

Novel Supported Bimetallic Carbide Catalysts for Coprocessing of Coal with Waste Materials

**Semi-Annual Report
October 1, 1997 - March 31, 1998**

**By
S. T. Oyama; D. F. Cox; C. Song; F. Allen**

Work Performed Under Contract No.: DE-FG26-97FT97265

For
U.S. Department of Energy
Office of Fossil Energy
Federal Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
Virginia Polytechnic Institute & State University
Department of Chemical Engineering
Blacksburg, Virginia 24061-0211
Ames, Iowa 50011-2230

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**NOVEL SUPPORTED BIMETALLIC CARBIDE CATALYSTS FOR COPROCESSING
OF COAL WITH WASTE MATERIALS**

Type of report Seminannual
Reporting Period: October 1, 1997-March 30, 1998 (First semiannual)
Principal Investigators: S. T. Oyama, D. F. Cox, C. Song, F. Allen
Date of Report: March 30, 1998
DOE Award Number: DE-FG26-97FT97265 - 01
Institute: Virginia Polytechnic Institute & State University
Department of Chemical Engineering
Blacksburg, VA 24061-0211

Grant Date: October 1, 1997
Contracting Officer's Rep: Udaya Rao

**NOVEL SUPPORTED BIMETALLIC CARBIDE CATALYSTS FOR COPROCESSING
OF COAL WITH WASTE MATERIALS
FIRST SEMIANNUAL REPORT**

S. Ted Oyama, David F. Cox, Chunshan Song, Fred Allen

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States

Table of Contents

Title Page	1
Disclaimer	2
Table of Contents	2
Abstract	3
Introduction	3
Results and Discussion	3
Conclusion	6
References	6

Abstract

The effect of phosphorus on Mo₂C supported on γ -Al₂O₃ and activated carbon was studied. The catalysts were characterized by CO chemisorption, BET surface area measurements, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and tested for their reactivity for hydroprocessing reactions, particularly hydrogenation (HYD), hydrodesulfurization (HDS) and hydrodenitrogenation (HDN), using model liquid compounds. The P-containing catalysts had higher reactivity for HDN than those without P. HDS was higher when the Mo₂C was synthesized on γ -Al₂O₃ previously treated with P than when the Mo component and P were added together on γ -Al₂O₃. Post reaction characterization indicates that the catalysts were tolerant of sulfur.

Introduction

It is well documented that sulfided catalysts with additives are used in hydrotreating reactions such as hydrogenation (HDN), hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodemetallization (HDM) [1,2,3]. Additives such as P have a promotional effect when added to the oxide forms of the catalyst and this effect is typically explained in terms of dispersion of the metal salts on the support, modification of acid sites or formation of a new active phase [4,5]. Clearly, little agreement exists in the literature on these effects. In recent years the application of transition metal carbides and nitrides for hydrotreating reactions has been studied in great detail [6,7,8,9]. There has also been some work on supported carbides and nitrides [10,11,12,13]. However, information available on the effect of additives on transition metal carbide catalysts and their reactivity for hydrotreating reactions is very limited [14]. In this report the synthesis and characterization of Mo₂C on γ -Al₂O₃ and an activated carbon support, and the effect of phosphorus additive are reported. The catalysts were synthesized by a temperature programmed reaction method and were characterized by CO chemisorption, BET surface area measurements, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). The reactivity of the catalysts for simultaneous hydrogenation (HYD) of quinoline, hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene are reported. In addition, post-reaction composition is also discussed.

Results and Discussion

Characterization

A summary of the surface properties of the catalysts are given in Table 1. The total surface area of the alumina supported systems is generally slightly smaller than that of the support itself. The exception is the P-treated alumina which shows complete retention of the original surface area. The P apparently stabilizes the support against sintering at the elevated temperatures of carbide formation.

The XRD patterns of the synthesized catalysts show mostly the features of the support, but the presence of β -Mo₂C (hcp, P63/mmc) can also be clearly discerned. The intensity of the Mo₂C peaks in the Mo₂C/ γ -Al₂O₃-P is higher than the catalyst without P suggesting that the particle size is larger for the former catalyst, even though the support surface area is larger. This result is consistent with a decreased interaction between MoO₃ and γ -Al₂O₃-P likely due to the formation of a P layer on the support, causing the formation of larger MoO₃ grains and consequently larger particles of Mo₂C. This phenomenon of interaction was also observed by Zeuthen *et al.* [15], who suggested that this was due to the formation of an AlPO₄ phase. The dispersions of the Mo₂C catalysts are compared in Table 1. It can be seen that the dispersion of

the Mo₂C catalysts with P is lower than the catalyst without any additives. This can again be attributed to the formation of a surface phosphate phase.

Table 1. Characteristics of supported Mo₂C

Catalyst	CO uptake	Dispersion	S _g
	μmol g ⁻¹	%	m ² g ⁻¹
40% Mo ₂ C-P/γ-Al ₂ O ₃	40	2.9	237
40% Mo ₂ C/γ-Al ₂ O ₃ -P	39	2.8	271
40% Mo ₂ C/γ-Al ₂ O ₃	72	5.2	223
20% Mo ₂ C/C	42	6.1	300
Mo ₂ C [22]	99	2.0	42
γ-Al ₂ O ₃	-	-	260

Table 2 gives the atomic composition of fresh Mo₂C/γ-Al₂O₃ and Mo₂C/γ-Al₂O₃-P catalysts from XPS analysis without any pretreatment to remove the passivation layer.

Table 2. Atomic composition of supported Mo₂C

Catalyst	O	C	Mo	Al	P	S
fresh Mo ₂ C/γ-Al ₂ O ₃	56	14	5.8	24	0	0
spent Mo ₂ C/γ-Al ₂ O ₃	43	30	4.3	20	0	2.0
fresh Mo ₂ C/γ-Al ₂ O ₃ -P	58	15	5.4	20	1.5	0
spent Mo ₂ C/γ-Al ₂ O ₃ -P	43	30	4.3	18	2.7	2.0

In the case of Mo₂C/γ-Al₂O₃, the atomic concentration of C is 14 %, of which 15% is carbidic carbon (BE of 282.5 eV) and 85 % is graphitic carbon (by deconvolution). The atomic concentration of Mo is 5.8 % which was deconvoluted to yield 25.2 % Mo₂C and 74.8 % MoO₃ and MoO₂. For all the carbide catalysts, it was found that P is in a highly oxidized state (P^V). The atomic composition of the catalysts did not noticeably differ with the addition of P. The atomic concentration of C is 15 % which was deconvoluted to yield 17.7 % carbidic carbon and 83.3 % graphitic carbon. The atomic concentration of Mo is 5.4 % of which 22.7 % is Mo₂C and 77.3 % is MoO₃ and MoO₂.

Reactivity

The hydrotreating reactions were carried out at 643 K and 3.1 MPa and the activity of the catalysts are compared to a commercial Ni-Mo-S/Al₂O₃ catalyst (Shell 324) and unsupported Mo₂C catalyst. Table 3 provides a summary of the steady state reactivities in terms of conversion and turnover rates (TOR) for HDN and HDS, based on equal number of surface metal atoms (corresponding to 70 μmol) loaded in the reactor. The amount of reference catalyst Ni-Mo-

S/Al₂O₃ used in the reaction was 140 μ mol (based on O₂ chemisorption). The HDN TOR of the catalysts with P added to the support is higher than the reference sulfide catalyst, and both supported and unsupported Mo₂C catalyst. A similar positive effect of P additive for the HDN reaction was observed by Eijisbouts *et al.* [16] and Robinson *et al.* [17]. In addition, the catalyst with P co-impregnated on the support has slightly higher HDN activity than the catalyst synthesized on a P treated γ -Al₂O₃. The Mo₂C/C has a higher activity than the Mo₂C/ γ -Al₂O₃ catalyst. The products from quinoline HDN were hydrogenated (HYD) quinoline compounds (1, 2, 3, 4-tetrahydroquinoline, 5, 6, 7, 8-tetrahydroquinoline and o-propylaniline) and hydrodenitrogenated hydrocarbons (propylcyclohexane and propylbenzene).

Table 3. Summary of reactivity of supported Mo₂C

Catalyst	HYD	HDN	HDS	HDN TOR	HDS TOR
	%	%	%	/ 10 ⁻³ s ⁻¹	/ 10 ⁻³ s ⁻¹
Mo ₂ C-P/ γ -Al ₂ O ₃	29	64	48	1.5	0.72
Mo ₂ C/ γ -Al ₂ O ₃ -P	28	57	80	1.3	1.2
Mo ₂ C/ γ -Al ₂ O ₃	45	33	65	0.76	0.98
Mo ₂ C/C	29	49	65	1.1	0.98
NiMoS/Al ₂ O ₃ [22]	47	38	79	0.46	0.62
Mo ₂ C [22]	39	47	43	1.1	0.65

The steady state conversion and TOR of the catalysts for HDS of dibenzothiophene are compared in Table 3. Biphenyl was the only product detected (product distribution at steady state is 100 % biphenyl) from dibenzothiophene HDS. From Table 3 it can be seen that the HDS TOR of the supported Mo₂C catalysts are higher than the reference sulfide catalyst and unsupported Mo₂C. In addition, the TOR of Mo₂C/ γ -Al₂O₃-P is the highest when compared to other catalyst, clearly indicating a positive effect of P pretreatment on the γ -Al₂O₃ support. A similar positive effect of P on the support for sulfided catalysts for HDS reactions was observed by Prada Silvy *et al.* [18]. Comparing the TOR for the two P containing catalysts indicates that the method of P inclusion is also important because the TOR of the Mo₂C-P/ γ -Al₂O₃ is significantly lower than the Mo₂C/ γ -Al₂O₃ and Mo₂C/C catalysts. In none of the catalysts was there an indication of phosphide formation.

Post-reaction Characterization

The catalysts were characterized by XRD after the hydroprocessing reactions. The bulk Mo₂C structure did not change for any of the catalysts during reaction, indicating they are tolerant of sulfur. Table 2 gives the comparison of atomic composition of elements from XPS analysis of the fresh and spent catalysts. The results show that the total S content is only 2 %, and this again clearly indicate that the catalysts are tolerant to sulfur for hydrotreating reactions.

Conclusions

New catalysts with P additive were synthesized by temperature programmed reaction, characterized by CO chemisorption, surface area measurements, XRD, XPS, and tested for hydrogenation, hydrodenitrogenation and hydrodesulfurization reactions. The activity of the catalysts was higher when compared to Ni-Mo-S/Al₂O₃ (Shell 324), and the catalysts were tolerant of sulfur. The increase in the reactivity of the P treated catalyst can be explained on the basis of a reduced support-metal oxide interaction.

References

1. Bouwens, S. M. A. M., van der Kraan, A. M., De Beer, V. H. J., and Prins, R., *J. Catal.* **128**, 559 (1991).
2. Muralidhar, G., Massoth, F. E., and Shabtai, J., *J. Catal.* **85**, 44 (1984).
3. Atanasova, P., Halachev, T., Uchyil, J., and Kraus, M., *Appl. Catal.* **38**, 235 (1988).
4. Topsøe, H., Clausen, B. S., and Massoth, F. E., *Hydrotreating Catalysis*, Springer, 1996.
5. Kraus, H., and Prins, R., *J. Catal.* **164**, 251 (1996).
6. Lee, J. S., Yeom, M. H., Park, K. Y., Nam, I. -S., Chung, J. S., Kim, T. G., and Moon, S. H., *J. Catal.* **128**, 126 (1991).
7. Lee, J. S., Locatelli, S., Oyama, S. T., and Boudart, M., *J. Catal.* **125**, 157 (1990).
8. Lee, J. S., Oyama, S. T., and Boudart, M., *J. Catal.*, **106**, 125 (1987).
9. Ramanathan, S., and Oyama, S. T., *J. Phys. Chem.* **99**, 16365 (1995).
10. Abe, H., Cheung, T., and Bell, A. T., *Catal. Lett.* **21**, 11 (1993).
11. Colling, C. W., and Thompson, L. T., *J. Catal.* **146**, 193 (1994).
12. Pham-Huu, C., Del Gallo, P., Peschiera, E., and Ledoux, M. J., *Appl. Catal. A* **132**, 77 (1995).
13. Lee, J. S., Lee, K. H., and Lee, J. Y., *J. Phys. Chem.* **96**, 362 (1992).
14. Sellem, S., Potvin, C., Manoli, J. M., Contant, R., and Djega-Mariassou, G., *J. Chem. Soc., Chem. Commun.*, 359 (1995).
15. Zeuthen, P., Blom, P., Muegge, B., and Massoth, F. E., *Appl. Catal.* **68**, 117 (1991).
16. Eijsbouts, S., van Gestel, J. N. M., van Veen, J. A. R., de Beer, V. H. J., and Prins, R., *J. Catal.*, **131**, 412 (1991).
17. Robinson, W. R. A. M., van Gestel, J. N. M., Koranyi, T. I., Eijsbouts, S., van der Kraan, A. M., van Veen, J. A. R., and de Beer, V. H. J., *J. Catal.*, **161**, 539 (1996).
18. Prada Silvy, R., Romero, Y., Guareguia, J., and Galloso, R., *Preparation of Catalysts V*, Eds. Poncelet, G., Jacobs, P. A., Grange, P., and Delmon, B. Elsevier Science Publishers, Amsterdam, 1991.