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ABSTRACT

An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator
commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical
pendulum with an attached payload. The crane operator positions the payload by issuing a combination of translational and
rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying
and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation.
The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of
the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a
three-axis rotary crane where the residual sway magnitude is reduced in excess of 40dB.
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1. INTRODUCTION

Construction and transportation cranes can generally be grouped into one of two categories based on their configuration. The
first category consists of overhead, gantry cranes. These systems incorporate a trolley which translates in the horizontal plane.
Attached to the trolley is a load-line for payload attachment. Typically, they have varying load-line length capabilities. The
second category consists of rotary cranes. As the name implies, the load-line attachment point undergoes rotation. Other degrees
of freedom may exist such as translation of the load-line attachment point along the jib, variable load-line length, or if the jib
is replaced by a boom, the characteristic boom rotational motion, known as lufﬁng*.

Auernig and Troger ! consider time optimal payload maneuvers of a gantry crane undergoing trolley translation and load-line
length change. The coupled, nonlinear equations of motion and adjoint equations, obtained from the application of Pontryagin’s
maximum principle, are solved analytically for the cases of constant and variable hoisting speeds. In both cases the maneuvers
are developed such that the payload is residual oscillation free. Moustafa and Ebeid 2 demonstrate a state feedback controller
for damping load sway for a gantry crane configured to move along two orthogonal directions in the horizontal plane. This work
is expanded on by Ebeid et. al. 3 to incorporate actuator dynamics into the crane model. Fliess et. al. 4 investigate a feedback
linearizing controller for a one-dimensional gantry crane. Trolley traversal and load-line length changes are considered.
Simulation results indicate the ability of the closed-loop controller to control load sway for relatively slow maneuvers. This
same system is examined by Nguyen 3 where simulation and experimental results of a nonlinear state-feedback controller is
used. Small motions are assumed about a specified operating point. This allows for decoupled equations of motion and
decoupled controller design.

Sakawa and Nakazumi investigate a rotary crane undergoing hub and boom rotation and load hoisting using a combined open
and closed-loop approach. The open-loop input to the crane is designed based on a postulated set of functions such that the sway
motion of the load is excited minimally. The closed-loop controller is then switched on when the maneuver is near the end,
providing significant sway damping. Vaha et. al. 7 generate suboptimal, minimum time inputs for a rotary crane. Tracking is
achieved via a state feedback control law. However, radial sway, due to centripetal acceleration of the payload, is not
compensated. Souissi and Koivo 8 consider a rotary crane undergoing a boom-rotation-boom maneuver using a proportional-
integral-derivative controller similar to Fliess et.al. 4. The simulation model considers both radial and tangential payload sway,
however, the control strategy used results in residual load oscillation. Parker et. al. 9 investigate residual oscillation free rotary

*Boom rotational motion, referred to as luffing, causes the tip of the boom to move vertically.
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jib crane maneuvers and compare different optimization techniques for generating the crane commands. Knowledge of the
initial and final configurations is required in advance.

In this paper the extension of input shaping as described by Feddema 10 t6 the nonlinear sway dynamics of a rotary crane are
examined. The crane configuration of interest includes one rotational axis (the jib) and two translational axes (trolley position
and load-line length). Using configuration dependent input shaping filters, the residual oscillations of the payload are
significantly reduced for general, simultaneous three-axis maneuvers. Test results are presented where the nonlinear sway
dynamics are simulated in real-time using a digital signal processing (DSP) board. The three axis commands are supplied by
the operator via two analog joysticks.

2. CRANE DESCRIPTION

The rotary crane considered consists of a translating load-line and payload assembly attached to a translating trolley. The trolley
rides along a rotating jib. This apparatus is shown in Fig. 1.

The &,, &,, a; coordinate system is attached to the jib and rotates about the hub with angular rate ¥(r) . The rotation angles
0(1), $(#) are defined as rotations of the load-line about the &, &, axes respectively. The attachment point of the load-line to
the jib is at a distance x(¢) from the center of rotation of the hub. The load-line has length L(¢) and the payload has mass m.
The two payload sway rotations will from now on be referred to as the radial (¢ ) and the tangential (6 ). The inputs to this
system are the output of velocity tracking servo controllers at each axis. Assuming perfect tracking, which is the worst case for
inducing residual vibration to the payload, the inputs are simply ¥, %, L. The outputs are the rotation angles of the load-line,
8(2), 9(2)
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Figure 1. A Rotary Crane.




3. EQUATIONS OF MOTION
Using the rotating &,, &,, &, coordinate system, the vector from the center of rotation of the hub to the payload is given by

p(t) = (x(t) - L(z)cos[8(r)Isin(o()D)a, +

L(z)sin[6()]a, -
L(t)cos[0(s)Icos[0(r)]a, M
Lagrange’s equations
with ¢; = 6 and g, = ¢ are applied to this system where the Lagrangian £
L=T-V (3)
is the difference between the kinetic energy T and the potential energy V.
With the aid of Fig. 1 and Eq. 1, the kinetic energy can be found by evaluating
T = smpTp @
p = [%~LcosBsin¢ + LOsinOsing - LocosOcosd — LysinB]a; +
[Lsin® + LOcosO + ¥(x — LcosBsing)]a, +
[~ LcosBcos¢ + LOsinBcos¢ + LycosBsingla, 5
where p is the absolute velocity of the payload in the rotating coordinate frame.
The potential energy
V = —-mgLcos¢cosO (6)

is also obtained from examining Fig. 1.

Substituting Eqg. 3, through Eq. 6 into Eq. 2 yields the two equations of motion for the oscillatory degrees of freedom ¢, ©
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where small angle assumptions have been exploited for ¢, 6 and their derivatives. Note that the quantities v, and L are

functions of time, resulting in a time-varying stiffness effect. Detailed discussion of this phenomenon for related systems is
discussed by Petterson and Robinett 1.



4. FILTER GENERATION
In this section the procedure for designing forward path command filters for the jib rotation (v ) and the trolley translation (x)
is described. Using a simplified model of Eq. 7, the system is transformed to modal coordinates. Decoupled forward path filters
are designed in the modal coordinate system with configuration dependent, imaginary coefficients. After transforming back to
the physical coordinates, the filters between ¥ and x become coupled, with configuration dependent, real coefficients.

To simplify the model of Eq. 7 further, we will assume that x, L, and ¥ are of the same order of magnitude as & and ¢. The

resulting simplified model
g " X
. = 'Y -—_
|
8 " gl 10 "
L

X
7!
is obtained by retaining terms of order less than two. This system may be written symbolically as
MO+KD = U )

where the matrix M is a 2x2 identity matrix, K is a 2x2 matrix chosen appropriately from Eq. 8 and ¥ is a 2x1 vector of the
terms on the right side of Eq. 8. Eigenvalues and eigenvectors are found by solving

(K-0?M)e = 0 (10)
yielding

+yi an

and

E =[] = [_li 1] (12)

where i is the square root of -1.
The system of Eq. 9 can be transformed to
Ij+Qy =U (13)

where

(14)

and
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Now, the forward path filters are designed in the modal coordinate space after representing the decoupled system of Eq. 13 in
the Laplace domain

Ui s2+(-§ +"\ji) U2 s2+(§—7i)
(16)
requiring that ¥ and L are constant over each finite length sample period. The filtered inputs, designated as U are
Uy = BU (17)
where the 2x2 matrix B is
Kl[s2 + (% + iy)]
(s+a;)? 0
B = ! (18)
K2|:s2 + (5 - iy')]
0 L
i (s+ay)?
where
3 3
! a5
Ky = g . Ky = g ..
AL 7 19

are chosen to yield unity steady-state gain of the filtered inputs. These transfer functions in B approximate configuration
dependent notch filters, where the design parameters 4, and a, determine the amount of roll-off after the notch.

The filtered inputs in physical coordinates are then

— - — -1
U, = EUp = EBU = EBE'U

1| By+By i(Bp-By)|,
z"i(Bzz‘Bu) By +By |

Uy
(20)

The expressions for B, + B,, and B,, — B,; are greatly simplified by enforcing the design constraint of a = a; = a, resulting
in an explicit representation of Eq. 20 as
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The filters of Eq. 21 operate on the inputs as defined by Eq. 8 and Eq. 9, or, individually they may be expressed as
35( 2 _1_)
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The filtered inputs to the sway dynamics of Eq. 7 become
3gf24 1
a B(S + B) 310
= L1+ 222 )
(s+a)? (s +a)?
a3B(52 + l)
3.2
¥p = LT D i
x(s+a) x(s+a) 24)

where, of course, ¥ and ¥ are the commanded quantities. Note, that if the jib angular acceleration is significantly less than the
static pendulum natural frequency /g/L, then from Eq. 22, T" is approximately zero. The filters of Eq. 24 are then decoupled.

5. OPERATOR IN-THE-LOOP SIMULATION

A real-time, operator in-the-loop crane simulator is used to test the forward path filters described above. The simulator allows
the operator to enter velocity commands in the three-axes using two joysticks. Visual cues of the crane motion and sway
properties are supplied via a graphical output of the results of a real-time simulation of the crane sway dynamics. This system
is intended for use not only as a control algorithm testbed, but also as a crane operator training device. The computational
portion of the system uses a dSPACE platform. Specifically, a DSP board (DS3001) is used for performing the sway simulation
and for filter implementation, both running at 100 Hz. Two Gravis analog joysticks are connected to a multi-I/O board (DS2201)
and are sampled at 10 Hz. Operator feedback of payload motion and sway dynamics is provided by a graphical user interface

(COCKPIT). For comparison purposes, the unfiltered crane acceleration inputs are simultaneously passed to a duplicate version
of the crane sway dynamics.

Since the jib rotation acceleration is typically well below J/g/L , the decoupled version of the filters of Eq. 24 was used as well
as the approximation of p as p =~ L/g. Load-line length actuator dynamics were approximated by a 0.2 Hz low pass filter on
load-line length velocity commands. Furthermore, it was found that the filtering of the quantity xy for the ¥ filter of Eq. 24




results in a necessary operator correction for residual velocity due to a lack of synchronization between the filtered and
unfiltered trolley position, expressed compactly by

.
SiL e 25)

The filter design was performed by assuming that the trolley position was constant over each finite length sample period. The
resulting filters are

: o)
32, 8 3%s24 8
a g(s +L) . “ g 7

i:F = (s+a)3 ['x] Tr = (S+a)3

(Y1
(26)

where the single design parameter, a, was chosen as 2.0. The filters were implemented by converting the continuous time, state
space representation to discrete time 12

The results presented start with the load-line length initially at 0.25m (a 1Hz nonrotating natural frequency), the trolley position
is at 0.5m and the jib angle is at 0°. Data is recorded at 10 Hz for an arbitrary set of stick commands over a 40 second period.
Plots of the jib, trolley and load-line motion are shown in Fig. 2 through Fig. 4. The noticeable lag between filtered and
unfiltered motion in the jib rotation and trolley position is due to the notch filtering discussed previously. The configuration
dependent notch filtering yields a decrease in the residual oscillation magnitude of 43dB in the tangential direction and a
decrease of 47dB in the radial as shown by the tangential and radial sway histories of Fig. 5 and Fig. 6.
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6. SUMMARY

A method for reducing the residual oscillation of operator in-the-loop point-to-point rotary crane maneuvers was presented.
Testing was performed using an operator in-the-loop crane simulator designed as a control algorithm testbed and a crane
operator training device. Configuration dependent notch filters were proposed for filtering forward path velocity commands of
the jib rotation speed and trolley speed. Operator in-the-loop, real-time simulation indicates a decrease in the residual oscillation
magnitude in excess of 40dB in both the tangential and radial directions. Unlike the optimization based methods %, the forward
path filter design does not require a priori knowledge of the specific maneuver of interest.
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