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Abstract

The wN scattering in P;; channel is investigated within the two-
channel model of Pearce and Afnan[6]. The model consists of: (1)
vertex interactions b — w N, 7A with b denoting either a bare nucleon
or a bare Roper state,(2) a background potential v,p ,p with B =
N, A. Assuming that vxp xp can be phenomenologically parameterized
as a separable form and the wN inelasicity can be accounted for by
dressing the A in the wA channel by a A «— wN vertex, it is found
that the fit to the P;; phase shifts up to 1 GeV favors a large mass
of the bare Roper state. OQur results are consistent with the findings
of Pearce and Afnan[l12] that if the mass of the bare Roper state is
restricted to be < 1600 MeV, then a physical Roper will have a width
which is too narrow causing a rapid variation of the phase shifts at
energies near the resonance energy.

!Permanent address: Institute for Theoretical Physics, Kiev-130, 252130, Ukraine

The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract  No. W-31-109-ENC3-38.
Accordingly, the U. S. Government retains a

’ nanexclusive, royalty-free license to publis'h
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

DISTRIZOTION OF THIS COCURENT 18 e iamep A
(




I. INTRODUCTION

An important direction in nuclear research is to investigate the propa-
gation of the nucleon resonances(N*) in nuclear medium. To proceed, it is
necessary to construct a theoretical model to describe the hadronic and elec-
tromagnetic productions of N* on the nucleon. Previous studies have con-
centrated mostly on the A(1232), the one with the lowest excitation energy.
Recently, more attentions[1] have been paid to the higher mass nucleon res-
onances. The study of the Roper N*(1440), which has the same spin-isospin
quantum numbers of the nucleon, is of particular importance since several
interesting questions concerning its dynamical orgin have been raised. Both
the bag model and the nonrelativistic quark potential model predict that
the first orbital excitation with negative parity lies below the first positive
parity excitation (0s — 1s)[2]. It has also been suggested by Arndt, Ford
and Roper[3] that two independent resonance poles are required to fit the
observed energy dependence of wN scattering in P;; channel. These two
results can be understood more easily if we assume that the Roper could
be a hybrid state rather than the ordinary ¢® state. One possibility is that
the bare g3 bag state associated with the Roper is strongly dressed by the
meson cloud which can be introduced into the bag model according to chiral
symmetry. Thus it is interesting to explore the extent to which this can be
substantiated in a dynamical model which can describe the 7N scattering
in Py channel. An accurate 7V model in Pj; channel is also needed for
investigating the dynamics of the TNVN system. For example, Afnan and
McLeod[4] demonstrated that wd elastic scattering is sensitive to the #N
Pp; potential and Stevenson et al[5] found that an accurate #N Py; ampli-

tude is indispensable to explain the polarization observables in 7wtd elastic



scattering at 50 MeV.

It has been difficult[6-13] to obtain a satisfactory theoretical descrip-
tion of the mN phase shifts in Pj; channel. At low emergies By, < 400
MeV, it requires a detailed cancellation between the repulsion originating
from the nucleon pole and an attractive background. Previous investiga-
tions have shown that part of the needed attraction can be attributed to
the excitation of the Roper resonance( called R thereafter). The resonance
excitation can be most easily described by introducing a vertex interaction
N* & nN,7A in a dynamical model. One can justify this approach from
the point of view of the cloudy bag model[14]. This has been the start-
ing point of the formulation developed by Pearce and Afnan[6,12]. They
have been able to give a good description of the P;; scattering at low en-
ergies By, < 400MeV. At energies near the Roper resonance, they found
that if the mass of the bare Roper is assumed to be less than about 1600
MeV, the predicted phase shifts vary too rapidly, implying that identifing
the lowest radial bag excitation with the Roper leads to a physical Roper
that is much too narrow in width. However, in the diagramatic approach of
Pearce and Afnan[6,12], the unitarity condition forces them to include only
the pole and the one-particle-exchange mechanisms in the resulting scatter-
ing equation. It is possible that the difficulty encountered by them could
be resolved if additional mechanisms are included. From rather extensive
7NN studies[15], it is known that to account for the NN data, one needs to
include mechanisms other than that can be derived diagramatically within
the constraint of the # NN unitarity condition. These mechanisms can be
identified primarily by phenomenological means. One example is a series of

studies of mINVIV processes by Lee and Matsuyama[16] within a Hamiltonian



formulation of the problem. In this work we will make a similar attempt
to explore whether the difficulty encountered by Pearce and Afnan[12] can
be resolved if the non-pole mechanisms( called the background interactions)
are treated purely phenomenologically. Needless to say, our objective is
very limited. It is mainly aimed at getting a P;; model which can accuratly
describe the data and therefore can be used to investigate the role of the
Roper resonance in determining nuclear dynamics at intermediate energies.
Nevertheless, our study can provide some additional information for further
exploring the cloudy bag model description of the Roper resonance.

In section II, we introduce a simple extension of the formulation of Pearce
and Afnan[6] to account for the inelasticity due to the decay of the A in the
wA channel. The results are given in section III. Section IV is devoted to

summary and discussions.

II. BASIC EQUATIONS

For practical # VN or nuclear calculations, the two-channel model of
Pearce and Afnan[6] is more tractable than their model with three-body
7w N unitarity [12]. It is therefore worthwhile to examine whether with
some phenomenlogical procedures this model can be made to describe the
7N data up to 1 GeV. According to the formulation of Ref.[6], the scattering
amplitude in the coupled-channels space § = #IN @ A is defined by the

following operator equation
TvrB,‘er'(E) = V‘er,ﬂ'B' + V7rB,7rB"G1rB”(E)T‘:rB",‘er'(E), (1)

where B denotes either a NV or a A state. The summation over the interme-

diate 7B” states is understood in Eq. (1). We will use the same simplified




notations in all equations presented in the rest of the paper. To have a more
realistic description of the mIV inelasicity, we include the decay of the A in
the 7A channel and therefore define the #B propagator in Eq. (1) as

= 1 = (2)
E — Eg(p) — Ex(k) — (B — Eq(k)) +ic
where Ep(p) = (m} + 72)!/2 and E,(E) = (m2 + k2)Y/2. E and 7 denote

respectively the three-momentum of the pion and the baryon B, m, and

Grp(E) =

mp are their masses. In the 7N channel, my is taken to be the physical
nucleon mass My and hence we set £,5(E) = 0. On the other hand, the
self-energy of the A is determined by a 7N « A vertex

1

w — En(P) — Ex(k) + ic
where frn,a is the hermitian conjugate of the vertex function fa rn.

Tra(w) = faxn fxn.a (3)

By fitting the low energy Ps;3 phase shifts, it is found[16] that
the bare mass of the A is ma = 1280 MeV and fa.n(g) =
0.98/(v/2(m + mu))(g/m=)(A2/(A? + ¢))? with A = 358 MeV /c.

The potential V;p,p in Eq. (1) consists of a background term and a

two-pole term

V1rB.1rB' = UrBxB' T f‘gg,bdl()O) (E)fb(g?B' (4)

where we have defined f,(roB),b as the complex conjugate of the vertex fb(ng.
b = N and R denote respectively a bare nucleon state and a bare Roper
state. Their masses mQ; and m% are the free parameters of the model. The
vertex interaction flfggB describes the decay of the bare particle b into a 7V
or a wA state. In the obvious matrix notation, the propagator in Eq. (4)

can be written as

0
(0)_1 _ E—mv 0
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The most important constraint on a theoretical description of the 7V
scattering in Pp; channel is that the solution of Eq. (1) must have a pole at
E = My and the residue of the pole should be related to the physical TN N
coupling constant. Explicitly, it is necessary to require that

F2) (o)* £ ()
E ~ My

EEHA}N T1rN,1rN(kO, kO) -E) + O((E - MN))’ (6)

where F2'%)(k) is the physical 7NN form factor and ko is the on-shell
momentum at B = My . The form of fP¥3(k) within our model and its

relation with the physical coupling constant f2/(4r) ~ 0.08 will be defined

later.
To derive conditions under which the limit Eq. (6) is approached, it is

convenient to cast the solution of Eq. (1) into the following form
Trp,55/(B) = Tirp(E) + fun,p (BVyon(B) fonam (B) ()

where the nonpole(np) term is determined only by the background potential

VxB,xB'
T 5(E) = 02B,2B' + V225" Crpn(E)T ) . pi(E). (8)

The dressed vertices and propagators in the second term of Eq. (7) are of

the following forms

1284(E) = 3, + TH) i (B)Grpr (E)f s (9)
A} (B) = diy) " (B)bu ~ S (E), (10)

with
Zo(E) = £ 05G8(E)frpp(E). (11)

——— - ——— - - e e A e = ————



The next step is to transform the dressed propagator Eq. (10) into a

diagonal form. In the matrix notation, we have

i) = vaBU = (DNO(E) Da(E) ) (12)

where U is an orthogonal matrix (U~! = UT). With some stra.ightfofwa.rd

derivations, we find that

DG (B)—dih(E)
! dan(E)
U = D—I(E)_d—l (E) 1 ) (13)
Ay ()

with

- 17, _ _ _ 1
DFME) = = |dnly + drk — V(dik — drk)? +4dikdzk |, (19)
2

- N — — _ 1 -
DRY(E) = 5 [dN}V + dgp + \/(de —dpp)? + 4dNRdR}v] - (13)
Equations (12)-(15) agree with that presented by Pearce and Afnan[6]. By

using the above definitions and introducing the transformed vertices

fb,wB(E) = Ubb'fb',—er(E), (16)
and
FaBb(E) = frpp (B, (17)

Eq. (7) can then be written as
Tep,25/(E) = T pi(E) + Frpp(B)I(E)fonpr(B)  (18)

With a diagonalized propagator Eq.(12), the nucleon pole condition Eq.
(6) can be obtained easily by considering the E — My limit

1
DM (My) + (B — My)ZRY’

lim Dn(E) — (19)

E—M

6
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where .
dD (E
5 = (——gE( )> : (20)
E=My

The nucleon pole condition Eq. (6) follows if we require
D (My) = 0. - (21)

Note that Eq. (21) is highly nonlinear in relating the physical mass My
to the bare masses my. By using the definitions Egs.(10) and (14), it
is straightforward to derive from the nucleon pole condition Eq. (21) the
following expression relating the bare masses, m} and m%, of the model to
the physical nucleon mass My

Enr(MN)ZrN(Mp)
My — m% — Zrr(MnN)

My = m?v + Enn(MN) + (22)

An explicit expression for the renormalization constant Zy, defined in Eq.

(20), has also been obtained

Iy = Ay + drk ., (29)
SNREGY + SR Dk + (1+ BN )dak + (1 + SGh)drky
where all quantities are evaluated at F = My from equations (10)-(11) and

we have defined

£ = fonB(Mn)G25(My) frpp(Mn)- (24)

By using Eqs.(12), (19) and (21), it is easy to see that Eq.(18) is reduced
to the form of Eq.(6) at E — My and we can relate the the physical xtNN
form-factor to the dressed vertex form factors defined by Egs. (16) and
(17). Before doing so, it is necessary to relate the present formulation to
the usual lagrangian field theory in which the physical coupling constant
f?/(47) ~ 0.08 is defined in the well-known pseudo-vector coupling between
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the pion field and the nucleon field. In this work, we follow Mizutani et.al.[8]
and Afnan [17] to assume that the present wV scattering equation at the
nucleon pole can be identified with the Blankbecler-sugar equation which is
derived from the Bethe-Salpeter equation. By futher taking an appropraite

nonrelativistic limit of the nucleon motion, the condition Eq.(6) leads-to

2
| v () = 3 3 Ba(B) B ()ER(E) + M) (25)
My +W(k) , Feron(k, My)|"
wE) Y k :

where W (k) is the total center of mass energy of the # N system. At the

on-shell momentum kg for E = My

| fevv (ko) 2= 0.079. (26)

It is straightforward to extend the previous procedures to define the
Roper resonance. This amounts to requiring that the determinant of the
propagator matrix d;b} of Eq.(7) should vanish at a complex energy Eg =
Mp - iz.f-, with Mp = 1440 MeV and T'p ~ 450 MeV. However, it is more
convenient to use the usual prescription to extract the resonance parameters
by requiring that the Dr(E) term of the diagonalized propagator Eq. (12)
has the following Briet-Wigner form as the total energy E approaches Mp;

namely

lim Dp(E) —» —2B 27)
E—Mz E - Mp + iz
By expanding DR!(E) about E = Mg, it is easy to see that Eq. (27) can

be obtained by requiring the following conditions

-1
Zp' = Re (—-—dD gE(E )) : (28)
E=Mpg




Re (DR'(M)) =0, (29)

and

Im (D!
T =2 m ( ZRR(MR)) ) (30)

The above equations allow us to express the bare mass m% in terms of

the other parameters of the model and to extract the width of the Roper

resonance from the numerical results.

ITI. NUMERICAL RESULTS

To proceed, we need to define the parameterizations of the interactions
within the model. The vertex interactions #N « b for b = N, R are param-

eterized as

() _ Cann k ank?
f')rN,N(k) - \/m [(k2 -+ a?vl)i.’ + (k2 + a]2V2)2 (31)

Cxr k
fS\)r,R(k) = \/b%m (32)

We assume that the vertex function of A « b have the same momentum-

dependence hence set
I (k) = Rof, (), (33)

where R; is an adjustable parameter in the fit. For the background poten-

tials, we assume the following separable parameterization

VBB (E k') = gxB(k)ABBrgrB (K'), (34)

with
1 CBlk 032k2
VER(k) | K2+ BE (K + BE,)°

9=B(k) = (35)



We set Ay = —1 for the simple reason that an attractive background po-
tential in 7N — =N is most convenient for balancing the replusion from
the nucleon pole term. Other A3 are treated as the free parameters. Obvi-
ously, the hermiticity of the potential requires that Aoy = Aya. Another
parameters of the model are the bare masses mQ}; and m$,.

The parameters defined above are determined from a y2-fit to the *N
Py; phase shift data up to 1 GeV subject to the pole conditions Egs.(22),
(25), (26) and (29). Our strategy is to use these three constraints to calculate
the bare masses m); and m} and the bare 7NN coupling constant Cry,n
of eq.(31), while all other parameters are free to vary in the y2—fit.

We first consider the case that no bare Roper state is included in the
model. This amounts to assuming that the dynamics of the Roper is purely
due to the hadronic coupling between 7V and 7A channels. No coupling to a
Roper bag state is assumed. In Fig.1 we show that the phase shifts of Arndt
et.al.[18] can be fitted (solid curves) very well with this model. The resulting
parameters are listed in the set 1 of Tables 1 and 2. If we further neglect the
decay of the A in the #A channel, i.e. setting X o = 0 in Eq.(3), the best
fits to the data are the dashed curves in Fig.l. The resulting parameters
are in the set 2 of tables 1 and 2. Clearly, the simple procedures defined by
Eqgs (2) and (83) for including the 7w N channel through the dressing of the
A in the wA channel is essential in getting an accurate descritpion of 7N
inelasicity near the threshold.

When the bare Roper state is included, it becomes difficut to fit the data
if we assume that the bare Roper mass is less than about 1600 MeV. All
of the fits yield a rapid variation in phase shifts at energies near the Roper

resonance. This is similar to the result of Pearce and Afnan{[12]. We have

10
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found that this difficulty is caused by the rather severe contraints on the
parameters due to the pole conditions Eqs.(22), (25), (26) and (29). It can
not be removed by simply using different parameterizations of the vertex
functions and background potentials. The only way to get a reasonable fit
is to allow a rather large value of the bare Roper mass. It is found that no
acceptable fit to the data in the considered energy region can be obtained
with a bare Roper mass m% < 4000 MeV. As an example we show in Fig.2
the results with m% ~ 3000 MeV and T = 499.3 MeV. There is a structure
in the phase at energy near Ey, = 700 MeV, and in the inelasicity at energy
near By, = 820 MeV. The resulting parameters are given in set 3 of tables 1
and 2. We therefore conclude that if the phase shifts of Arndt et.al.[18] are
correct, the bare mass of the Roper has to be unrealistically large within our
model. It is difficult, if not impossible, to relate this model to the cloudy
bag model decription of the Roper.

There exists a different phase shift analysis by Karlsruhe-Helsinki
group[19]. Its Pp; phase shifts have a more complicated structure. We
have also made an attempt to fit this data. Again, we are not able to get a
good fit unless a large bare Roper mass is allowed. One example is shown in
Fig.3. The fit can reproduce qualitatively the shoulder in the phase(§) and
the irregular structure in inelasiticity. However, the resulting mass of the
bare Roper is also rather large Mp ~ 2000 MeV. The resulting parameters
of this fit are listed in the set 4 of tables 1 and 2.

IV. SUMMARY and DISCUSSIONS

In summary, we have presented a simple extension of the two-channel

11



model of Pearce and Afnan [6] to investigate the 7N scattering in Py; chan-
nel. The essentail steps are to use Eqgs.(2) and (3) to account for the in-
elasicity due to the decay of the A in the #A channel and to allow a pure
phenomenological treatment of the non-pole mechanisms. The parameters of
the vertex functions f,fng and background interactions v,p .ps are se\;erely
constrainted by the pole conditions Eqs.(22), (25), (26) and (29). It is found
that no good fit to the Py; phase shifts can be obtained unless a very large
value of the bare Roper mass is allowed.

The present work is just a step toward a detailed understanding of the
Roper resonance. It only provides some qualtitative information about the
relative importance between the pole mechanisms and the background mech-
anisms. It appears to be difficult to accomodate the cloudy-bag model
description of the Roper resonance within a two-channel (N @ wA) for-
mulation of the 7V scattering up to about 1 GeV, even if additional ”phe-
nomenological” mechanisms are introduced.

The weak point of the present work is an incomplete treatment of the
7w N channel. In a recent amplitude analysis of # N — 7N reaction by
Manley and Saleski[20], the partial width of R — eN( ¢ represent a broad
7 continum) is about 33 MeV which is about half of the 88 MeV of the
R — 7A considered in this work. The decay of the Roper into a pN channel,
as considered by Pearce and Afnan[12], appears to be much less important in
the considered energy region. Clearly an extension of either the present sim-
plified model or the fully unitary model of Pearce and Afnan[12] to include
this 7w continumm will be the next step to explore the dynamical orgin of
the Roper resonance. This of course poses a difficult challenge which can

be met only by carring out a much more extensive numerical work than we
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have undertaken so far.
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Table 1. Parameters of the vertex fgtog’b (Eqgs. (31)-(33)) and vgB 7B’ (Egs. (34)-(35))

Set1 Set 2 Set 3 Set 4

ong (fm-1) 1.608 1.494 1.360 1.361
o (fm-1) -36.437 22.503 15.165 23.071
on (fm-1) 13.944 8.832 3.650 4.222
CnNR (fm-3) - - 139.98 42.701
oR (fm-1) - - 4.037 2.486
RR (unitless) - - 1.944 3.333
Cn1 (Fm-512) 4.865 6.126 4.760 5.763
Bni (fm-1) 53.946 42.517 23.364 23.110
Cng (fm-712) 15.359 15.406 4.654 6.616
Bz (fm-1) 3.958 4.271 3.399 3.521
Ca1 (fm-572) 1.583 10-1 4272101 5.606 10-1 -1.897
Bni (fm1) 2.603 10-2 3.727 10-1 2.606 3.347
Caz (fm-712) 3.625 10-2 0.223 8.170 102 0.204
Ba2 (fm-1) 3.007 10-2 5.286 10-1 5.437 102 2.151102
ANA (unitless) 1.034 1.244 1.715 1.182
Aaa (unitless) 3.486 2.472 12.359 2.2999




Table 2. Solutions of the pole conditions defined by Egs. (22), (25), (26), and (29).

Set 1 Set 2 Set3 Set 4
CrN,N (fm3) 8.129 7.679 0.589 0.692
MY, (fm1) 5.219 7.679 0.589 0.692
M (fm-Y) oo oo 15.285 10.173
Zn (unitless) 0.965 0.952 0.777 0.094
ZR (unitless) - - 0.900 0.927
I'r MeV) - - 499.3 2424
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Fig. 1

Fig. 2

Fig. 3

FIGURE CAPTIONS

The fits (solid curves) to the TN phase shifts in P13 channel using the model with no
bare Roper state. The dashed curves are the fits when the decay of the A in the TA
channel is also neglected (i.e. setting XA = 0 in Eq. (3)). The data are from Ref. 18.

The fits to the TN phase shifts in P11 channel using the full model defined in Section
. The data are from Ref, 18.

The fits to the TN phase shifts in P11 channel using the full model defined in Section
. The data are from Ref. 19.
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