

The shear center for the [-40 Bridge was also located numerically using the ABAQUS shell
model BR3W described in Section IV. B. The procedure is shown conceptually in Fig. 56
where a static force, Vy, is applied to the bridge cross section using a rigid link offset from
the center of the concrete slab by a distance e. By calculating the rotation of the cross
section about the z-axis for two different values of e, an extrapolation was made to
determine the value of e that results in no net rotation of the cross section. This value of e
defines the location of the shear center. A third run with this value of e verified that the
shear center had been accurately located. It should be noted that the location of the shear
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Fig. 56. Finite element model used to determine the shear-center location.

center identified in this matter is actually an “average” shear-center location because the
cross-section geometry of the plate girders varies along the length of the bridge. The value
of e identified by this procedure lies between the values calculated by the closed-form
method, as would be expected, lending further credibility to the accuracy of the closed-
form solution.

Because the shear-center location is an essential parameter that is necessary to develop
an accurate simplified beam model of the bridge, a procedure for determining the
shear-center location of general thin-walled, open cross sections, which does not require
detailed finite element modeling or time-consuming closed-form solution, is needed.

V. B. 3. Numerical Method for Locating the Shear Center

Numerical procedures discussed by Heins (1975) and others (Galambos (1968) and
Kollbrunner and Basler (1969)) can be used to determine the shear-center location.
Although for the 1-40 Bridge cross section it was possible to determine the shear center
analytically (when certain simplifying assumptions were made), a numerical procedure is
more easily adapted to other geometries and does not require the simplifying assump-
tions made previously.
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Fig. 57. Channel section used to develop numerical procedure.

Consider, forillustrative purposes, the channel section shown in Fig. 57. Examine stresses
caused by a shear force, Vy, acting in the x direction through the shear center (xg, o). The
coordinates xg and yg locate the shear center relative to the centroid of the cross section.
Assuming thin-walled sections, which implies that the shear stress is constant across the
thickness, equilibrium considerations require that

s

'ctz—LJ'xt ds. (16)
L, )
The integral

J xt ds (17)

o]

is referred to as the statical moment of area, and it is based on the area bounded on one
end by the location in the cross section at which the shear flow, tt, is evaluated.

If the shear force is applied through the shear center, the moment about the centroid
caused by this force, Vyyo, must be equal and opposite to the moment caused by the
resultant shear stresses acting over their respective areas. Referring to Fig. 57, this
relation can be stated as
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b

VYo = tht ds, or (18)

[}

b

1
yo=V—Jpﬂ ds, (19)

where p is the lever arm for the resultant shear force, or more specifically, it is the
perpendicular distance from a tangent in the s-direction of an element ds to a parallel axis
passing through the centroid. In general, p will be a function of s. Substituting Eq. 16 into
Eq. 19 yields

s

b
1
0

y
o

Referring to Fig. 57, the total shaded area from 0 to s is

5

1
A, =— ds, 21
0 ZJP S (21)

(1]

and Ag is referred to as the sectorial area. The double sectorial area, 2A,, or unit
warping constant with respect to the centroid is labeled w, and is defined as

S

m=2A0=Jp ds, (22)

0

and hence do = p ds. (23)

Substituting Eq. 23 into Eq. 20 yields

b s
yo=—llj th ds | do. (24)
0

Y
0
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Integration by parts gives the relationship

J.udv= uv—.[vdu,

and with the substitutions

S

u= th ds,

0
dv = dw,

du=xt ds, and
V=0

Eq. 24 becomes

b b
Yo = _Il coJ‘xtds—J,coxtds .
y
0 0

But, t ds = da, hence

b
thds= J.xda =0
0 a

because x is measured from the centroid. Therefore

The quantity

b

j wxtds

0

66

(25)

(27)
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is defined as |,y and is referred to as the warping product of inertia. Substituting this
designation into Eq. 28 yields the following relation for the location of the shear center

|
yo = —I“m . (30)

y

The above derivation follows that given by Galambos (1968) for a general thin-walled
section.

TANGENT

Fig. 58. A general thin rectangular element making up the cross section of a beam.

Heins (1975) presents a numerical procedure for evaluating lex assuming the cross
section can be idealized as a series of straight, connected segments, as shown in Fig. 58.
At some distance s in Fig. 58, there exists an element ij of thickness t;; and length L. From
Eqg. 22 it is seen that the parameter ® can be represented as

@) = +PijLj (31)

and that it varies linearly over the segment ij. Therefore, over segment ij w(x) can be
expressed as

(o —wi)()i—xi). (32)
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It is also noted from examination of Fig. 58 that

dx

ds= ,
cos o

(33)

and the integral expression for the warping product of inertia given by Eq. 29 can be
written as

k=1

where k is an index representing the n thin rectangular elements forming the cross
section.

Figure 58 shows that

cosay = —1—1. (35)

Based on algebraic manipulation of the integration results from Eq. 34, and Eq. 35, the
expression for the warping product of inertia given in Eq. 29, can be evaluated as

n n
IO)X = % Z ((Dixi + (DJX] )thLI] + -;— 2 (O)in + O)in )tULlJ (36)
k=1 k=1

Similarly, Fig. 58 shows the moment of inertia ly, appearing in Eq. 16 can be represented
as

b n X,
t.
l, = szdA = sztds = E ! szdx. (37)
emd COS O

A o]

Substituting Eq. 35 into Eq. 37 and evaluating the integral gives the following expression
for the moment of inertia about the y axis:

1 n
l, = 3 2 (x,?' + XX+ X )tijLii. (38)
K=1
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For the numerical evaluation, tabular procedures, amenable to spreadsheet formulation,
are given by Heins. However, it should be mentioned in passing that several confounding
factors present themselves for the 1-40 Bridge cross section. One is the presence of
“branchings” whose inclusion in the tabular procedure is not fully discussed by Heins.
Kollbrunner and Basler (1969) indicate that thin-walled open cross sections that cannot be
fully described by a single path coordinate will require a modification of the tabular
procedure.

A relatively simple cross section was selected as an example for initial verification of the
numerical method. The particular cross section selected has the following attributes in
common with the I-40 Bridge cross section:

1. There is only a single axis of symmetry, that is, the centroid and shear center
are not collocated; and

2. The cross section contains “branches” (i.e., more than two intersecting elements).
Further, the actual shear center is known “exactly.”

The cross section analyzed is shown in Fig. 59. It is assumed here that all cross sections
are thin-walled. Centerline dimensions are used. The distance from the centerline of the
web to the shear center, labeled e in Fig. 59, is shown by Gere and Timoshenko (1990) to
be

_ 3t,(b3 —b?)
ht,+6t,(b, +b,)’

(39)

where 1, ty, b1, ba, and h are defined in Fig. 59. Shear flow directions and shear stress
distributions for this cross section are shown in Fig. 60.

X
ts
|
| irs
{
tw—> ~—]
h/2
v ‘Centroid
Shear/e—r»T ,'
Center h/2
ts
} |
| -
L— b1—*| bg T !

Fig. 59. Branched cross section used to verify numerical procedure for locating the
shear center.
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Fig. 60. Shear flow and shear stress distribution in the branched cross section.

The numerical solution for this cross section is done by first adopting Heins’ “continuous
flow” argument across the section points 1-2-3-4 identified in Fig. 61. The “flow” in the
other elements is assumed “directed from the free edges to the intersections” (Heins,
1975) as shown in Fig. 61. Note that the “flow” in section 6-3 of Fig. 61 is directed opposite
to that shown in Fig. 60 and does not correspond to the shear flow.
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Fig. 61. Flow based on Heins’ method.
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The Heins procedure was placed in tabular format, as shown in Table XIV, using the
EXCEL (Microsoft, 1993) spreadsheet. The first column identifies the points and elements.
First, those points and elements associated with the continuous flow 1-2-3-4 are
identified. The numerical procedure proceeds from a known value at point 1 proceeding
through point 4. Segments 5-2 and 6-3 are next treated. Basically, the calculation is done
in reverse for these “branches.” For example, take branch 5-2. Quantities at point 2 have
been previously calculated in the procedure, appearing eatlier in the table. Values at point
2 are then used to calculate values at point 5 in an order reverse from the direction used
for the first four points. Thus, one proceeds from the known values at point 2 up the table
to unknown point 5.

TABLE XIV
Spreadsheet for Calculation of Shear-Center Location

SHEAR CENTER DETERMINATION FOR CROSS SECTION SHOWN IN FIG. 59

1 2 3 4 5 6 7 8 | 9 10 11 12 13 14 15 16
POINT| X Lij | RHOIj | Wij Wi Tij [Tif Lijl Wi Xi WiXji [WiXj] WiXi|SUM1[SUM2]|ly

1 10 0

1-2 10 10| 100 0.2 2 0 1000 0] 1000/ 2000 2000 600

2 10 100

2-3 20| 1.875] 37.5 0.1 2 1000] -1375[-1000] 1375 -750 750 200

3 -10 137.5

3--4 10 10/ 100 0.2 21 -1375| -2375|-1375| -2375] -7500| -7500 600

4 -10 237.5

5 10 150

5~-2 5 -10f -50 0.2 1 1500 1000)_1500| 1000| 2500] 2500 300

2 10 100

6 -10 87.5

6-3 5 10 50 0.2 1 -875[_-1375| -875| -1375| -2250| -2250 300

3 -10 137.5 -6000| -4500

Iwx yo ly SUM|ZBAR
-2750| -4.125 666.7) 1.875

INPUT

ZH B1| B2 Tf Tw

20 5 10 0.2| 0.1

SHEAR ICENT'ER LOCATION FROM CENTER OF WEB
2.25

The second column is the x-coordinate of the ith point (See Fig. 58). The third column
denotes the length, Lj of the jjith element. The fourth column denotes the perpendicular
distance, pj;, between a tangent to element ij and an axis parallel to this tangent passing
through the centroid, as shown in Fig. 58. The sign convention for pij is that, as one
proceeds along the element fromito j, p is positive if the centroid is to the left of element
ij. In the branched sections the sign convention for p is based on the path coordinate
originating at the free end, that is, location i is the free end and location j is the end with a
known value of @. Note in this example that to determine the sign for pog, it is necessary to
know the centroid location. It is straightforward to show that, for the example in Fig. 59, the
centroid is located at

y, = t,(b —bf)
¢ 2t (b,+b,)+ht,

(40)
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The fifth column, wj, is the product p; Lj, and the sixth column, denoted w;, is the sum
denoted in Eq. 31. Tjjin the seventh column is the thickness of the jjth element, and Tj; Lj
in the eighth column is simply the area of the jjth element.

The next four columns (9-12) are the corresponding four terms wixi, ®;X;, w;x;, and wx; that
can be identified in Eq. 36. Column 13 (SUM1) represents the term

(wix; + ;X)) tj Lij, (41)
and column 14 (SUM2) denotes the term
((Din + i) tj I—ij- (42)

Both these terms are found in Eq. 36. The parameter |y is then computed from the sum of
column 13 and of column 14 according to Eq. 36.

The moment of inertia (about the centroid) is determined using Eq. 38. Entries in column
15 are

(X2 +xx; + %2tk (43)

This column is then summed and divided by 3 according to Eq. 38, and the result is
presented below column 15.

The various entries in Table XIV correspond to a numerical example where the following
geometric parameters, corresponding to those shown in Fig. 59, were assigned

h=20.0 =02 (44)
bi=5.0 tw = 0.1
b = 10.0

Using the above input, the shear-center location, relative to the centroid, is found in Table
X1V to be yg = - 4.125. Inspection of Fig. 59 reveals that the shear-center location given by
Eq. 39 is measured relative to the center of the web, not the centroid. Further, e is
measured positive in the negative y direction. Therefore, the following equation relates the
shear-center location, yg, determined using Heins’ method with that in Eq. 39:

Yo=- (& +Yc). (45)

Fore =2.25 (Eq. 39), y. = 1.875 (Eqg. 40) and yg = - 4.125 (Table XIV), it can be seen that
Eqg. 39 is satisfied implying that the shear-center location calculated by Heins’ method
agrees exactly with the closed-form solution given by Gere and Timoshenko (1990) for this
numerical example.
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In Appendix B this numerical procedure is applied to the transformed [-40 Bridge
cross section (neglecting the three stringers), and the shear-center locations obtained are
(measured from the center of the transformed slab)

Thin-flange section: e =23.63in., and
Thick-flange section: e =33.53in.

These values are in almost exact agreement with those obtained by the closed-form
procedure discussed in Section V. B. 2. These results indicate that Heins’ numerical
procedure is an efficient and accurate method to locate the shear center of a general
cross section made up of thin-walled rectangular members of different materials.

Afinal calculation (also summarized in Appendix B) was made to examine the effect of the
neglected stringers on the shear-center location of the thin-flange section. Before
calculating the new shear-center location, it was necessary to determine the new
centroidal location that reflects the addition of the stringers. Results of this calculation
yield a shear-center location (measured from the center of the transformed slab) of

Thin-flange section (stringer included) : e =23.52 in.

This result indicates that, for the 1-40 Bridge cross section, neglecting the stringers
introduces less than a 0.5 percent error in the calculated shear-center location.

V. B. 4. Numerical Method for Determination of'the Warping Constant and
Sectorial Moment

Heins’ numerical procedures are now utilized to calculate the warping constant and
sectorial moment for a thin-walled open cross section. It should be noted that the method
for determining the shear center is referenced to the centroid of the cross section. The
procedure for determining the warping torsional constants, on the other hand, is
referenced to the shear center. First, the double sectorial area or unit warping with respect
to the shear center, g, is defined as

S

®, = J-pods, (46)

o]

or in discrete form as

o, = Zpoijl'ij (47)
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where p,, is the perpendicular distance between a tangent along the length of a thin

rectangular element of length Ljj and a parallel axis passing through the shear center. The
sign convention on p,; is that in going from point i to point j along Ly, p,; is positive if the
shear center is to the left.

Next, the integral
J o, tds, (48)
where t is element thickness, is evaluated for an element ij using Heins (1975) as

z tL; ((Do, + @, ) /2. (49)

The normalized unit warping of the cross section is given by Heins as
1
W, = = 0, tds — o, (50)

where A is total cross-sectional area, %, tj L.

Numerically, this normalized unit warping is written by Heins at point i for any element ij

as
1 n
W, = I:EA’ Z ((’)oi T W, )tijLij:| — @y, (51)
1

where n is the number of rectangular members forming the cross section. The warping
constant, |, is defined by Heins as

b
|, = J-Wﬁtds (52)

where b is the entire length of the section. The numerical evaluation of this warping
constant is given by

o= ) (W + W, W, W3 L, (53)
1
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Finally, the warping statical moment, S, is given by Heins as
b
S, = JWntds. (54)
0

This integral can be written in a form for numerical evaluation as
1 n
S, = EZ (W, + W, oy -

Note that the warping constant, |, is identical to the warping constant, I', required in the
input data for the ABAQUS program. Further, the warping statical moment, Sy, is identical
to the sectorial moment, I'y, required for ABAQUS.

To verify the accuracy of Heins’ numerical method for calculating the warping constant
and warping statical moment, a spreadsheet calculation was made for a wide-flange, W
36 X 359 beam where the web thickness, t, = 1.12 in., the flange thickness, t; = 2.01 in.,
the flange width, b = 16.73 in., and the beam depth, d = 37.4 in. For this case the shear
center and centroid coincide, but the section is branched. The spreadsheet is shown in
Table XV.

TABLE XV
Spreadsheet for Calculation of Warping Constant and Sectorial Moment

DETERMINATION OF TORSIONAL CONSTANTS FOR W 36 X 359 CROSS SECTION
POINT | RHO ZERO| Lij RHO*Lij | WZERO | Tij Tij_Lii [ (Wi+Wi)TiiLij Wn WARPING [STATICAL
1 0 148.0653
1-2 17.69] 8.37| 148.0653 2.01] 16.8237| 2491.006188 368831.578| 2491.006
2 148.0653 0
2-3 0f 33.38 1.12| 37.3856| 11071.02016 0 0
3 148.0653 0
3--4 17.69| 8.37| 148.0653 2.01| 16.8237| 7473.018563 368831.578| -2491.01
4 296.1306 -148.065
5 296.1306 -148.065
52 -17.69| 8.37] -148.065 2.01] 16.8237| 7473.018563 368831.578| -2491.01
2 148.0653 0
6 0 148.0653
6--3 17.69| _ 8.37| 148.0653 2.01] 16.8237] 2491.006188 368831.578] 2491.006
3 148.0653 0
104.68} 30999.06966 1475326.31 0
WARPING CONSTANT= 491775
WARPING STATICAL (SECTORIAL) MOMENT= 0
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Column 1 in Table XV is identical to that used in Table X1V for the shear-center determina-
tion. The second column, labeled “RHO ZERO,” is the perpendicular distance, in inches,
from an axis through the shear center parallel to a tangent through a given element in the
cross section. Points and elements of the cross section are identified in Fig. 62 where it
can be seen that the shear center coincides with the centroid. Note the sign convention
on po, for element 5-2. When considering a path from point 5 to point 2, the shear center
is to the right, so pg is negative for element 5-2.

In column 3 “Lj” is the length, in inches, of element ij, as in Table XIV. Column 4, labeled
“RHO™Ly” is the product of the second and third columns and is used to calculate the
double sectorial area in column 5. This column, labeled “W ZERO” is used to calculate the
double sectorial area at each point in the cross section, starting from point 1 and continu-
ing through point 4 downward in the table using values in column 4. The procedure for the
“branches” 5-2, and 6-3, is to proceed from the known quantity (2 or 3) to the unknown
quantity (5 or 6) upward in the table. Column 6, “Tj,” is the thickness of each element in
inches. Column 7, “Tj; L;,” is the product of columns 3 and 6.

Column 8, “(W; +W;) TjL;,” is constructed from columns 5 and 7. It is used in the
calculation of the normalized unit warping given by Eq. 51.

Column 9, “Wn,” is also used for the calculation of the normalized unit warping. In Eq. 51

A= 2 L, (56)
i=1

| b >
_ y
A 5} ; -2 {1
ts
d
—_— <—tw
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Fig. 62. Wide flange W 36 X 359 beam used to verify numerical method of
evaluating the warping constant and statical warping moment.
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and is the sum of column 7. Also the term

n

Z(mo, + 0, JhLy (57)

1

is the sum of column 8.
Finally, the term ®,, in Eq. 51 is obtained from the /th row of column 5.

Column 10, “WARPING,” evaluates the term
(W[21| +Wn, +an +W§, L (58)

in Eq. 53 for each element. The column is summed at the bottom of the column. The result
is divided by 3 and is identified near the bottom of the spreadsheet as “WARPING
CONSTANT.”

Column 11, “STATICAL”, evaluates the term
(Wn, + Wnl )tijLij (59)

in Eq. 51 for each element. The column is summed at the bottom of the column. The result
is divided by 2 and is identified at the bottom of the spreadsheet as “WARPING STATICAL
MOMENT.”

For this example a warping constant of 491775 in6 is identified and a statical warping
moment of 0 in4 are identified. This warping constant can be compared to the closed-form
solution given by Oden and Ripperger (1981) as

_tp%(d-t,)"

I
¢ 24

(60)

The geometric parameters of the W 36 X 359 beam listed above give a warping constant
of 491172 in6, a 0.12 percent difference from the closed-form solution. Note the AISC
Steel Manual (1989) lists a warping constant of 493000 in€ for this section, but this value
includes the fillets. The statical warping moment should be zero when evaluated relative to
the shear center.

From this example it is evident that the numerical method given by Heins for calculating
the warping constant and the statical warping moment has been accurately implemented
in a spreadsheet and can be applied to the 1-40 Bridge cross section.
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Spreadsheet calculations of the two torsional constants, |, and S, of the transformed |-40
Bridge cross section (neglecting the stringers) using Heins’ nhumerical procedure are
summarized in Appendix C. The calculations resulted in the following values for the
torsional constants needed to model the 1-40 Bridge:

Thin-flange section: l,=3.35x 1010 iné Sy =6.69 x 1010 in4
Thick-flange section: lo =5.06 x 1010 in6 Sw=6.98 x 10-10 in4

These values do not include the effects of the stringers. An additional run, also
summarized in Appendix C, was made adding the stringers to the transformed geometry
of the thin-flange section to assess the stringers’ effect on the torsional constants. The
results of this calculation are

Thin-flange section: lp=3.35x 1010 inb
(Stringers Added)

It is seen that neglecting the stringers has negligible effect on calculated torsional
constants.

At this point, only the mass density and cross-sectional area of the beam are yet
unspecified in the ABAQUS input. Further, the bending and torsional static responses
have been properly accounted for in the input data at this point. However, there are
additional considerations regarding both torsional and bending responses when beam
dynamics are considered, as discussed in the next section.

V. C. Modeling the Mass Distribution

For the torsional portion of the coupled beam response to be correct, the generalized
torsional mass must be input properly. This implies that the mass polar moment of inertia
about the center of mass must be correct. The area polar moment of inertia in ABAQUS is
internally computed from the user-supplied area moments of inertia as

Ip = 111 + lo2 (= Ix + |y, based on axes shown in Fig. 34). (81)

The quantity uLl,, where L is the length of the beam, then provides the generalized tor-
sional mass necessary to correctly model the torsional vibration response. A confounding
factor is that [41 (Ix) and 22 (ly) are input about the centroid of the cross section which, for
a composite cross section, is not, in general, coincident with the center of mass.
Unfortunately, I, cannot be explicitly input to ABAQUS. Therefore, in order to input the
appropriate rotating mass for torsional vibrations, it is necessary to modify one of the input
parameters W, A, or L. The length of the beam cannot be modified. Further, the
cross-sectional area, A, will need to be modified to properly model the generalized flexural
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mass. Therefore, the remaining possibility is to determine a modified density, u, which
results in the proper rotating mass.

The procedure utilized is to calculate the center of mass of the composite steel/concrete
beam cross section, determine the polar moments of inertia about the center of mass for
both steel and concrete components in the cross section, and then use the following
equation to determine an equivalent mass density, Lieq, for torsional vibrations:

Bl Rl
eq T ’
I11 + I22

(62)

where 141, loo = Transformed area moments of inertia supplied to ABAQUS,
us = Mass density of steel,
K¢ = Mass density of concrete,
Ips = Polar area moment of inetrtia of steel cross section about the center of mass,
and
Ipc = Polar area moment of inertia of concrete cross section about the center of
mass.

Finally, the area of the equivalent beam is specified such that

A = ACI’I’C + AS“’S , (63)
Heq
where A = the area of concrete forming the cross section, and
As = the area of steel forming the cross section.

The value of ueq and A given by Eq. 62 and Eq. 63, respectively, will give the proper mass
distribution to simulate the flexural dynamics using the transformed section properties
(bending rotary inertia is ignored here because it is a secondary effect which may or may
not be modeled in the particular beam element used by ABAQUS). Specifying the area in
this manner will produce errors in the axial response of the beam, but these errors will not
significantly affect the flexural or torsional response of the bridge model. Appendix A
summarizes the calculation of peq and A for the 1-40 Bridge cross sections. Note that this
method of calculating an equivalent mass density for the bridge cross section does not
account for the mass of the floor beams. However, this mass is present in the detailed
finite element model. To circumvent this problem, the mass of the floor beams was
uniformly distributed along the length of the bridge and the cross-sectional area was
increased so that the total mass of the cross section accounts for this additional distributed
mass. By modifying the cross-sectional area only, the additional mass will not affect the
torsional response of the beam model.
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V. D. Kinematic Constraints and Boundary Conditions

When a beam element is used, the node points that define the element are typically
located at the centroid of the cross section. The simplified beam element model of the
I-40 Bridge was defined in this manner. Such a model poses problems when trying to
simulate the connectivity of the plate girder to the column. As was shown in Sec. IV., the
modeling of these interfaces can significantly influence the calculated mode shapes and
resonant frequencies.

The following boundary conditions and kinematic constraints were applied to the beam
element model of the 1-40 Bridge:

1. The node of the beam representing the plate girder corresponding to the abutment
end was fixed against translation in the X, y, and z direction and against rotation about
the y and z axes. The coordinate axes can be seen in Fig. 35.

2. The nodes at the ends of the beam elements representing the base of the piers were
fully fixed against translation and rotation in all directions.

3. Translation in the x and y directions of the nodes representing the top of the pier were
constrained to similar translations of the node on the beam centroidal axis directly
above the pier.

4. Rotations in the y and z directions of the nodes representing the top of the pier were
constrained to similar rotations of the node on the beam centroidal axis directly above
the pier.

5. Translation in the z direction of the nodes representing the top of the pier was
constrained to rotation about the x axis of the node on the beam centroidal axis
directly above. The constrain equation was

62 = h ex y (64)

where §, is translation in the z direction of the node at the top of the pier, h is the distance
from the centroidal axis of the beam to the top of the pier, and 6y is the rotation about the
x axis of node on the beam directly above the pier. The distance h can be determined from
the centroid locations given in Appendix A and the details of the connection between the
plate girders and piers shown in Figs. 5 through 7.

V. E. Flexural-Torsional Coupling
When the shear center and center of mass are not coincident, there will be coupling
between the bending and torsional modes of response. The equation of motion for

uncoupled torsional vibration is first discussed followed by a brief presentation of the
coupled equations of motion. '
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V. E. 1. Uncoupled Torsional Vibrations

In order to investigate the torsional behavior of the 1-40 Bridge, it is helpful to first consider
the torsional equation of motion of a prismatic beam with two axes of symmetry in the
cross section, as shown in Fig. 63. For this single-material beam, the centroidal axis is
coincident with the shear-center axis. For the case where the centroidal axis is coincident
with the shear-center axis, there is no coupling between bending and torsional modes of
vibration.

The angle of twist, d6, in a segment of the beam, dz, is given by

T
d0 = ~~dz (65)

where T is the net torque acting on the two faces of the segment, G is the shear modulus,
and J is the torsional constant. Applying Euler’s equation about the center of mass, it can
be shown that the equation of torsional motion is

20 GJ 2%
a2 66
ot ul, 9z° (66)
where |, is the polar area moment of inertia of the cross section about the center of mass.

Note that, for this case of a doubly symmetric cross section of a single material, the center
of mass, centroid, and shear center are coincident.

Z
> k\
7N N
[
S
\
« / 7

aT
T+az dz

Fig. 63. Beam with two axes of symmetry undergoing torsional vibration.
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Equation 66 has a solution of the general form

I |
0(z1) = [A sin co\[é——jz +Bcos mw’%z] [Csinwt+Dcoswt], (67)

where A, B, C, and D are constants to be determined from boundary conditions and initial
conditions.

For example, consider the particular case of a rod of length L with left end fixed and right
end free. Then it can be shown (Blevins, 1979) that the natural torsional frequencies of the
rod are given by

ft=(2+l)1 G n=0,1,2. (68)
2" 4)L\ul,

Here, GJ is the generalized torsional stiffness of the beam, and plp is the generalized
torsional mass.

V. E. 2 Coupled Flexural-Torsional Vibrations

For the torsional vibration of a beam made from a single material that was investigated in
the previous subsection, the geometrical shape of the cross section was such that it
possessed two axes of symmetry similar to an I-beam. In that case, the centroidal axis,
about which bending would occur, is coincident with the shear-center axis.

When the shear center and centroid do not coincide, torsional vibrations will be
accompanied by bending vibrations, that is, bending and torsional modes are coupled
(Gere, 1954). The bending motion occurs about the centroidal axis, and torsional motion
occurs about the shear-center axis. The bridge cross section under consideration in this
report is an example of a cross section with a single axis of symmetry. While in this case
the shear center and centroid do not coincide, the shear center does lie along the axis of
symmetry.

A straightforward development of the equations for coupled bending-torsional vibrations is
given by Gere and Lin (1958). Coupled bending and torsion of open-section, thin-walled
beams is also discussed by in Carr (1969), Falco and Gasparetto (1973), Bishop and
Price (1977), Hallauer and Liu (1982), Wekezer (1987), Bishop, et al. (1989), Dokumaci
(1987), Krishnan and Singh (1991), and Capuani, et al. (1992). Other torsional vibration
considerations for open-section beams are presented in Rao (1975) and Gay (1978).
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Based on elementary beam theory, Gere and Lin develop the equations of motion for the
most general situation in which bending vibrations in two perpendicular directions are
coupled with torsional vibrations. In the special case of a cross section that has a single
axis of symmetry, one of the bending vibrations is independent of the torsional vibration.
For the case of a channel cross section, as shown in Fig. 64, it turns out that bending
vibrations about the y-axis are coupled with torsional vibrations, whereas bending vibra-
tions about the x-axis are independent of torsional vibrations. Gere and Lin give three
equations of motion (two bending and one torsional) for the general case of no symmetry.
For the case depicted in Fig. 64, where one axis of symmetry is present, these equations
reduce to the following:

v 0%v o _
Ely—a—iz'i'].lA at2 }lAyO at2 =u, (69)
a“w o°w
El A— =0, 70
*3z* ot? (70)
o g v %
Bl o3 GJa—‘g—uAyOa?+ulo 5z =0 (71)

where : v, w = deflections of shear center in x and y directions, respectively,
¢ = Angle of rotation of cross section,
ly, Ix = Principal centroidal area moments of inertia,
J = Torsion constant,
E = Modulus of elasticity,
1 = Mass density of beam material,
A = Cross-sectional area,
t=Time,
yo = Offset of the shear center from the centroid,
lo = Polar moment of inertia about the shear center, “0”, and
I = warping constant.
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Fig. 64. Channel cross section.

Note that with y being an axis of symmetry, bending about the x axis is uncoupled, as is
evidenced by the lack of a term containing ¢ in Eq. 70. By inspection, Egs. 69 and 71 are
coupled (displacement, v and rotation, ¢). It should also be noted that Eqgs. 69 and 70 are
developed from the flexural considerations, and so are bending equations fundamentally.
Equation 71 originated from torsional considerations. If the shear center (0) and centroid
(C) were collocated, then yo = 0, and Egs. 69 and 70 would describe purely bending
response while Eq. 71 would describe purely torsional response.

Assuming solutions for displacements v, w, and ¢ in a product form Z(z) T(t), then
eigenvectors (mode shapes) and eigenvalues (modal frequencies) can be found. The
result for the uncoupled case, Eqg. 70, will be a series of bending mode shapes and
corresponding modal frequencies that describe the bending response about the x axis
(See Fig. 34) and a set of coupled mode shapes and modal frequencies corresponding to
torsional response coupled with bending about the y axis that is determined from Egs. 69
and 71.

For a simply supported beam (both in bending and torsion) undergoing coupled
vibrations, Gere and Lin (1958) show that there is a quadratic equation for the two coupled
frequencies, f.. The frequency for bending about an axis through the center of mass and
perpendicular to the axis of symmetry is, of course, unaffected. Results are presented in
terms of the uncoupled bending and torsional frequencies, f, and fi:
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ﬁ(f_zJ _[1+ft2_)f—g+‘l2=o, (72)
Io L f 2128

b
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where f, = —z n=1,2,3..., 73
b L2 lJ,A ( )
5 o 2 1/2
flzﬂaz_t_[nnElm+LGJ:| and (74
L o

Ip = the polar area moment of inertia about the centroid.

The resulting quadratic yields two frequencies: the lower coupled frequency is always less
than the uncoupled frequencies f, and f;, and the upper frequency is always greater.

This change in frequencies is a smooth and implicit function of the offset, yo. One of the
frequency “branches” does emanate from a bending frequency and the other branch from
a torsion frequency. For small yo, one of the modes can be interpreted as “predominantly
bending” and the other as “predominantly torsion.”

V. F. Summary Of Beam Examples

To verify that the methods for calculating the. torsional constant, the equivalent mass of a
composite cross section, and the shear center are correct, finite element beam examples
and corresponding closed-form solutions were developed. Four different beams, 100 in.
long, were modeled first with shell elements and then with beam elements. The
cross-section geometries of these beams are shown in Fig. 65. Two different material
combinations were modeled for each cross section shown in this figure. First, steel
‘material properties were specified for both the flanges and the web. Next, concrete
material properties were specified for the flanges, and steel properties were specified for
the web. Note that the overlap in the beam and the web shown in Fig. 65 was specified so
that the shell element and beam element models would be as identical as possible. The
finite element shell models for the | cross section and the channel cross section are shown
in Fig. 66.
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Material properties that were used in these models are

Concrete: E =3 x 106 psi
v=0.15
G = 1.304 x 106 psi
Lo = 2.16 X 104 Ib-s2/in4

Steel: E =30 x 106 psi
v=0.3
G = 11.54 x 106 psi
Us = 7.48 X 104 |b-s2/in%

The first analysis to be performed was to statically apply an equal and opposite moment,
T, with a magnitude of 1 x 108 in.-lbs, to either end of the all steel | cross-section shell and
beam models. The center node was fixed for this analysis. The theoretical angles of
rotation, ¢, at the quarter points that should result from these applied moments are

7L (%10°Ib—in)(25in)

reY =2.91x1072rad, 75
GJ  (11.54x10%psi)(74.5in*) (75)

¢

where J = torsional constant given by Eq. 13, but modified to account for the width-to-
thickness ratio of the rectangular sections making up the cross section as suggested by
Oden and Ripperger (1981). The shell element model gave a corresponding angle of
rotation of 2.88 x 102 rad (a 1.03% error). Resuits identical to the theoretical solution were
obtained with the beam element model as would be expected because the value of J was
explicitly specified in the input to this model. Results from these analyses verified that the
beam parameters are being correctly entered into the finite element code and that the
stiffness of the section is being accurately modeled.

Next, this analysis was repeated for the | section with concrete flanges and steel web.
The equivalent GJ value for this section, again based on Eq. 13., is

GJ = 1.304 x 108 psi (46.6 in4) + 11.54 x 106 psi (27.9 in%) = 383.1 X 106 Ib-in2. (76)

Based on Eq. 75, the theoretical angle of rotation at the quarter points is 6.53 x 102 rad.
An angle of rotation of 6.06 x 102 rad was calculated with the shell-element model, a
7.2 % difference from the theoretical solution. This error was attributed to the course mesh
being used to model the abrupt changes in material properties at the flange-web interface.
Subsequent runs with a more refined mesh that had twice the number of elements gave a
rotation of 6.20 x 102 rad., reducing the error to 5.1%. Again, because the values of G and
J corresponding to the equivalent GJ calculated above were specifically entered for the
beam model, this model gave results identical to theoretical solution. The resulis
obtained with the shell model imply that the method given in Eq. 13 for calculating an
equivalent torsion constant for a cross section built up from thin rectangular sections of
different materials is correct.
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These two analyses were repeated for the channel cross-section models. In theory,
results identical to those obtained with the | cross-section model should be obtained for
the angle of rotation. That is, the torsional stiffness of a cross section built up from thin
rectangular members is independent of the orientation of those members. For the channel
cross-section shell and beam models with steel specified for both the flanges and the web,
results for the angle of twist at the quarter points were identical to those obtained above
for the | cross section. The concrete flanges and steel web cross-section shell model gave
slightly different results as the angle of rotation at the quarter points was 6.10 x 102 rad.
These results further demonstrate the accuracy of the method given in Eq. 13 for
calculating an equivalent torsion constant for a composite cross section. Table XVI
summarizes the static beam examples that were run and the results that were obtained.

TABLE XVI
Summary of Static Results from Beam Examples’!
Calculated | Theoretical
Angle of Angle of
Element Rotation2 Rotation3 Percent
Model Type Material (Rad) (Rad) Error
I-Beam Shell Steel 2.88x 102 | 2.91x 10?2 1.03
|-Beam Beam Steel 2.91x102 | 2.91 x 1072 0.00
Channel Shell Steel 2.88x 102 | 2.91x 102 1.03
Channel beam Steel 2.91x102 | 2.91x10%2 0.00
[-Beam Shell Composite4 | 6.06 x 102 | 6.53 x 102 7.20
[-Beam | Shell (refined)| Composite | 6.20 x 102 | 6.53 x 102 5.10
[-Beam Beam Composite | 6.53 x 102 | 6.53 x 102 0.00
Channel Shell Composite | 6.10x 102 | 6.53 x 102 6.59
Channel beam Composite | 6.53 x 102 | 6.53 x 102 0.00
TBeam 100 in. long subjected to equal and opposite moments applied at either end
of 1 x 108 in.-Ibs. Center node of the beam is fixed.
2 Calculated at the quarter point of the beams.
3 Obtained from Egs. 13 and 75.
4 Concrete flanges and steel web.

To verify that the mass distribution of the beams was being properly modeled, modal
analyses were performed to determine the first torsional mode frequency. Free boundary
conditions were specified for these analyses. For the steel |-beam the theoretical first
torsion mode frequency, as given by Eq. 3, is 117.5 Hz. A corresponding frequency of
123.3 Hz was calculated with the shell-element model yielding a 4.94% difference from
the closed-form solution. For the beam model to accurately predict the torsional frequency
when free boundary conditions are specified, the mass moment of inertia about the center
of mass must be specified correctly. This mass moment of inertia is calculated from the
specified mass density and the area polar moment of inertia about the shear center.
ABAQUS calculates |, internally as described by Eq. 61. With area moments of inertia
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about the centroid of Iy= 1741 in.4, |, = 341 in.4, and ps specified, the beam element model
of the steel I-beam gave a first torsional mode frequency of 117.5 Hz, which is identical to
that given by the closed-form solution.

The shell-element model of the composite I-beam gave a first torsional mode frequency of
1383.3 Hz. To obtain a closed-form result, an equivalent mass density, Leq, for the
composite section must be calculated using Eq. 62. This relation gives a value of
Heglp = 0.607 Ib-s2. When this value is substituted into Eq. 3 along with the equivalent GJ
given by Eq. 76, a theoretical first torsional mode frequency of 125.6 Hz is calculated.
There is a 6.10% difference between this frequency and that obtained with the shell finite
element model. If an [y and |, based on a flexural transformed section analysis are
specified in the beam model of the composite | cross section, then the appropriate equiva-
lent mass density is

&2
0.607 _ 4 pgx10-212 > .
ly +1y in

(77)

With this mass density and these moments of inertia specified, the ABAQUS beam model
calculates a first torsional mode frequency identical to that given by Eq. 3. It should be
noted that this mass density will not necessarily be the correct equivalent mass density for
flexural response, implying that the area will have to be adjusted to obtain the proper mass
per unit length for flexural vibration response.

These calculations were repeated for the steel and composite channel cross-section beams.
Gere and Lin (1958) show that, in general, the torsional response and the bending
response about the axis of symmetry will be coupled. As shown previously in Eq. 72, the
coupled frequencies are a function of the uncoupled torsional and bending frequencies
(given by Egs 2 and 3 for the case of free boundary conditions), and the ratio of the polar
moment of inertia about the center of mass to the polar moment of inertia about the shear
center. For the steel channel section with free boundary conditions I/l, = 2.37 and f/f, =
0.29. Gere and Lin show that for these ratios the torsional frequency is unaffected by the
coupling. This result was obtained with the finite element shell model of the steel channel
section, which gave a first torsion mode frequency of 114.7 Hz. Equation 3 gives a first
torsion mode frequency of 108.1 Hz, a 6.20% difference from the finite element result. The
beam finite element model of the steel channel section gives a result for the first torsional
mode frequency that is identical to that obtained with Eq. 3. For this model, I is specified
about the center of mass and is equal to 716 in.

For the composite channel section with free boundary conditions, Ip/l, = 2.37 and fi/f, =
0.45. The mass density per unit length used in Eq. 2 to calculate f, was calculated as

Ib—s?
p =UcA; + UsAg = 0.0266 e (78)
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where A; = the area of concrete, and
As = the area of steel.

Again, Gere and Lin show that these ratios will result in the torsional mode being unaf-
fected by the coupling implying that Eq. 3 should accurately predict the first torsional mode
frequency. The shell finite element model proved this to be the case as the first torsional
mode frequency of 119.8 Hz was calculated, and Eq. 3 predicts a corresponding
frequency of 112.9 Hz, a 6.11% difference. For the beam model an equivalent pl, must
be obtained in a manner similar to that given by Eq. 62. This equation give a value of
ulp = 0.752 Ib-s2 for the composite channel. Results of the dynamic analyses performed
with these beam examples are summarized in Table XVII.

TABLE XVII
Summary of Dynamic Results from Beam Examples'
Calculated | Theoretical
First First
Torsional Torsional
Mode Mode
Element Frequency | Frequency? Percent
Model Type Material (Hz) (Hz) Error
[-Beam Shell Steel 123.3 117.5 4.94
[-Beam Beam Steel 117.5 117.5 0.00
Channel Shell Steel 114.7 108.1 6.20
Channel beam Steel 108.1 108.1 0.00
[-Beam Shell Composite3 133.3 125.6 6.10
[I-Beam Beam Composite 125.6 125.6 0.00
Channel Shell Composite 119.8 112.9 6.11
Channel beam Composite 112.9 112.9 0.00
1Beam 100 in. long with free boundary conditions.
2Based on Egs. 3, 13, 62, and 76.
3Concrete flanges and steel web.

The method of locating the shear center using a finite element model described in
Sec. V. B. 2. was tested by applying it to the shell models of the steel and composite
channel cross-section beams. For the steel model the thicknesses of the web and flanges
were reduced to 0.2 in. to better simulate thin-wall behavior. The composite model had a
specified flange thickness of 0.2 in. and a web thickness of 0.02 in. The resultant shear
forces in the flange and in the web, F,, can be obtained by integrating the shear flow, q,
over the length

F, = [qdL. (79)

O ey
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By summing moments about the center of the web, as shown in Fig. 67, the location of the
shear center can be determined in closed form. Note that for the composite section, an
equivalent steel representation of the concrete flanges is obtained by reducing the
thickness of the flange by the shear modular ratio. This reduction is opposite of that done
when considering flexural response where the width of the flange would typically be ad-
justed by the modular ratio. Because of the selected dimensions, the closed-form solution
for the location of the shear center relative to the center of the web is 4.17 in. for both the
steel and composite beams. The numerical method for locating these shear centers gave
corresponding values of 4.12 for both models, a 1.2% difference from the closed-form
solution, indicating that this method is an accurate way to locate the shear center.
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Fig. 67. Method to locate the shear center of a channel cross section.

V. G. Summary Of The I-40 Bridge Model

Numerical values of input parameters used for the simplified beam element model of the
I-40 Bridge are summarized in Table XVIII. Appendices A-C summarize the calculation of
these parameters. Because the plate girders have increased flange dimensions at
locations near the interior piers, two sets of beam properties were developed.
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In theory, there are two options for specifying the mass moment of inertia about the shear
center. An equivalent mass density, as given by Eq. 62, can be specified, and the location
of the shear center relative to the centroidal axis can also be specified. ABAQUS then
performs the appropriate transfer of axis calculation internally. Alternately, an equivalent
mass density based on the mass moment of inertia about the shear center can be directly
entered. The beam examples showed that only the latter approach gave results that
correspond to the closed-form solution; hence, this method was adopted when calculating
the equivalent beam properties for the [-40 Bridge. Both methods require the location of

the shear center to be known a priori.

TABLE XVIII
Summary of Input Values for the Simplified Beam Element Model of the |1-40 Bridge
PARAMETER THIN GIRDER THICK GIRDER
Cross-Sectional Area, A [881.1in.2 997.6 in.2
Moments of Inertia Iy 1.23x 106 in.4 1.95x 108 in.4
lxy 0.0 0.0
lyy 2.01 x107in.4 2.42 x107 in.4
Torsional Constant, J 1.577 x 104 in.4 1.625 x 104 in.4
Shear Center?, yq 41.43in. 59.84in.
Warping Constant, Fm 3.35x1010in. 6 5.06 x 1010in. 6
Sectorial Moment, I Approx. 0 Approx. 0
Elastic Modulus?, E 29 x 106 psi 29 x 106 psi
Shear Modulus, G 11.54 x 106 psi 11.54 x 106 psi
Mass Density, i 1.400 x 1078 Ib-s2/in.4 1.339 x 1078 Ib-s2/in.4
TDistance from centroidal axis to shear center axis.
2Based on transformation to an equivalent steel cross section.

V. H. Simplified Finite Element Results Compared to Experimental Results

Table XIX compares the resonant frequencies identified by the simplified beam model with
those measured on the [-40 Bridge and those calculated with the detailed finite element
model BR3W. In Table XIX it can be seen that the percent difference between resonant
frequencies calculated with the beam model and the measured resonant frequencies is
less than 15% for the first flexural mode and the first two torsional modes. However, for
higher-frequency modes the error in the resonant frequencies becomes significantly larger.
The boundary conditions specified in the beam model were intended to simulate those in
the detailed finite element model BR3W. When compared with the resonant frequencies
calculated with this detailed finite element model, the beam model again shows similar
comparisons as were observed with the experimental data.
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TABLE XIX

Comparison of Simplified-Beam-Model Analytical Modal Analysis Results with

Experimental Modal Analysis Results and Detailed Finite Element Analytical Modal
Analysis Results
Resonant Frequency (Hz)
Percent Difference Between | Percent Difference Between
Beam Experimental Values and BR3W Values and Beam
Experiment| Model BR3W Beam Model Model

Mode 1
(Bending) | 2.48 2.84 2.59 14.5 9.65
Mode 2
(Torsion) 2.96 2.63 2.78 11.1 5.40
Mode 3
(Bending) | 3.50 4.36 3.71 24.6 17.5
Mode 4
(Bending) [ 4,08 5.53 4.32 35.5 28.0
Mode 5
(Torsion) 417 4.06 3.96 2.64 2.52
Mode 6
(Torsion) 4.63 5.59 4.50 20.7 24.2
Ave. % - - -

Diff. 18.2 14.5

The mode shapes calculated with the simplified beam model are shown in Figs. 68 through
73. In these figures very stiff beam elements with negligible mass have been added
perpendicular to the beam elements representing the bridge so that torsional modes can
be visualized. A qualitative comparison can be made visually by comparing these modes
to those obtained experimentally from ambient tests, shown in Figs. 10 through 15, those
from forced vibration tests, Figs. 18 through 23, and with those obtained from the detailed
finite element model BR3W shown in Figs. 38 through 43. In all cases it appears that the
simplified model is accurately predicting the experimental results and the results obtained
with the detailed finite element model. Quantitative comparisons of the mode shapes can
be obtained with Eq. 1.

The primary sources for discrepancy between the simple beam model and the detailed
finite element model is thought to be the inability to accurately model the three-
dimensional boundary conditions with the beam model and the inability to accurately model
the influence of the cross-beams. The connections of the plate girders to the piers provide
partial restraint of warping which cannot be accurately modeled when only a single beam
element is used to simulate the bridge cross section.
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Fig. 69. First torsional mode calculated with simplified beam finite element model.
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Fig. 70. Second flexural mode calculated with simplified beam finite element model.
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72. Second torsional mode calculated with simplified beam finite element model.
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73. Third torsional mode calculated with simplified beam finite element model
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VI. SUMMARY & CONCLUSIONS

As part of the research effort to study the effects of damage in plate-girder bridges, 3-D,
finite-element models of the first three spans of the 1-40 Bridge over the Rio Grande were
developed with varying levels of sophistication. The most refined model simulated the
bridge substructure above the piers with approximately 35,160 DOFs, and a second model
of intermediate refinement had 7032 DOFs. Mode shapes and resonant frequencies iden-
tified with these models were identical, and these results were in agreement with the
dynamic properties measured on the bridge (typically less than 5% error in resonant
frequencies). Calculated mode shapes were shown to be almost identical to those mea-
sured on the structure during forced and ambient vibration tests. The calculated mode
shapes were found to be particularly sensitive to the boundary conditions used to model
the connection of the plate girder to the abutment. Boundary conditions that provide the
most accurate model in terms of correlation between measured and calculated resonant
frequencies were not the same boundary conditions that provided the best
correspondence with calculated and measured mode shapes. The authors felt that
adequate agreement with measured dynamic properties was obtained, hence systematic
model-updating techniques were not employed.

These numerical models simulate composite action between the concrete deck and the
supporting steel girders. The agreement with measured data indicates that the bridge was
exhibiting composite action even though shear studs were not present. Differences with
measured dynamic properties are attributed to idealization of the boundary conditions, as
mentioned above, and the use of generic material properties for the concrete portion of
the bridge. Qualitative agreement was obtained with other investigators’ analytical results
for flexural mode shapes identified for three span bridges.

The 7032 DOF model did not accurately simulate the static deflection that was caused by
the dead load of the structure when the final cut was made in the plate girder. The lack of
agreement is attributed to localized yielding around the cut that forms a hinge and allows
more deformation than a strictly elastic model would predict. Because the modulus of the
yielded material does not change, this yielding will not influence the measured resonant
frequencies or mode shapes. The 7032 DOF model accurately predicted the measured
changes in the dynamic properties that resulted from the damage. To obtain this corre-
spondence with measured data, only the geometry of the model was changed to simulate
the damage. The implication is that the actual damage did not introduce a discernible
nonlinearity into the structure. Based on the agreement demonstrated between the
numerical results and the measured modal results, both in the damaged and undamaged
states, the authors feel that the numerical models can now be used to accurately assess
various damage-identification algorithms applied to other damage scenarios. The results
of such a study will be summarized in a subsequent report
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A major portion of this study focused on the development of a simple 1687 DOFs model
that uses a single beam element to model the entire bridge cross section. This model
required the development of a method for analyzing the torsional properties (shear-center
location, torsional constant, warping constant, and sectorial moment) of an open
thin-walled cross section of two materials. Numerical procedures summarized in the tech-
nical literature, but not widely used, were adopted to calculate these properties. These
procedures were first demonstrated on sections where values of torsional properties are
tabulated in closed form. Next, they were tested on numerical examples where the beam
element formulations could be directly and easily compared to 3-D, shell-element
formulations. In all cases the methods used to determine the torsional properties calcu-
lated input parameters that accurately predicted 3-D, shell-element results and the closed-
form solutions. When calculating equivalent torsional and flexural parameters for the bridge,
it became apparent that the stringers add negligible torsional or flexural stiffness to the
cross-section. Subsequently, the stringers were neglected when calculating the torsional
properties of the cross section.

Because the finite element code used does not allow the polar area moment of inertia to
be specified explicitly for beam elements, methods of calculating an equivalent mass
density and cross-sectional area had to be developed to accurately model both the
flexural and torsional response. This method introduces small (less than 2%) errors into
the calculated axial stiffness, but this response is considered of less interest when study-
ing a bridge subjected to typical dynamic loading. Cross-sectional areas of the beam had
to be increased to account for the mass of the floor beams and concrete barriers which
were not explicitly modeled in the beam element representation of the bridge.

The dynamic properties predicted by this simple model were compared to those
measured on the bridge. Mode shapes showed qualitative agreement with the measured
mode shapes and mode shapes calculated with the refined 3-D shell-element models.
Resonant frequencies were found to have an average of 18.2% difference with measured
values and an average of 14.5% difference with those determined by the refined 3-D shell,
finite element model. The primary limitation of the simple beam models is their inability to
accurately model 3-D boundary conditions such as those that arise from the connections
of the plate girders to the piers and their inability to model the cross beams. However, the
authors feel that the simple models provide approximations to the dynamic properties that
are accurate enough to be useful in preliminary scoping studies such as determining if the
bridge has modes of response in the strong motion portion of an earthquake response
spectrum. Also, because of the limited numbers of DOFs, this type of model can be
exercised extensively on a PC (typical of the computing environment at most smaller
consulting engineering firms) to study the response of the bridge to time-varying inputs
such as seismic or wind loading.
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APPENDIX A

CALCULATION OF EQUIVALENT BEAM PROPERTIES FOR THE 1-40 BRIDGE

A simplified representation of the 1-40 Bridge cross section was shown in Fig. 34. The
development of equivalent beam properties with which the bridge was modeled are based
on this cross-section geometry and the following material properties:

Concrete:  E =3.6 x 108 psi,
G =1.304 x 108 psi,
Ue = 2.16 x 104 Ib-s2/in4,

Steel: E =29 x 108 psi,
G = 11.54 x 106 psi, and
Us = 7.48 x 104 Ib-s2/in4.

These properties yield a modular ratio of 8.05. The concrete is assumed uncracked and
steel reinforcement is neglected. Two different cross sections are considered and denoted
as the “thin flange” and the “thick flange.” These cross sections correspond to the different
plate-girder flange dimensions that are present along the length of the bridge as shown in
Fig. 34. Standard procedures are used to determine the following beam bending
properties of the composite cross section:

1. A transformed cross section in terms of steel,
2. The centroid of the transformed section, and
3. Transformed area moments of inertia about this centroidal axis.

A.1 Equivalent Cross Section in Steel and Centroid Location

Cross-section properties of the steel members making up the bridge cross section are
listed in Table A-1.

TABLE A-1
Cross-Section Properties of Steel Members

Property 21WF62 Thin-Flange Girder |Thick-Flange Girder
Area (in2) 18.2 108 171

Ixx (in%) 1330 2.87 x 100 5.28 x 10°
lyy (in%) 53.1 2.32x103 6.05 x 108
depth, d, (in.) 21.0 120 120
Flange thickness, 0.615 1.50 2.625
(in.)

Web thickness, tw, 0.400 0.375 0.375

(in.)

flange width, b, 8.24 21.0 24.0

(in.)
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To develop an equivalent bending cross section in steel, the width of the concrete slab is
divided by the modular ratio yielding a transformed slab 8.7 in. thick and 64.8 in. wide for
bending about the X-axis shown in Fig. 34, and a slab 1.08 in. thick and 522 in. wide for
bending about the Y-axis. The transformed areas and corresponding vertical distances
from the reference axis shown in Fig. 34 to the centroids of the respective transformed
areas are listed in Table A-2.

TABLE A-2
Transformed Areas and Centroids
Transformed Area, Y-Distance to X-Distance to

Area (in2) Centroid, (in.) Centroid, (in.)
Thin Flange Girder 108 60 180
Thick Flange Girder 171 60 180
21WF62 18.2 109.5 0, 902
Concrete Slab 5641 124.35 0

1 Transformed Value

2 One stringer is on the centroidal axis, the other two are 90 in. from the centroidal
axis.

The resulting centroid location, Y, is obtained from the familiar relation derived in most
statics texts,

Y= 2 AV , (A-1)
A

where A; is the cross-sectional area of the ith element forming the beam, and Vi is the
centroid location of the ith element.

Based on the origin shown in Fig. 34 and the values listed in Table A-1, the centroidal
locations for the transformed areas are

Thin-Flange Girder: Y =106.7in.

Thick-Flange Girder: Y =100.6 in.

Because of the vertical axis of symmetry, X = 0.
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A. 2 Moments of Inertia of the Transformed Section

Area moments of inertia are determined in the conventional manner about the centroidal
axes for both the thin- and thick-flange sections listed above. The calculation is done for
both horizontal and vertical centroidal axes of the transformed section. The contribution to

the moment of inertia about a given centroidal axis for each area is determined using the
notation shown in Figure A-1. The general equation, from the Parallel Axis Theorem, is

lag = loo + Adg, (A-2)

where lgg is the moment of inertia of area A about an axis, -8, lgo is the moment of inertia
of area A about its local centroidal axis, 0-0 , and d is the distance between the 0 and
B axis. For rectangular sections,

bd?
lhn = — -

where b is the dimension parallel to the 00 axis and h is the corresponding dimension
perpendicular to the 00 axis. For I-beam shapes, lyg takes on the values

TR 3 2
loo = M.;.Q bt_f.*.btf(g_t_f) (A-4)
12 12 2 2

for the moment of inertia about the strong axis, and

3
oo = (d-2t)th | 2(tfb3 J (A5)

12

for the moment of inertia about the weak axis, with notation as indicated in Table A-1.
Results are presented in Table A-3 for the cross sections with thin and thick girders,
respectively.
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TABLE A-3

Section Centroid

Area Moments of Inertia About Local Centroid and Distance to Transformed Cross-

Moment of Moment of Y-Distance to| Y-Distance to
Inertia about | Inertia about | X-Distance to| Transformed | Transformed
element element Transformed | Thin-Flange | Thick-Flange
centroidal axis|centroidal axis| Centroid Centroid Centroid
Area Ixx, (in%) lyy, (in%) (in.) (in.) (in.)
Transformed
Slabt 3.56x 103 12.8 x 106 0 -17.65 -23.75
21WF622 1.33x 103 53.1 0,90 -2.8 -8.9
Thin Girder | 2.87 x 105 2.32 x 103 180 46.7 --
Thick Girder | 5.28 x 105 6.05 x 108 180 -- 40.6

1 Based on transformed area
2 Moments of inertia are taken from the AISC Manual

Total moments of inertia about the centroid of the transformed section are

1.

Cross section with thin-flange girders:
lyy = 20.1 x 108 in%

Cross section with thick-flange girders:
lyy =24.2 x 106 in4

Area A
AN

\

S

A

T

d

|

=Y

Centroid

Fig. A-1. Calculation of moments of inertia.
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A. 3. Torsional Constant of the Composite Cross Section

The equivalent torsional constant of the composite cross section, Jeq, is calculated as

Joq ==—, (A-6)

where G; is the shear modulus of the ith thin section forming the cross section, G is the
shear modulus of the material that is being used to represent the transformed section, and

1
Ji = Eblt?!

(A-7)
where b is the length of the thin section and {;is its width. The factor of 1/3 is an approxi-
mation and sufficiently accurate for sections where the ratio of b;to t; is greater than 10.
This approximation is valid for all members forming the 1-40 Bridge cross section.
Table A-4 summarizes the torsional constant for the various members forming the 1-40
Bridge cross section.

TABLE A-4

Torsional Constants and Shear Moduli for Members Making up the |-40 Bridge
Cross Section

Torsional Constant, J;, Shear Modulus, G;,
Area (in%) (psi)
Concrete Slab 11.5x 105 1.576 x 106
21WF621 1.83 11.54 x 106
Thin Girder 49.36 11.54 x 106
Thick Girder 291.5 11.54 x 106

1 Torsional constant was listed in AISC Manual

The values listed in Table A-4 yield the following torsional constants when the transformed
section is expressed in terms of steel material properties (that is, Gt = 11.54 x 108 psi)

1. Cross section with thin flange girders:
J =1.577 x 104 in4,

2. Cross section with thick flange girders:
J =1.625 x 104 in4.

It should be noted that the torsional constant is independent of the orientation of the
members forming the cross section.

105



A. 4. Equivalent Mass Density for the Cross Section

An equivalent mass density, leq, is calculated such that the polar mass moment of inertia
about the shear center is accurate. A confounding factor in the calculation of this
parameter is that the computer code being used does not specifically allow the polar area
moment of inertia to be entered, but instead calculates this parameter as the sum of Iy
and lyy . The equivalent mass density is given by

Z Ko,

Heq = (A-8)

Iy + Iyy ’
where pj is the mass density of the ith section forming the bridge cross section, and I, is
the polar moment of inertia of the ith section about the shear center. Table A-5 lists the
polar moment of inertia about the shear center for the various sections forming the bridge
cross section.

TABLE A-5

Parameters Needed to Calculate the Equivalent Mass Density for the 1-40 Bridge
Cross Section

Moment of Moment of Polar Moment
Inertia about | Inertia about of Inertia, Ip,
local local Y-Distance to| About the
centroid, Ixx, | centroid, lyy, [Shear Centerl| Shear Center | Mass Density

Area (in4) (in4) (in.) (in%) (Ib-s2/in4)
Concrete Slab| 28.6 x 103 1.03x 108 | 23.63 (thin), [ 1.06 x 108 | 2.16 x 10-4

(Not Transformed) 33.58 (thick) [ 1.08 x 108
21WF622 1.33x 103 53.1 34.67 (thin), | 3.65x 105 | 7.48 x 104

44 .57 (thick) | 4.08 x 10®
Thin Girder3 | 2.87 x 105 2.32x 103 84.17 9.11x 106 | 7.48x 104
Thick Girder3| 5.28 x 105 6.05x 103 94.07 15.2x 106 | 7.48 x 104

1 Location of the shear center was determined by numerical procedures, two values
correspond to thin- and thick-flange sections, respectively.

2 Polar moment of inertia is the total for all three stringers.

3 Polar moment of inertia is the total for both plate girders.

The values of Iyx and lyy listed in Section A-2 above yield the following equivalent mass
densities for the various bridge cross-section geometries:

1. Cross section with thin-flange girders:
Heq = 1.400 x 10-8 Ib-s2/in4,

2. Cross section with thick-flange girders:
Heq = 1.339 x 10-3 Ib-s2/in4.
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A. 5. Cross-Sectional Area

To make the equivalent mass density that was developed based on torsional consider-
ations also appropriate for calculating the flexural response, the area of the beam element
representing the bridge cross section, Agq, must be adjusted such that

Poq = Lsfis Hlioc (A-9)
Meq

where Ag is the area of steel forming the cross section and A, is the corresponding area of
concrete. Noting that A; is 4541 in? and using the values for As, s, L, and pegq listed
above, the following values are obtained for Agq

1. Cross section with thin-flange girders:
Aeq = 845.2 |n4,

2. Cross section with thick-flange girders:
Aeq = 954.1 in4.

The actual areas used in the beam model have been increased approximately 4% to
account for the mass of the floor beams, which have not been explicitly modeled in this
simple representation of the bridge. These areas will introduce slight errors (less than 2%
for the thin-flange section) for the axial stiffness of the bridge, but the axial response is
generally of limited interest; hence, this error is considered acceptable. At this point, all
necessary parameters needed for an equivalent beam representation of the 1-40 Bridge
cross section have been defined.

107




APPENDIX B

CALCULATION OF SHEAR-CENTER LOCATION FOR THE 1-40 BRIDGE

A detailed summary of the closed-form and numerical methods to locate the shear center
of the 1-40 Bridge approximation are summarized in this Appendix. The nomenclature for
the various segments of the I-40 Bridge approximation is shown in Fig. B-1, and the shear
stress resultants are shown in Fig. B-2. First, the closed-form solution for the shear-center
location is determined following the steps listed in Section V. B. 2. The resultant shear
forces in the various segments making up the approximation to the 1-40 Bridge are

SEGMENT A-B: (See Fig. B-1)

o h S
Q, =XA= st1(§—a+—2—), (First moment of area) (B-1)
V.Q
T=—Y= S(E —-a+ E)L , (Shear stress) (B-2)
Lt 2 "2/,
TA=0 3 (B'3)
1o = 2(h-a)Yx  and (B-4)
2 ,
[ a®t
F,= jmds = 12[‘ (3h—4a)V,. (Resultant force) (B-5)
y

o]

SEGMENT A'B: (See FIG. B-1)

h S
Qy = St1(§+a—§) s (B'6)
t:s(n+a—§)L : (B-7)
2 21,
T, =0, (B-8)
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Ty = %(h+a)¥"— , and

y

a’t,
F,= | ttds=—1(3h+4a)V, .
12,

o]

SEGMENT B-C:

Shear flow from segments AB and A'B add.
Osc = 9as +Aae = 1T, +1iT5 o 75, -

Solving for 1, _and substituting previously determined results,

T
©
1l
|

1r +1. |t,b , and
(o0 0t

F =%|:t_13h+§_m+92:| .

o2, |t t, 2

Resultant forces are shown in Fig. B-2, where symmetry has been invoked.

From force equilibrium,

V =F, +2F, - 2F, .
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(B-10)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)



Substituting Egs. B-5 and B-10 into Eq. B-17 yields

3l

y

3
F, = v[1- 4a t*] . (B-18)

Summing moments about the yet unknown position of the shear center (S.C., Fig. B-2), it
is readily shown that

e= Fi[l=3h+2(F1 ~F,)(b+e)] . (B-19)

6

Substituting Egs. B-5, B-10, B-16, and B-18 into Eq. B-19, and noting that the moment of
inertia about the axis of symmetry is

s bth® 4t a°
+—=—+

1
I, =—t.(h+2c —1Z 4ath?, B-20

y

the shear-center location relative to the center of the transformed concrete slab is
1 t. b
e=—/| 3tbh?<2a-1+—!-8ba% .
61y|: 2 { L, 2} 1 :l (B-21)

The geometry of the cross section can be simplified to that of a channel section if the
following substitution are made into Egs. B-20 and B-21:

t1=0,to=t;,13=1ty,c=0,anda=0.

Eq. B-21 then reduces to

3tb?

=—+t_— (B-22)
t,h+6bt,

This result is identical to the shear-center location of a channel given by Gere and
Timoshenko (1990), and therefore, provides at least a partial check of Eq. B-21.
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The following numerical values of the various parameters apply to the two 1-40 Bridge
cross sections (thick-flange, thin-flange):

1.50 in.(thin—flange)

T =
1 ;
2.625 in.(thick —flange)
t,=0.375in.,
t,=1.08in.,

a= { 10.5 in. (thin—flange)
12.0 in. (thick —flange)

h =360in.,

b=120in., and

c=81.0in.

The corresponding shear-center locations, e, measured from the center of the transformed
concrete slab as shown in Fig. B-2 are

thin-flange: e =23.63in., and

thick-flange: e = 33.55 in.
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Fig. B-2. Shear stress resultants in the approxima-
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Fig. B-3. Shear flow directions modified for incorpo-
ration with Heins’ numerical method.

Next, the shear center for the 1-40 Bridge transformed cross section is located using the
numerical method of Heins (1975). Determination of the shear centers for the thick flange
and thin flange 1-40 Bridge cross sections follows the procedures outlined in Section V. B.
3. Referring to Fig. B-3, the principal path coordinate, s, is assumed to start at point 1,
proceeding along the path 1-2-3-4-5-6. Remaining branchings (10-2, 8-3, 7-4, and 9-5)
are calculated separately starting from the free ends and proceeding toward the
respective common branch points. Thus an additional path coordinate si is introduced at
the free end of each of these branchings. The procedure is to calculate the unit warping
constant, w, first along the principal path coordinate. Then the distribution along the
branchings is calculated backwards from the known values at the junctions.
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The directions of the “flow” for the numerical evaluation shown in Fig. B-3 do not in all
cases agree with the shear flow shown in Fig. B-2. Numerical values for the geometric
parameters of the 1-40 Bridge shown in Fig. B-3 are

a = 10.5 in (thin-flange)

a = 12.0 in. (thick-flange)
t1 = 1.50 in. (thin-flange)

t1 = 2.625 in. (thick-flange)
to =0.375in

t3 = 1.08 in (transformed)
h =360 in.

b=120in

c=81.0in.

The centroid locations, Y, relative to the center of the transformed concrete slab for
thick- and thin-flange simplified cross sections (stringers and top flange of plate girders
neglected) are determined using Eq. A-1. Results for the two cross sections are

Thin-flange cross section: Y =17.80 in.

Thick-flange cross section: Y =26.31 in.

Positive values are actually measured in the negative Y direction shown in Figs. B-1 through
B-3.

The Heins tabular procedure for the thin 1-40 Bridge cross sections are shown in Tables
B-1 and B-2 , for the thin and thick cross sections. Definitions for the column entries and
calculations are identical to those described in Section V. B. 3. Note that again the values
of the unit warping constant, w, in column 6 are calculated from point 1 to point 6, that is,
downward, whereas values for points 7, 8, 9, and 10 are calculated upward in the table
from known values. For example, wq¢ is calculated from the known value w, by subtracting
w1g (column 5) from wy. Further, the value p1¢-2 is negative because the centroid is to the
right as one proceeds along L1g-2 from point 10 to point 2.

Final results for the shear-center location are shown at the bottoms of the respective tables.
In both cases, moments of inertia, ly, measured about the centroidal y axis calculated
numerically using Eq. 38 agree with conventional hand calculations. The shear-center
locations, yg, measured from the centroid are

Thin-flange section: Yo =-41.43 in, and

Thick-flange section: Yo =-59.84 in.
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Negative values correspond to the positive Y direction shown in Figs. B-1 through B-3.
Using the centroid locations given above, the shear-center locations measured from the
center of the transformed slab are

Thin-flange section: e =23.66 in, and

Thick-flange section: e =33.53in.
Here, positive values correspond to the positive Y direction shown in Figs. B-1 through B-
3. These values correspond almost identically to the shear-center locations determined
previously in this Appendix using the closed form ‘strength of materials’ approach .
Finally, Table B-3 summarizes the calculation of the shear-center location for the thin-
flange section with the stringers included. The resulting shear-center location measured
from the centroid is

Thin-flange section: Yo =-41.43in,

and measured from the center of the transformed slab the shear-center location is

Thin-flange section: e =23.63 in.

The numerical procedure suggested by Heins provides a general and easily implemented
method for calculating the shear-center location of an open section made up of thin rect-
angular members with different material properties.
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APPENDIX C:

CALCULATION OF THE WARPING CONSTANT AND SECTORIAL MOMENT
FOR THE 1-40 BRIDGE

Calculations of the warping constant and statical warping moment (or sectorial moment)
are presented in Table C-1 for the thin |-40 Bridge cross section and in Table C-2 for the
thick cross section. These calculations are based on the idealized cross section shown
in Fig. 53. Results are indicated at the bottom of each table. In Table C-3 the stringers
are added to the idealized cross section to examine their influence on the calculated
warping constant and statical warping moment. Again, it is seen that the stringers have
negligible effect on the value of the warping constant and sectorial moment. The shear-
center location and identification of points and elements of the cross section are shown
in Fig. C-1.

8e
1.08" 2.625" (1.5")
v
0.375" 10 T
3e / T 2 24" (21")
180" 1 L
S.C. l
—|33.55" |~— ;fo.. 6
(23.63") 1 T
4 5 24" (21"
¢ =T / ( )
2 0.375" 9 -
[+o]
IO 2.625"
2 (1.5")
<—————120“——l

Fig. C-1. Nomenclature for warping constant and statical
warping moment calculation.
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