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Abstract

In this paper, the feasibility of reconstructing a single photon emission computed tomography (SPECT)
image via the parailel implementation of a backpropagation neural network is shown. The MasPar, MP-
1is a single instruction multiple data (SIMD) massively paralle! machine. It is composed of a 128x128
array of 4-bit processors. The neural network is distnibuted on the array by dedicating a processor (o
each node and each interconnection of the network. An 88 SPECT image slice section is projected into
eight planes. It is shown that based on the projections, the neural network can produce the original
SPECT slice image exactly. Likewise, when trained on two parallel slices, separated by one slice, the
neural network is able to reproduce the center, untrained image (o an RMS error of 0.001928.

Introduction

In recent years, artificial neural networks (ANNs) have been the subject of
extensive theory, implementation and applications research. Spawned by the ever-
increasing processing power of computers, ANNs have proven to be useful in
~applications for which conventional techniques have had difficulty. Such
applications include pattern and speech recognition, and image enhancement.

One area in which the image enhancement capabilities of neural networks may be
applied is nuclear medical emission computed tomography (ECT). ECT -utilizes
the radiation emitted by a medical radionuclide to produce a three-dimensional
image. This image is reconstructed from a series of two-dimensional projections.
Reconstruction is typically achieved through a computationally expensive filtered
backprojection algorithm [1]. Although this method provides useful diagnostic
information, it does have several limitations that create high statistical uncertainty
in the reconstructed image [2,3]. Neural networks on the other hand, have the
capability of handling many of the causes of these uncertainties, including
attenuation and scatter effects. However, the training time required to simulate a
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reconstruction ANN large enough to handle useful images (i.e., 64x64) may not be
practical. Training a network fully, often requires presenting the entire training set
several thousands of times. Therefore, the time in which the ANN can be trained
is an important consideration in ECT reconstruction.

Although much success has been achieved with neural networks, the applicability
of ANN’s to large-scale problems has been limited. Implemented primarily
through simulation on digital serial computers, the size of the neural network and
hence, the size of the problem that can be evaluated is limited by the processing
speed of the implementing computer. The architecture of a multi-layer neural
network has a natural parallel structure. One way to utilize this architecture and
improve processing time is to simulate the ANN on a parallel machine.

The objective of this :aper is to demonstrate the feasibility of single photon
emission computed .ymography (SPECT) image reconstruction via a
backpropagation neural network [4}, implemented on the MasPar MP-1 parallel
computer. ' '

SPECT Data Set

Small sections of conventionally reconstructed SPECT images were used as the
training set for demonstrating neural network reconstruction capabilities. Each
8x8 section used for training the ANN was taken from a clinical 64x64 SPECT
image slice. The planar inputs were generated by projecting each image slice into
eight 8-quadrant planes. Each plane was rotated 22.5° from the previous plane
around the image, giving eight incremental views covering 180° around the image.
Each of the eight quadrants of each planar view is a summation of the intensity
values projected from the 8x8 section.

Two sets of training data were used to demonstrate SPECT reconstruction. The
first set consisted of a single datum. The objective of training a single image was
to demonstrate the neural networks ability to memorize a SPECT image. The
second data set consisted of two parallel sections separated by one slice, taken
from a clinical SPECT image. The objective here was not only to show the ANN’s
ability to recall more than one image, but also to determine its ability to generalize
the relationship between the planar and reconstructed data. This was achieved by
testing the networks ability to reconstruct an image slice not used in the training
set.
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Multi-layer Neural Network on a Distributed Array of Processors

The MasPar MP-1 is a single instruction multiple data (SIMD), massively parallel
machine. Composed of a 128x128 interconnected array of 4-bit processors, the
performance of the MP-1 is dependant on how readily the problem at hand can be
distributed among the 16,384 processors. The backpropagation architecture can
utilize this parallel processing power, by executing the functions of all processing
elements (PEs) in each layer simultaneously.

The architecture implemented for determining the feasibility of SPECT
reconstruction by an ANN, required 64 inputs, for the eight planar projections, and
64 outputs, to produce the 8x8 reconstructed image slice. The optimal number of
PE:s in the hidden layer was determined by training a number of networks with
various hidden layer sizes. The neural network was distributed on the processor
array by dedicating a processor to each node and each interconnection in the
network, figure 1. These processors are aligned on the array so as to best utilize
the high speed north-south, east-west communication pathways. This distribution
of the network allows data to propagate from layer to layer more efficiently than
less direct pathways. The training time required for large architectures was
significantly less on the MP-1 than on the VAXStation 3520 serial computer, to
which serial and parallel training rate comparisons were made, Table I.

I Wil | W112 | W13 | - - - | W1j

I WI21 | WI122 | w123 | - - - | W12

I3 | wi3p | w132 | w13z | ... | w3

Ig4 | Hy/wi|Hz/wy [ H3/w3| ... | Hj/w
w211 | w221 | w231 w2i1 | O1
W2163 | W2263 | W2363°| - - - | W2j63 | ©63
w2164 | W2264 | W2364 | - - - | W2j64 | Oe4

Figure 1 ANN Distribution on 128x128 PE Array.
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- Table1 Serial Vs. Parallel Processing Rates

ANN Architecture

1000 iterations of a single datum training set (time)
64x8x64 64x16x64 64x24x64 64x32x64 64x40x64
VAXStation

3520 62s. 135s 176 s 225s 277 s
(serial)
MasPar

MP-1 - 62s 66 s 725 75s 77 s

(parallel)

Single Image Memorization

A number of different neural network architectures were trained on a single
SPECT image. Each network architecture trained to an RMS error of zero
(single-precision), except for an architecture with only two hidden nodes. All
other architectures reproduced the SPECT images exactly. This precise recall
accuracy was achieved in less than 100 training iterations, except for 1-, 3-, 4-, and
5- hidden node architectures which required as many as 200 iterations to reach an
RMS error of zero. Overall memorization of a single SPECT image was not a
problem for the backpropagation neural networks.

ANN Generalization of Multiple SPECT images

The next task was to determine the neural networks ability to generalize the
training set in order to accurately produce novel images. This was addressed by
training an ANN on two 8x8 parallel image slice sections which were separated by
one slice. The network was trained on these two images and achieved an RMS
error of 0.001928. Then the untrained middle image slice was fed forward through
the neural network. The output image generated had an RMS error of 0.001231.
The full 64x64 reconstructed SPECT image from which the untrained 8x8 section
was taken, is shown in figure 2. The actual SPECT image section and the ANN
generated SPECT image section are shown in figures 3 and 4. The network that
produced the image in figure 4, had a 64x8x64 architecture and was trained for
6000 iterations on the two image training set.




620  Fifth Annual IEEE Symposium on Computer-Based Medical Systems

Discussion and Concluding Remarks

The neural networks ability to memorize a SPECT image and to generalize
between two slice images to reconstruct the center, untrained image shows that full
SPECT image reconstruction via an ANN is feasible. Although a statistical
comparison of the reconstructed image to the original image was made, the most
important measure of the ANN's image reconstruction ability is a visual one. This
is particularly true of SPECT information collection which is through visual
interpretation. It can be seen-in figures 3 and 4 that the anatomical features of the
original SPECT section are present in the image reconstructed by the ANN.

The next step in developing SPECT reconstruction with an ANN will be to train
the network on multiple slices, every other one, from all the slices of a SPECT
brain image. This will be important in determining if the ANN can generalize over
a large range of images and accurately reproduce the untrained slices.

From that point the same approach taken for 8x8 image reconstruction will be
applied to full 64x64 SPECT images. This will require a modification to the

parallel implementation of the ANN. Although the processing times achieved with
the MP-1 are encouraging, many high-speed serial machines could more efficiently
train the architectures used in this paper. Superior training rates are attainable
through better utilization of the PE array. An improved parallel backpropagation
implementation algorithm has been proposed [5]. A new algorithm will be
necessary for full SPECT image reconstruction, and for what may eventually be a
more efficient SPECT reconstruction technique.

The primary constraint to accurate ECT image reconstruction involves the
presence of noise, systematic errors, artifacts, and physical photon transport effects
such as scatter and attenuation [2, 3]. Improved SPECT reconstruction via an
ANN may be achieved by compensating for these problems in the training set.
One way in which the accuracy of reconstruction can be improved is by modeling
the physics of these problems in conjunction with the reconstruction algorithm
used to produce the ANN training set. The Monte Carlo method can be used to
simulate attenuation, scatter, and other effects so that the ANN can be trained to
correct for these undesired artifacts [6, 7). ANN SPECT reconstruction would
then offer the advantages associated with the Monte Carlo method, but without
the inherent computational cost.
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Figure 2 Reconstructed 64x64 SPECT image from which the 8x8
untrained section was taken (denoted by arrow).
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Figure 4 ANN reconstructed 8x8 SPECT section.
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