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Abstract

In order to meet their luminosity goals, linear colliders operating in the center-of-mass
energy range from 350 to 1,500 GeV will need to deliver beams which are as small
as a few nanometers tall, with x:y aspect ratios as large as 100. The Final Focus
Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its
purpose is to provide demagnifications equivalent to those in the future linear collider,
which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by
60 nanometers (vertical).

In order to achieve the desired spot sizes, the FFTB beam optics must be tuned
to eliminate aberrations and other errors, and to ensure that the optics conform to
the desired final conditions and the measured initial conditions of the beam. Using a
combination of incoming-beam diagnostics, beam-based local diagnostics, and global
tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7
microns. by 70 nanometers. In addition, the chromatic properties of the FFTB have
been studied using two techniques and found to be acceptable. Descriptions of the
hardware and techniques used in these studies are presented, along with results and

suggestions for future research.
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Introduction

This thesis presents the results of a series of accelerator physics experiments performed
at the Stanford Linear Accelerator Center between 1993 and 1995. The experiments
were performed at the Final Focus Test Beam, a facility constructed to act as a pro-
totype final focus system for a future linear collider. In this capacity, the FFTB’s
design goal was to demonstrate in an existing facility the tremendous demagnifica-
tion expected in such a future facility; more specifically, the FFTB was designed to
demagnify the incoming electron beam from the SLAC linear accelerator by a factor
of 380, to a final size of 60 nanometers. Prior to the construction of the FFTB, such
a demagnification of a charged- particle beam had never been achieved.

The experiments reported here are a series of measurements of the properties
of the FFTB and the incoming electron beam, and a set of corrections intended to
drive those properties towards their design values. The ultimate goal of the entire
experiment is to demonstrate a set of measurements and corrections which is necessary
and sufficient to achieve the design demagnification, with the expectation that the
same set will be necessary and sufficient to achieve the equivalent demagnification
in the future machine. Because the design goals of the FFTB were unprecedented,
many of the tuning algorithms were similarly unprecedented, while others extended
existing techniques to more demanding limits. The subject of this thesis is the design
and implementation of the tuning algorithms, an analysis of their performance, and
recommendations for future improvements.

Chapter 1 is a general description of linear colliders: their advantages and dis-



advantages relative to conventional circular colliders, and brief description of their
subsystems. This chapter also details the functions of the final focus system, and
presents the only existing example ~ the Stanford Linear Collider (SLC) Final Focus.

Chapter 2 provides a detailed description of the Final Focus Test Beam: its optics,
aberrations, and hardware. This sets the scale of the problem to be solved, and gives
some information about the tools available to solve it.

Chapters 3, 4, and 5 essentially present the tuning of the FFTB from upstream
to downstream: measurement and matching of the incoming beam, local diagnostics
which attempt to pinpoint problems and correct them at their source, and global
diagnostics which are used to eliminate aberrations distributed over the beamline
with a small number of correction elements. The FFTB ultimately achieved a 70
nanometer vertical beam size, which is also presented in Chapter 5; this chapter
describes the beam size expected from the measurements listed in Chapters 3, 4, and
5, anci discusses the discrepancy between expected and achieved beam sizes.

Chapter 6 examines the performance of the FFTB as a system, considering two
overall issues: the time needed to tune the beam size, and the energy-dependent
aberrations remaining in the system. Finally, Chapter 7 summarizes the results of
the FFTB experiments and offers recommendations towards the design of future linear

colliders.

Chapter 1

General Considerations of Linear

Colliders

For many years, electron-positron (e*e~) colliders have been widely recognized as
a valuable tool for understanding fundamental particle interactions. Because of the
point-like, non-composite nature of electrons and positrons, such colliders are ideal
for high-precision studies which cannot be undertaken in hadronic colliders.

More recently, there have been studies [1] which demonstrated the usefulness of an
extremely high- energy (0.5 — 1.5 TeV CM), high-luminosity (10% - 10*em~2sec™?)
ete~collider. While neither of these requirements, in and of itself, presents an
impossibly daunting design goal, the particular combination of such energies and
ete~collisions mandates the choice of a linear collider rather than a conventional

circular one.

1.1 Circular versus Linear Colliders

As the name implies, the purpose of a collider is to collide bunches of accelerated
charged particles which are moving in opposite directions; at the collision point, the

energy of the particles can be transformed into matter, specifically into (hopefully)
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interesting massive particles. The probability of such a collision can be enhanced by
creating a particle “traffic jam” at the Interaction Point (IP), cramming the maximum
number of particles into the smallest possible space. The severity of the “traffic jam”
can be expressed quantitatively as the instantaneous luminosity of a collider, which
is given by: .

L= WNJ  Hp. (1)
Here the numerator represents the effects of having more particles at the IP: N+
and N~ represent the charge per bunch of the colliding beams, f represents the
collision frequency, in Hertz. The denominator represents the effects of packing the
particles into a smaller space: o, and o, represent the horizontal and vertical beam
sizes, usually reported in microns (note that £ is usually reported in ecm=2sec™!, for
comparison to particle physics cross-sections, reported in em?) Hp is the “disruption
enhancement” factor, which arises from the fact that bunches of oppositely-charged
particles will tend to focus one another at collision, and is dimensionless. The simplest
mechanism to increase the luminosity of a collider is to increase the bunch charges
and/or the collision frequency. Because a circular collider stores and re-uses the same
bunches for several hours, even a modest number of stored bunches can yield collision
frequencies of several megahertz, and luminosities of over 1032cm—2sec™! have been
achieved at e*e~circular colliders [2].

The difficulty with extending circular collider technology to higher energy e*e~col-
lisions is the dramatic increase in synchrotron radiation losses. It is well known that
the energy losses of an electron beam which is bent in a magnetic field scales as
the fourth power of the electron’s energy. This has two immediate consequences
on an electron storage ring. First, the energy loss experienced by the beam grows
dramatically with the desired CM energy, requiring ever more robust acceleration
systems to re-accelerate the bunches on every turn. Second, the radiation power
incident on the accelerator itself grows as the fourth power of the CM energy. In

order to compensate these two effects, the collider’s bending radius (and thus its

total size) must increase. A full optimization including construction and operation
costs yields a canonical scaling law for e*e™colliders: the circumference must increase
as the square of the CM energy [3].

The highest-energy e*e~circular collider in existence is LEP, at CERN. LEP’s cir-
cumference of 27 kilometers is based on a final CM energy, after the LEP II upgrade,
of 200 GeV. Scaling this to a 1 TeV CM energy, and assuming no dramatic improve-
ments in technology, dictates a circumference of 675 kilometers. This is clearly not a
feasible machine to build and operate.

Linear colliders, by contrast, do not attempt to re-use bunches. Each bunch is
collided with a single bunch of opposite charge, and both are then discarded. Because
there are no synchrotron losses to negotiate, the total size of the collider is dictated
by the length of linear accelerator (linac) needed to achieve the desired CM energy,
which scales approximately linearly with that energy. This results in a machine which
is smaller, contains fewer components, and is easier to upgrade.

While linear colliders are simpler to design in terms of energy, they are.genrally
quite a challenge in terms of luminosity. As we shall see below, it is not feasible to
build a linear collider with a bunch charge of more than a few times 10 particles
(compared to 1.5 — 2.1 x10!! for LEP and CESR [4, 2] ), or a collision frequency of
more than 200 Hz (compared to 90 kHz for LEP [4] and 2.7 MHz for CESR [2]). By
contrast, the only existing linear collider, the Stanford Linear Collider (SLC), typi-
cally collides bunches with 3.5 x 10° particles with a collision frequency of 120 Hz.
Because of these limitations, linear colliders are forced to boost luminosity through
dramatically reducing the bunch transverse size at the IP. Circular colliders are un-
able to arbitrarily demagnify their beams due to beam-beam focusing effects which
degrade the quality of the beams after many collisions, an effect known as tune-shift
or disruption. Because linear colliders do not re-use bunches, they are free to operate
in a disrupted regime.

Figure 1.1 shows a schematic diagram of a typical linear collider. In order to



understand the mechanisms which determine the bunch size and luminosity of such

a facility, it is instructive to consider briefly each of its susbystems.

Main Linac Beam Dump Detector Beam Dump Main Linac

Compressor .?9{%’/‘ Compressor

Final
Focus

Pre-Accelerator Pre-Accelerator

Compressor Compressor

Damping Electron Electron Positron Damping 1-95
Ring Source Source  Source Ring 4494498

Figure 1.1: Schematic diagram of a linear collider.

1.2 Components of a Linear Collider

1.2.1 Electron and Positron Sources

The electron and positron sources for a linear collider can in principle be quite
straightforward. The only demand upon these systems which differs from the sources
for a circular collider is reliability. Because a linear collider is constantly injecting,
the sources need to be available to deliver bunches at the full machine rate (up to

200 Hz) at all times. The sources are mentioned here primarily for completeness.

1.2.2 Damping Rings

The charged bunches from the electron and positron sources are then injected into
separate storage rings, whose purpose is to reduce the transverse phase space volume,
or “emittance” (see Appendix A) of the two bunches. This reduction is accomplished
through synchrotron damping: particles passing through the bend magnets of the
damping ring will emit synchrotron photons in their direction of travel, which re-

duces their total momenta; RF cavities along the ring straight sections accelerate the

particles back to their original momenta, resulting in a net reduction in transverse
momentum. Damping rings are characterized by two parameters in each transverse
plane: damping time, which is the characteristic time needed to reduce the emittance,
and equilibrium emittance, the minimum emittance which the ring is able to produce.

The characteristics of the damping ring impact the final luminosity in several
ways. Most obvious is that the equilibrium emittance of the damping ring will be
the minimum emittance achievable at the IP, and hence is one of the limiting factors
in the spot size. Additionally, the finite damping time of the ring limits the overall
collision frequency at the IP, for each bunch must be stored long enough to reduce
its emittance to the desired value. Finally, it is worth noting that damping rings
typically produce beams whose horizontal emittance is 1 to 2 orders of magnitude
larger than the vertical. For this reason, high-luminosity linear collider designs are

generally expected to collide extremely flat beams.

1.2.3 Linear Accelerator

Once extracted from the damping rings, the charged bunches are then accelerated to
collision energies by one or two linear accelerators. The acceleration is in the form of
RF power provided by a series of klystrons, which is then transmitted to the beam as
it passes through a disc-loaded wave guide. Because of the high acceleration gradients
needed to reach the desired energy in a reasonable length of beamline, the klystrons
are typically pulsed, emitting a high-intensity burst of RF power only when the beam
is present. The limitations on the pulse rate attainable in the klystrons is a further
limit on the collision frequency of the linear collider.

In addition to accelerating the bunches, the linear accelerator must also maintain
the extremely small emittances from the damping rings to the final focus regions.
This is made difficult by transverse wakefield effects in the disc-loaded wave guide,
in which the electric field of the head of an electron bunch reflects off the discs and

causes a transverse deflection of the tail. This effect causes the effective.transverse
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Figure 1.2: Schematic of a four-quadrupole telescopic system. The
solid line through the center of the lenses is the reference trajectory. A
particle which is initially travelling parallel to the reference but with a
unit offset from it follows the cosine-like trajectory (C, and Cy); while
a particle which crosses the reference at the entrance of the system,
with a unit angle, follows the sine-like trajectory (S, and Sy).

emittance to increase; because wakefield emittance dilution is a strong function of
bunch intensity, transverse wakefields in the linac limit the per-bunch charge of a
linear collider.

Once accelerated to the desired energy, each bunch is then reduced in size by the
final focus, and collided with a similar bunch of opposite charge at the interaction

point. It is the final focus which is our main concern.

1.3 Linear Collider Final Focus Systems

The simplest possible formulation of a linear collider final focus system is a set of four
quadrupoles which demagnifies the beam size and magnifies the beam divergence in
each plane. Such a system has been described by Brown and Servrancksx [5], and is

shown diagramatically in Figure 1.2. Note that the cosine-like rays are parallel to the

reference trajectory at the beginning and the end of the system, and that the sine-
like rays intersect the reference trajectory at the beginning and the end. A module
with both such properties is said to have both parallel-to-parallel and point-to-point
imaging. For a system with no aberrations, and given sufficient length and sufficiently
strong quadrupoles, a four-quad telescope such as this is capable of reducing the beam
size at the IP to any desired value.

The most immediate difficulty of such a system is that quadrupoles have inher-
ent chromatic aberrations. The inverse focal length of a quadrupole, its integrated

focusing strength, is given by:
_ Byl
" aBp’

where By is the magnetic field at the pole-tip of the quad, L is the length, a is the

K, 1.2)

aperture radius, and Bp is the familiar “magnetic rigidity”:

Bp(T - m) = qTE;(mks) - EEV) (1.3)

"~ ¢(m/sec)’
which is linearly proportional to energy. We see from eq. 1.2 that the focal length
of each quadrupole increases linearly with energy. Hence, at lowest order, particles
which are low in energy will be over-focused (focal point upstream of nominal), while
particles high in energy will be under-focused (focal point downstream of nominal).
As a consequence of this phenomenon, if a bunch of electrons contains a finite energy
spread, then the off-energy particles in the bunch will be out of focus at the nominal
Focal Point (FP), leading to an increase in the spot size.
Let us define K(s) = ﬁgﬂﬁ to represent the instantaneous quad strength at location
s; the quantity K, is the integral of K(s) over the length of a given quadrupole magnet.
We can use the formalism of Roy[6] and define the chromaticity of a beam line:
bey =5 [ K(s)0ay(s)ds. (1.4)
S0
The precise definition of the betatron functions, G4, in a telescopic transport system

is discussed in Appendix A, along with a general review of adapting storage ring
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notation to final focus optics. Suffice it to say here that the linear beam size scales
with the square root of the betatron function. The chromaticity is a quantitative
measure of the change in focusing strength of a beam line with the energy of the
particles being focused. It can be shown (in Appendix A) that the focused size of a

beam with finite energy spread, after passing through a chromatic transport line, is:
o = o3t [1+ €y, (1.5)

where o* is the measured beam size at the IP, of is the linear monoenergetic spot
size given by ¢ = /B*, and £ is the rms energy spread of the beam.

Let us consider & linear collider final focus system modelled on the telescope of
Figure 1.2, in which the Focal Point (FP) is on the left hand side of the figure. In
this system, the offsets of particles which enter on the right are demagnified at the
FP, and the angles of particles which enter on the right are magnified at the FP by
the same factor; no mixing occurs (ie, initial angle is not converted into final offset,
as required by the definition of point-to-point and parallel-to-parallel imaging). In
a linear collider final focus, the FP linear beam size is reduced as much as possible,
which is equivalent to increasing the beam divergence to as large a size as possible.
This means that, on average, the amplitudes of particles at the FP will be small and

their angles large. The offset of a particle at any point in the system is given by:
z(s) = Cy(s)z(0) + Sx(s)2'(0), (1.6)

and since the values of z(0) tend to be small and z/(0) tend to be large, the beam
size at the quadrupoles will be dominated by the product of the sine-like ray and the
FP angular divergence:

02(8) = 035:(s). (1.7

Let us now replace the sine-like trajectories from the FP to other points, S; and
Sy, by their equivalents in the TRANSPORT formalism of Brown [7], Ry and Ray,

respectively. We can replace the FP divergence and the quadrupole beam size with
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expressions involving the Twiss parameters in Appendix A:

02(s) = V/eba(s), 62 = \ferz, (1.8)

and equivalently for the vertical plane. Finally, let us assume that the positions and
angles of particles in the bunch are uncorrelated, which corresponds to a = 0 in both

planes. In this special case, we may write:

Tz = 1/B;- (1.9)

We may then substitute into Equation 1.7 to obtain the following relation between

the FP betatron function and the betatron functions at the quadrupoles:

2 .
By = R%,(IP —: quad). (1.10)
B
We may now introduce this expression for 3, and rewrite equation 1.4 as:
1 M 1
by =g [ K()Rhpau(s)ds = 5Ty, (1.11)
zy V90 Biy

Note that the values of K'(s) and of Ry 34(s) are functions of the optics only, and not
of the incoming beam; therefore the entire integral becomes an invariant property of

the optics. We can then substitute into equation 1.5 to find:
2 o
0,*2 = 6,6*'*- _(_E_)2

ﬁx

For a given lattice of pure quadrupoles, therefore, the chromatic aberrations of the

: (1.12)

quads cause the beam size to go through a minimum at some value of 8%, and then to
increase again as §* decreases. It is assumed in this computation that 8* is varied by
changing the incoming beam with matching quads upstream of Figure 1.2, and not

with the magnets within the figure itself.

Figure 1.3 shows the beam size, including chromatic contribution, as a function .

of B* for a typical linear collider final focus system. It is clear from this figure that
elimination of the chromatic aberration is crucial to the task of minimizing the spot

size and maximizing luminosity.
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Figure 1.3: IP beam size as a function of 8} for a linear collider final
focus. Both the linear and uncorrected chromatic sizes are shown. The
other beam parameters are: ¢, = 5 X 10~ meter-radians, & = 0.003.

1.3.1 Chromaticity Correction

In order to eliminate lattice chromaticity, it is necessary to introduce beamline mag-
netic elements which will produce energy-dependent focusing, and adjusting this effect
such that it cancels the energy-dependent focusing of the quadrupole magnets. It is
for this reason that sextupole magnets are introduced into the final focus lattice.
Whereas pure quadrupole magnets have a magnetic field whose first derivative with
respect to transverse coordinates is constant, pure sextupole magnets have a mag-
netic field whose second derivative is constant. The first derivative of the field varies
linearly with transverse position across the sextupole aperture, and therefore the sex-
tupole presents a linearly increasing quadrupole effect across its aperture. If the beam
through the sextupoles can be manipulated such that the energies of the constituent
particles and their transverse positions are also linearly correlated, then it is possible

to globally cancel the energy-dependent focusing of the quadrupole magnets. The
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high-energy particles are forced through a region of high gradient in the sextupole
aperture, and the low-energy particles pass through a region of low gradient.

In order to produce a linear correlation between energy and transverse position at
the sextupole magnet, it is necessary to introduce dipole bending magnets upstream
of the sextupoles. Low energy particles are overbent by such magnets, and high
energy particles underbent, resulting in the desired energy-position correlation. The
trajectory of a particle with zero initial offset or angle, but unit energy offset, is called
the dispersiveray, and its value through the beamline given by the dispersion function,
denoted by Dy,(s) or 7,4(s). The dispersive ray must be carefully controlled and
closed between the last sextupole and the FP, as a position-energy correlation at the
FP will add in quadrature with the monochromatic spot and increase its size.

It is also worth noting that a monoenergetic beam which passes through such a
system will also see differential focusing due to the sextupole. This geometric aber-
ration of the sextupole can in practice be an even larger effect than the chromaticity
of the quadrupoles. This geometric sextupole aberration is eliminated by placing
the sextupole magnets in pairs separated by a —I transform (a telescope with unity
magnification, which inverts the image). By placing bend magnets upstream of the
first sextupole and within the —I module, the dispersion function is the same at the
two sextupoles, and the chromatic aberrations add while the geometric aberrations
cancel. By adjusting the dispersion and betatron functions, it is possible to produce
a lattice in which the sextupole chromaticity (& = - K,8:ns, where K, = a%%;)
cancels the quadrupole chromaticity. This scheme for chromaticity cancellation is
also described by Brown and Servranckx [5]. This delicate cancellation of both the
sextupole aberrations and the overall chromaticity results in tight tolerances on the
alignment, strength, and field quality which are characteristic of linear collider final
focus systems.

Figure 1.4 shows the beam size as a function of 8* for a linear collider final

focus system with and without chromatic correction (essentially, the same system
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Figure 1.4: Beam size as a function of 8 for a linear collider, show-
ing both chromatically corrected and uncorrected beam sizes. Beam
parameters are the same as for Figure 1.2.

with sextupoles on and off). Note that even with chromatic correction, the spot size
diverges from the linear monoenergetic size at some threshold. This is due to other
aberrations which are not corrected.

The arrangement of strong quads, strong sextupoles, and bend magnets has been
successfully implemented in one working collider, the Stanford Linear Collider (SLC).
A brief examination of the optics of this system is instructive in understanding the

trade-offs involved in final focus design.

1.4 The SLC Final Focus

The Stanford Linear Collider consists of a single linac in which both positrons and
electrons are co-accelerated; a pair of achromatic arcs which steer the beams into a
more or less head-on approach; and a pair of final focus systems which produce the

small spots desired at the IP[8]. The optical arrangement of the SLC Final Focus is
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Figure 1.5: Optics of the SLC Final Focus. These are the original
optics, which have since been upgraded in several ways; however, the
basic principles of the system are unchanged.

shown schematically in Figure 1.5.

Note that the chromatic correction sextupoles are interleaved within the CCS
section: while the sextupoles for correcting horizontal and vertical chromaticity are in
pairs separated by a —I transform, the first horizontal sextupole is placed between the
two vertical sextupoles. This was necessary because of space constraints of the SLAC
site, which limited the total length available to the final focus regions. In addition,
the original operation of the SLC utilized equal horizontal and vertical emittances,
in which situation the aberrations caused by the two sextupole pairs interacting with
one another are not significant.

Currently, the SLC operates with unequal emittances in the two planes. In this

configuration, the interleaved sextupoles have been identified as one of the aberrations
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Figure 1.6: Beam size as a function of time at the SLC IP. Both hori-
zontal size (squares) and vertical size (diamonds) are shown. The beam
transverse area is also indicated (triangles); the dashed line represents
the SLC design value for transverse area. Plot data courtesy of N.
Phinney.

which limits the performance of the SLC Final Focus [9]. Nonetheless, in recent
luminosi‘ty runs the SLC Final Focus have produced electron and positron beams
with rms sizes of 2 microns in the horizontal and 400 nanometers in the vertical [10].
The time evolution of the SLC IP spot size is shown in figure 1.6.

In order to produce the desired luminosity, TeV-scale linear colliders will need
to focus beams at the IP to a few hundred nanometers in the horizontal, and no
more than a few nanometers in the vertical. Such beam sizes and aspect ratios will
require final focus systems with the minimum achievable aberration content, and with
specialized diagnostics capable of measuring and correcting errors in such a small, flat

beam. These are the issues for which the Final Focus Test Beam has been constructed.
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Chapter 2

Description of the Final Focus

Test Beam

As we saw in Chapter 1, the difficulties inherent in making the small spots needed for
high-luminosity linear colliders are formidable. Equation 1.10 shows that reducing
the spot size at the IP requires enlarging it in the quadrupole magnets. This means
that the tolerances on magnet strength, stability, alignment, and aberration content
become arbitrarily tight as the beam size at the FP decreases. This becomes especially
true as the sextupole strength needed for chromatic correction increases, and the
rigid cancellation of sextupole aberrations and first-order aberrations from sextupole
alignment come into play. To make matters worse, the extremely unequal beam sizes
from emittance and beamstrahlung considerations places additional tolerances on all
of these phenomena, as well as on incoming coupling and magnet roll (defined as
rotation about the longitudinal axis).

In other fields of endeavor, when a new and challenging product is being con-
templated, it is customary (and necessary) to build a prototype which addresses the
new features and challenges of the product and exposes its potential weaknesses, in
order that these weaknesses may be corrected prior to the start of production. This

is such a useful approach that we have gone ahead and applied it to the “industry”
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| Parameter (units) SLC FF Actual | FFTB Design { NLC FF Proposed
Beam Energy (GeV) 45.6 46.6 250-750
Energy Spread (%) 0.15 0.3 0.3
07 X oy(pm X nm) 2.0 x 400 1.7 % 60 0.25 x 2.5
B: % B (mm X jm) 6.7 x 2800 10.0 x 100 10 x 100
Demagnification 72 380 380
e (meter - radians) 6.0 x 10-8 3.0x 1078 5.0 x 106
~vey(meter - radians) 6.0 x 106 3.0 x 1078 5.0 x 10~8
Aspect Ratio 5 28 100
Bunch Population 3.5 x 1010 1.0 x 10 | (0.75 — 1.0) x 10%°
Repetition Rate (Hz) 120 30 120-180

Table 2.1: Comparison of IP beam parameters for SLC Final Focus, FFTB, and
NLC Final Focus.

of linear collider final focus design. The Final Focus Test Beam (FFTB) is designed
to be a scaled version of a TeV-scale linear collider final focus. The goal of the FFTB
is to produce focused beams of size o X o = 1.7 pm X 60 nm, corresponding to
Bz = 10 mm, B; = 100 ym. Table 2.1 gives the relevant parameters of the SLC Final
Focus, the FFTB design, and the expected NLC design. Note that the FFTB’s verti-
cal demagnification is identical to that of the NLC Final Focus, and that the betatron
functions are also identical. This was done to ensure that the FFTB’s aberration con-
tent and tolerances will match as closely as possible those of the NLC Final Focus.
The design aspect ratio is an intermediate value between the SLC’s (which was unity
at the time of the FFTB design) and the NLC's (which is 100). This parameter de-
termines the tolerances on cross-plane effects such as magnet roll, sextupole vertical
alignment, and roll angles in diagnostic devices such as beam position monitors and

wire scanners.
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Figure 2.1: Location of the FFTB with respect to the existing SLAC
beam lines: SLC arcs, PEP injection, and End Station A/B lines.

The original design for the FFTB indicated a value of 8 of 3 mm, which yields a
oy of 1 um and an aspect ratio of 16. The value of % was changed to 10 mm for two
reasons. First, the expected IP parameters of the NLC, which originally indicated a 3
mm S}, have evolved towards a larger horizontal spot. Second, as shown in Equation
1.10, smaller IP size requires larger size in the quadrupole magnets and consequently
more danger of backgrounds generated by beam particles impacting (“scraping”) on
the magnet apertures. The FFTB’s horizontal apertures were regarded as dangerously
tight at the smaller FP size, and so the horizontal demagnification was relaxed in order
to relieve backgrounds from beam scraping in the final doublet magnets.

Figure 2.1 shows the positioning of the FFTB in the straight-ahead (“C-channel”)
beamline, which is nominally colinear with the linac. The FFTB's total length exceeds
that available in the original C-channel housing, and thus it was necessary to construct
a shielded enclosure for the remaining beam line. This housing extends for 75 meters
into the SLAC Research Yard (RSY), next to End Station A. The total length of the




20

FFTB is 350 meters, and the distance from the first optical element to the FP is 185
meters. The FFTB uses the electron beam as delivered to the SLC IP, with relatively
minor adjustments. Because of synchrotron radiation losses in the SLC arcs, the linac
energy is 1.0 GeV above the SLC IP energy, and thus the FFTB energy is 46.6 GeV
and not 45.6 GeV.

2.1 Optical Modules

The Final Focus Test Beam can be divided into five optical regions, or modules, with
distinet functions and optics. Each of these modules is described briefly below. The
optics and tolerances of the modules have been examined in detail by Roy[6], and

shall not be overmuch discussed here.

2.1.1 Beam Switch Yard (BSY)

BPM30 BPM50

A2XIY A3XIY BPMz0 | ﬂ |
%MXN : A3DX/Y % iA4Dx | |]
50Q1 50Q2 50Q3  50B1  A4DY PCS0

Figure 2.2: Schematic layout of the Beam Switch Yard. Normal
quadrupoles are shown as lenses, bend magnets as large wedges, steering
‘magnets as upright (xcor) or inverted (ycor) small wedges. Pre-existing
BPMs are shown as open circles, FFTB BPMs as closed ones.

The SLAC Beam Switch Yard is not technically an optical module of the FFTB;
however, the BSY contains both FFTB-specific and pre-existing components which
have an impact on FFTB operations. These are shown in Figure 2.2. The elements of
principal interest are: the quadrupole triplet which is common to SLC and FFTB; the
SLC bending magnet 50B1, which must be degaussed at the beginning of FFTB runs;

BPMs 30 and 50, which reconstruct the incoming position and angle of the beam in x
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and y; corrector pairs A3DX/Y and A4DX/Y, which are used by the launch feedback
to correct the orbit measured by BPMs 30 and 50; and PC-90, a fixed collimator
which pre-dates the FFTB and which defines the de facto line from the BSY into
the FFTB, usually called the FFTB’s “Massimo Criterion” !. Each of these elements
shall be discussed in greater detail in later sections, and are shown and described here

to orient the reader.

2.1.2 Beta Match Region

Beam ”‘QX O X{ Shielding M

QSM1 Q5 Q6 QA QA110SM2 QA2

? Ws1

Figure 2.3: Schematic layout of the Beta Match region. Notation is as
before, with the addition of diamonds to represent skew quadrupoles.
Also shown are the locations of the beam reconstruction wire scanner,
WSI, and the 16 meter muon shielding wall which permits access to
FFTB during SLC running.

The first optical module of the FFTB proper is the beta matching region. The
magnets in this region are used to match the parameters of the incoming beam to
those of the desired beam at the FP, or elsewhere in the FFTB line. As shown
in Figure 2.3, the beta matching region consists of five normal quadrupoles, and two
quadrupoles rolled by 45° (“skew quadrupoles”). While primarily used for adjusting to
changes in the incoming beam’s Twiss parameters, these quads also allow considerable
freedom in changing the overall demagnification of the system: betatron functions
from 1 meter X 1 meter to the design have been produced at the FP. Because of the
tremendous flexibility of the beta match region, it is possible to use these quads for

all adjustment of the incoming beam needed for tuning. This in turn allows us to

INamed for M. Placidi of CERN, who resolved a problem with a similar aperture
in the SLC Final Focus.
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tune the magnets in the chromatic correction sections to their design values and leave
them fixed, so that changing the beam size at the IP never requires changing these
quads and potentially losing the cancellation of sextupole aberrations. In addition,
the two skew quads allow independent adjustment of two of the coupling degrees
of freedom of the incoming beam. As discussed in Appendix A, there are only two
degrees of freedom which affect the vertical beam size at the FP; since the vertical
size is so much smaller than the horizontal, it is much more susceptible to coupling
dilution. The two coupling terms which affect vertical focused size are therefore the
ones we typically seek to correct.

Finally, in order to match the incoming beam parameters properly it is first nec-
essary to measure them. This is done by measuring the beam size on a wire scanner,
known as WS1, which is located in the beta match. In order to perform the measure-~
ment (described in Chapter 3), it is necessary to focus the beam to an RMS size of a
few microns in each plane on WS1. For this measurement, therefore, the beta match
quads are tuned to a special optics, and the beam is stopped before the first CCSX

sextupole.

2.1.3 Horizontal Chromatic Correction Region — CCSX
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Figure 2.4: Schematic layout of the CCSX region. Chromatic Correc-
tion sextupoles are indicated by hexagons. Also shown is the movable
stopper, ST62, which is inserted for incoming beam reconstruction.

Figure 2.4 shows the arrangement of magnets in the CCSX region. The first bend

magnet and subsequent quadrupole provide the required dispersion at the first sex-
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tupole; the five quadrupole magnets between the first and second sextupoles create

the geometric —I transformation, while the bend magnets on either side of QN1 are -

used to set the dispersion equal at the two sextupoles. During normal operations,
the betatron functions in both x and y pass through a minimum in the center of
QN1, and the horizontal betatron functions are at a maximum in the center of the
SF1 sextupoles; a; = oy = 0 at both of these locations. In addition, the horizontal
dispersion is at a maximum at the two sextupoles, corresponding to 7, = 0.

In order to correct primarily the horizontal chromaticity, the optics are adjusted
such that 8; > B, at the SF1’s, and the phase advance from the sextupoles to the
FP is £ in both planes. The phase advance between the center quadrupole, QN1,
and the FP is an integer multiple of . In order to correct the chromaticity without
introducing unwanted sextupole aberrations, the stability tolerances on .quadrupole
and sextupole strengths in the CCSX are between 5 and 10 parts in 10%. These
tolerances, and many others, have been computed in exquisite detail by Roy [6]. A

brief discussion on the meaning of tolerances is in Section 2.3.3.

2.1.4 Beta Exchanger

) Vv ) Y,
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QT2 QT3
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Figure 2.5: Schematic layout of Beta Exchanger region. Because of
strength limitations, the “QT2” magnet is in fact a pair of quadrupoles
set at the same strength with a separation of only a few centimeters.
The optics contains a horizontal waist at the WS2 location and a ver-
tical waist at the WS3 location.
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In order to couple the CCSX sextupoles primarily to the horizontal chromaticity,
the betatron functions were adjusted such that 8. 3> B, at the SF1 sextupoles. In
order to correct primarily vertical chromaticity in the subsequent CCSY region, it is
necessary to reverse this relationship. This reversal is the responsibility of the Beta-
Exchanger, a canonical “four-quadrupole telescope” of the type shown in Figure 1.2.
The phase advance from the beginning to the end of the module is 7 in both x and
¥, the horizontal magnification is 0.395, and the vertical magnification is 6.15. These
magnifications are not possible for a strict four-magnet design, given the specifications
of the FFTB standard quadrupoles (see Section 2.4) and the length available for the
module; consequently, the “QT2” magnet has been implemented as a pair of magnets,
QT2A and QT2B, which are placed a few centimeters apart and run at the same
strength.

The beta exchanger is terminated at either end by the CCS ‘sextupoles, which
are § out of phase with the FP, and the beta exchanger itself has ¢, = ¢, = 7.
Consequently, there must exist locations in the beta exchanger at which the beam
is in phase with the FP, and Z out of phase with the sextupoles. In the case of
the beta exchanger, the horizontal and vertical FP Images are separated by 2.85
meters longitudinally. As a result, the beam at WS2 is focused in x but large in y,
while the beam at WS3 is large in x but focused in y. During normal running, with
B; x B; = 10 mm x 100 pym, WS2 G, = 8.3 cm, while WS3 g, = 2.5 cm. With the
nominal emittances, this yields a beam size at WS2 of 03, 0y = 5.0 pm, 99 pm, and at
WS3 of 6,0y = 171 pm, 0.87 um. These are rather extreme aspect ratios to measure,
and we shall see in Section 2.5.2 how such measurements are made. Additionally, the
spot sizes at WS2 and WS3 are potentially dominated by the chromaticity generated
in the CCSX, and WS3 has non-zero horizontal dispersion; consequently, some care
must be taken in using and interpreting the WS2 and WS3 beam size measurements.

Note that WS2, the horizontal waist, is also a point of zero dispersion.
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Figure 2.6: Schematic layout of CCSY region. The CCSY is opti-
cally identical to the CCSX, with the exception that the dipole and
quadrupole polarities are reversed from one to the other.

2.1.5 Vertical Chromatic Correction Region — CCSY

After the beam has been adjusted in vertical and horizontal size by the beta exchanger,
it enters the CCSY. Here the large vertical betatron functions ensure that the SD1
sextupoles will primarily affect the vertical chromaticity. This separation of the CCS
sections allows the two chromaticities to be tuned independently by simply adjusting
the strengths of one pair or the other. The CCSY is constructed identically with
the CCSX, with the exception that all magnet polarities are reversed: horizontally
focusing quads in the CCSX become horizontally defocusing quads in the CCSY,
and vice versa, and the bend magnets bend to the geographic South in the CCSX
and to the geographic North in the CCSY. The quadrupole polarity change has an
interesting side effect: although 7}, = 0 at the SD1 magnets, the actual maximum of
7z occurs in the center of the QM1 magnets. Like the CCSX, o, = ay = 0 in the
sextupoles and the center quadrupole.

Because the vertical betatron functions are so large in the CCSY sextupoles, the
tolerances here are significantly tighter than in the CCSX. Magnet strength stability

tolerances go as low as 1.7 parts per 10%

2.1.6 Final Transformer and Focal Point Region

Once the beam has passed through the last CCS sextupole, all that remains to be

done is to restore the horizontal dispersion to zero and focus the beam down to the
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Figure 2.7: Final Transformer between the CCSY and the Focal Point.
Small hexagons are sextupoles are for correction of residual geometric
sextupole aberrations in the line.

the smallest spot possible. This is all accomplished in the Final Transformer. The
dispersion is cancelled by an additional bend magnet identical to the CCSY bends,
and a soft bend (B03 by name) which introduces a small angle between the beam and
the synchrotron radiation from the preceding hard bend. This small angle ensures
that the synchrotron radiation and the electron beam are spatially separated enough
to mask off the synchrotron radiation before the FP. Three horizontally defocusing
quadrupoles enlarge the beam in x before it enters the Final Doublet. The Final
Doublet does the main work of reducing the beam size at the FP, and is also the
primary source of chromatic aberration in the FFTB. Note that the FFTB’s Final
Doublet actually consists of three physical magnets. This is done because of aperture
problems: in order to make the final lens strong enough, its aperture radius is a mere
6.5 millimeters; this is too small to give adequate clearance to the incoming beam,
which has just passed through the QC2 magnet and is quite large in the vertical.
Thus, a short, strong magnet (QX1) with a larger aperture is used to “pre-focus”
the beam to a size which is capable of passing through the aperture of the main
vertically-focusing quadrupole, QC1. The Final Transformer also contains 4 geomet-
ric sextupoles, which may be used to eliminate residual sextupole aberrations; such
aberrations could come from imperfect cancellation of the CCS sextupole aberrations,
or from small imperfections in the construction of the quads. There is also a skew
quadrupole to compensate the effects of small roll angles in the Final Doublet.
Figure 2.8 shows the positioning of beam size measuring devices around the FFTB

Focal Point. The design free length from the last quadrupole’s downstream face to
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Figure 2.8: Arrangement of diagnostic devices at the FFTB Focal Point.

the nominal FP (I*) is 40 centimeters, significantly smaller than the 1.5 — 2.5 meters
planned for the NLC. The Laser-Compton Beam Size Monitor (Section .2.5.4) is set
at this location. Approximately 25 centimeters downstream of this location is a wire
scanner with 4um carbon fibers, capable of measuring horizontal and vertical beam
sizes. Following this after another 26 centimeter is the Gas-Ion Time of Flight Beam
Size Monitor (Section 2.5.4). The optics of the Final Transformer can be adjusted
to put the waist at any of these locations. Finally, there is a conventional wire
scanner (1 fork, 3 wires at 0°,90°,45° from horizontal, 34um wire;). This location
is sufficiently downstream of the FP that the beam size here is totally dominated
by the FP angular divergences. Since this region is a drift space, WS6B gives a

model-independent measure of the FP angular divergence.

2.1.7 Extraction Line

Once the beam has been focused and measured, the only remaining difficulty is to

dispose of it safely. This is a potentially daunting problem: because the beam is
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Figure 2.9: FFTB Extraction Line optics. The first three lenses are
actually pairs of identical magnets. The vertical hard bends, B06, are
permanent magnets which bend the beam down onto a water-cooled
dump, providing vertical dispersion for energy measurement and energy
spectrum measurement.

smaller at the FP than at any other point, its angular divergence is larger than at
any other point. Consequently, the beam size changes quite rapidly as we move away
from the Focal Point. The Extraction line captures the outgoing beam with an optical
system pictured in Figure 2.9. The first three “lenses” are each made of a pair of
identical quadrupole magnets, for reasons similar to the arrangement of the QT2A/B
pair. The optics of the dumpline are designed to accept a beam whose focal point is
at the Laser-Compton BSM (the first BSM in Figure 2.8), and focus this onto a dual
waist at a vertical only wire scanner near the main dump. Between the last quad and
the dump itself are a series of BPMs and vertical bend magnets: soft bends B04A/B
and B05A/B, and permanent hard bends BO6A-F. The vertical bend magnets bend
the beam onto the dump, which is set below the level of the main beamline in order
to back it up with a long strip of iron for muon attenuation. These bend magnets also
provide significant vertical dispersion at the dump’s location. This allows the BPMs
in the dumpline to resolve energy variations of each pulse, and this information is
used by the SLC linac to provide energy feedback. In addition, the wire scanner at
the location of the last BPM is at a geometric waist; consequently, the beam size at
this scanner is dominated by the product of energy spread and dispersion. Thus the

scanner can be used as an energy spectrum monitor (hence the name ESM).
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Figure 2.10: FFTB beam optical functions. Shown are %2 (dashes),
BY? (solid), and n, (dot-dash). The vertical dispersion function, 7,
has a design value of zero everywhere.
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2.2 Optical Functions

Figure 2.10 shows the optical functions from the 50B1 magnet in the BSY to the
FFTB FP.

2.3 Aberrations

As mentioned in Chapter 1, the first and most significant aberration encountered in a
linear collider final focus system is chromaticity, which is corrected by the introduction
of sextupoles and dispersion. Once this correction is applied, there are additional

aberrations which come into play. These include tunable corrections due to misaligned
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or mispowered elements in the beam line, and untunable corrections which come from

high-order fabrication errors and other sources.

2.3.1 Chromaticity

As we saw in Figure 1.4, the chromaticity cancellation of a lattice like the FFTB’s can
be characterized by comparing the linear beam size, the uncorrected (chromaticity-
dominated) size, and the corrected size. Figure 2.11 shows such a comparison for the

FFTB, at the design energy spread of 22 = 0.3%.
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Figure 2.11: Chromatically-corrected (dashes) and -uncorrected (solid)

beam sizes in the FFTB as a function of B;. The linear monochromatic
size is shown (dot-dash) for comparison.

Figure 2.11 shows that, at the design 8} of 100 um, the linear spot size and the

achievable spot size have begun to diverge, due to higher-order uncorrected aberra-
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tions. The achievable spot size, approximately 60 nanometers, is approximately 10%

larger than the linear size (54.7 nanometers).

2.3.2 Uncorrected Aberrations

There are several aberrations which are inherent to the FFTB design and cannot
be eliminated through tuning of the existing magnets. These aberrations are: the
long sextupole effect; the chromatic breakdown of the —I transforms; synchrotron
radiation losses due to the CCS bend magnets; and synchrotron radiation losses in
the quadrupole magnets themselves, especially the final lenses (“Oide Effect”). These
effects have each been developed in detail by Roy [11], and shall be covered only briefly

here.

Long Sextupole Effect

The presence of strong, non-zero length sextupole magnets gives rise to third- order
(octupole-like) aberrations. A thin slice of sextupole magnet gives a kick to the elec-
trons which pass through it which is proportional to the square of their distance from
the center of the ‘magnet. This kick will slightly change the position of the electrons
as they er;ter the subsequent slice of the sextupole, in a non-linear fashion. When
these interactions between slices are summed over the total length of the real magnet,
the resulting transformation to the electron’s position and angle are equivalent to a
thin sextupole coupled with a thin octupole magnet. This effect contributes a 6%

increase in af, which corresponds to a 3% increase in the spot size.

Chromatic Breakdown

The cancellation of the geometric sextupole aberration due to the CCS sextupoles
relies on the presence of a —I transform between the sextupoles. For off- energy
particles, however, the —I transform is no longer rigorous, due to the chromaticity

of the CCS quadrupoles themselves. While this term is itself small, and does not
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give rise to a large sextupole kick, it damages the rigorous cancellation between the
sextupole and quadrupole chromaticities. The result is that the spot at the FP is no
longer chromatically corrected for all momenta. This aberration causes an increase

in the spot size of about the same magnitude as the long sextupole effect.

Synchrotron Radiation in Bend Magnets

The bend magnets which provide the CCS sextupoles with dispersion also cause the
electrons in the beam to emit synchrotron radiation. This results in the electrons los-
ing energy between the entrance of the FFTB and the FP. While this is not crucial in
and of itself, the amount of energy lost by each electron is determined by the stochas-
tic process of synchrotron emission: there is no relationship (other than statistical)
between a particle’s value of & at the entrance of the FFTB and its value of § at the
FP. As a result, the chromaticity introduced by the CCS sextupoles will not exactly
cancel the chromaticity introduced by the final doublet, and some chromatic growth
will occur. This effect has been estimated to add 6% to a;z, resulting in a further 3%
increase in the spot size.

Note that the long sextupole and bend radiation effects must be traded off with
one another to optimize the optics of the FFTB. Decreasing the strength of the bend
magnets will decrease the synchrotron effect, but requires an increase in sextupole
strength to maintain chromatic correction, thus exacerbating the long sextupole aber-
ration. In this case, optimization of these effects within the constraints of the available

site space was performed by Oide [12].

The Oide Effect

In addition to bend magnets, electrons undergo bending when they pass through
strong quadrupole magnets. If the quadrupole is sufficiently strong and the beam
sufficiently large in the magnet aperture, the bending of individual trajectories from

focusing may be sufficient to measurably change the particle’s energy offset from
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Aberration Source(s) Knob Element(s) | Plane
x Waist Quad Strength Final Doublet X
Sext x align strengths
x Dispersion Doublet Align Final Doublet X
Sext x align orbit
x Chromaticity CCSX Sextupole CCSX Sextupole X
Strengths strengths
Geometric CCS Quad Strengths | FT sextupoles X
Sextupole
y waist Quad Strength Fial Doublet y
Sext x align strengths
y Dispersion Doublet Align Final Doublet y
Sext y align orbit
y Chromaticity CCS5Y Sextupole CCSY Sextupole y
Strengths strengths
x’y Coupling Quadrupole Rolls FT Skew Quad y
strengths
Geometric CCS Quad Strengths |~ T sextupoles y
Sextupole(3)

Table 2.2: FFTB aberrations and their primary dynamic sources.

nominal. This results in a spot dilution from the same process as the synchrotron
radiation in the bend magnets, and is known as the Oide Effect. While not significant
for the FFTB, this effect is likely to be a consideration in the design of future linear

colliders at higher energies.

2.3.3 Corrected Aberrations

In addition to the four uncorrected aberrations listed in the previous section, there
are a total of 11 aberrations which can dilute the FFTB spot size: four which affect
principally the horizontal spot size, and seven which affect principally the vertical
spot size. These aberrations are summarized in Table 2.2, along with their primary
dynamic sources. The dynamic sources of aberration are those which are inclined to
drift over time. This is a different category from static sources, which do not change.

For example, machining errors in quadrupoles can give rise to geometric sextupole
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aberrations, but these aberrations are virtually constant with time; consequently,
any correction of this static source of sextupole aberration remains valid for all time.
If, however, the CCS quadrupoles drift off the settings needed to maintain a ~I
transform, this gives rise to an additional sextupole aberration which depends upon
the time-stability properties of the power supplies.

Additionally, the aberrations listed in Table 2.2 include only those aberrations
which arise primarily in the FFTB itself. The actual values of 8% and By, for exam-
ple, could be set incorrectly, and this would result in changes in the FP bean-u size.
Once this is set, however, the magnets of the FFTB are essentially unable to “drift”
the magnification out of tolerance, because all the FFTB quadrupoles have tighter
tolerances due to other strength-error aberrations (waist and —I _breakdown) than
they do for total magnification. An additional aberration, xy coupling at the FP, can

only arise from sources outside the FFTB itself.

Note on Tolerances

As shown in Table 2.2, the FFTB has been designed with global correction elements
for each of the leading aberrations. These elements are able to cancel all contribu-
tions to their particular aberration, regardless of source, without introducing other
aberrations in the process. As we shall see in Chapter 5, this orthogonality generally
breaks as the knobs approach their full strengths. In addition, such knobs cannot be
made arbitrarily powerful; as a result, a beamline whose elements are too badly mis-
aligned and mistuned cannot be “beaten into submission” by repetitive application
of the knobs.

For all classes of elements in the FF'TB, therefore, we can define capture tolerances:
these are the tolerances within which the elements must be tuned before global knobs
are applied, in order to assure that the knobs will reduce the spot size within a finite
number of iterations. These tolerances are generally a function of the design and

arrangement of the knobs, and of the optics as well. The capture tolerances for the
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Horizontal Alignment of Q and SX | 100 um
Vertical Alignment of Q and SX | 30 um
Strength Error of B, Q, and SX | 0.1%

Roll Angle Error of B, Q, and SX | 0.5 mrad

Incoming 8 mismatch | 100%

Incoming o mismatch | 100%

Table 2.3: Capture Tolerances for FFTB. Tolerances quoted are RMS values of
gaussian-distributed errors. Bends (B), quadrupoles (Q) and CCS sextupoles
(SX) have been included in the simulations.

FFTB have been determined by Oide through a series of simulations [iz], and are
summarized in Table 2.3.

Once the beamline has been tuned to the smallest possible spot size, another
set of tolerances becomes operative. These are the stability tolerances, and they
indicate how far a given element may drift from its post-tuneup value before enlarging
the beam size by a given amount. The determination of what constitutes “a given
amount” has a tremendous bearing on the difficulty of the problem posed by stability
tolerances. For the FFTB, the permitted amount of beam size growth through drift
of beamline elements has been set at 2% per aberration, through a process which is
described in Chapter 5. Thus, at any given time after tuning the global knobs, we
expect that the FFTB FP beam size may be as much as 14% above the design value
in the vertical, and 8% above the design value in the horizontal.

The prescription for translating the “14% solution” [13] above into stability tol-
erances for individual elements, and then into classes of elements, has been a source

of some confusion in the past. This is because, while we speak of growth due to

individual aberrations, the aberrations are caused by drifts in magnet positions and

power supplies, and a given drift may cause several different aberrations (for example,

a CCS quad supply may cause a waist shift and a —I breakdown) - essentially, the
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aberrations and the magnets which cause them form two different bases which de-
scribe the same configuration space of the accelerator. It is important to remember,
however, that the positions and strengths of the magnets are the elements which we
can control directly, not the aberrations caused by changes in the magnets.

Every magnet in the FFTB has a finite set of parameters which may vary from
the ideal: strength, horizontal and vertical alignment, roll, multipole content. Each
of these aberrations may give rise to spot size growth through one of the aberrations
listed in Table 2.2. It is possible to go through the FFTB optics and determine,
for each magnet, how much of each deviation will result in a 2% spot size growth
from each aberration which is generated, and this has been done for the FFTB [6].
However, since the magnets are assumed to all vary from the ideal in an incoherent
manner, some way of combining the tolerances to form a group tolerance must be
determined.

If we define the tolerance on a group of aberrations (for example, vertical vibra-
tions of the standard quads, or power supply ripple of the standard quads) to be Ty;
and we define the individual tolerances within the group to be ¢;; then the amount of
spot size growth caused by all of the magnets varying incoherently by T, is given by:

N

T
Ao® = (0% - 03) = 0.0403 t—g (2.1)
1%

i=
If 1 require that the total spot size growth from this source be no more than 2%, then
my defining equation for Ty is:
1 X1

1 _sL 22)
4B

At this point we have a set of values, Ty, which tells us the RMS tolerance for a class
of objects (in which the objects in the class are assumed to be essentially identical, for
example a set of identical magnets on identical power supplies and identical physical
installations) for a given aberration. If we now have multiple classes which can give
rise to the same aberration (for example, quadrupole vibration and bend power supply

ripple), we can assign to each class a fraction of the 2% total allowed aberration, f;.
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This assignment is based on a judgement of the relative difficulty presented by the
various T, values. At this point, we have a set of tolerances, Tgy/f;, which, if met,
will guarantee that the “14% solution” is also met. This is known as the beamline’s

tolerance budget.

2.4 Magnet Specifications

2.4.1 Normal Quadrupoles

The FFTB standard quadrupole is a warm iron magnet, 46.1 ¢m long with a 1.15
cm aperture radius. These magnets are capable of achieving an integrated gradient,
J G- dl, of 388 kilogauss, which corresponds to a pole-tip field of 9.7 kilogauss. The
maximum current required for this field is 240 amperes. All normal quadrupoles from
the beginning of the line to QC4 are of this design, as are QP1A and QP1B in the
extraction line.

Because the beam becomes quite large in the final telescope and the extraction line,
it is necessary to have magnets with larger apertures in these locations. A variation
of the standard quadrupole, with 46.7 cm length and 1.75 cm aperture radius, was
used for QC3, QP2A, and QP2B. These magnets have a maximum [ G - dl of 273
kilogauss at 325 amperes, which corresponds to a pole-tip field of 10.2 kilogauss. A
larger magnet, with 1 m length and 2.7 cm aperture radius, is used for QP3A, QP3B,
QP4, and QP5. This magnet design has a maximum [ G - dl of 400 kilogauss at 500
amperes, for a pole-tip field of 10.8 kilogauss.

The group tolerance on power supply stability for the quadrupoles up to QC3 is
2L = 7.3 x 1075[15]. This tolerance is determined by shifts in the waist position for
all magnets, as higher-order effects (such as geometric sextupole) do not appear at
this level. The power supplies used for these magnets have achieved stabilities close
to ;2 =3 x 10-6 [16). This implies that all quadrupoles which run at a current

greater than 5% of the maximum will achieve their tolerance. In practice, most of the
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Name || Length | Aperture Max Bomaz J .
(m) | Radius (em) | fG-dl (kG) | (kG) | (amperes)
QC2 2.026 2.60 880 11.3 500
QX1 0.310 1.00 456 147 250
QC1 1.120 0.65 2213 12.8 250

Table 2.4: Parameters of the FFTB Final Doublet magnets.

supplies run above 45% of maximum current, and all run above 7%. Each quadrupole
upstream of the FP is driven by an independent power supply and controller. All of
the quads in the extraction line are driven by independent power supplies, though
some of these share controllers.

The group tolerance on alignment stability due to steering at the IP is approxi-
mately 7560 nanometers in the horizontal and 200 nanometers in the vertical [17], while
the group tolerance due to mis-steering through the CCS sextupoles and final dou-
blet (causing additional quadrupole or dispersion, respectively) is approximately 300
nanometers in the horizontal and 200 nanometers in the vertical. The FFTB magnets
are supported on ANOCAST artificial stone monuments coupled to the ground by
concrete grouting, and no vibration measurement has shown an RMS motion greater
than 100 nanometers {18). The group tolerance on roll angle for all quads up to QC3
is 40 microradians [19).

The three quadrupoles which comprise the final doublet have such differing re-
quirements that each of the three comprises a unique design [14]. Table 2.4 shows
the specifications of these magnets.

The power supply stability requirements for each of QC2 and QC1 are 2 parts per
105, more stringent than even the group tolerance on all other quadrupoles, while for
QX1 it is near 7 parts per 10° [15]. Because of the tight regulation capabilities of the
standard 250 ampere supply used for the rest of the FFTB line, the standard supply
was also used to power QX1 and QCI1. As shown above, this supply easily meets

the stability requirements for QC1. The QC2 magnet requires a 500 ampere power
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supply, ‘which is far beyond the capability of the standard (250 ampere) supply. The
QQC2 supply also demonstrates stability at the level of 3 parts per 10°[16).

Vibration tolerances for the doublet are determined by the limits on allowed FP
steering. The simplest model — that the three quads act as a single paréllel—to—point
lens in each plane - is adequate to determine that motions of the doublet translate to
steering at the FP with a unity ratio; therefore, the vibration tolerance is equal to 1
o in the plane of interest. The three magnets are mounted on a common, vibration-
isolated table[20], with typical RMS vibrations measured to be between 35 and 70
nanometers [18). While this is adequate in the horizontal, the vertical vibrations are
not within the allowed tolerances, resulting in steering of the beam at the FP. The
consequences of this are discussed in subsequent sections. The roll tolerance of the
doublet as a system is 33 microradians [19].

The lowest-order multipole field above the quadrupole is the sextupole, and there-
fore this aberration is the first critical one for quadrupole magnets. The aberration
content for sextupole field is usually quoted as g:ﬁ: at 70% of aperture radius. For all
quadrupoles from Q5 to QC3, the RMS tolerance for this ratio is 5.6 x 10~4, and for
the doublet magnets it is about 3.7 x 10~5. These tolerances, and the measurements
of magnet sextupole content, are discussed at length in Appendix B. Note; however,
that these tolerances are expected to be essentially static, in that the sextupole con-
tent of the quads is not expected to vary overmuch with time. Moreover, in the initial
design phases, there was no provision for geometric sextupole magnets in the FFTB.
The FFTB has, however, been constructed with such magnets. Consequently, even
significant failure to meet this tolerance can be corrected with the use of the global

sextupole magnets.

2.4.2 Bend Magnets

The six B01/B02 bend magnets displayed in section 2.1 have been fabricated as 12

distinct magnets, in order to reduce the length of individual units for ease of handling.
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Each magnet has an effective length of 2.62 meters, with a pole-tip field of 2.144
kilogauss and a bend angle of 3.618 milliradians. Thus the six B01 bend magnets
bend the beam 21.7 milliradians to the South, and the six B02 magnets bend it an
equal amount North. The B03 magnet, also fabricated as a pair of magnets, are
identical except for a slightly larger gap (to accomodate the divergent beam) and
consequently a slightly larger effective length. The B03 pair each have a pole-tip field
of 256 gauss, yielding a total bend angle of 434 microradians.

The current needed to drive the B01/B02 string at the design value is nearly 330
amperes. In this case, all twelve of B01/B02 magnets are driven by a single power
supply which is identical to the QC2 supply, as the voltage needed to push 330 amperes
through 12 long bend magnets is considerable. The power supply stability tolerance
is determined by steering errors in the sextupoles, and is just under 1 part in 10%[21).
As discussed in the previous section, the QC2 supply meets this tolerance. Note that
the twelve magnets have different excitation curves, and thus a single current will
not drive all of the magnets at the design value. Fortunately, each magnet has a
trim win@ing which may be used to fine-adjust its delivered field. Each pair of bend
magnets has a single 12-ampere trim winding power supply; these are discussed in
Section 2.4.4. The B03 magnets require only 71 amperes to reach their design value.
Because these magnets are located after the last CCS sextupole, their tolerance for
strengthis quite loose; the magnets are powered by a standard 240 ampere power
supply, which has stability far superior to what is required for this purpose.

The rotation tolerance for the bend magnets, again determined by orbit transfor-
mations at the sextupoles, is approximately 13 microradians, which is the tightest

roll tolerance in the FFTB [22].

2.4.3 CCS Sextupoles

The four sextupole magnets used for chromatic correction are each 0.25 m in length,

with a 1.0325 cm bore radius. The sextupoles reach a maximum “sextupole strength”
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{J Sdl, where § = %2;?) of 35,500 kilogauss/meter at & current of 325 amperes, for a
pole-tip field of 7.6 kilogauss.

The FFTB sextupoles are powered by separate 333 ampere supplies, but each
pair (SF1’s and SD1’s) shares a common controller. Thus while each sextupole is
independently regulated and stabilized, the pairs are always set to the same current.
This implies that the pairs of sextupoles must have quite identical excitation functions
at the operating point(s), and this issue is discussed in Appendix B. The tolerances
on sextupole strengh regulation are quite loose, over 1 part per 10° for each of the
four sextupoles [15]. The sextupole power supplies are a variation of the standard
FFTB supply (supplying 333 amperes with 30 volts, rather than 250 amperes with 40
volts), which provides a stability almost 3 orders of magnitude greater than required
for this application. Because the sextupoles are placed on mounts identical with
the quadrupoles, and because the primary spot-size effect of the quadrupoles is mis-
steering in the sextupoles, the CCS sextupole alignment tolerances were included in
the treatment of quadrupole alignments [23]. In other words, if the RMS vibration
of all the quadrupoles and the CCS sextupoles is under 300 nanometers in x and 200

nanometers in y, the spot size growth will be 2%.

2.4.4 Other Magnets

The FFTB contains a total of 73 small magnets, which are driven by 12 ampere bipolar
power supplies. These include: three skew quadrupoles (QSM1 and QSM2 in the Beta
Match, QS3 in the Final Transformer); four sextupoles (normal sextupoles SX1 and
5X2, skew sextupoles SK1 and SK2, all in the Final Transformer); an assortment of
DC steering correctors in x and y; six bend trim winding supplies; the B04 and B05
magnets in the extraction line; several sets of quadrupole trim windings which are
wired to act as dipole correctors (on QN1, QT3, QM2, and QC5; QP1A/B, QP2A/B,
QP3); and independent trim windings on each pole of each doublet magnet (total of

12). The specifications for these power supplies require that each one be stable at
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the level of 1 part per 10* at full current, which should be sufficient for most of these

applications?.

2.5 Instrumentation

Sophisticated diagnostics are an essential component of the tuning of the FFTB, and
these in turn require reliable, flexible instrumentation. The FFTB’s primary beam-
measurement devices are a set of high-resolution beam position monitors (BPMs),
and a cluster of wire scanners and profile montiors for measuring the transverse
distributions of the beam. In addition to these, the FFTB makes use of a new
generation of remote-controlled magnet movers, and two novel beam size monitors
(BSMs)3.

2.5.1 Beam Position Monitors

All of the normal quadrupoles between Q5 and QC2, and also QP1A, contain stripline
BPMs. In addition, two FFTB-style BPMs and one older model are installed in the
BSY for launch feedback; three FFTB-style units are installed in the Beta Exchanger
for pulse-to-pulse jitter correction of the beam measured at WS2 and WS3; one
FFTB-style unit is installed in the end of the CCSY for a similar purpose (the wire
scanner in question was not installed); and the extraction line contains four BPMs
similar to the standard design (and one low-resolution device salvaged from elsewhere)
for pulse-to-pulse energy reconstruction and feedback. Figure 2.12 shows the cross-
sectional profile of the standard BPM. Note the indentations in the vacuum extrusion
necessary to fit the BPM into a quadrupole aperture.

The specifications for the BPMs require: pulse-to-pulse resolution of the beam

position of 1 pm at a bunch charge of 1 x 109 linearity of 1% at a beam offset of

2A possible exception is the trim windings on the bend magnets.
3These should not be confused with beamstrahlung monitors, which are also abbre-
viated BSM.
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Figure 2.12: Cross-section of the standard FFTB BPM. The stripline
radius, R12, is 1.15 cm, identical to the quadrupole aperture radius.

2 mm [24]; and a scale factor accuracy of 0.1%. Bench-test calibrations and beam-
based measurements of compliance to these requirements is presented in Appendix C
and Chapter 4, respectively.

The energy feedback BPMs have a larger aperture and shorter stripline length;
consequently, their resolution is reduced from the standard design. These are required

to resolve 6 um pulse-to-pulse [36].

2.5.2 Wire Scanners and Profile Monitors

The FFTB Wire scanners are described in detail elsewhere [26], and their physical
designs are summarized in Table 2.5.

The first scanner, WS1, is primarily used in reconstructing the incoming beam,
and for this purpose must measure beam spots which are as small as a few microns.
The scanner uses 3 separate yokes, one for each direction of measurement. The
scanner can measure X, v, and v, and thus allow the beam’s major and minor axes,

and roll angle, to be reconstructed by geometry considerations.

4the u and v axes are rotated 45° clockwise from, respectively, the x end y axes.
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Name Purpose Wire Size ] Wire Angle |
W51 Incoming Beam 34 pm and 7 pm 07,907, 135°
Reconstruction carbon 3 separate yokes
w52 By 0z 4 um tungsten 0°, £3°,
0°, +6°
WS3 By, 0y 4 pm tungsten 0°, £0.7°,
0°, £1.4°
WS6A | FP tuning (initial) 4 pm carbon 0° % 10,90° x 10 (2 yokes)
WS6B FP divergences 34 um carbon 0°,90°, 45°
ESM | Energy Spectrum 75 pm tungsten, 90°
175 um Be-Cu (24)

Table 2.5: Arrangement of FFTB Wire Scanners. Note that WS3 wire angles
are angles with respect to the horizontal, for measurement of the vertical.

The Beta Exchanger scanners, WS2 and WS3, are required to measure small
spots with large aspect ratios. In this case, the primary problem is signal: the charge
density along the long axis of the beam is so low that a wire stretched to measure in
this direction never intercepts a significant amount of beam, and the signal is quite
low. In-order to remedy this situation, the scanners at these locations are equipped
with wires set at shallow angles relative to the short-axis wire. This allows each wire
to produce a readable signal, although as a result the odd-angle wires produce beam
sizes wh@ch are comparable to the minimum size. This makes distinguishing the wires
problematic, especially if one breaks or cannot be found. Furthermore, note that
the WS3 angles are on the order of 1°. This requires that the yoke’s rotation angle
(relative to the symmetry planes of the magnets) be known to about 0.1°. In the case
of WS3, .an additional problem arises: the beam size at WS3 with nominal emittances
is oy = 800 nm. A wire scanner whose wire is diameter d can reasonably measure a
beam size whose RMS is d/4 before the wire size dominates the measurement [27],
which for WS3 yields 1.0 um.

The FP tuneup wire, WS6A, uses a pair of stationary forks with 10 wires each,
horizontal or vertical (depending on the fork). These are inserted into the beam
and scanned by stepping an upstream corrector. This has the action of moving

the beam across the wire (as opposed to all other scanners in the FFTB, which
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scan the wire across the beam via a stepping motor). The conversion of corrector
strength in kilogauss-meters into position at the FP in microns is dependent upon
the model loaded into the control system, which is subject to errors. Fortunately,
the wires on a given yoke are known to be 50 um apart. Thus, as part of any
experiment involving WS64, the beam is scanned across several wires to cross-check
the calibration constant. Finally, it is worth noting that WS6A wires are at risk
of breakage by the beam. SLC experience indicates that 4 um carbon wires will
be broken by a beam of 1 x 1!° population if 0, X ¢, > 3 um?[28]. During early
FFTB experiments, several WS6A wires were in fact broken (including & sequence
of 6 wires on a yoke broken in a single scan). Since then, however, a technique has
been developed which allows use of WS6A wires for tuning, even when the beam is
capable of breaking wires. This technique is described in Chapter 5.

The FP divergence wire, WS6B, is used to measure beams which are dominated
by FP angular divergence. They are consequently quite large, and 34 um wires are
adequate for measurement. The wires are on a single yoke, a design which is in
ubiquitous use in the SLC linac.

The beam in the dumpline is dominated by vertical dispersion (60 cm at the ESM,
resulting in a beam size of 600 um per 1% 10~2 energy spread). The Energy Spectrum
Monitor can therefore use a large wire and step size, which completely eliminates any
danger of wire damage by the beam. In addition to the scanner, a set of 24 foils below
the wire can be inserted into the beam path indefinitely; the signals from these foils

allow continual monitoring of the energy spectrum.

2.5.3 Magnet Movers

Because alignment of FFTB quads and sextupoles is a critical aspect of tuning and
maintaining a small spot, it is necessary to have the magnets installed in a fashion
which permits them to be moved to aligned positions quickly, precisely, and repeat-

edly. Conventional accelerator designs require the magnets to be moved to aligned



46

positions by work crews. This in turn requires access to the accelerator housing and
deactivation of the magnets, which invites thermal changes to shift the magnet un-
predictably. The alternative to this procedure is to develop remote-controlled magnet
movers which may be used to align the accelerator under run-time conditions.

A fixst-generation magnet mover was used in the SLC Collider Arcs to position
the combined function arc achromat magnets [29]. These movers were single degree-
of-freedom devices, which depended upon a rotary potentiometer to determine the
magnet position. For the FFTB, however, both x and y positioning are required (roll
is also desired), as well as a position-detection system which couples directly to the
magnet, not to the stepper motors or camshafts.

The FFTB Magnet Mover is described in [30] and [31]. The mover uses 3 stepper
motofs, each attached off-center to a camshaft. The magnet is supported by a pair
of V-blocks which ride on the camshafts. When the motors turn the shafts cause
the blocks to rise and fall, and shift left and right. While no single motor drives a
single degree of freedom (x,y,roll), it is possible to combine the stepper-motor actions
to produce pure motions in these coordinates. In addition, the magnet position is
determined by a set of three LVDTs which are in physical contact with the magnet.
The LVDT resolution is approximately 0.3 um, allowing a position reconstruction
resolution of better than 1 pm at all times.

When the magnet mover is commanded to move, both the LVDTs and the rotary
potentiometers are read out, to determine the current locations of both the cams and
the magnet. The necessary movement of each cam is then computed and implemented,
and the LVDTs are read again. If the magnet has not reached its target within 1
pm in each of x and y, and 1 urad in roll, the computation and motion is iterated
until convergence. In this way, the mover provides positioning accuracy of better
than 1 um over its full range of £2.0 mm (x), £1.5 mm (y), 5.0 mrad (roll}. The
testing and calibration of the movers is described in [31). Each normal quadrupole

upstream of the final doublet, each CCS sextupole, and QP1A in the extraction line
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are mounted on such movers.

2.5.4 Beam Size Monitors

As indicated in section 2.5.2, beams which are micron-sized in both planes at FFTB
intensities will destroy 4 um wires through thermo-mechanical stresses. The FFTB’s
FP beam will be on the order of tens of nanometers. Logic indicates that, even if
10 nm wires could be installed on a wire scanner, no such wire could stand up to
the power density of the FFTB beam. Consequently, new technology is required to
measure the focused beam at the end of the FFTB. Two such monitors have been
designed and installed in the FFTB: a Laser-Compton Beam Size Monitor, developed
at KEK, and a Gas-Ion Time-of Flight Beam Size Monitor, developed at LAL Orsay.

Laser-Compton BSM][32]

The Laser-Compton BSM splits a Nd:YAG laser pulse (A = 1.064um) and recombines
it at the electron FP with a crossing angle 8. The laser then produces an interference
pattern, with characteristic modulation wavelength d = 2—55’(\7/—2—)-, as shown in Figure
2.13.

An electron beam which strikes the interference pattern will produce a burst of
photons through Compton scattering, which can be detected downstream of the laser.
The number of photons, N, which are thus scattered by a beam with vertical size o,

is given by Equation 2.3:
= % [1 + cos 2kyy - cos @ - exp {—-2 (ky - ay)2}] ) (2.3)

where k, = %, Np is an overall normalization constant dependent upon the laser and
electron beam intensities, and y is the vertical distance between the electron beam
and a 0° reference in the interference pattern.

Once the interference pattern described above has been established at the elec-

tron FP, the electron beam is measured by scanning the beam vertically across the
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Figure 2.13: Operating principle of the Laser-Compton BSM. A laser
is split and the two laser beams crossed at the FP, producing an in-
terference pattern with a characteristic pitch determined by the laser
wavelength and the crossing angle.

interference pattern, via an upstream corrector magnet. Equation 2.3 shows that N
has a sinusoidal dependence on y, and that the amplitude of the oscillation is given
by cos8 - exp {—2 (ky - a,,)z}. By correlating the signal from the downstream photo-
multiplier tube with the electron beam position at the FP, and fitting the resulting
sinusoid, the beam size can be extracted from the sinusoid’s fit parameters. This is
shown in Figure 2.14.

The Laser-Compton BSM is equipped to produce three different interference pat-
terns. The mode of primary interest crosses the beams at an angle of 174°, resulting
in a 533 nm fringe spacing. This mode can resolve beam sizes from 40 — 180 nm. The
second mode (“Big Y”) uses a 30° angle to produce a 2.1 um spacing, for vertical
beam sizes from 160 — 720 nm. The third mode uses a 6° angle transverse to the
first two, producing a 10.2 um spacing for measuring horizontal beam sizes from 0.76

- 3.4 pm. Although the attainable electron beam size at the FP is larger than the
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Figure 2.14: By correlating the number of Compton-scattered photons
with the beam position, the beam size can be determined: smaller
beams produce sinusoidal patterns with greater modulation depth than
large beams (left). The Laser-Compton BSM is equipped to produce
three interference patterns, in order to measure both horizontal and
vertical beam sizes (right).

minimum size measurable by the 4 um carbon fibers of WS64, it is still necessary to
measure the horizontal size with more exotic technologies, since the horizontal wire
would still be destroyed by the high energy-density of the focused beam. The mod-
ulation depth as a function of crossing angle and beam size is shown in Figure 2.15.

Note that the “Big-Y” mode achieves a maximum modulation of cos 30° = 0.866.

Gas-Ion Time of Flight BSM[33]

The Gas-Ion Time of Flight BSM injects a small amount of Argon or Helium gas into
the path of the electron beam just before it arrives. The high energy electron beam

ionizes the gas, resulting in the presence of positively-charged ions in the vicinity of
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Figure 2.15: Modulation depth as a function of beam size for the three

Laser-Compton BSM operating modes. Modes 1 (solid) and 2 (dashed) Gas %

are the vertical measurement modes, while Mode 3 (dot-dash) is the Intet T 7=

horizontal measurement mode. % el
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The effect of the beam on the ions is twofold. For the heavier (Argon) ions, the / Z

ions are accelerated through the electron beam by its transverse electric field. The / // //
amplitude of the acceleration is proportional to the maximum electric field, which is Beam| Pipe ’
inversely proportional to the major axis of the electron ellipse (in the xy plane). This 391 ¢ 40f mm €83283

results in a distribution of ions whose maximum velocity is inversely proportional to ]
Figure 2.16: Two views of the Gas-Ion BSM: “beam’s-eye” (top) and
longitudinal section (bottom), showing the mechanisms for the injec-

the time of flight of the ions from the FP to an array of microchannel PMT plates tion of gas and the detection of ions. The deflecting electrode is for
separation of singly- and doubly-charged Argon ions.

the major axis of the beam. The velocity, in turn, can be measured by measuring

arranged in a ring around the FP, at a fixed distance, as shown in Figure 2.16. Thus,
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Figure 2.17: Simulated distribution of Helium ions for three different
beam aspect ratios: R=1 (dashed), R=5 (dotted), R=16 (solid). In
this system, an angle of zero corresponds to the horizontal direction.
For all plots, ¢ = 1 um, o, = 500 um, and N, = 1.0 x 10°.

the time of flight of the Argon ions provides a measurement of the larger of the two
beam sizes.

The lighter (Helium) ions become trapped in the potential well of the electron
beam and oscillate within it during the time it takes for the beam to pass through.
Once the beam has exited the BSM, the ions will be emitted in the xy plane, with ve-
locities proportional to their oscillation amplitudes. The larger horizontal amplitudes
result in higher horizontal velocities, and consequently more ions reach the horizontal
sensors than the vertical sensors. The aspect ratio of the beam is thus measured by
the angular distribution of the Helium ions; this number, coupled with the major axis
measured by Argon time-of-flight, gives the two sizes of the beam. In addition, the

precise azimuthal angle of the peak ion detection determines the tilt angle of the beam
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with respect to the BSM (information not available from the Laser-Compton BSM).
Figure 2.17 shows the expected azimuthal distribution of Helium ions for beams with
oz = 1 pm and different aspect ratios, as computed by a Monte Carlo simulation.
Note that the horizontal axis of Figure 2.17 only covers half the circle; a full-circle
plot is expected to provide two peaks, spaced halfway around the azimuth from one
another, and of equal height.

Note that the Argon measurement is weakly affected by the aspect ratio of the
beam, as the vertical size does influence the maximum electric field. However, the
correction is a small one, and the Argon ions are far too heavy to oscillate in the
potiential well of the electron beam - their total movement during the presence of
the beam is quite small. A more significant correction to the Argon measurement
is the separation of singly- charged ions from doubly—charged‘ ones, accomplished
by a deflecting voltage as shown in Figure 2.16. Finally, it is worth noting that
the helium ions can also be used for the time-of-flight measurement; however, the
precision of this measurement is limited, as the minimum time of flight for helium ions

(60 nanoseconds) is only a few times the expected time resolution of the apparatus.
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Chapter 3

Measuring and Matching the

Incoming Beam

The F_inal Focus Test Beam is a magnetostatic system at the end of a 3 km. linear
accelerator. A consequence of this arrangement is that many of the crucial beam
parameters (emittance, energy, energy spread, etc.) cannot be varied by the FFTB
itself, while others (coupling, Twiss parameters) must be measured and matched
before the beam is introduced into the CCSX section. In this chapter, we examine
the techniques by which the incoming beam is measured, and its parameters matched

into those required by the FFTB.

3.1 Characteristics of the Incoming Beam

3.1.1 Emittance, Coupling, and Dispersion

The projected emittances (x and y) of the accelerated beam are measured by a series
of multi-wire diagnostic stations in the linac itself: one just after the extraction from
the damping ring (Sector 2); one near the center of the linac (Sector 11); and one near

the end of the linac (Sector 28). Of the three stations, the Sector 28 measurement is
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most crucial, as this is the measurement made closest to the FFTB itself.

The linac emittance stations use an advanced version of the standard linac multi-
wire emittance algorithm [34]. Wire scanners are placed at several locations in the
linac, with known transport matrices between them. By measuring the vertical and
horizontal beam sizes at each of these locations, it is possible to extract the projected
emittance and Twiss parameters in each plane. Because the beam has three degrees
of freedom in each plane (¢, B, ), three wire scanner locations are sufficient to re-
construct the beam ellipse; the Sector 28 station contains 4 wire scanners, permitting
an over-constrained solution.

During FFTB experimental runs (with bunch populations N, ~ 0.7 x 101°), the
measured normalized emittances at the Sector 28 station are typically e, = 2.5x107°
- 3.5 x 1075m - rad, and e, = 1.5 x 107® - 2.5 x 10~m - rad. While the horizontal
emittance has tended to be slightly larger than the design for FFTB, the verticel is
almost always smaller. This leads us to expect an FP beam size smaller than the

design value of 60 nm.

Note on Emittance Notation

SLAC currently uses two different standards for emittance notation, each of which
is colloquially known as “SLC units.” When normalized emittances (-ye) are quoted,
the customary unit is 10~5m - rad, while laboratory-frame emittances (¢} are quoted
in units of 10~1%m - rad. Because normalized emittances are not changed by accelera-
tion, measurements made in the accelerator itself are typically reported as normalized
values. In beam-delivery areas, however, laboratory- frame emittances are more com-
mon, since these are the emittances which directly couple to beam size. These are the
conventions which are used in this document as well. Note that the common “back
of the envelope” conversion is to divide the normalized emittance by 10° to obtain
the laboratory-frame values in the FFTB; however, this figure must be increased by

10%, as the relativistic «y for a 46.6 GeV electron beam is 91,400 and not 100,000,
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Coupling and Dispersion in the Linac

While it is in general possible to use such a multi-wire system to measure xy coupling,
in the case of the Sector 28 station a good coupling measurement cannot be made.
This is because the phase advance between wire scanners is nearly equeal in x and y,
and consequently the different coupling phases cannot be unequivocally determined
[35]. The coupling can be estimated using another device: a set of profile monitors in
the last 100 meters of the linac (Sector 30). These profile monitors are equipped with
fast kickers which “steal” pulses every few seconds, and their signals are digitized and
transmitted continually to a set of dedicated monitors in the SLAC Main Control
Center (MCQC). The four “Decker screens”! provide single-pulse displays of the xy
distributions of the beam at different phases, and this gives qualitative evidence that
the linac beam is not coupled. As we shall see in Sections 3.2.3 and 3.2.4, the FFTB
beam matching wires can fully resolve incoming coupling,

As discussed in Appendix A, there are experimental difficulties inherent in mea-
suring the residual dispersion of a linear accelerator. This dispersion is estimated by
comparing the projected emittance at the beginning of the linac with the same quan-
tity near the end. As shown in Appendix A, the action of dispersion is to increase the
in-plane l?eam ellipse terms, leading to a larger projected emittance. During FFTB
running this growth is negligible, leading to the conclusion that all sources of disper-
sion in the linac are small. Of greater concern is dispersion arising from the BSY
quadrupoles, and by any steering necessary to bring the beam from the linac into
the FFTB. These effects were estimated during a 1992 experiment which brought the
beam from the linac to D2 (a movable dump downstream of Q6) and found to be
acceptably small [36].

INamed for F.-J. Decker, SLC physicist.
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3.1.2 DPosition and Angle Jitter

Incoming position and angle jitter are translated through the FFTB optics to FP
jitter. This raises problems for the Laser-Compton BSM, which relies on correlations
between the beam position and the compton-scattered flux (see Section 2.5.4), and
also implies difficulties for a future e*e~linear collider, which attempts to collide
nanometer-sized beams at its IP.

Section 2.1.1 introduced the concept of the FFTB launch feedback. This system
uses a pair of BPMs separated by 86 meters to reconstruct the incoming position and
angle of the beam, and a pair of correctors in each plane to hold the BPM readings to
some reference values. Assuming that the BPM errors are uncorrelated and that the
intrinsic resolution of each BPM is 1 pm, the expected resolution of the position and
angle at the first BPM is 1 um and 0.016 prad. Note that the primary function of the
launch feedback is to correct slow drifts and decouple the FFTB steering from slow
and/or DC effects upstream (such as quad strength changes, corrector failures, etc.).
True compensation for stochastic variation on a pulse-by-pulse basis is not possible

for a single-pass accelerator.

3.1.3 Energy Jitter, Feedback, and Spectrum

Because of the arrangement of the FFTB, the energy-related properties of the in-
coming beam are most easily measured in the extraction line, in which the vertical
diqursion reaches over 60 cm. A cluster of BPMs and a wire scanner (ESM; see
Section 2.5.2) provide information on the pulse-to-pulse jitter of the beam, and on
the overall energy spectrum.

Because the energy-reconstruction BPMs are separated by drift spaces and/or
vertical bend magnets, the Ry, 34 matrix elements from one to another can be consid-
ered equal to the longitudinal separations between BPMs, and the Ry 33 terms are
all unity. Such a system, with no quadrupole magnets between the BPMs, provides

the simplest possible reconstruction of the beam energy, with the least possible de-
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pendence on beam optics, but it is not the best. If we consider the first BPM to be
the start of an optical section for reconstruction of the y, ¥, and § of the beam in
the extraction line, we see that the last BPM has the largest R34 and the largest Rag
from the first BPM. This means that this BPM has the best resolution of both the
incoming vertical angle and of the energy, and that the measurement of energy will
be correlated to the vertical angle. In practice, this results in the energy feedback
becoming “confused” when steering in the FP and extraction regions is changed, and
altering the energy as well. This “confusion” can be avoided by halting the energy
feedback program during such steering, or by using the BPMs in the CCSX to restore
the energy after steering to its original value.

The energy jitter is measured by the extraction line BPMs to be on the order of
1.6x 104 on a pulse-by-pulse basis, or approximately 7 MeV. Because the SLAC linac
consists of 240 klystrons, a single klystron “cycling” results in an energy excursion 35
times the RMS quoted above. Such an excursion moves the beam by approximately
3 mm at the last BPM in the extraction line, and even larger excursions are possible
due to various transient linac phenomena. Early experience indicated that such large
excursions cause the last BPM to fail; since the other BPMs do not have a large
dispersion, the energy measurement becomes poor and energy feedback fails to restore
the nominal energy. Such a situation requires manual intervention to recover the
beam and energy feedback. To alleviate this situation, an additional BPM with low
resolution was placed at the midway point between the B06 bends and the last BPM.
This BPM is lightly weighted in the energy fit, and only contributes significantly
when the last BPM fails. Its job is to “rescue” the energy feedback, and bring
the energy back close enough to nominal to allow the last BPM to read properly.
Other adjustments to the feedback options (such as filtering and maximum/minimum
allowed BPM values) have also enhanced the reliability of the energy feedback.

During nominal FFTB running, it was shown that the design configuration of

extraction line quadrupoles resulted in unacceptable backgrounds on the detectors
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for WS6A/B and the Laser-Compton BSM, due to “scraping” in the duad apertures

themselves. The optics were changed to a lower-noise setting, which also has no .

geometric waist at the ESM. The beam size at the ESM is therefore a combination
of the geometric and dispersive sizes, and the quoted “energy spread” is actually an
upper bound. During normal running, the energy spread is found to have an upper
bound of typically & ~ 4 x 104, Energy spread measurements are discussed more

fully in Chapter 6.

3.1.4 Collimation

Unlike a recirculating collider (in which electron and positron bunches quickly settle
into an equilibrium distribution), the constant production and extraction of bunches
in a single-pass system means that the beam halo is repopulated on each bunch, and
this requires a vigorous collimation system to eliminate particles at large excursions
from the average in position, angle, and energy.

The FFTB’s primary collimation system is the SLAC linac collimators, which uses
a set of movable jaws in the last 300 meters of the linac to scrape particles at large
excursions [37], and which serve as the primary collimation for the SLC as well. The
first set of collimators (Sectors 28-29) do the primary collimation, and the collimators
cover both betatron phases in both planes. The second set of collimators (Sectors
20-30) are used to remove particles which scatter off the first set of collimators and
other sources of repopulation in the collimation region itself.

The linac collimators do not eliminate large energy oscillations, nor are they ad-
equate for regions with enormous betatron functions such as the FFTB. The FFTB
itself has two movable collimators to address these issues. The first is a momentum
slit (MSLT), which has a pair of horizontal jaws and is placed near the QM3A magnet
upstream of the first sextupole. This collimator is adequate for eliminating particles
for which the geometric and dispersive offsets from the reference orbit, when added

together, are large enough to encounter the collimator jaws; particles for which this is
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not the case (for example, if the geometric and dispersive terms are large but oppo-
site, in which case they cancel) pass through. The second collimator (CXY) contains
two movable horizontal jaws and two movable vertical ones, and is placed at a point
with equal dispersion to the MSLT but separated by a geometric —I. Particles whose
large geometric and dispersive offsets canceled at the MSLT will encounter the CXY
horizontal jaws, while the vertical jaws provide a final collimation before the tight
vertical aperture of the CCSY sextupoles.

In general, setting up the FFTB collimation for high-divergence optics is a tedious
and difficult affair involving significant trial and error and small moves of the jaws,
since each jaw will generally have an optimum position between allowing too much
beam to‘ i)ass through (causing backgrounds), and intercepting too much beam (which
causes off-energy repopulation, and worse backgrounds). Beam-based alignment of
the quadrupoles and sextupoles can generally ease the rigors of collimation setup, and

also improves the final result.

3.2 ' Emittance Measurement in the FFTB

Because the FFTB does not exercise full control over the 3 km SLAC linac and
the BSY, it is not guaranteed that the beam parameters (8, @) will be equal to
the FEFTB design values at the entrance to the beamline. Furthermore, no reliable
coupling measurement can be made at the Sector 28 wires. Therefore, the FFTB has
its own wire scanners for reconstruction of the incoming beam phase space. These
are the %, y, and v yokes of WS1, in the Beta Match.

Multi-wire beam ellipse measurements, such as those in Sector 28, are ideal for
linear collider work because they are essentially non-invasive: the wires are scanned
through the beam sequentially, requiring no alteration of the colliding- beam condi-
tions. Unfortunately, such measurements cannot easily be carried out in the FFTB.

During high-divergence conditions, the FFTB contains several images of the FP, and
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the rest of the beamline is, to a good approximation, exactly Z away in betatron
phase. The beam is only at & betatron phase between the FP’s and the rest of the
line within a few centimeters of the FP images. As a result, only one of the three
parameters of phase space is easily accessible in the FFTB itself (3 from the FP),
while the other two are very difficult to measure.

An earlier method for measuring the three parameters of the beam ellipse requires
focusing the beam to a waist on a wire scanner, and measuring the beam size as &
function of the strength of an upstream quadrupole [38]. This is the beam recon-
struction technique used in the FFTB. The beam is focused onto a waist at WS1, via
& special setting of the beta match quads. Because the outgoing beam is no longer
matched to the FFTB, ST62 is inserted to prevent the beam entering the CCSX (see
Figure 2.4). The beam size is then measured by the 7 pm wires of WS1 to extract
emittances and Twiss parameters.

In addition to the original “Quad Emit” (or “Auto Emit") technique, two methods
have been developed to permit measurement of the full 4 X 4 beam matrix via quad
scans on WS1. Each of these techniques — Quad Emit, 4D Quad Emit, and Super

Quad Emit — are discussed below.

3.2.1 Uncoupled Quad Emittance Measurements

Consider the situation depicted in Figure 3.1, in which a thin quadrupole magnet
(originally at zero strength) is located upstream of a wire scanner; the R matrix from
the quad’s downstream face to the wire is R, the quad matrix is @, and the product

is § = RQ. The incoming beam matrix ¢(?, is transported to o)
o™ = §oO0gt. (3.1)

Let us assume the scanner is an xy-only scanner, and therefore can only resolve
a{}”) and agg"), which are the squares of the RMS sizes measured by the wire scanner.

Let us further assume that R is uncoupled and the thin quad is not rolled. We can
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b)

Figure 3.1: Quad Emittance measurement procedure. By changing an
upstream quad strength from zero (as in (a)) to a non-zero value (as in
(b)), it is possible to sample the beam size at different phase advances
relative to the quadrupole entrance with a single wire scanner.

therefore express the measures values of a{'{’) and ag;’) :

oi) = SliSng-)) = 53,0 + 53,08 + 251512019,

083) = 53830 = 55059 + 52,087 + 2533534057 - (3:2)

@ can be replaced by the thin-quad matrix?:

Q=( : °), (33)
~K, 1

where K, is the integrated quadrupole strength, K, = %If' For ease of notation,

the derivation will now proceed for horizontal only, with the understanding that the

2The description here is done in terms of thin lenses for simplicity, and to show
the lowest-order dependences. In practice, a thick-lens computation is used.
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vertical is identical save for a change in sign of the quadrupole strength.
Expressing the values of the S matrix as the product of the (fixed) R values and
the variable quad matrix @, we see that as we scan the quad strength, the measured

beam size varies as follows:
O'g)) = (Ru - KqR12)2 0'8) + sz,aég) +2 (Rn - Kqu) Ruagg). (34)
Gathering terms, we find that Equation 3.4 can be expressed as:
off) = K (Rhol?)
+ K, (—2R11R120S) - 2R§20'§g))
+ (B30l + B%0f) + 2RnRiod) . : (3.5)

Note that Equation 3.5 can easily be rewritten in the form of a parabola:

(w)

o) = A(K,—B)’+C, where
A = R¥20‘§2),
R 69)°
(0)2
g
C = R, (agy %)_) (3.6)
o1

By identifying the sigma-matrix elements with the projected Twiss parameters and
emittances (i.e., 011 = €0z, 022 = €2z, 012 = —€;0, and similarly for the vertical
terms) we can extract the values of the projected parameters at the entrance of the
scanned quadrupole directly from the fitted parameters of the parabola. This is the
computation used by the online “Thin Lens” computation. The online “Thick Lens”

computation explicitly computes the transport matrix for the quadrupole at each

setting and uses the scanner data rather than the parabola coefficients to determine

& 0, a.
The FFTB beam measurement procedure uses the first normal quadrupole in the

line, Q5, to measure both horizontal and vertical emittances. When QSM1 is set to
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€ (SLC units) £, m a

x, thin lens 3.18+£0.25 764 £ 80 | —6.04 £ 0.63
X, thick Jens | 3.2830.10 750 £ 58 | —7.25 £ 0.57
y, thin lens | 0.154 £ 0.0011 | 1060 = 20 | —8.23 £ 0.17
X, thick lens | 0.150 £ 0.0035 [ 1070 £33 | —9.41 £ 0.30

Table 3.1: Twiss parameters at entrance to Q5 computed by thin and thick lens
models. “SLC Units” for emittance are 1 x 10~'%m - rad in the laboratory frame

Coii i:ference. The data shown is from the September 14, 1994 beam measurement
zero, the matrix from the 50B1 “treaty point” to the Q5 entrance is a drift space,
and therefore the back-propagation of the Twiss parameters is trivially accomplished.
The back-propagated Twiss parameters become useful during the beam matching
and match-verification phases of tuning, due to the internal architecture of the SLC
Control Program’s online model.

During early experiments with the online quad emit package, both Thin Lens and
Thick Lens calculations were performed. In the sigma measurement configuration,
Q5 has an integrated strength of 145 kilogauss, corresponding to a focal length of
10.7 meters. The quad’s physical length is 46.1 centimeters, and thus the thin lens
calculation was expected to be adequate. As Table 3.1 shows, the discrepancy in the
thin and thick calculations is not trivial, particularly for .

What is the likely effect of such miscalculations on the final spot size? In order
to determine this, note first from Figure 2.10 that there is a preliminary focus in the
BSY, some 120 meters upstream of Q5. This means that, when the FFTB is properly
matched from the preliminary focus to the FP, the entire line has the properties of a
pure demagnification. Let the betatron function at the preliminary waist be denoted

by 8., and the distance from this to the entrance of Q5 by L,,. It can be shown that a

" miscalculation of £, will result in an incorrect value of 8*, and that a miscalculation

of Ly, will result in an incorrect value of L*. Let us denote the error in the preliminary
drift distance and beta function with AL,,, AB,, and in the FP drift distance and
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B, I Ly, m ]
X, thin lens | 204 +£2.1] —123 £ 20

x, thick lens | 14.0£1.1 [ -101 £ 12
y, thinlens 15403 —127+4
X, thicklens [ 119X 04 | —112%5

Table 3.2: Betatron function at preliminary BSY focus, and distance to same
from Q5 entrance, in thin and thick lens calculations. The data from September
14, 1994 is used.

beta function with AL*, AB*. It can be shown that:

Bt DB, B
he -~ Fope
AL, AL*
ﬂw = —ﬁ.;—'. (3-7)

From the Twiss parameters in Table 3.1, it is possible to compute the values of 8,, and
Ly, and these are shown in Table 3.2. It should be noted that for this computation,
the errors on 8 and « have been assumed to be uncorrelated.

As we see in Table 3.2, the most significant error implicit in the thin lens com-
putation {assuming the thick lens values to be essentially accurate) is the betatron
function at the BSY focus, which is miscalculated by as much as 40% in the horizontal
and nearly 30% in the vertical. The waist shifts are at the level of 1 8, which would
produce shifts at the FP of 1 8*. This level is acceptable.

Early FFTB experimental runs found the normalized vertical emittance in Sector
28 to be around 5 x 10~%m - rad, while the same quantity at the entrance to Q5 was
closer to 1 X 1075m-rad. While even the linac emittance was far larger than the
FFTB design value, the amount of emittance dilution indicated between the end of
the linac and the beginning of the FFTB is considerable. At that time, the damping
rings and linac were using a simple modification of the SLC timing, which damps the
electron emittances for only 8.3 milliseconds. While this number is logical for SLC,
which injects at 120 Hz, the FFTB’s 30 Hz permits 16.7 milliseconds of damping time.

Once the timing was adjusted to increase the “store time” in this fashion, the linac
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Figure 3.2: Projected vertical emittance vs QSM1 strength. The dashed
line indicates the FFTB design. This measurement was performed on
January 3, 1995.

emittances were reduced to values as low as 1.5 x 10~%m - rad, with typical numbers
closer to 2.0 x 10~%m -rad. The large emittance growth was hypothesized to be a
result of xy coupling. To test this theory, the quad emit scans were repeated with
skew quadrupole QSM1 at different strengths.

For small values of QSM1 strength, we can estimate its effect as follows: since
QSM1 gives the electrons a change in their 3’ values which is proportional to z,
we expect that small values of QSM1 will not change the vertical divergence, but
can change the correlation between y and 3. Recalling the normalized correlation

coefficients, i;, we can rewrite the projected emittance in the following form:

& = ooy (1 - 1‘§4) . (3.8)
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QSM1 =0 kG QSM1 =1.3 kG

Figure 3.3: Reconstructions of the beam’s xy ellipse at WS1 in beam-
measurement configuration, for two different values of QSM1. With
QSM1 set to zero, the beam is rolled 47° relative to the xz plane, and
the RMS size along the minor axis is 14 pum. Setting QSM1 to minimize
the projected emittance unrolls the beam and also reduces the minor
axis RMS to 9.9 um. Plots shown are from the January 3, 1995 data.

If 34 varies linearly with QSM1 strength, we can expect to see a quadratic dependence
between QSM1 strength and €2.

Figure 3.2 shows the measured values of 63 as a function of QSM1, with the
expected quadratic dependence. Note that the minimum value occurs at QSM1 ~
1.2kG, indicating the presence of significant coupling. The actual value of QSM1
which minimized the vertical emittance varied from 0.7 to 1.5 kilogauss between
FFTB runs, and minimizing the emittance in this fashion typically resulted in vertical
normalized emittances at or below the Sector 28 value at the time.

Additional evidence for xy coupling of the incoming beam can be seen in the
reconstruction of the full xy ellipse at WS1, which requires measurement of the beam
size by the v-wire (see Section 2.5.2). The beam measured with QSM1 set to zero

typically is rolled by up to 50° relative to the xz plane, and its minor axis is also
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larger than the minor axis with QSM1 set to minimize emittance. Figure 3.3 shows
an example of this measurement.

Note that QSM1 gives only one degree of freedom for adjusting the incoming
coupling. While the effectiveness of QSM1 in reducing the emittance is fortunate,
it does not guarantee that the incoming coupling has been truly eliminated. It is
therefore necessary to reconstruct the full incoming beam phase space, using a fully-

coupled extension of the quad emit formalism.

3.2.2 Coupled Beam Measurements — General

We saw in the previous Section that a single normal quad scan on a wire scanner with
x and y wires is just sufficient to reconstruct the in-plane terms of the sigma matrix
(o11,12,22 and 03334,44). This algorithm does not yield any insight into the cross-plane
terms of the sigma matrix (013,14,23,04)- In order to determine these, we must measure
the beam size at an angle to the x and y axes, and this is the purpose of wires which
measure the u or v axes.

Consider the beam matrix, ¢j;, at the location of a wire scanner, and let the
scanner’s direction of measurement be rotated clockwise by an angle 8 from the x
axis. We can determine the beam size seen by the wire by applying the matrix for a
passive rotation (i.e., a rotation of the coordinate system) to the beam matrix. The
rotation transforms the x axis into the wire axis, and the transformed oy, term is
the mean- squared size reported by the wire scanner. This size shall henceforth be

denoted oyy,. Formally:

Oyw = [RO‘R‘] n = Rl,-Rl,-a,-,-. (3.9)
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The R matrix for a passive rotation is given by:

cosé@ 0 siné 0
R(O)y = 0 cosf 0 sind ’ (3.10)
—siné 0 cosé 0
0 —sinf 0 cosd

and the square of the beam size reported by the wire is therefore:
Cuw = 013 €082 0 + 033 5in% 6 + 2013 sin 6 cos . (3.11)

The FFTB’s WS1 has a v wire in addition to the x and y wires. The v wire angle
relative to the x axis is 135°, resulting in a beam size given by:

2

1
o, = 5 (0’11 + 033 — 2013) . (3.12)

Note that, if all three wires (x,y,v) are scanned at each setting of the scanned magnet,
then o1 and o33 are known from the x and y measurements, and by subtraction we
may determine the value of 13 from the v scan.

Let us consider the value of o3 at the wire scanner under the conditions of a quad

scan, as we considered the in-plane sizes in the previous Section. Using that notation,

0'?:;’) - Slissjazgjq)

51153309 + 5115340 + S125530%9 + S125640% - (3.13)

Recalling that S = RQ and using the thin-quad approximation allows us to rewrite
Equation 3.13:
agg’) = (Ru — I{qug) (R33 + I(qR34) 0{2) + Rj» (R33 -+ KqR34) d'ég)
+ Ras(Ru — KgRy2) 0{? + RizRason. (3.14)
Gathering terms by powers of K, yields:

oy

—KZ (R12R34) Ugg)
+Ky [(R11R34 - R12R33) Ugg) + Rj2 R34 (Uég) - 0'&?;))]

+
-+ R11R330'§g) + R]QRssagg) + R11R340‘8) + R12R340'$). (315)
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We can see immediately that, from a parabolic fit yielding coefficients A4,B, G, we can

derive coefficients as, a,, ag such that oﬁf) =2, K

, which can be identified with
coefficients in Equation 3.15. We also see that, with three determined coefficients and
four parameters, the system is underdetermined. Three parabolas yield only nine
coefficients, which is insufficient to determine ten parameters of the sigma matrix.
Additional information must be sought to solve the system, and we can gain insight
into the information needed by using a; and a; to eliminate a&‘;’ and agg) from the

equation for ap:

_ RuRy — RipRs3 Ryl Rs3
o = a2[ R}R3, RyoR3y +o Rgy

+ oﬁ) (RuRss+ Ry3Ry2) + aéﬂ) (R12R34) . (3.16)

For notational simplicity, let us define F(R, a;) such that:

Ry1R3s — R1aRss  RiRas Ras
F(R,a;) = ag - — -2, .
(R,a;) = ap— ap [ o, BroFas Q) oy (3.17)
and therefore state that:
F(R, a;) = Ggg) (R11R34 -+ R33R12) =+ O‘g:) (R12R34) . (318)

Given a known transport matrix R, and measured coefficients a; from a quad scan,
F(R,a;) is a linear combination of the remaining off-diagonal terms of the beam

matrix, agg) and ai(,g).

3.2.3 4-D Quad Emit Algorithm

The most direct approach to extracting the ten sigma matrix parameters is to perform
the quad scan vs o, 0y, 0y as described in the previous Section, and then to perform
an additional quad scan vs gy, but to do the last scan in such a manner that F(R, a;)
is independent in the two v-wire scans. We see from Equation 3.18 that the ratio of
(Ru R34 + RagRi2) to (RigR34) must be changed from one v scan to the next to ensure

this independence. This can be done by performing the first set of x,y,v scans in the
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| Parameter (units) | Fitted Value

€1 (SLC units) 2.50
by (m) 845

[a3] -7.18

~é2 (SLC units) 0.167
B2 (m) 998

Qi -7.95

By -0.047

B2 0.054

B, -0.084

By 0.078

Table 3.3: Beam parameters fitted by 4-D Quad Emit program, based
on data taken on September 4, 1994 with QSM1 set to 1.3 kilogauss.
The projected vertical emittance of the beam as shown is «ye, = 0.188
in gLC units; this constitutes an emittance dilution due to coupling of
11%.

optics used for 2-D Quad Emit, changing the beta match optics, and performing a
scan of Q5 vs WS1 v-wire again. This algorithm is the 4-D Quad Emit procedure 3.

The 4-D Quad Emit procedure uses the coefficients of the fitted parabolas and a
thin-lens approximation to represent Q5. Because four quad scans are used, a total
of 12 parameters are used to fit 10 beam parameters, yielding an overdetermined sys-
tem. The algorithm returns the beam sigma matrix, the normal-mode and projected
emittances and Twiss parameters, and the coupling parameters in Spence notation
(see Appendix A). The algorithm also returns normalized fit residuals to the parabola
coefficients (i.e., the difference between the measured coefficients and those expected
from the fitted beam matrix, divided by the measured values). The beam matrix
parameters are fitted at the entrance to Q5, which is upstream of QSM1; therefore,
4-D Quad Emit can be used to measure the residual coupling after QSM1 has been
set to minimize the projected emittance.

The standard 2-D quad emit optics has Ry, = —2.534, Rjs = 25.05 m, R33 =
3.732, R34 = 43.14 m; while the optics for the additional v scan has Ry, = —2.849,

3The 4-D Quad Emit measurement was developed by W.L. Spence.
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72
Scan A B C
X 520x 107 [ -1.28x 1073 | —-1.01 x 10~2
y —5.82x 107 | 1.52%x10°% [ =2.00 x 10~7
vl 3.35x 107 | -8.25 x 10~¥ | —=2.77 x 10~3
v2 9.33 x 1072 222 x 107 | —~9.86 x 103

Table 3.4: Fractional residuals of parabola coefficients after 4-D Quad
Enmit fit.

Ryp = 32.66 m, Ra3 = 1.448, R34 = 22.08 m. For the quad emit optics this yields a
ratio of (R11Ra1 + RasRy2) to (RiaRay) of -0.01465, while the optics for the additional
v scan has a ratio of -0.02164, so the necessary condition is satisfied.

Table 3.3 shows the values of the normal-mode Twiss parameters, normal-mode
emittances, and the Spence parameters determined by the 4-D Emit computation
after optimizing the projected emittance with QSM1. Note that the projected and
normal-mode emittances are (in SLC units) 0.188 and 0.167, respectively, which indi-
cates that the remaining dilution of the vertical emittance is only 11%. If no additional
attempts are made to remove the incoming coupling, the expected FP linear beam
size is 45 nm, while a fully decoupled beam would yield a linear beam size of 43
nm. While the algorithm does not return uncertainties as such, Table 3.4 shows the
normalized fit residuals of the 12 coefficients which are used as input by the package.
The worst fractional residual is just under 10%, which argues that the beam sigma
matrix returned by 4-D Quad Emit probably has 10% precision at worst.

In Section 3.2.1, we saw that the use of a purely thin-lens computation led to
noticable discrepancies in the incoming beam reconstruction, when these results were
compared to a thick-lens computation., Presumably such is also the case for this
algorithm, and an understanding of this issue is helpful in verifying the proper func-
tionality of the algorithm. An additional “ground-truth check” would compare the
results of the algorithm for different values of QSM1, and verify that the expected

transformations in the beam are taking place. Each of these issues is addressed below.

Scan | A (um?/kG?) B (kG) C (um?) Jx*/v
X 57.3F+ 3.4 —144.2+£0.08 | 204.8+39.8 | 2.15
y 16.0£0.75 | —147.0X0.06 | 382746 | 5.7
vl 281+ 1.5 —144.13+0.08 | 1483+28 | 2.1
v2 52.1£43 —122.1+0.14 | 353x0.0 2.7

Table 3.5: Parabola coefficients for September 3, 1994 4-D Quad Emit
measurement. Measurement “v2” is made using a different optics, thus
the altered value of “B” relative to all other scans. Parameter “C”
of scan “v2" returned an uncertainty of 0.0, and is not used in the
thin-lens vs thick-lens analysis described in the text.

Thin Lens effects in 4-D Quad Emit

The most direct test of the 4-D Quad Emit algorithm’s vulnerability to thin lens
approximation errors is to propagate the fitted incoming beam from the entrance of
Q5 to W81, in the appropriate optics, and observe whether the beam predicted at
W81 conforms to that observed in the measurement. In this case, the fitted parabolas
and the errors on the parabola coefficients are the available data, and it is therefore
convenient to compare the parabola coefficients and not the beam sizes themselves.
Table 3.5 contains the fitted parabola coefficients and their associated errors, along
with the x2/v for each parabola. Note that the returned error for the minimum spot
in the second v-scan is identically zero; this term is therefore not used in the analysis
below.

The propagation of the incoming beam to WS1 was accomplished using the SLAC
Final Focus Flight Simulator (FFFS), which uses the standard beam-optics program
TRANSPORT as its mathematical kernel. The FFFS uses the SLC control system’s
online fitting algorithms to fit parabolas to beam scans, and these are therefore per-
formed identically to the fits for real 4-D Quad Emit data. Table 3.6 shows the fitted
coefficients obtained by tracking the input beam in Table 3.3 to WS1. Using the ex-
perimental errors from Table 3.5, it is also possible to calculate a x2? contribution for

each coefficient, and these are also in Table 3.6. Many of the x? contributions in Ta-
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Scan | A (um?/kG9) | B (kG) | C (um?)
X 54.1 (0.9) | -146.7 (952) | 176.7 (0.5)
y 14.8 (3.0) | -145.4 (683) | 36.2 (0.2)
vi | 6.1 (1.8) | -146.2 (725) | 108.6 (199)
V2 | 584 (2.6) | -123.3 (74) 340

Table 3.6: Parabola coefficients from using the 4-D Quad Emit beam
parameters in a thick-lens quad scan simulation. Numbers shown in
parentheses are x? contributions (square of deviation between simu-
lation value and measured value, divided by square of uncertainty in
measured value).

ble 3.6 are enormous: values of almost 1000 are seen, indicating that the parameters
obtained via simulation and experiment diverge by up to 30 times the experimental
uncertainty.

Table 3.6 shows that the “A” and “C” parameters generally have acceptable x2
contributions, but that the measured and predicted values for “B”, the Q5 strength
which minimizes the beam size on the wire scanner, disagree unacceptably. It is now
necessary to verify that the noted divergences arise from the thin lens approximation
alone.

One procedure which can correct the lowest-order distortions of the thin lens
approximation is shown diagramatically in Figure 3.4. The top half of the figure
shows a beam line in which a thin lens is the first element; the lower half is the same,
except that the thin lens has been replaced by a thick lens. The transport matrix
from the downstream face of the quad to the target wire scanner, R, is the same in
both cases. If the beam matrix at the wire scanner in the first system is identical to
the matrix at the wire scanner in the second system, then the beam matrix at the
exit of the thin lens and that at the exit of phe thick lens must be identical to one
another also. Therefore, a beam reconstructed with a thin-lens formalism which is
propagated forward through the thin lens, and then backwards through the thick lens,
should yield a beam matrix which has been corrected for the thin-lens approximation.

This method suffers from one crucial defect in this case: the “v2"” scan was performed
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Figure 3.4: Thin versus thick lens correction for quad emit results. The
two systems are identical from the downstream face of the scanned quad
to the wire scanner. Identical beam matrices at the scanner (owirr)
will therefore yield identical beam matrices at the exit of the scanned

quad (ops)-

0

with Q5 at a different nominal strength. We therefore anticipate that application of
this correction will yield less improvement in the coefficient for the “v2” scan than
for the other three.

Table 3.7 shows the beam parameters measured in the thin-lens case, and those
corrected by the method described above to a thick-lens case. What is most imme-
diately obvious about this correction is that only the values of @; and oy appear to
change dramatically; the emittances, betatron functions, and Spence parameters are
essentially unchanged by this transformation.

Table 3.8 shows the parabola coefficients obtained by using the corrected beam in
Table 3.7 to simulate quad scans from Q5 on WS1. Note that the convergence of “B”
parameters is, in general, improved, but that the “A” and “C” parameters of scan
“y2” are further from the experimental value, as expected. This supports the theory
that deviations between 4-D Quad Emit results and simulation arise primarily from

applying the thin-lens approximation to Q5; furthermore, Table 3.7 shows that, while

A,
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{ Parameter (units) | Thin Lens Value [ Thick Lens Value

~e;1 (SLC units) 2.50 2.51
B (m) 845 799

[23] -7.18 -8.23

e (SLC units) 0.167 0.166
B2 (m) 998 1041

) -7.95 -0.34

Bu -0.047 -0.049

By 0.054 0.053

By -0.084 -0.084

By 0.078 0.078

Table 3.7: September 4, 1994 4-D Quad Emit results, and the param-
eters after correction for thin-lens effects as described in the text.
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Parameter (units) | QSMI=0 Fit [ Thin QSM1=1.3 kG | Thick QSMI=1.3 kG

~€;1 (SLC units) 2.83 2.50 2.51
0G1 (m) 764 812 768

1 -6.50 -6.84 -7.86

~ep (SLC units) 5.1 %107 0.167 0.166
B> (m) 2.2 x 10° 959 1001

e —1.6 x 10° -7.61 -8.95

B, 0.748 -0.047 -0.049

By, 0.0030 0.055 0.054

By 9.93 0.663 0.657

B2 0.0068 0.080 0.079

Table 3.9: Beam parameters fitted by 4-D Quad Emit algorithm on
September 3, 1994, with QSM1=0. For comparison, the beam param-
eters measured at QSM1=1.3 kG are back-propagated to 50B1, and
forward-propagated to Q5 with QSM1=0, which should result in the

the uncoupled matching is affected by the approximation, the coupling parameters

are still extracted correctly by this algorithm.

Scan | A (um?*/kG?) B (kG) C (um?)
x | 5L4(3.1) | -144.0 (9.5) | 186.8 (0.5)
v | 153 (1.0) | -147.0 (0.0) | 345 (0.7)
VI | 251 (42) | -144.0 (2.8) | 139.9 (8.9)
V2 | 40.2 (7.9) | -12L6 (13.3)] 278

Table 3.8: Parabola coefficients from simulation of a quad scan with
the corrected beam parameters.

Non-Optimal QSM1 Values

The September 3, 1994 beam reconstruction included a measurement of the full beam
matrix with QSM1 set to zero. Because the effects of QSM1 are, in principle, easily
simulated, it is possible to use the beam measured with QSM1 optimized (BDES =
1.3 kG), and determine what the beam matrix would be with QSM1 zeroed. Thus,
the two measurements can be compared directly. Table 3.9 shows the 4-D Quad
Emit measurement at QSM1=0. Also shown are two projections, based upon the

measurements made at QSM1=1.3 kG, of what the expected beam parameters would

same beam matrix.

be at QSM1=0: both the beam parameters from the thin-lens fit, and the parameters
corrected for the lowest-order thick lens effects, are included.

The most striking feature of the QSM1=0 fit is that the normal mode emittance
and Twiss functions €3, £, s are drasticallyl different from the parameters éxpected
by adjusting the skew-optimized beam parameters. This is because the vertical pro-
jected emittance is dominated by coupling from the horizontsl plane. The vertical
projected emittance given by the parameters in the second and third columns of Ta-
ble 3.9 can be computed using the emittance relations in Equation A.78, and the
relations in Section A.3.5: the value thus determined is 0.48 x 10~'%m - rad, while
the normal-mode emittance is 0.17 x 10~%m . rad. In Section 3.2.1, we saw that
the projected emittance is the sum in quadrature of the appropriate normal-mode
emittance and the coupling contribution. The coupling contribution in this case is
therefore 0.45 x 10~°m - rad, which is nearly as large as the projected emittance. In
such a case, the uncertainty on the fitted normal-mode emittance becomes large and
the results of 4-D Quad Emit become unreliable [39].
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3.2.4 Super Quad Emit

A significantly different approach to measuring the incoming beam is the online ap-
plication Super Quad Emit'. This application is similar to the thick-lens 2-D Quad
Emit algorithm, and is based upon techniques developed by P. Raimondi for the SLC
Final Focus [40]. As in the other techniques described previously in this Chapter, the
beam is focused onto a dual waist at WS1 (via the 2-D Quad Emit optics); x, y, and
v beam sizes are measured as a function of quadrupole strengths. In this procedure,
however, the optics are not changed but instead several quadrupoles are scanned,

including (potentially) skew quadrupole QSM1.

Once the quadrupole scans are complete and all beam sizes have been measured,'

the data (quad strengths, beam sizes, errors on beam sizes) are passed to a fitting
engine (OPTFIT), along with the fixed optics of the FFTB line, arrangement of the
scanned quadrupoles and wire scanners, roll angles of all elements — in short, all
the physical description of the beamline. The fitting engine loads an initial “guess”
of the normal mode emittances, Twiss, and Irwin parameters, computes a sigma
matrix at the beginning of the FFTB line (specifically, the 50B1 treaty point), and
propagates this sigma matrix to WS1 for each value of the scanned quadrupoles.
By comparing the beam sizes at WS1 to the measured values for all steps of all
magnets, a %2 value is computed. The routine for converting beam parameters to a
sigma matrix, tracking the sigma matrix to the wire scanner, and constructing the x2
is passed to the CERNLIB minimization engine MINUIT. MINUIT then minimizes
the x2 by computing the second derivatives of x? with respect to the parameters,
inverting the matrix of second derivatives to obtain a covariance matrix, and using
this information to estimate the location of the minimum [41]. Note that the matrix
of second derivatives is computed numerically, via finite- difference techniques, and
that MINUIT therefore only requires a function which will supply the value of x?
when passed a set of values for the parameters to be fitted.
1Super Quad Emit was developed by P. Raimondi, L. Yasukawa, and the author
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Super Quad Emit’s main advantages for reconstruction of the incoming beam
are: it uses a thick-lens model and the wire scanner data and errors; and it runs
on the SLC control system, requiring no off-line computations or changes of optics.
However, Super Quad Emit can only determine the beam parameters at the treaty
point which begins a section of the SLAC accelerator complex (in this case, 50B1).
Therefore, there is no way to use Super Quad Emit to measure the beam parameters
downstream of QSM1, and no way to use it to measure the residual coupling after
QSM1’s correction.

Theoretical Considerations

Let us consider once again a thin-lens approximation of Super Quad Emit, in order
to understand the lowest-order behavior of the algorithm. Let us assume a matrix
from the treaty point to the scanned quadrupole, R, and a matrix from the scanned
quadrupole to the wire scanner, R®, and let us require that R® and R® be uncou-
pled. The matrix from the treaty point to the wire scanner is given by .é', defined
here as follows:

S = ROQRM, (3.19)
where @ is the thin-lens quad matrix as defined in Section 3.2.1. Finally, let us define
a matrix, R:

R = RORW, , (3.20)
As defined above, R represents the matrix from the treaty point to the wire scanner
when the scanned quad is at zero®. With these definitions, a certain amount of algebra
yields a solution for ag'{’) as a function of ag-)) (here 0@ represents the beam matrix

at the treaty point and not at the scanned quad):

o = (R = 2K RaRY Y + KARIREY) of

5Although Q5% nominal value for the measurement optics is nonzero, we can think
of “splitting” the nominal Q5 into two halves, one of which is included in the rep-
resentation of R, the other in R®, and consider Q a “deviation matrix” which
represents the difference in Q5 from its nominal value.
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+ 2[RuRu — KR (RoRY + RuRE) + K2ZRDRE(RE)] o
"+ (R - 2K,RuRYRY + KIRYRE)?) 0. (3.21)
Although the functional dependencies of cr(’") are more complex, the scan of Q5 versus
WS x still provides all information needed to determine the horizontal in-plane beam
matrix terms, agl), agg), and 0(0) Similarly the scan of Q5 versus WS1 y provides the
corresponding vertical terms.

The dependencies of ag'é’) on I, are quite cumbersome and complex, and not
represented here. However, the principle remains the same as that shown in Section
3.2.2: the three parabola coefficients are coupled to four cross-plane correlation terms,
allowing two of the terms to be eliminated. This provides a single equation in two

unknowns:
FP(R,RY, R, ;) = fi(R, RV, R®)oD + fo(R, R, R®)oD, (3.22)

and a selection of quadrupoles must be made for which the ratio of f; and f; is
different for the various quads in order to determine all ten sigma matrix terms.

For Q5, the ratlo = 0.0162, and for Q6 the ratio is 0.0425. This should be
adequate for reconstructmg all 10 parameters unambiguously, given the experience
with 4-D Quad Emit in the previous Section. For additional resolution, however,
Super Quéd Emit gives the possibility of using a skew quadrupole scan, for which the

matrix @ becomes a skew matrix, Q;:

1 0 0 0
1 -K, 0

Q—Qs= ! , (3.23)
0 1 0
-K, 0 0 1

where we have used the FFTB and SLC damping ring convention that a skew quad
of positive strength is a normal quad of positive strength which has been rotated

clockwise by 45°, as seen from upstream®. When we explore the effects of propagating

5The SLC FF, by contrast, uses the convention that the rotation is counter- clock-
wise, and different modelling programs use different conventions as well.
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a beam sigma matrix through the total matrix S, as before, we find:
0‘{'{)) R210'11 - 2721172120‘12 + R%Oég)
+ K2 [( RYRY) o2 + + (RORY)" o9 + 2R RO R‘Q’)%g‘j’]
— 2K(RuR§ R0 + Ry RYRE 0 +

RuRERE ol + R RYRER). (324)

Note that the coefficient of Kg is simply the in-plane, un-scanned beam size; the
coefficient of Kg is dependent only on the out-of plane beam matrix terms; and
that the coefficient of K contains all the cross-plane beam matrix terms. The QSM1
versus WS1 x scan will generally be dominated by the K g term, because the horizontal
emittance is the larger of the two emittances. If we go to the WS1 y scan, however,

we find that the coefficient of the linear K, term is:

ayy = —2(R33R(1)R(2)0'§g) + R34R(1)R(i)0'§2)
RasR{y R0l + Rau R B 0fY). (3.25)

The power of this term to resolve a'gg) from aég) is given by the ratio of Ra3 to Ray,
which for the emittance measurement optics is -0.661. Therefore, including the QSM1
versus WS1 y scan is expected to significantly improve resolution of the coupling terms

of the sigma matrix.

Experimental Usage

The Super Quad Emit algorithm was tested during the January 3-5, 1995 FFTB ex-
periment; 4-D Quad Emit and 2-D Quad Emit were also used during this experiment,
allowing for “side-by-side” comparisons of the results.

Table 3.10 shows the fit results for Super Quad Emit when all measurements
are used. Three quadrupoles (Q5, Q6, QSM1) are scanned; each scan yields five
measurements on each of three WS1 axes, for a total of 45 measurements. The quoted

errors are normalized by x2/v of the fit; the diagonal elements of the covariance matrix
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[ Parameter (units) | Fitted Value
€1 (SLC units) 4,1530.19
61 (m) 69.7 £ 3.2
[¢3] 2.40+0.13
€2 (SLC units) 0.15 %+ 0.11
B, (m) 35.1 £ 27.5
) 0.53£0.32
a —0.098 £ 0.22
b 0.41 4 0.16
C —0.25£0.31
d —0.23+0.11
x*/v 6.44

Table 3.10: Results of Super Quad Emittance using all data from all
quad scans. Values are quoted at 50B1 treaty point.

are multiplied by x?/v, and the square root of these quantities are the appropriate
error terms.

While the normal-mode parameters associated with the larger emittance (&1, 61,
oq) are well determined, Table 3.10 shows that the small-emittance normal-mode
parameters and the cross-plane coupling are poorly determined, and the fit quality
indicated by the large x?/v does not inspire confidence.

One significant clue to the difficulty can be discerned at once from Figure 3.5, in
which the measured values of o2 at WS1 are plotted versus Q5 integrated strength
for the Q5 scan. Note that the error-bars on the outlying points are large, and the
points are systematically low relative to the fitted parabola. At these points, the
beam is so much larger than the wire used in the wire scan (7 um diameter) that the
wire never intercepts a significant fraction of the beam, resulting in low signal levels
and general degradation of the fit. Super Quad Emit has no built-in mechanisms for
recognizing bad data, and in any event has too little redundancy to safely eliminate
many points. “Bad” data points must be recognized and eliminated by the user, by
hand. Once these points have been eliminated from the January data set (a total of

6 points, leaving 39 for the fit), the fit results are as shown in Table 3.11. Note that,
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Figure 3.5: Scan of o2 as a function of Q5 from Super Quad Emit
measurement. )
while x?/v is significantly improved, it is still larger than expected. The parabolic fits
of the beam o? versus quadrupole strength, once bad data are eliminated, typically
yield x2/v between 0.9 and 3.5, and we expect Super Quad Emit to converge at least
as well. ’

In the theoretical discussion of Super Quad Emit, it was argued that the bare
minimum amount of data needed to resolve all 10 parameters of the incoming beam
was the Q5 scan and the Q6 scan, while the QSM1 scan could improve resolution of
the coupling. Table 3.12 shows the fit results for Q5 and Q6 (x,y,v) deata, for Q5 and
Q6 (x,y,v) plus QSM1 (y), and for Q5 and QSM1 (x,y,v) data. We see right away
that, while formally converging upon a solution, the Q5+Q6 data is quite poorly
determined, while inclusion of QSM1 y data results in a fit only marginally better
than a fit with all data including clearly bad points.

Why should the fitted values of the normal mode parameters in the small- emit-
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Parameter (units) | Fitted Value
€1 units 4.16+£0.17
f1 (m) 69.3 2.8
) 242 +£0.11

€2 (SLC units) 0.189 + 0.047
G2 (m) 24.5%£5.9
0l 0.83£0.44

a —0.208 £0.23

b 0.490 + 0.057

3 —0.055 £0.21

d —0.288 £ 0.52

x*/v 4.50

Table 3.11: Results of Super Quad Emittance after removing fliers from
fit data. Values are quoted at 50B1 treaty point.
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tance mode go haywire when QSM1 is not included? While OPTFIT uses a MINUIT
call which inserts values of the Twiss and Irwin parameters into the beamline, what
is ultimately tracked to WS1 is a beam matrix: the parameters from MINUIT are
converted to a sigma matrix, which is then propagated to the wire scanner for each
value of the quadrupoles. In the Q5 and Q6 case, the sigma matrix is not determined
sufficiently well to differentiate between the projected vertical emittance which arises
from the normal mode emittance, and the projected vertical emittance which is cou-
pled over from the horizontal. This is similar to the problem of using 4-D Quad Emit
to reconstruct the incoming beam without first eliminating most of the coupling, as
described in Section 3.2.3.

Parameter (units) [ Q5+QSMI+Q6 x [ Q5+QSMI+Q6 y | Q5+QSMI+Q6 v
€1 (SLC units) 4,26 £ 0.16 4,29 4+£0.15 4.09 £ 0.22
£ (m) 67.2+£ 2.6 66.0 £ 2.6 70.6 = 4.2
=3} 2.35 £ 0.10 2.34 £0.10 2.46 £0.16
€ (SLC units) 0.181 £ 0.043 0.173 £ 0.047 0.187 £ 0.055
G2 (m) 25.5 6.4 25,9476 249479
iy 0.82 £ 0.37 0.69 £ 0.28 0.79 £0.51
a —0.28 £0.21 —0.22 £0.18 —0.27 £ 0.29
0 0.482 £ 0.059 0.477 £0.068 0.486 £0.075
[2 ~0.10£0.21 —0.14 £ 0.19 —0.092 £0.29
d —0.277 £ 0.051 —0.277 £ 0.054 —0.287 £ 0.069
x*/v 3.66 2.81 6.64

Table 3.13: Super Quad Emit fit results using Q5 and QSM1 data, plus
different subsets of the Q6 data.

[ Parameter (units) Q5+Q6 [Q5+Q6+QSMT y | Q5+QSM1
€; (SLC units) 4,27 £0.16 4.3140.27 4,29 +0.17
61 (m) 67.2+4.1 73.6 £ 4.2 66.3 + 2.8
[+7 2.2940.15 2.50%0.15 2.35+£0.11
€2 (SLC units) 0.044 £ 0.036 0.120 3 0.103 0.176 £ 0.043
Ba (m) 302 £ 229 35.0 £ 3L.1 BAE6.7
) 0.94 £ 7.47 1.23 £0.86 0.77£0.36
a ~1.13£0.46 —0.41 £ 0.37 —0.26 £ 0.21
0 0.126 £ 0.050 0.39£0.17 0.485 = 0.063
[2 —=0.59+£0.27 —0.096 = 0.502 —=0.108£0.21
d —0.057 £0.027 —0.27+0.14 —0.283 £0.053
v 5.19 5.80 3.18

Table 3.12: Fitted beam parameters from Super Quad Emittance using

different subsets

of the dataset.

Table 3.13 shows the results of Super Quad Emit when Q5 and QSM1 are used,
plus a subset of Q6 data (x, y, or v scan). We see immediately that Q6 v scan
dramatically reduces the quality of the fit, while Q6 y scan marginally improves if;
however, the normalized error values remain the same, and the fitted values change
by amounts small relative to the fitted errors. This leads to two conclusions: first,
that the poor convergence of the fits in Tables 3.11 and 3.12 can be attributed to the

use of Q6 v scan data; second, that the Q6 scan does not materially improve the fit
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Parameter (units) | 4-D Quad Emit | Super Quad Emit | Deviation (¢’s)
€1 (SLC units) 3.65 4.29+0.15 4.3
61 (m) 77.9 66.0 & 2.6 -4.6
oy 2.43 2.34 £0.10 -0.92
€2 (SLC units) . 0.154 0.173 £ 0.047 -0.40
G2 (m) 38.7 25.9 % 7.6 -1.7
oy 2.08 0.69£0.28 -4.9
a -0.655 —0.22 +0.18 2.5
[ 0.450 0.477 = 0.068 0.40
c 0.199 —0.14 £0.19 -1.8
d -.260 —0.277 £0.054 -0.31

Table 3.14: Side-by-side comparison of Super Quad Emit and 4-D Quad
Emit results obtained on same day. Deviation column represents dif-
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Parabola Data Value 4-D Quad Emit | Super Quad Emit
Coefficient Beam Value Beam Value
X scan A 80.7 £ 8.3 69.2 (1.4) 88.2 (-0.90)
xscan B | —144.0+0.16 -143.7 (-1.9) -144.1 (0.62)
x scan C 318 £ 48 290 (0.58) 323 (-0.10)
y scan A 26.6 4 0.93 25.6 (1.1) 21.5 (5.48)
y scan B | —147.5 £ 0.049 -147.4 (-2) -146.3 (-24)
y scan C 29.95 £ 0.0 25.6 65.3
vl scan A 75.0 £ 3.6 67.1 (2.2) 71.8 (0.89)
vl scan B | —145.4 £ 0.055 -145.1 (-5.5) -144.9 (-9.1)
vl scan C 307.2 0.0 277.8 303.0
v2 scan A 87.45 £ 7.7 73.4 (1.8) 89.2 (-0.23)
v2scan B | ~121.0£0.10 -120.9 (-1.0) -121.2 (2.0)
v2 scan C 231.1 £ 0.0 195.4 116.6

ference between the two results, divided by error on Super Quad Emit
result.

over the use of Q5 and QSM1 only.

Finally, note from Tables 3.12 and 3.13 that parameters “a” and “c” are not well-
determined relative to parameters “b” and “d”. This indicates that the scans of Q5
and QSM1 are not optimized to determine these parameters. Since the Q6 scan does
not provide useful information, it is possible that another quadrupole, or perhaps
some combination of quadrupoles in the form of a multi-knob, can be used to assist
in recovering these parameters.

In order to directly compare the results of Super Quad Emit to 4-D Quad Emit, it
is necessary to adjust the 4-D Quad Emit results to compensate for thin-lens effects,
and back-propagate them to the 50B1 treaty point from which OPTFIT bases all its
computations; in addition, the Spence parameters must be converted into the appro-
priate Irwin parameters (see Appendix A). The results of this conversion are shown
in Table 3.14, along with the Q5+QSM1+Q6 y Super Quad Emit results. As the last
column shows, the agreement between the two methods is poor, with 6 parameters
disagreeing by more than 1 standard deviation. There are several possible causes
to this discrepancy: the errors could be correlated in such a way that the two sets

of parameters, though differing significantly when considered one at a time, actually

Table 3.15: Parabola coefficients used in 4-D Quad Emit measure-
ment. The first column represents the actual data, with errors scaled by
(x%/v)M?; the second column represents the parabola coefficients from
simulating the original quad scans with the incoming beam from 4-D
Quad Emit fit; the third column is simulation of the original scans with
the incoming beam from Super Quad Emit. Numbers in parentheses
are residuals divided by the errors from the parabola fits.

describe nearly- identical beam matrices when considered as a group; one approach
could be demonstrably incorrect in its computation; each of the two fits could ad-
equately describe the dataset from which it is derived, and the two datasets could
be divergent; or the methodological differences could give rise to different systematic
errors.

In the first case, we would expect that either solution for the beam parameters
could equally well describe either data set; in the second case, we would expect that
one of the two solutions could describe either data set well, and the other solution
describes both data sets poorly. Neither of these is the case. Using the 4-D Quad
Emit solution, the x2/v for the Super Quad Emit dataset is 23, as opposed to 2.8
for the Super Quad Emit solution; and, as shown in Table 3.15, the Super Quad
Emit solution does a poor job of reproducing the parabolas from the 4-D Quad Emit

solution, particularly the “y” scan.
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It is possible that the incoming beam changed between the 4-D Quad Emit and
Super Quad Emit measurements; however, this possibility is rendered unlikely by the
exact sequence of measurements on January 3-4, 1995. First, the incoming beam was
reconstructed by the 2-D Quad Emit package, with QSM1 = 0. Then the QSM1 set-
ting was optimized by scanning QSM1 vs WS1 vertical, yielding an optimum strength
of 1.313 kG, which was applied (note that this procedure does not yield the precise
value of QSM1 which minimizes the projected emittance, as shown in Figure 3.2).
At this point the x and y projected beam parameters were measured by 2-D Quad
Emit, and the two scans of Q5 versus WS1 v were performed; the parabolas from
2-D Quad Emit and the v scans were used by 4-D Quad Emit. QSM1 was then
returned to zero, and the Super Quad Emit data was taken. Finally, the projected
emittance was measured, via 2-D Quad Emit, as a function of QSM1 strength, with
the final measurement at the optimized value of 1.3 kG. As a result of this sequence of
events, the beam projected emittances were measured at the optimal value of QSM1
before and after the Super Quad Emit experiment, and were found to be nearly equal
(2.1 x 10~'m - rad versus 2.3 X 10~ m - rad); the projected emittance of the Super
Quad Emit beam with QSM1=1.3 kG is 3.1 x 10-"'m-rad. It seems unlikely that the
incoming beam would change its parameters so dramatically, and then change them
back, during the two hours of emittance measurements.

The remaining likely culprit is differing systematic errors in the two techinques.
The most significant source of such differences is the different usages of QSM1. Prior
to the 4-D Quad Emit measurement, QSM1 is empirically set to a value which min-
imizes the vertical beam size at WS1; dwring 4-D Quad Emit, only QS5 is scanned.
Consequently, the 4-D Quad Emit procedure does not depend upon knowing the ab-
solute value of QSM1 at any point — it only requires that the value be optimized and
constant. Super Quad Emit, on the other hand, requires that the value of QSM1 be
known accurately at several different values. Furthermore, Q5 and Q6 have integrated

strengths of -145.7 and 174.7 kilogauss, respectively, in the beam measurement optics,
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Figure 3.6: Super Quad Emit x?/v as a function of QSM1 strength
scale factor. The minimum of 2.67 occurs at 0.957; the “width” of the
minimum, as defined in the text, is £0.043.

corresponding to pole-tip fields of -3.64 and 4.36 kilogauss; while QSM1 is scanned
from 0 kG to 3 kG, which corresponds to a pole-tip field of approximately 170 gauss.
This is an extremely weak field, given that QSM1 was fabricated by cutting an FFTB
Standard Quadrupole in half, and therefore QSM1 contains approximately half as
much iron as the standard quads.

One plausible source of systematic error, therefore, is a scale-factor on the strength
of QSM1. Figure 3.6 shows the x?/v of the Super Quad Emit fit as a function of the
QSM1 scale factor. Note that x?/v is minimized at a QSM1 scale factor of 0.957. The
width of the scale factor measurement (defined by the change in scale factor required

to make x? increase by the amount of x?/v) is 0.043. Thus, while a scale-factor of
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1.0 is within the width of this measurement, a scale-factor of 0.914 is also possible.
While a scale factor in QSM1 is believable, can such an error explain the divergence

between 4-D Quad Emit and Super Quad Emit? This question can be explored

by defining a “convergence coefficient” for the two datasets: for a set of n beam

parameters, we can define:

ﬁ: (Pi.moz Pz’,SQE)z’ (3.26)

i=1 #SQE

where P;4p and P;gqg is the ith parameter in each of 4-D Quad Emit and Super

Cconuerge =

Quad Emit, respectively; and o;sqg is the measurement error in the ith parameter
from Super Quad Emit. Thus the convergence coefficient functions as a form of x?2
test for the two parameter sets.

Because 4-D Quad Emit computes its findings downstream of QSM1, it is nec-
essary to back-propagate the 4-D Quad Emit paramters through the scaled QSM1
for each value of the scaling factor to be considered. Also, for values of the scaling
parameter which are different from the optimal value of 0.957, the errors on the Su-
per Quad Emit quantities enlarge rapidly, and this can potentially “smear out” the
test for convergence. One way to see whether this is happening is to compute the
convergence coefficient with a fixed error set; for this study, the error values from the
0.95 scale factor case are used.

Figure 3.7 shows the value of the convergence coefficient for the two methods of
computing it which are described above. Note that the two curves cease to track
one another for values of the scale factor which are outside the acceptable range.
Note also that both curves have a minimum at approximately 0.90, which is slightly
outside the allowed range. Table 3.16 shows the values of the Super Quad Emit fit
parameters and the propagated 4-D Quad Emit parameters at a QSM1 scale factor
of 0.90. With the adjustment to QSMI1, we see that all of the parameters save €
and B are within 1 standard deviation between the two sets of beam parameters.
In Table 3.17, however, we see that the parabola scans used by 4-D Quad Emit are
still not particularly well reproduced by the Super Quad Emit beam. This situation
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Figure 3.7: Convergence coefficient as a function of QSM1 strength
scale factor. The coefficient computed with fit errors returned from
Super Quad Emit for each value of QSM1 (triangles) and computed
using errors from 0.95 scale factor (circles) are shown.

argues that the uncertainties on the 4-D Quad Emit measurement are smaller than
those on the Super Quad Emit measurement: while the error-bars on the Super
Quad Emit fit allow it to overlap the 4-D Quad Emit fit, nonetheless the actual
beam parameters are sufficiently far from the fitted values to cause poor convergence
with the 4-D Quad Emit data. Because QSM1 corrects the majority of the incoming
coupling upstream of the quadrupole scanned by 4-D Quad Emit, the results from
this method will probably always be better than from Super Quad Emit, which must
reconstruct a beam whose vertical projected emittance is dominated by coupling from
the larger normal- mode emittance. The remaining discrepancy, specifically the value

of the horizontal normal-mode emittance and its corresponding betatron function,
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Parameter {units) [ 4D Quad Emit [ Super Quad Emit | Deviation (0’s)

€1 (SLC units) 3.65 4,47+ 0.16 5.2
61 (m) 76.3 65.3 2.5 -4.4

o 2.43 2.43£0.10 0.0

€2 (SLC units) 0.154 0.142 - 0.048 -0.25
2 (m) 30.0 33.1+9.9 -0.6

s 2.08 1.68 £ 1.00 -0.8

a -0.545 —0.589 = 0.30 -0.15

[ 0.387 0.404 - 0.062 0.27

c 0.144 0.006 = 0.22 -0.21

d -0.230 —0.240 £0.035 -0.29

Table 3.16: Side-by-side comparison of Super Quad Emit and 4-D Quad
Emit results obtained on same day, assuming a QSM1 scale factor of
0.90.

remain unexplained. The 2-D Quad Emit measurement of the horizontal emittance
recorded a value of 4.1 £ 0.1, in SLC units. No further measurements were made in
the horizontal using 2-D Quad Emit; consequently, slow variations in the value at the

level of 10% cannot be ruled out.

3.3 Beta Matching and Verification

As discussed in section 3.2.3, the action of QSM1 is sufficient to reduce the projected
vertical emittance below the design value for the FFTB. Therefore, no effort is made
to further reduce the total incoming coupling, and the beam is henceforth treated as
though it were, in fact, totally decoupled. In particular, the five normal quadrupoles
of the Beta Matching region are set to produce the desired beam conditions at the
FP, based upon the projected emittance and Twiss parameters in each plane. This is
perfectly legitimate, as the projected parameters describe the in-plane terms of the
beam matrix (o11, 012, 022, and the corresponding vertical terms). As long as the
transport matrix from the exit of QSMI to the FP contains no coupling terms, the
cross-plane terms of the sigma matrix will not contribute to the in-plane terms at the

FP. In other words, the transport of the in-plane beam matrix terms is mathematically
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Parabola Data Value 4-D Quad Emit | Super Quad Emit
Coefficient Beam Value Beam Value
X scan A 80.7 £ 8.3 69.2 (1.4 103.2 (-2.7)
xscan B | —144.0 £0.16 | -143.7 (-1.9) 1441 (-0.62)
x scan C 318+ 48 290 (0.58) 298 (0.42)
y scan A 26.6 £ 0.93 25.6 (1.1) 21.5 (5.5)
yscan B | ~147.5 £ 0.049 -147.4 (-2) -147.0 (-10)
y scan C 20.95+0.0 25.6 37.9

vl scan A 75.0 £ 3.6 67.1(2.2) 72.9 (0.58)
vl scan B | —145.4+0.055 | -145.1 (-5.5) -145.0 (-7.3)
vl scan C 307.2£0.0 2778 309.7

v2 scan A 8745+ 7.7 73.4 (1.8) 97.8 (-1.34)
v2 scan B | —121.0£0.10 -120.9 (-1.0) -121.5 (5.0)
v2 scan C 231.1£0.0 195.4 135.4

Table 3.17: Comparison of 4-D Quad Emit parabola coefficients with
coefficients generated in simulated scans with 4-D Quad Emit beam
and Super Quad Emit beam with QSM1 scale factor=0.90.

identical to the transport of the projected parameters, as long as the transport matrix
is uncoupled.

The computation of quadrupole strengths needed to produce the corr;act; beam
parameters at the FP is straightforward, and can in principle be performed by any
of a number of beam-optics programs (SAD, COMFORT, and DIMAD have. all been
used successfully for this operation). Once the match is implemented, however, the
dual image of the FP at WS1 disappears, and further downstream images are required
to ensure that the beam sent to the FP is properly matched. For this purpose, WS2
and W83 are used. Sections 2.5.2 and 2.1.4 describe the design and placement,
respectively, of these wire scanners. By placing the two scanners at the horizontal
and vertical images of the FP, and separating these images by 2.85 meters, it is
possible to verify both the positioning of the two waists, and the betatron functions
at the waists.

In order to verify the positioning of the waists, it is necessary to scan the waist

position and seek a minimum beam size on the wire scanner. This can be done in
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several ways. The simplest is simply to scan a quadrupole in the beta matching region.
This approach moves both waists, however, and also has effects on the betatron
functions at the minimum, and is therefore unsuitable. The next simplest technique
is to develop a cluster of multiknobs which move several quads by a fixed amount per
knob turn, and which move only one of the waists (x or y), leaving both B, valued
unchanged. Because the optics of the beta match region are not constant, such a
knob would have to be calculated for each matching exercise, and the knobs would
only be strictly linear and orthogonal for small changes from the optics used in the
calculation; once the knob has moved a large distance, the downstream quadrupoles
in the beta match region cause the upstream quads to “see” a different R-matrix to
the wire scanner, and change their effects.

Recently the SLC control system has added the capacity for “Irwin Knobs”. These
knobs take advantage of as many quadrupoles as are available to produce orthogonal
transformations, and produce transformations which are linear and orthogonal over
larger portions of the parameter space. This is done by dynamically recalculating
the coefficients needed for the transformations over the range of the scan. Consider,
for example, a waist scan over a range of =W from the current location. The range
is divided into smaller computational intervals, of length w. Over each of the small
intervals, the correct changes in the scanned quads are computed to produce the pure
waist shift desired, and the computation is repeated for the new values of the quads
and the next interval of w. With a sufficiently small value of w, the computation
approximates a continuous, orthogonal transformation.

The mathematics and concepts required for construction of the Irwin knobs are
described in [42]). The concept, briefly, is this: if the existing transport matrix from
the beginning of a beamline to the target wire scanner is given by Ry, then the action
of an Irwin knob is to transform that matrix to By Ry, i.e., to transform it to the same

matrix followed by an “effective knob matrix”. The matrix Ry can be one of three
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possible forms. For a waist shift, the form of Ry is a drift matrix:

1
rRe=|"°1. (3.27)
01

For a change in Byin, the form of Ry, is a pure magnification:

Ri= (m 0 ) (3.28)
0 L1

m

A third transformation is a “thin lens” transformation:

Rk=( ! 0). (3.29)
K, 1

Note that, in a given plane of the beamline, these three transformations span the
space of all possible matrices which have unit determinant. In order to freely adjust
the waist and Bmin in each plane, and require that the “thin lens” be constrained, six
normal quadrupoles are needed.

The FFTB beta matching region contains only five normal quadrupoles. There-
fore, a modification of the scheme described above is used. All Irwin knobs targeted
at WS2 or WS3 constrain or scan horizontal and vertical waist, and horizontal and
vertical Bmin. Knobs targeted at WS2 also constrain the vertical term of the “thin
lens”, and those targeted at WS3 constrain the horizontal term of “thin lens”. Unless
the match has been quite poorly performed, the horizontal waist will be much closer
to WS2 than the vertical v‘;aist; consequently, inserting a thin lens at WS2 will have
relatively little effect in the horizontal, while it will have dramatic effects in the verti-
cal. Therefore, the optics of the system will generally be more tolerant of a horizontal
thin lens at WS2 and a vertical thin lens at WS3.

The utility of the Irwin knobs also depends upon the optics through the system
being well known; specifically, the optics of the quadrupoles, and their excitations
as a function of power supply current, must be known with better absolufe accuracy
than the incoming beam functions at all settings used during knob scans. Magnet-

mover based lattice diagnostics were performed on the quadrupoles in the CCSX, BX,
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CCSY, and FT regions, and these demonstrated that properly-standardized FFTB
standard quads are set with an absolute accuracy of 0.1%, over a variety of setpoints.
These diagnostics are described in Chapter 4. While the beta matching quads were
never subject to the diagnostic in question, these quadrupoles are identical to those in
the measured regions, and are therefore expected to be similarly well-behaved. Fur-
thermore, no direct diagnostics of the quadrupole strengths have been performed after
repeated scanning (which can potentially remove the quadrupole from the measured
hysteresis curve). However, the beta matching quad power supplies are configured
to perform “mini-standardize,” which ensures that the magnets always approach new
set-points from the correct direction. Additional description of the “mini-standardize”
algorithm, as well as indirect evidence that it maintains the quadrupoles on their mea-
sured hysteresis curves, is also discussed in Chapter 4, and the measurement of the
curves is described in Appendix B. Consequently, the beta match quads are expected
to have an absolute accuracy of a few parts per thousand, which is considerably bet-
ter than the knowledge of the incoming beam parameters. A mismatch at WS2 and
WS3 is therefore more likely to be due to uncertainty of the incoming beam than
due to uncertainty in the quad strengths, and the “Irwin Knob” scans become an
appropriate tool to use in approaching convergence.

Figure 3.8 shows a scan, via the Irwin knobs, of the vertical waist position versus
0,3 on WS3. Two phenomena are noteworthy here. First, the position of the minimum
is 12.4 centimeters downstream of WS3, indicated by the fact that the waist must be
moved 12.4 cm upstream from the initial match to put the minimum spot on WS3.
This is considerable mismatch, since the vertical betatron function is only 2.5 cen-
timeters in the design optics at WS3. However, in this case the match was calculated
using Twiss parameters from the Thin Lens fit, which has been seen to produce waist
errors in Section 3.2.1. The second noteworthy factor is that the minimum spot size is
6.8 microns, while with the measured projected emittance (approximately 0.22 SLC

units), the expected spot size is 740 nanometers.
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Figure 3.8: W53 measured 03 as a function of the vertical waist Irwin
knob. The location of the minimum indicates that the waist was origi-
nally located 12.4 cm downstream of the wire scanner. The beam size
at the minimum is 6.8 microns. This measurement was made during
the January, 1995 FFTB run.

As mentioned in section 2.5.2, by using the full set of wires on the WS3 yoke it is
possible to reconstruct the full xy-plane projection of the beam at the wire scanner
location, inlcuding tilt angle. When this was done, the culprit became clear: the beam
was tilted by 1.33° relative to the wire scanner, with a minor-axis RMS size of 1.5um.
Figure 3.9 shows WS3 03 as a function of QSM1 strength. Note that, during beta
matching, the projected vertical emittance was roughly minimized by setting QSM1
to 1.3 kilogauss; according to WS3, however, a strength of -0.9 kilogauss minimizes
the WS3 vertical spot. Finally, Figure 3.10 shows a waist scan performed with the

new value of QSM1. Note that the waist must be shifted an additional 4 cm upstream;
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Figure 3.9: WS3 measured aj as a function of QSM1 integerated

strength, from the January 1995 FFTB run. The minimum occurs

at -0.9 kilogauss, rather than the 1.3 kilogauss determined by WS1

optimizatipn.
however, the flatness of the parabolas in Figures 3.8 and 3.10, as well as the absence of
one “wing” of each parabola, makes this shift equivocal. Note also that the minimum
of Figure 3.10 is extremely broad, which is an artifact of the 4um wire size. The
value of “A” in the two parabolas, which is a measure of the angular divergence,
is quite consistent between the two scans (0.1100 = 0.0030, versus 0.1127 & 0.006).
Since the divergence measurement is dominated by the scans on the wings of the
parabola, where the scanner response is more linear, these values are expected to be
well-measured by this technique.

The disagreement between WS1 and WS3 on the correct value for QSM1 is present

in all beta-matching episodes between September 1994 and March 1995. While the
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Figure 3.10: WS3 measured a;‘; as a function of the vertical waist Irwin

knob, after setting QSM1 to -0.9 kilogauss. Note that the divergence

is virtually the same, as expected, but the minimum is now closer to 1

micron.
optimal value from WS1 shifts between 0.7 and 1.3 kilogauss, the optimal value from
WS3 is between 0 and -1.0 kilogauss, with no clear correlation between the two. One
suspect in this dilemma was a WS3 rotation angle: since the roll angle reported by
WS3 is always around +1°, it stands to reason that the scanner may be rotated
in the xy plane by a similar amount. An experiment was performed to test this
hypothesis: using the magnet mover of QT1, a horizontal bump was introduced at
WS3, which was then closed downstream by QT3 and QT4 movers; at each value of
the bump, the BPMs on either side of WS3 were read out for 100 pulses, in order to
ensure that the bump was truly horizontal, and that no inadvertant vertical motion
was being introduced; and finally, each wire of WS3 was scanned through the beam.

The wire scanner software returns the value of the scanner stepper motor at which
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Figure 3.11: Location of the beam centroid at WS3, as determined by
fitting an asymmetric gaussian to the beam, as a function of the beam
horizontal position. The unrotated wire # 1 (diamonds) and 1.4° wire
# 6 (triangles) are shown.

the centroid of the beam was found, allowing a correlation to be developed between
the beam vertical centroid location and the amplitude of the horizontal bump. In
this way, all 6 wire angles could be measured. The four odd-angle wires allowed a
further test of the method in that these wires were expected to have non-zero rotation
angles. Since the wire scanner software returns two centroid numbers (center of an
asymmetric gaussian fit and center of the actual distribution), both sets of numbers
were analyzed in parallel.

Figure 3.11 shows the variation in centroid location as a function of bump ampli-
tude for wire 1 (nominal zero roll) and wire 6 (nominal 1.4° roll). The nominally flat

wire does show a small roll, with the South end of the wire higher than the North
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Figure 3.12: Movements of the beam at WS3 as a function of the QT1
horizontal mover knob. The positions shown are reconstructed using
data from adjacent BPMs.

end by approximately 5 milliradians. The 1.4° wire is higher on the North by ap-

. proximately 20 milliradians, which is slightly different from the 24 milliradian design

rotation. However, the pre-installation testing of the scanner revealed that the yoke
was systematically rolled by 3 & 1 milliradians, with South end higher[43]. Table
3.18 shows the expected wire angles with this correction, the angles measured by the
gaussian center, and those measured by the distribution center. Note that within
errors, the three angles agree for all wires.

Because the two BPMs read out for this exercise are separated by drifts only from
WSS, it is possible to form a linear combination of the readings which represents
the beam position at WS3. This position, in horizontal and vertical, is shown in
Figure 3.12 as a function of knob position. The slope of the horizontal correlation
is 1.152 & 0.004, rather than the expected 1.0; however, the BPMs scale factor is
measured by the mover lattice diagnostic described in Chapter (), and the BPMs are
found to systematically over-report by 12.4%. Furthermore, the BPM scale factors are
found to vary by £5%, based upon bench tests [44], and the free-standing BPMs near
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Wire | Oineor, rad [ O,0uss, mMred | Omoment, mrad
1 -3 ~5.3 £ 1.7 -4,1+£0.9
2 -15 —16.1+1.5 —16.8 % 1.2
3 +9 +10.3£1.6 +89+1.1
4 -3 —-3.6%0.9 —31%£04
5 -27 —20.0X14 | —-283£0.6
6 +21 +200£1.2 | +21.6*£1.0

Table 3.18: WS3 wire rotation angles measured by the QT1 horizontal
mover bump technique described in the text. Shown are the expected
wire angles from the bench test (f¢neor), the angles measured by fitting
an asymmetric gaussian to the distribution (fgauss), and the angles
measured by computing the center of the distribution directly (Omoment)-
Positive angle indicates the North end of the wire is higher from the
ground than the South end.

WS3 were never bench-tested for this factor. It is therefore possible that the WS3
BPMs differ from the ensemble average by an amount to explain the remaining 3%
discrepancy. The vertical position data shows a correlation with the horizontal motion
of —0.00224:0.0009; this could be due to rolled BPMs or an imperfect horizontal knob;
the correlation is far from convincing. In any event, the WS3 correlations indicate
that the wire scanner has no significant roll at the level expected (1° = 17.5 mrad),
and the BPMs indicate that the bump is performing nearly perfectly. This is a mixed
blessing: while the experiment argues that wire scanners with extremely tight roll
tolerances such as WS3 can be constructed and installed reliably, it also exonerates
the prime suspect in the QSM1 dilemma.

What other errors in the beamline could cause such a discrepancy in coupling
measurements? One possibility is that an upstream quad is rolled or shorted turn-
to-turn. If all other upstream elements were held constant over the FFTB lifetime, a
static quad error would give rise to reproducible QSM1 settings. However, the optics
from QSM1 to WS3 are changed from run to run because of the different incoming
betatron conditions, and the incoming coupling is also different, indicated by changes

in the optimal value of QSM1. Consequently, even a static magnet roll could give
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rise to varying values of QSM1 which optimize the WS3 spot. Magnet rotations are
considered further in Chapter 4. ’
Returning to Figure 3.10, we see that the vertical beta match verification has a
particular difficulty, specifically that the matched beam is smaller than the wire’s
resolution. Furthermore, the beam at the intermediate waist is potentially diluted by
negative chromaticity from the CCSX sextupoles, or other aberrations. This makes
verification of the betatron function itself, Gnn, difficult. It is therefore necessary to

measure the divergence of the beam, and to determine the matched betatron func-

tion from the divergence and the measured emittance, since Gyaise = ,/ ﬂwi.,g' The
divergence can be measured in two ways. The most straightforward is the vertical
beam size on WS2, measured by scanning all six WS2 wires and reconstructing the
xy ellipse. Assuming that the vertical minimum is located at WS3, the vertical size

at WS2 is given by:

wS3 wss3 €
oS = \/ &) + Liysy wssf? = \/ e85 + L%vsz—.wsaﬂ(Tyss)-. (3.30)
y

Because the term due to beam size at WS3 is small compared to the divergence term,

the approximation can be made

€
oD ~ ”L'ﬁvsz-.wssb(st@- (3.31)
y

The second method is to measure the beam size on WS3 as a function of the waist
position. If we replace L% g0 153 With the waist knob (which is in essence a variable
drift), we see that the square of the beam size depends quadratically upon the waist
knob setting. Thus, the parabola parameter “A” represents the square of the diver-
gence in the appropriate units. The units of a;‘} are pum?, while the units of the Irwin
waist knobs are centimeters; therefore, parabola parameter “A” has units of um? per
cm?, and 100v/4 has units of yrad.

Figure 3.13 shows the parabola from a WS3 waist scan and the beam ellipse at
WS2 side-by-side, from a measurement made in March of 1995. The fitted value of
“AY g (2.72 4 0.48) x 1072, which yields a divergence of 16.5+ 1.5urad. The vertical
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Figure 3.13: WS3 divergence measured in two ways: on the left is a
scan of the Irwin waist knob, on the right a measurement of the xy-
projection of the beam ellipse at WS2. These scans were performed
during the March 1995 FFTB run.

beam size at WS2 is 40.8 £ 2.5um, which yields a divergence of 14.3 = 0.9urad,
which is acceptable agreement. The measured emittance at the end of the linac
yields a projection to the FFTB entrance of 3.0 x 10~ meter-radians, which can
be combined with the divergence measurement to indicate a betatron function at
WS3 of approximately 13 centimeters. At the time, the optics were adjusted to
obtain a 8 of 1 mm, which would indicate a Bmin at WS3 of 25 centimeters. This
result demonstrates the utility of the intermediate-waist divergence measurements in
optimizing the beta match. In pringiple a single adjustment of the magnification knob
would have been capable of correcting the optics to those desired; however, the FFTB
was operating in a “signal-seeking” mode, and the discrepancy in beam size at the
FP was not crucial.

A similar set of measurements may be made using WS2’s horizontal size and waist

knob, and WS3's fitted horizontal size. In this case, however, the beam size on WS2 at
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the waist is expected to be closer to 5 microns, and therefore the measured minimum
size at WS2 is more meaningful in the design optics than the measured minimum
size at WS3. Because the optical conditions are less exacting in the horizontal, beam
matching in this plane almost always converges with little more than a waist scan.
The techniques described in this chapter are sufficient to ensure that the incoming
beam is properly matched to the desired conditions at the FP. In principle, the global
tuning described in Chapter 5 can then be applied, using the beam size monitors.
Prior to such an operation, however, it is necessary to verify that the capture condi-
tions outlined in Chapter 2 are met, particularly the quadrupole strength and magnet

alignment conditions. In Chapter 4, we shall see how this is accomplished.
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Chapter 4

Local Beam-Based Diagnostics

Chapfcer 2 argued that an important aspect of tuning the FFTB is ensuring that
the capture tolerances in Table 2.3 are met before attempting to apply global tuning
procedures. In addition, local correction of beamline aberrations and errors is always
preferable to global corrections, since a cascade of local errors can add up to a level
which is too large to correct with global knobs.

An additional feature of local diagnostics is that they can be designed around the
BPM system, rather than the wire scanners and beam size monitors. The BPMs are
fast, non-invasive, and can be read out synchronously on each pulse. In addition,
the BPMs in use in the FFTB have a dynamic range of about 3 orders of magni-
tude (microns to millimeters), which is larger than either the wire or BSM systems.
This makes the local diagnositcs less dependent on proper matching of the incoming
beam, and eliminates the “bootstrapping” frequently associated with such devices
(i.e., tuning the system well enough to get a signal in the first place).

The FFTB has four local, BPM-based diagnostics: quadrupole alignment, disper-
sion measurement, quadrupole strength measurement, and CCS sextupole alignment.

Each of these shall be discussed in turn.
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4.1 Preparation for Local Diagnostics

The first step in preparing the FFTB for local diagnostics is to set a beta-match
optics which reduces the FP divergences significantly. This reduces the beam size in
almost all magnet apertures, which consequently reduces both pulse-to-pulse jitter
and “spray” on the BPMs. Additionally, reduction of the beam size in the mag-
nets increases the range through which a magnet strength may be scanned before
a downstream aperture limit is encountered, which is an advantage for quadrupole
alignment. The optics selected for this set of diégnostics gives Bz X By =3 cm X 1lcm
with the nominal incoming beam. Note that no attempt is made to actually match
the optics to the incoming beam, as the actual sigma matrix at any given point is of
relatively little importance, so long as it is close enough to the expected value that
the quadrupole scan range selected for quad alignment is still acceptable from an
aperture standpoint. .

After setting the beta-match optics as desired, the FFTB line is “standardized”:
the magnets are ramped from a low current to maximum current and back down to
the low current 5 times, then ramped from low current to the desired set point. This
ensures that the magnets are on their measured hysteresis curves, and therefore that
they are actually at their desired setpoints.

Finally, a sample of BPM data is taken to ensure that linac collimation is adjusted
properly for elimination of BPM backgrounds. Early experiences with -.the FFTB
BPM system indicated that poor adjustment of Sector 28-30 collimators resulted in
degradation of BPM precision due to particles impacting the striplines. The resolution
is measured by acquiring data on two or more BPMs which have relatively little phase
advance between them (such as BPMs 50 and 1010, which ere separated by 1 meter
in the Beta Match section, or BPMs 1100 and 2020, which are in the quads bordering
SF1A). The data from such BPMs should correlate linearly, with an RMS deviation
equal to v/2 times the BPM intrinsic resolution. Such a correlation is shown in Figure

4,1. The RMS deviation is 1.45 um, indicating a BPM resolution of 1 #m. The bunch
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Figure 4.1: Correlation of beam vertical positions measured at the
BPMs in QT4 (horizontal axis) and QM3B (vertical axis). These BPMs
border sextupole SD1A, and are expected to track perfectly within the
resolution of the BPMs. The RMS deviation of the data from the fitted
line is 1.45 pm. This correlation is fairly representative of points in the
machine with such BPM pairs.

charge at the time of this measurement was approximately 8 x 10%; therefore, at the
design charge of 1x10%, the expected resolution is better than the design specification

of 1 uhl.

4.2 Quadrupole Alignment

The beam-based alignment of quadrupoles in the FFTB uses the conventional “shunt”
technique familiar to accelerator physicists. Consider a situation as depicted in Figure

4.2, in which the electron beam passes off-axis through a quad. In this case the beam
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Figure 4.2: Schematic of quadrupole alignment technique. Changing
the strength of the quad changes the kick seen by the beam centroid,
which in turn changes the position at a downstream BPM location.

centroid sees a kick, whose amplitude is given by:
z' = - Kz, (4.1)

where K is the integrated quad strength, Az, is the offset of the beam centroid from
the quad center, and once again the thin-lens approximation is used for simplicity
of description while a full, thick lens computation is performed by the algorithm.

Changing the quadrupole strength in this case will change the kick angle:
Az’ = ~AKz,, (4.2)
which translates to a change in position at a downstream BPM:
Azppy = Riy BPM As' = — Ry BPM AK 2, (4.3)

and thus the initial offset of the incoming beam can be determined from scanning the
quadrupole strength, measuring the change in position on a downstream BPM, and
dividing by the known Rj, between the two. Because all quadrupoles in the FFTB
can be moved via magnet movers from the control system, the magnet can then be
moved into aligned position, and the independent power supplies for each quadrupole
allow the measurement to be performed without any use of shunts, boosts, or trim

windings.
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Figure 4.3: Jitter amplitude at all FFTB BPMs, from BPM 30 to the
last extraction BPM, in quad-alignment optics. Both horizontal (light)
and vertical (dark) are shown.

4.2.1 Initial Algorithm Design

‘While the alignment measurement is conceptually simple, in practice there are several
complications which must be addressed. The first of these is incoming jitter: Figure
4.3 shows the horizontal and vertical RMS jitter at all FFTB BPMs during the March
1995 alignment operation. The jitter amplitude is as large as 40 um in some locations,
while the BPM resolution is close to 1 um (see Figure 4.1). This implies that the
incoming position and angle must be computed for each pulse.

The jitter also implies two further difficulties related to reference pulses. The
first is this: the alignment computation in Equation 4.3 assumes that the beam pulse
upstream of the quad being scanned follows the trajectory to which the magnets wish
to be aligned. In other words, given a perfect system with no jitter, scanning the

quadrupole in Figure 4.2 and applying Equation 4.3 to the change in a downstream
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BPM will indicate a correction which moves the quad onto the line of the beam;

however, if the incoming beam is jittering by some amount, then the pulse which -

passes through when the quad is at its nominal strength may potentially be a “fier”,
and not a good pulse to align to. The second difficulty is ensuring that the pulse to
which the next quad downstream is aligned to is identical to the one to which the
current quad is aligned to.

All of the difficulties enumerated above were anticipated and addressed in the
initial design of the quadrupole alignment algorithm. The reference pulse issue was
addressed by using the BPM system (rather than correlation plots) to acquire the
reference orbit prior to data acquisition proper. The reference orbit thus.acquired
was averaged over 100 pulses and saved. The saved orbit was then compared to sub-
sequent pulses for some time to ensure that the saved orbit was fairly reﬁresentative
of the incoming beam, and not systematically offset or off-energy from the majority
of incoming pulses. Because the FFTB launch and energy feedback systems maintain
a constant orbit (with a time scale short relative to 100 pulses), two such highly-
averaged orbits which are representative of the incoming beam are quite likeiy to be
identical. As a further correction to the reference orbit problem, a single reference or-
bit is used to align between 3 and 6 quadrupoles: after the reference orbit is acquired,
the Correlation Plots application in the SLC Control Program (SCP) steps the first
quad and acquires all BPMs at each setting of the quad; the first quad is returned
to its original value, and the next quad is stepped, until all desired quads have been
stepped and data acquired for all BPMs at all quad settings. This procedure ensures
that the quads stepped in this way will all be aligned to the same incoming orbit, so
that the alignment of the FFTB will be at least “piecewise-continuous”.

In summary, the data acquisition algorithm is as follows:
o Acquire reference orbit, Ngyy = 100, compare to subsequent pulses
e For each quad in the current sequence (3 to 6):

— Step the quad through 3 strengths, acquire all BPMs at each strength
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— Return the quad to original strength
e Submit quad strengths and BPM readings to fitting engine.

The fitting engine used for FFTB Quad Alignment is OPTFIT, a MINUIT driver
which uses first-order (R-matrix) beam transport to compute x? values (See section
3.2.4). OPTFIT subtracts the reference orbit from all BPM data, leaving only differ-
ences from the reference orbit. This eliminates all DC phenomena such as the Earth’s
magnetic field, BPM offsets, etc. The engine then calls MINUIT for minimization,
using the misalignments of each quad and the incoming position vector of each pulse,
%o = (2,7, 9,9, 8), as parameters to be fitted (“fitvars,” in the language of the con-
trol system}, and the BPM readings as the data to be matched. The algorithm of the
MINUIT call is as follows:

e Pass new guess values for quad misalignment and position vectors to math
subroutine

¢ insert position vectors and quad misalignments into appropriate data slots

For each pulse acquired

- Use quad strengths to compute new R;;’s for stepped quads
— Use initial position vector to track pulse through beam line, compute dif-
ference between tracked ray and data at each BPM

o compute x? as sum of squares of differences between ray tracking and BPM
data

Iterate above with new guess values until accurate error matrix can be com-
puted, locate minimum in parameter space.

4.2.2 Refinements to the Algorithm

Experience with the beam-based measurement process soon dictated several addi-
tional refinements to the original fitting algorithm. These included an improved
approach to solving the incoming trajectory, cleanup of BPM data before the main

fit call, and fitting of initial kick angles in a segment.

! ! I I f

Figure 4.4: Division of the beamline into several regions. The region
between 2; and 2, contains all the quads whose strengths are changed
for the current acquisition; all other regions have constant transport
matrices throughout the acquisition.

Solving the Incoming Trajectory

An examination of the fitting algorithm above shows that each pulse acquired in-
creases the number of fitvars by 5, for computation of the incoming trajectory. Be-
canse MINUIT is attempting to compute a square, symmetric error matrix, the ap-
proximate computing time will scale as n(n + 1), where n is the number of fitvars.
This means that using many pulses, which is helpful in beating down statistical er-
ror, will also dramatically increase computational time. The number of pulses also
quickly becomes limited by MINUIT, which will only accept 50 fitvars (and, it has
been remarked, will only reliably converge for about 8 [45]). Even worse, the cor-
relation between fitvars of interest (i.e., quad misalignments) and fitvars we don't
actually care about (i.e., initial vectors of pulses) is considerable. MINUIT does not
differentiate between data from upstream of the first stepped device and data down-
stream; thus, even a dataset with no BPMs upstream of the first scanned gquadrupole
will produce a solution for the incoming ray in MINUIT. In a case such as FFTB quad
alignment, MINUIT will frequently conclude that all variation in the data is due to
incoming offsets, none of the quads are misaligned, the errors on fitted quantities are
enormous, and the x?/v also enormous.

The incoming-ray problem can be solved by considering the beamline diagram in
Figure 4.4. Upstream of the first stepped quadrupole (from z to z;) the transport

matrices are constant; downstream of the last stepped quadrupole (from 2, to z4) the
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Figure 4.5: An incoming ray with some uncertainty in x and x’ incident

upon a quad. The lightly shaded region represents the total area in

which the beam may be located, both upstream and downstream of the

quad. The propagation of the incoming ray’s errors must be properly
“ folded into the OPTFIT calculation of quad alignment.

transport matrices are also constant, and in particular in the dumpline (from z; to
24) only drifts and vertical bend magnets are present. Therefore, given a reference
orbit and a data orbit, it is possible to compute the energy deviation of the data
orbit from the BPMs in the dumpline, and the geometric deviation of the data orbit
from the BPMs upstream of the first stepped quadrupole. The data used to compute
these deviations can be removed from the MINUIT fit, and the deviations themselves
can be used as initial conditions to the fit. This reduces the number of fitvars in the
MINUIT minimization call to just those of true interest to the machine physicists.
The difficulty in removing the initial vector fitting from the MINUIT fit is that a
MINUIT multi-parameter it explicitly includes all correlations in error computation.
Consider for example the situation in figure 4.5, in which a beam with an imperfectly-
determined initial vector is incident on a quadrupole. The beam will pass through the
quad, with an offset from the centerline which is undetermined, and this in turn will

cause the exiting ray to be further undetermined. MINUIT automatically includes
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this effect in its determination of the quadrupole alignment precision; any external
computation of the initial vector must include a mechanism for folding these errors
into the MINUIT calculation.

The method chosen to compute the incoming vectors is a linear least-squares min-
imization of x2, which automatically yields a covariance matrix for each pulse. This
computation is exceedingly fast, as each pulse requires construction of a § x 5 cur-
vature matrix from known beamline and data constants, a matrix inversion, and a
matrix-vector multiplication. Note that each pulse requires its own curvature ma-
trix because not all BPMs will return data and verify good status on each pulse.
Furthermore, the energy is extracted from a 3-parameter fit (y,/,8 at the first en-
ergy feedback BPM) to decouple the fit from any upstream steering when quads are
stepped. For m pulses and ¢ quads being fitted in x and y, the scaling for a combined
fit is (5m + 2¢)(5m + 2¢ + 1), whereas for the separated fit the computational scaling
is (4-5+3-4)m+ 2¢(2g + 1). For datasets with a large value of m, the separated fit
wins due to its linear computation scaling; FFTB Quad Alignment datasets typically
have m values between 130 and 150. In addition to the computational advantages,
the separated fit is incapable of getting “lost”: deviations in downstream BPMs due
to changes in quad strengths never get misinterpreted as changes in the initial vector.

The inclusion of initial vector errors into the main fit can be accomplished by
noting that, at each BPM, there will be two sources of deviation between the tracked
ray and the data. The first is the BPM resolution, which is electronic and approx-
imately the same for all data points, which we can define as ogpps. The second is
the propagation of the error in the tracked ray, which we can define as Otrac- Leb
us assume that for a given ray, the initial vector £p and the associated error matrix,

0,4, are known. The propagation law for the vector is given by:

Ttraci = R«.’jib'o,j, (4.4)

where ;7. is the position after tracking, £ the initial position, and summation over
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7 is implicit. The propagation for the error matrix is given by:

aztrac,i a-'Etrac,j
alo‘k 6‘.1:0,, o (45)

R Ruoon.

Otrac,ij

Equation 4.5 can be rewritten in a familiar matrix form:
Ovrac = RooR', (4.6)

i.e., the transport law for the error matrix is identical to the transport law for the
beam m;a,trix.

Once the error matrix for each pulse is established, the transport matrix for each
pulse, from the beginning of the beamline to each BPM, is computed (note that
this is variable because of the scanning of intermediate quadrupoles). The transport
matrices are used to transport the pulse’s initial-vector error matrix to each BPM,
where the intrinsic error o py, is added to the appropriate error matrix term, either
Otrac,11 OF Otrac33; the square root' of this quantity is the effective uncertainty, sy, of
the BPM data point in question. By using o.s; to weight the data in the MINUIT
fit, the uncertainty in the fitting of the incoming beam is taken care of.

In principle, the fitting algorithm automatically locates all BPMs between the
beginning of the line and the first stepped quadrupole to use for fitting the incoming
geometri.c ray, and uses the extraction line BPMs to fit the energy. In practice, the
line upstream of the first quadrupole frequently includes bend magnets. Therefore
the BPMs used to reconstruct the incoming = and z’ potentially include BPMs with
horizontal dispersion. The order of operations within MINUIT extracts the energy
before the geometric terms of the initial vector, and the dispersive offset at each BPM
is subtracted before the fit of the geometric oscillation. However, the computation
of the error matrix is not quite clever enough to properly include the z6 and z'6
correlations; in order to avoid this problem, only BPMs upstream of the first bend

are used to fit the incoming oscillation, and all BPMs from the first bend to the first
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stepped quad are dropped from the fit. As we shall see, this does not result in an

unacceptably coarse measurement of the quadrupole alignments.

Detecting Fliers in Dataset

Another area of concern is the possibility that individual pulses, individual BPMs, or
individual readings may be dominated by various noise sources, which can drastically
alter the fit of the quad misalignments. In the original algorithm, only the value
of x?/v gives any insight into this possibility; with 150 pulses, 30 BPMs, and x
and y data, this is a deunting problem to solve by hand. Some form of pre-fitting
examination of the data, which is capable of recognizing bad data and eliminating
it from the fit, is required. In order to be fully effective, the mechanism must use
information which does not directly correlate to the fitvars. Using the x? contribution
of the data after the fit, for example, would not be appropriate, as the fit has by that
time already been tainted and it is possible that bad x? contributions are due to the
fit being “pulled” by the real culprit.

As mentioned previously, the region between the last stepped quad and the energy
feedback BPMs is a region of constant transport properties. Using the same least-
squares mathematics used to extract geometric initial vectors for the beam f)ulse by
pulse, we can compute the geometric initial vector for each pulse starting at location
2 in Figure 4.4. This computation uses the energy for each pulse computed by the
extraction line BPMs to subtract dispersive terms, and the product nos is added in
quadrature to the intrinsic BPM resolution to de-weight data appropriately (note
that in this case 7 is the Rjg element from 2, to the BPM, not from 50B1 to the
BPM). Once these vectors are computed, each BPM’s x2 contribution is determined.
Any BPM with a x? contribution greater than 64 per data point is dropped from all
further use, and the trajectories at 2, are recomputed. This time, any BPM with
a x? contribution greater than 16 per data point is dropped. A final computation

of the trajectories at 2, is performed. This time, individual data points with a x?
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contribution greater than 16 are dropped.

The first cut is made because a single BPM which is sufficiently disturbed can
pull an entire fit above the threshold for the second cut. The softer cut is made in
an attempt to eliminate such “monster” BPMs, such that on the second pass the
remaining BPMs might converge.

The cuts described are not ideal. For one thing, a BPM which is in an optical
location with sufficient lever-arm can still pull the entire fit to one side, resulting in all
BPMs in the region having x? contributions over 64. In this case, all the BPMs will
be eliminated and no data will remain. This is prevented by only analyzing sequences
of fewer than 11 consecutive BPMs, rather than performing the cuts on the entire
beamline at once. In such a situation, in which a long string of BPMSs have been cut
from the fit, determining which ones are the real problem remains a trial-and- error
problem, albeit a smaller one.

A more appropriate schedule of cuts would be as follows:

¢ Perform the computation of z, ', y, %' as described above, obtain the x? contri-
bution of every data point

¢ For every pulse which includes a data point with ¥? contribution > 16, do the
following:

— Repeat the fit with each data point supressed and record x? for each fit
— Drop the point which yields the smallest chi®
— Repeat until no points have x* contribution greater than 16

The scheme above does not get fooled by BPMs in crucial locations, requires only
one iteration, and looks exclusively at the x2 contributions to a given pulse. The
scheme as implemented looks first at the contributions of the BPMs across all the
pulses, then at the contributions within each pulse. The disadvantage is that the
former scheme is computationally immense in the presence of BPMs which are sys-
tematically misbehaving. With m pulses and n BPMs, a single bad BPM will require
m - n executions of the code to compute geometric trajectory and x? contributions; a

pair of bad BPMs will require m - (2n — 1) executions. The scheme as implemented
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always requires 3m executions of the code in question. Note also that the algorithm
is a boolean algorithm in that data points are not arithmeticlly altered, but sim-
ply passed or not passed to the fitter; that the former scheme is almost guaranteed
to remove bad data points, though the risk to “innocent bystander” data points is
much higher; and that execution speed is essential, in that quadrupole alignment is
intended to run on-line in the SCP. As a result, the former algorithm is acceptable
for these purposes. Should a faster computer become available to the control system,
reworking the cuts in OPTFIT is probably desirable. Given the highly parallel nature
of the improved algorithm above, a parallel-processing computer would be ideal for
the job.

Finally, it is worthwhile to note that neither algorithm can perform cuts on the
data coming from BPMs inside the stepped quads. In this region there is no way to
decouple the orbit changes in the BPMs from the misalignments of the quadrupoles.
However, the output from OPTFIT includes a contribution to the normalized x? from
each BPM in each plane. This can be used to determine whether BPMs within the

quads are misbehaving, and if so they can be deselected and the fit repeated.

Fitting Segment Angles

Consider a beamline with an alignment situation such as that in Figure 4.6. The
quadrupoles are perfectly internally aligned, but the incoming beam does not pass
through them; however, the first quad is misaligned in such a way that the outgoing
beam from this quad passes through the line of the remaining quadrupoles. In this
case, it would be inappropriate to simply move all the quads onto the ray of the
incoming beam, since this would require a monotonically-increasing movement of
subsequent magnets. Even a small angle between the magnet line and the incoming
beam will quickly snowball into an uncorrectable problem. Moreover, if the beam has
actually been steered to the dump before alignment begins, such a situation is likely

to exist somewhere in the line.



Figure 4.6: A line of quadrupoles which are perfectly aligned to one
another, but with an angle 8 between the incoming beam and the line
of the magnets.

Existing techniques for beam-based alignment of quadrupole systems resolve this
problem by defining the first and last BPMs in the region of interest as the line to
which the quads will be aligned [46],(47]. In these techniques, only a single execution of
the fitting algorithm is permitted, which extracts the misalignments of all quadrupoles
at once. Using MINUIT to perform such a fit for the FFTB would be prohibitively
expensive in computer time, but would produce a uniform solution in which all FFTB
quads are fitted to a common line.

A modification of the above solution is illustrated in Figure 4.7. In this situa-
tion, the last quad in the group of stepped magnets is defined to be aligned to the
desired trajectory, a “phantom” xcor and ycor are inserted into the beginning of the
beamline, and their strengths are included as fitvars. These phantom elements are
computational artifacts used to extract the approximate angle of the magnets relative
to the incoming beam: since the last quadrupole is defined to have zero misalignment
relative to the incoming beam, but the first quadrupole is producing a kick angle
8, the only consistent solution is that the phantom corrector must be producing a

kick angle —8, which is being cancelled by the quadrupole kick. In this case, the

121

N/

) v AT A
A v Ay

Figure 4.7: Use of “phantom” correctors in FFTB alignment. The

kick imparted by the corrector is cancelled by the sum of kicks from

Enifsialigned elements, such that the last quad in the line is aligned by
efinition.

appropriate correction of magnet positions can be naively implemented, but only if a
real corrector exists which can be set to cancel the effects of the “phantom” one (or
in real terms, the steering from the first quad must be transferred to an appropriate
Xcor or ycor).

The requirement that each segment begin with a corrector which can be adjusted
in this fashion is a significant aspect of the selection of quadrupole segments. A
further consequence of not using a downstream endpoint in the extraction line is the
danger of “walking the magnets into the wall:” specifically, that the incoming ray may
be so poorly chosen that the magnets are driven monotonically away from the center
positions of their movers. This can quickly result in magnets moved to their limits.
As this problem is related to the a priori mechanical alignment of the beamline, and
the aperture limitations in the extreme upstream end of the FFTB, the situation is

considered in detail below.

4.2.3 Mechanical Alignment and the FFTB Launch Crite-
rion

Prior to the September 1994 FFTB run, the magnets from QA1 to the dump were
surveyed using mechanical techniques including laser-trackers and water levels, and
placed with an expected accuracy of 100 um in the horizontal, and 50 um in the
vertical [48]. During the May 1994 FFTB run, the incoming beam was steered such
that all obstacles in the BSY, including PC90, were avoided {based on evidence from
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Figure 4.8: Quad Alignment “dog-leg” schematic. The beam is kinked
by two correctors to steer from the line through the BSY and PC90
onto the line of the FFTB proper, and intervening quads are moved
onto the angled line in between.

the loss monitors in the area). Because of the extreme radioactivity of objects in the
BSY, and the fact that the area is uninhabitable during any SLAC operations, the
obstacles were poorly understood and not amenable to mechanical correction. The
readings on BPMs 30 and 50 (free-standing BSY BPMs) which skirted the obstacles
and cleared PC90 adequately became known as the FFTB “Launch Criterion”. Thus,
the beam position and angle could not readily be altered upstream of XCOR and
YCOR 1010 (H1D and V1D, correctors located between PC90 and QSM1).

Because of the radiation concerns, as well as the 16 meter steel wall, the first three
quads could not be moved onto the FFTB line. Even if they could have been, there
was no guarantee that this line would coincide with the line dictated by the launch
criterion.

The problem was solved by “dog-legging” the beam in both x and y as shown in
Figure 4.8. XCOR 1010 and XCOR 1070 (between B01A and BO1B}) in the horizontal
and YCOR, 1010 and YCOR 1040 (downstream of QA1) in the vertical were used to
mgtéh the orbit of the incoming beam to the line of the FFTB. This was accomplished
by first turning off quadrupoles Q5 through QA2, inserting ST62, and using the BPMs
dbstream of 1090 to perform a rough match. The beta match quads were then moved
to roughly zero their BPMs in both planes, and trimmed to their nominal values for

quad alignment. The orbit was corrected, ST62 removed, and further fine adjustments
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Figure 4.9: Vertical positions of FFTB quads relative to incoming beam
in May 1994,

brought the beam into the FFTB and onto the line required by mechanical alignment.

In this way the risk of “walking into a wall” was minimized.

4.2.4 Results of Quadrupole Alignment

The first attempt to align the FFTB from Q5 to QC1 occurred in May of 1994.
During this operation, an unexpected rise and fall was encountered in the vicinity
of the CCSX. This situation was handled by using the vertical corrector magnets,
and also by using the quadrupole movers to produce steering in a few locations. The

pre-alignment positions of the magnets are shown in Figure 4.9. In this case, the

beamline was piecewise-aligned only. The monotonically-deteriorating resolution in.

Figure 4.9 was due to two phenomena: first, the snowballing of global errors within

a string of quadrupole magnets (see discussion “Defining Quad Alignment ‘Resolu-
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tion’,” below); second, by monotonically-increasing values of x2/v for the successive
alignment segments. The value of x2/v increased from a low of 0.3 (indicating that
the BPM resolution, hard-coded in OPTFIT at 6 um, was for this operation closer
to 3 #m) to a high of over 20. OPTFIT reports errors normalized by \/x?—/u, leading
to significant blow-up of the downstream error-bars. Despite these difficulties, the
background-tuning situation for the beam size monitors and wire scanners improved
dramatically after this pass of alignment, and the quad emit scans were able to go to
a larger range because Q5 was no longer steering as severely.

During the period from May to September of 1994, several improvements were
made. The mechanical alignment of the FFTB was checked, and found to agree
qualitatively with the beam-based measurements; the alignment was then corrected

to the levels noted above. The optics for beam-based alignment were adjusted as
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Figure 4.11: Vertical positions of FFTB quads relative to incoming
beam in September of 1994.

noted in Section 4.1, and optimal scan ranges for each quad were determined in the
new optics. Figure 4.10 shows the quadrupole scan ranges selected. Finally, the
scheme for resolving the Launch criterion was devised.

Figure 4.11 shows the results of beam-based alignment in the vertical plane from
September of 1994, including all the improvements made during the period between
runs. Note that the error-bars are much smaller, and the overall amplitude of the
misalignments reduced by a factor of 2 over May. In addition, the vertical misalign-
ments are, as advertised, within about 50 um of one another, save for a mysterious
“step” in the beta exchanger of 400 um. Furthermore, the alignment of September
1994 resulted in the FFTB operating with all vertical correctors from YCOR 1040 to
the FP at zero strength for the first time.

Figure 4.12 shows the horizontal and vertical resolutions of the quad alignment

procedure, as well as the x?/v for each segment. Note that the beta match segment
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Figure 4.12: Resolutions for FFTB quad alignment experiment of
September 1994. Horizontal (dark) and vertical (light) are shown.
Numbers in boldface at top are x2/v for each segment’s fit.

has a somewhat larger x?/v than the subsequent segment, and that once again there
is a general monotonic increase in the value of x?/v.

The former phenomenon is easily understood: during a repair access to the BSY,
BPM 30 was damaged. The connections for BPM 30 were then swapped to BPM 20,
a linac- style BPM just upstream of BPM 30. The relatively poor resolution of BPM
20 causes the incoming beam to be relatively weakly determined, since only BPM 20
and BPM 50 lie upstream of Q5. For all subsequent segments, BPM 20 is deselected
and only the BPMs from BPM 50 to QA2 are used for resolution of the incoming
beam.

One possible cause of the degradation of the fit quality is loss of standardization
as quad alignment progresses. As Figure 4.10 shows, many of the quads are stepped

through a significant portion of their total range. This may cause the upstream
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%* Contribution, x
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Figure 4.13: Contribution to x? for all FFTB BPMs, considering only
pulses in which all quads were at their nominal values. Contributions
are normalized by number of good data points from each BPM. The
data from the upstream half of the CCSX (dark) and from the 3 quads
upstream of the doublet (light) are used in this analysis, showing degra-
dation due to loss of hysteresis.

transport matrices to diverge from the expected model, and this would cause fits of
the incoming beam to fail. One way to examine this possibility is to use two sets of
quad align data, throw away all data except when all the quads are at their nominal
values, and see whether the incoming beam fits can describe the BPM data through
the line, as indicated by BPM x? contribution values.

Figure 4.13 shows the x? contribution per data point for each BPM in the FFTB,
for the CCSX1 segment (QM3A through QN2A) and the FTRANS segment (QC5
through QC3). Note that the same BPMs are used to measure the incoming beam in
the two cases, and that all data with quads stepped off their nominal strengths are

deleted. In effect, the two datasets should describe identical beamlinés, yet the later
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Figure 4.14: Resolutions for FFTB Quad Alignment experiment of
March 1995. “Mini-Standardize” protocol was used for all quads ex-
cept the doublet. Horizontal (dark) and vertical (light) are shown,
along with x2/v for each segment’s fit (boldface).

set has relatively poor fit convergence. This is significant evidence that the loss of
standardization is damaging the algorithm.

In order to correct this loss, all FFTB quads were configured for “mini-standardize”
before the March 1995 run. In this mode of operation, all increases in absolute quad
strength‘ (i.e., increases in operating current) were accomplished in the normal fash-
jon; all decreases in absolute strength were accomplished by first overshooting the
new set point by 5%, then rising in current to the set point. In this way, all FFTB
quadrupoles were set to new operating points from lower current to higher current.
The resolutions and x2/v of the quad alignment fits from March 1995 are shown in
Figure 4.14. Note that x?/v now achieves a high of 1.6 for the three quadrupoles pre-
ceding the doublet, and is nearly as large (1.4) for the doublet quadrupoles. Deeper
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investigation indicates that the x? contributions which are large in these cases are
universally the horizontal, not the vertical. One possible suspect, therefore, is that
the extraction line quads are not well aligned, and the values through which the last 6
quads are stepped result in particles scattering off the quad apertures onto the BPMs
in the horizontal. In addition, the doublet quads were not set to mini-standardize, as

the large excursion this induced changed the optics enough to cause radiation trips.

Defining Quad Alignment “Resolution”

The resolutions shown in Figures 4.12 and 4.14 are the square roots of the diagonal
elements of the error matrix calculated by MINUIT, multiplied by /x2/v for the
entire fit. Some consideration is needed, however, to fully comprehend what this
number represents, or, in other words, what it is we are aligning to with such precision.

The alignment of a single quadrupole is unambiguous, as shown in Figure 4.2. The
quadrupole is stepped, the beam deflection measured, and the correlation between
the two can be converted into a distance between the incoming beam centroid and
the magnetic center of the quadrupole. The error on this quantity may be interpreted
with similar ease.

Figure 4.15 shows a situation of slightly greater complexity. Here two quads are
shunted in sequence, in an attempt to align both to a common line. Note, however,
that the beam is passing through the center of the second quadrupole due to the kick
received from the first. In this case, shunting the second quad will not deflect the
beam, even though the second quad does not lie on the line of the incoming beam. In
order to determine the offset of the second quadrupole, it is first necessary to know
the offset of the first quadrupole, which then determines the kick given to the beam
by the first quad.

Let us define the offset of the beam from the center of the first quad by z;; and
that of the second quad from the beam by z;9; z;; is simply the offset revealed by

a naive correlation between quad shunt and downstream kick. Let us now define the
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Figure 4.15: “Intrinsic” vs. “Global” resolution. Because the second
quad will not deflect the beam when shunted, its intrinsic misalignment
is zero; however, the first and second quad are both clearly off the line
of the incoming beam, while the first quad deflects the incoming beam
through the center of the second.

global offset of the quad, z,;, to be the true deviation of the quad centers from the
incoming beam (or, the distance between the quad centers and an incoming ray of
infinite energy, which is not deflected by the quads). In the thin- lens approximation,
we may say that: .
‘ Tpi = Ti +sz1 — Kyyip L, 4.7)
where Ly_.; is the distance along the path of the beam from the kth quadrupole to
the jth. This is simply a superposition of steering kicks, where the steering strength
is proportional to the offset of the quad from the beam. The summation term in
Equation 4.7 can be thought of as the deviation of the beam incident on the jth
quadrupole from the incoming beam’s vector. If the measurement of the intrinsic
resolution, z;;, is not correlated between quadrupoles, then we expect that their

uncertainties will add in quadrature:
j-1
2 _ 2 2 r2 2
095 =0ij+ Z KLk i0if (4.8)
k=1

Because OPTFIT’s x> engine uses tracking code rather than a closed-form so-
lution, the results which emerge are explicitly global misalignments and resolutions.
Equation 4.8 is responsible for the monotonic loss of resolution along a given segment.

Figure 4.16 shows the intrinsic resolution of the technique for each quadrupole.
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Figure 4.16: Intrinsic resolutions for all quadrupoles, using the OPT-
FIT technique and the data set from March 1995.

One implication of this global alignment formalism is that the beam emerging
from the last quadrupole in a segment has a deviation from the incoming given by
a1 — Ko g Li—j, with a corresponding error £, K2, L2_ ;0% This is the error
on the beam entering the first quadrupole of the next segment. It is possible, therefore,
to use the intrinsic resolutions of the procedure, from Figure 4.16 above, to compute
the global resolutions of the entire beamline as though all alignment was performed
in a single fit to a single incoming beam. This represents the true RMS deviation of
the quadrupoles from a geometrically-perfect straight line (modulo steering magnets
and bends). Figure 4.17 shows the true global errors.

The global errors in Figure 4.17 were determined by first-order tracking: each
quad was displaced from the beam incident on its upstream face; the displacement

of the quad was determined by a gaussian-distribution random number generator,
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Figure 4.17: True global alignment resolution of beam-based technique
described in the text. Resolutions were determined by 10,000 repeti-
tions of first- order tracking, and using the previously-shown intrinsic
resolutions.
and the RMS of the distribution determined by the intrinsic resolutions in Figure
4.16. The RMS displacement from the origin of the coordinate system after 10,000
iterations was used to generate Figure 4.17.

Note that, while Figure 4.17 represents the deviation from a straight line, Figure
4.16 represents the RMS distance between the quad centers and the beam in the
quads. As has been noted elsewhere [47], beam-based alignment techniques are not
sensitive to misalignment patterns with a wavelength which is long relative to the be-
tatron wavelength, and this is graphically demonstrated by the differences in Figures
4.16 and 4.17. In the case of linac alignment, this typically results in “bowing”, in

which the global misalignment is largest in the center of the beamline {due to the
endpoints being fixed) [46), [47). Because the FFTB fixes only one endpoint, the
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end of the beamline is “fapping in the breeze” relative to the beginning. For optical
purposes, the intrinsic alignment is the crucial one, in that dispersion and higher-
order aberrations are generated by the beam passing through the magnet off-center.
The global resolution is important because sufficiently poor resolution can result in a
solution to beam-based alignment which drives magnets outside of the range of their

movers.

Global Movement Knobs

Because the FFTB line is defined by one endpoint and not two, it is conceivable that
a. sufficiently poor selection of initial steering and/or combination of global errors
will result in a beamline which is systematically shifted or tilted, in such a way that
movers at the endpoints are near their limits of travel. It is useful to be able to shift
the beamline systematically to relieve these movers, or to adjust steering into the
extraction line.

Because every optical element is mounted on a mover, such knobs can easily be
designed by simple geometrical considerations. The knobs must properly adjust the
beta match quads and the correctors used to deal with the Launch Criterion.

The FFTB has such knobs, and they were used experimentally during the FFTB
run in March 1995. Results were generally good. However, steering errors crept
into the system during their use. These errors are thought to be due to imperfect
understanding of the launch correctors: while the beamline motions are correct, the
correctors do not steer by precisely the right amount. This problem can be corrected
with steering knobs which use only the launch correctors to steer position and angle

at some given BPM in the FETB. Such knobs will be in place for the next FFTB run.

4.2.5 Systematic Errors in Quad Alignment

In addition to the “snowballing” discussed in the previous section, there are several

systematic errors which may appear in the measurement or correction procedures of
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quad alignment.

The most straightforward systematics are scaling factors in quad strengths and/or
BPMs. In Figures 4.12 and 4.14, it was argued that implementation of “Mini-
Standardize” had improved the convergence of the fits; however, this argument only
holds for the quads at their nominal values, not at the scanned values. A quad which
has overstepped or understepped by some fraction will result in an over- or under-
estimate of its misalignment. Similarly, a global error in the scale factors of the BPMs
will lead to a systematic scaling of measured misalignments. Examining Equation 4.7,
we see that such errors, which will scale all intrinsic misalignments uniformly, will
also scale all global misalignments uniformly.

Lattice diagnostics measurements found that the FFTB BPMs systematically
over-report motions by 12.4% (see Section 4.4.3). This leads immediately to a 12%
over-correction of the misalignments. Because the quadrupole power supplies ramp
very slowly, and a settle time is used in the control software, quadrupole scale-factors
are not expected to be significant.

Measurement of horizontal misalignments is further complicated by dependence
on the extracted energy offset of each pulse. A systematic miscalculation of the energy
will result in BPM readings tracked around bend magnets being improperly fitted.
This may also account for the greater difficulties inherent in fitting the horizontal
orbits, as shown in Figure 4.13. The RMS energy jitter of the beam is approximately
1.6 x 10™4; the maximum dispersion in the CCSX is 9.85 centimeters. Section 4.3.2
argues that the energy measurement is systematically high by roughly 6%; this argues
that the error contribution at the high-n BPMs will be 1 um RMS. As long as the
jitter is roughly symmetric about the reference energy, however, the contribution from
this term will primarily enlarge the x?, rather than systematically pulling the fit to
one side. This error, though arising from a systematic source, actually is a cause of
random variations.

The pulse-to-pulse jitter of the incoming beam results in possible systematic errors

135

in the alignment between segments. Figure 4.3 shows the RMS jitter at each BPM in
the FFTB. At any given BPM, therefore, the deviation between one reference orbit
averaging N pulses, and another, will be given by 51{7, where o; is the RMS jitter
amplitude. This contribution should formally be added in quadrature with the values
shown in Figure 4.17; however, for 100 pulses averaging, the resultant contribution is
quite small, and omitted here.

A final systematic error in the correction scheme arises from the mechanical design
of the final doublet. Section 2.4.1 mentions that the three magnets of the doublet are
fixed to a common vibration-isolated table. The table can be moved in six degrees
of freedom: x, ¥, 2, roll, pitch, yaw. This is sufficient to independently move the
end quads (QC2 and QC1), assuming that the three quads are intexlnally aligned
with arbitrary precision. However, QX1 is found to be 233 um to the south of the
QC2-QC1 line, with an uncertainty on the order of 10 um. Fortunately, the vertical
alignment of QX1 to the line of the other two magnets is closer to 24 pym with an
uncertainty of 40 um. In the past, the doublet has been aligned by moving QC2 and
QC1 as indicated by their misalignments; the discovery of the misalignment of QX1
implies that this strategy needs to be re-thought.

4.3 Lattice Dispersion Measurement

While beam-based quadrupole alignment is a test of specific errors within the FFTB
line, the measurement of lattice dispersion (Rys and Rgs from the beginning of the line
to each BPM) is in many ways a more general test of the health and well-being of the
optics. While the horizontal and vertical dispersion measurements can reveal errors
in, respectively, the strength and roll angles of the CCS bend magnets (which was the
original purpose), the measurement can also reveal errors in the alignment and roll of
the quadrupole elements. These effects can be somewhat difficult to decou;x>1e, which

causes the measurement to be less specific in its focus than the quad alignment test.
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4.3.1 Measurement Technique and Algorithm

The general approach to dispersion measurement in the FFTB is similar to that used
to measure the dispersion entering the SLC Final Focus from the collider arcs [49):
the beam energy from the linac is increased or decreased, and this produces an orbit
shift at each dispersive BPM. The correlation between the change in orbit and the

change in energy is the dispersion:

Nzy = d(zzsy) . (4.9)

The beam energy in the FFTB is maintained by a feedback which uses the BPMs in
the vertical-dispersion region of the extraction line, described in Section 3.1.3. The
beam energy is changed by changing the setpoint of the feedback. The change is
virtually instantaneous: after a change in setpoint, typically only one pulse passes
through the accelerator at the original energy before the feedback “catches up.”

As with quad alignment, the incoming trajectory and energy must be extracted on
every pulse, and the resolution of their reconstruction incorporated into the main fit.
Since the computational elements needed for this operation already exist in OPTFIT,
this program was chosen as the basis for the dispersion measurement as well. In the
current implementation, the incoming ray fits are not correlated to the energy fits,
and therefore the incoming dispersion is not determined. Even if the two were to
be correlated, the launch feedback ensures that energy-dependent changes in the
incoming orbit are corrected, thus eliminating the information needed for incoming

dispersion measurement.

Original Algorithm

The FFTB lattice contains 14 CCS bends (including the soft bend) and 4 weak vertical
correctors for correction of rolled installation of the bends: at the BOLA/B location,
between B01C/D and BO1E/F locations (adjacent to QN1); between the B02A/B
and B02C/D locations (adjacent to QM2); and at the BO2E/F location. As noted in
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Section 2.4.2, the bend magnets were fabricated and installed in pairs. The dispersive
effects of the magnets of a pair cannot, in general, be decoupled by the BPMs in the
FFTB lattice; in addition, the effect of interest is the total dispersion due to & pair,
rather than the dispersion of each magnet. Also, the soft bend is too close to BO2E/F
to be measured separately. OPTFIT is therefore configured to fit the strengths of the
four vertical correctors, and six horizontal bends (BO1A, B01C, BO1E, B024A, B02C,
BO02E), while the remaining 8 bends are constrained in the code to be at their design
strengths. Note that the correctors are being used as “phantom” correctors: the
locations are used as a convenient point-source of dispersion, regardless of the actual
strength of the correctors (typically zero).

OPTFIT was originally written to fit a finite set of beamline optical properties
using BPM and/or wire scanner data. These effects included bend magnet and cor-
rector magnet strength, but no provision existed for directly measuring a dispersive
ray by correlating position and energy data at each BPM. Instead the data was used
to fit the strength of the bend magnets and vertical correctors, and from these the
resultant Ry and Rgs matrix elements could be computed from the beginning of the
beamline. Thus the dispersive rays available to OPTFIT depended upon the deter-
mination of source terms; an unexpected source of dispersion (such as a skew quad
term in the beta exchanger, for example) could not be easily fitted by this algorithm.
This defect was recognized early in the development of the code, and a “work-around”

devised. The algorithm was arranged as follows:

o Step energy feedback through several values, at each value acquire 10 pulses on
all BPMs in FFTB

e Extract § and o, for each pulse

e Extract z,z’,y,y', with errror matrix, for each pulse using BPMs 30 and 50
only

e Perform data cleanup as described in Section 4.2.2 for BPMs between bend
magnets

* Using design values of bend magnets and vertical correctors, propagate error
matrix onto all BPMs, add propagated error in quadrature to BPM resolution
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o Perform MINUIT fit of bend strength and corrector strength

o Insert fitted strengths into beamline and compute Rys and Rz from BPM 30
location to each BPM; this constitutes the fitted dispersion rays

o At each BPM, correlate the fit residual of each data point with the fitted energy
of the pulse

o Add the correlation above to the fitted dispersion to obtain the measured dis-
persion, and to the design dispersion to obtain the after correction dispersion.

Once the magnet strengths have been determined, a correction can be computed.
The bend angle of the fitted bend, 8y, is added to the bend angle of its fixed partner,

Odesign, to obtain the total bend angle of the two magnets, 0pa:-. The difference be-

tween Opqir and 204egign is the amount of the correction, Af. This can be accomplished:

via the trim windings on the pair of magnets, but it is necessary to determine how
much to change the trim winding. The scheme for this correction is as follows:

¢ Read the bend magnet main winding and the trim winding for the pair to be
corrected

e Using the hysteresis polynomial for each bend, determine the theoretical total
bend angle for the pair, Gy,

o Compute the trim winding setting needed to set each of the pair of magnets to
Opory + Af /2

e Average the settings obtained for each of the pair of bends, this is the setting

for the correction.

The correction scheme depends heavily upon the hysteresis polynomials for the
bend magnets, and also upon the approximate linearity of the correction in the vicinity
of the setpoint. For corrections of several percent, however, even poor agreement
of the polynomial with the real magnet is adequate to converge, particularly since
the dispersion measurement and fitting process takes approximately 60 seconds per
iteration. Furthermore, if the bend polynomial is inaccurate by more than a few
percent overall, the beam will not go through the FFTB in the first place without
ma:jor trial-and-error tuning of the bend trims and main supply. Since such has not
been necessary in the FFTB, the inescapable conclusion is that the process should

converge.
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Improvements to the Algorithm

The algorithm as constituted above is seriously flawed in several particulars. First, the
computation of the measured dispersive ray is inelegant to say the least; furthermore,
the dependence on the fitted bend strengths makes computation of error-bars on
the measured dispersion values quite a bit more difficult than is strictly necessary;
worst of all, use of the design optics to propagate the error matrix from the incoming
ray means that any significant deviation of the dispersive rays from the design will
introduce errors in the propagation of energy uncertainty. At a BPM with dispersion

7BPAs, the error contribution from uncertainty in energy measurement is:

Oenergy = 11BPMTS: (4.10)

Because the design value of ngpps is zero in the vertical plane at all BPMs, this term
does not contribute to vertical error at any BPM, and pulses with badly- determined
incoming energy and pulses with well-determined incoming energy will be weighted
equally in determining the corrector strengths. This is clearly unacceptable. A more

advanced algorithm was developed which addresses these weaknesses:

e Proceed with data acquisition, energy fitting, launch fitting and data cleanup
as above

e Propagate the errors from computation of z,2’,y,y’ only to each BPM on each
pulse

o Perform tracking of each pulse, using only geometric components of launch
vector (i.e., set energy offset to zero and perform tracking)

o At each BPM on each pulse, compute an 7 contribution in each plane by dividing
the tracking residual by the § of the pulse; compute a weight for this contribution
from the BPM error, the 4-D launch error, and the energy error

o The measured dispersion at the BPM is the weighted average of the 7 contri-
butions

o Using the measured 7, propagate the energy fitting error onto gac}i BPM for
each pulse

o Perform MINUIT fit as above, compute Rjg and Rgs to obtain fitted 7 rays
e Measured 7 - Fitted 7 + Design 7 = After Correction 7.
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Note that a correlation exists between the fit of the dispersive rays and the fit
of the magnet strengths: the data at each BPM is used to determine the dispersive
ray, in correlation with the pulse-to-pulse energy variation; the dispersive ray is then
used to adjust the weight of the data points for use in the MINUIT fit of magnet
strengths. In order to avoid this correlation, half the dataset is used only to compute

the dispersive ray and half is used only for the fitting of magnet strengths.

4.3.2 Results of Dispersion Measurements

Dispersion measurements in the FFTB are more subtle than quadrupole alignment
measurements in that the horizontal plane contains nonzero design dispersion, and
as a result the horizontal measurement is not & “nulling” measurement. The vertical
plane measurement is a nulling measurement, due to zero design dispersion. Further-
more, any understanding of the horizontal measurement requires an understanding
of the energy measurement process as well. Each of these facets will be considered

separately.

Energy Measurements

The pulse-to-pulse energy variation is measured via a set of BPMs surrounding a
string of permanent bend magnets in the extraction line. The value of 7, at the
last BPM is 60 centimeters. A resolution of 6 um would naively imply an energy
resolution o5 of 1 x 1075, The resolution is diluted by the fact that the pulse-to-pulse
y and y’ variation must be computed as well, and by the fact that the last BPM also
has the maximum resolution of the incoming angle. When these issues are factored
in, the expected resolution is 6 x 105 for a set of BPMs with 6 pm resolution.
Figure 4.18 shows the reconstructed energy for each pulse during the Maxrch 18,
1995 alighment of the first half of the CCSX (QM3A to QN24, 120 pulses total). The
vertical axis shows normalized resolution (6 x 10-5. \/;2_/—11) for each pulse. The jitter
“envelope” is 300 ppm, with an unweighted RMS of 160 ppm. While the normalized
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Figure 4.18: Measurement of pulse-to-pulse energy jitter made during

a sequence of quadrupole alignment on March 18, 1995. Resolutions

have been normalized in the fashion described in the text.
fit resolution is concentrated about 30 ppm (implying an actual BPM resolution of
3 pm in the extraction line), the resolution has a long tail going out to over 200
ppm. The cause of this behavior is not known; however, the extraction line is not
as optically forgiving as the area upstream of the FP. In particular, the apertures
are tighter, the quadrupoles less well-behaved, and the alignment is poor compared
to the upstream components. The poor resolution is likely linked to BPM hardware
issues, such as intermittent spray impacting the devices.

Figure 4.19 shows the reconstructed energy and normalized resolution from a

" dispersion-measurement dataset taken on March 18, 1995. In this case the energy is

stepped out to 5000 ppm in order to measure the lattice dispersion. Note that the

energy error is significantly worse for both the large excursions and the small ones
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Figure 4.19: Energy values from dispersion measurement made on
March 18, 1995.

(%1800 ppm), with a wide spread of resolutions in all cases. An interesting side note
is that the fractional resolution, %, is centered on 6% for all four clusters. The large
energy excursions were made in order to measure the dispersion with higher precision,
but the larger errors on the energy fits for these pulses eliminates this improvement.
For future measurements, smaller excursions of the energy are more attractive: the
resultant distribution of resolutions is closer to the distribution at zero offset, and the
resultant fractional resolution is as good as that for large excursions.

The normalized resolution for the energy measurement is used in all subsequent
computations, including computation of the measured dispersion and propagation
of launch errors onto BPMs. Normalizing the resolution of a fit in this fashion is
generally an unattractive solution to unknown problems in data acquisition, fitting,

etc., essentially “sweeping under the rug”’ everything which is unknown about the
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system. Nonetheless it was kept in the fit in this case for one reason: the BPMs
in the extraction line, which are used to perform the fit, are systematically different
from the BPMs in the rest of the FFTB, and consequently have a resolution which
is different from that in the main FFTB line but is itself unknown. This leads to an
interesting systematic error in fits such as quad alignment. The total error at a BPM

location is given by:
U'fo = O.EPM+0.§D+072]6 (4.11)

2 2 2 2
Oppy + 04p + 17 05.

The value of ogpys is a function of the BPM hardware itself; the value of o4p is
determined by the fit of the incoming ray and the optics from 50B1 to the BPM
in question, but it is in turn a linear function of the upstream BPMs used to fit
the incoming ray. Thus, a scale-factor discrepancy between the expected and actual
resolutions of the standard BPM will result in & common scale factor to these two
terms, which will simply result in a x?/v for the fit which differs from 1 by the square
of this selfsame scale factor. The term no;s, however, has already had any resolution
scale factor remo_ved by the x? scaling described above. The most stra:ightforxvard
correction to this difficulty is to re- analyze quadrupole alignment data in the vertical
plane (in which no energy dependence exists) to determine the best value for the
standard BPM resolution, and set this value in the software.

An additional systematic difficulty is the issue of scaling-factors. Dispersion mea-
surement requires that the BPMs measuring the energy in the extraction line and the
orbit deviations in the FFTB line have the same scaling-factor: a factor of 1 would
be ideal, but any value will do so long as it is the same for both systems. The scale
factor for the standard BPMs was measured with a stretched wire and a pulser, and
found to be 94% of the predicted value. This calibration was included in the database
for each BPM upstream of the FP, and for the unit in QP1A. No such calibration was
performed for the extraction-line devices, and the database values for these are equal

to design. The analysis of the energy in the dumpline therefore assumes a BPM scale
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Figure 4.20: Horizontal dispersion measurement on September 3, 1994
prior to quadrupole alignment. Three datasets (solid) and the design
value (dashes) of 7, are superimposed. The design and measured can
onl%r be seen separately at the downstream end of the beamline on this
scale.

factor of 94% for the extraction-line BPMs.

Horizontal Dispersion

Figure 4.20 shows the measured horizontal 7 function on September 3, 1994, imme-
diately prior to beam-based quadrupole alignment. The measurement was performed
three times, and the figure shows the three measurements and the design dispersive
ray. While the figure resembles the design dispersion well enough to declare that no
gross error exists, no further conclusions can be made because the large value of the
design dispersion dominates the figure. A more useful figure is Figure 4.21, in which
is plotted Nesign — Mmees- Because the third set of data from September 3 did not

converge well, only datasets 1 and 2 are shown here. Note that convergence between
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Figure 4.21: Horizontal dispersion mismatch, Mgesign — Mmeas, before
beam based alignment on September 3, 1994.

the two is generally good (error-bars at a given point overlap for almost all BPMs).
Agreement in the last 4 BPMs (QC3, QC2, QP1A, and the first extraction-line BPM)
are not as good. While most areas fall within 5 mm of their design, an excursion of
over 1 cm appears at QC2, the first quadrupole of the doublet.

Two areas of interest in understanding Figure 4.21 are the process by which error-
bars are computed, and the initial setup procedure for the FFTB’s bend magnets and
alignment. Each of these is discussed below.

At a given BPM, the contribution to the dispersive ray from a given pulse is given
by:

x -
Neontrib = BPM"—é- 4D; (4.12)

where z4p is the result of 4-D propagation of the incoming beam to the BPM. The

uncertainty in fonerip Will be the sum in quadrature of two terms, one of which carries
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the BPM uncertainty, and one of which carries the energy uncertainty:

2 _ 2
o} = (”—‘j{i) +(—~———-(”m 52“1’)0&) (4.13)

2 2
(%) +(77contrib%£) .

The value of % was shown earlier to be approximately 6% for all energy pulses, and

I

thus each pulse contains an error-term which is 6% of Neontris. At the high-dispersion
points this term will tend to dominate; with 20 pulses used to compute nn;eas, the
resolution of the dispersion at these points should go as 6%,/v/19, or 1.4%. The error-
bars in Figure 4.21 are normalized by the \/)_cz/—x/ value for the given BPM dispersion
fit, and these are typically 1.4% of the dispersion at the highest points (adjacent to
SF1A and SFiB). '

Prior to the September 1994 run-time, the quadrupoles in FFTB were re-surveyed
and moved to new positions determined by the survey. The CCS bend magnet main
and trim supplies were set to values determined by their excitation curves, in order to
get each magnet as close as possible to its design strength of 5.624 kilogauss-meters.
It is interesting to note that, despite these efforts, a centimeter-sized mismatch of the
CCS dispersion appears in the Final Transformer.

During beam-based alignment, the quadrupole alignment is assumed to follow the
design line of the FFTB at the half-millimeter scale. Whenever the alignment fit
shows an angle between the beam and the existing quad line, the bend trims are
adjusted to remove this angle, which in theory also will assist in fixing the dispersive
ray. Figure 4.22 shows the post-alignment deviation of the measured dispersion from
the design for two datasets. Note that the overall scale of the figure still spans 2.5
cm, and that the two datasets agree quite poorly. Error-bars are also quite large.

What has happened here? Recall that these measurements were made after
quadrupole alignment, and that evidence exists (see Section 4.2.4) that the quad
alignment measurement changes the optics (via loss of standardization), sufficiently

that the incoming ray can no longer be tracked through the FFTB. A further change
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Figure 4.22: Horizontal dispersion mismatch after quad alignment,
September 1994.

in the system is that the beam positions through the extraction line are allowed to
change in an unconstrained manner during alignment, within the limits of beam-
containment. The extraction orbit seen before and after quad alignment changes in
the vertical by over 1 mm; worse, the orbit after alignment has larger values in all 4
BPMs used for energy measurement. This means that both BPM noénlinearities and
possible optical effects in the B06 magnets (quadrupole and/or sextupole momernts)
are worse for this trajectory than the former.

Based on the September 1994 experience, several improvements were made to

the setup of the beamline and the quad alignment procedure for March 1995. The

quad positions and bend strengths determined during September 1994 were used as -

a starting point; however, the dumpline orbit was steered flat in the horizontal and

vertical (all BPM absolute values under 1 mm), and re-steered to this orbit ‘after every
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Figure 4.23: Horizontal dispersion mismatch prior to beam-based align-
ment on March 18, 1995.

segment of alignment. As mentioned in Section 4.2.4, the quadrupoles were set to
“mini-standardize.” Figure 4.23 shows the result of this preparation. The overall scale
of the dispersion mismatch is half that encountered before alignment in September.
Moreover, the mismatch ray through the CCSX and CCSY is qualitiatively similar to
the dispersive ray itself, leading to suspicion that the “mismatch” may be dominated
by scaling-factor errors between the FFTB standard BPM and the extraction line
units.

Figure 4.24 shows the horizontal dispersion mismatch after beam-based alignment
in March 1995. The superficial similarity between the mismatch and the design is
even more pronounced, and it is highly likely that some of this is due to a scaling-
factor between the two sets of BPMs. Some of the fine structure may be due to small

errors in the individual BPM scale-factors. However, it is important not to be too
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Figure 4.24: Horizontal dispersion mismatch after beam-based align-
ment on March 18, 1995,

easily convinced by the gross appearance of Figure 4.24. The BPM providing the first
spike in the CCSY, for example, is the BPM in QT4, a quad next to SD1A. This
BPM should agree with the next BPM, at the QM3B location, which makes up the
first “anti-spike” in the CCSY pattern. The second “spike” in the CCSY is at the
location of the BPM which, in Figure 4.24, is near zero (z = 275 meters). The BPM
which is supposed to be at the location of the first “spike,” the QT3 location, is near
zero on this figure (upstream of QT4).

The generally poor matching of the dispersion within each CCS region can be
explained by the quad alignment procedure. The bend trim windings are set by
forcing the beam onto a line through the downstream quadrupoles; this will generally
work if the quads downstream of the bend being set have sufficiently long lever arms

to constrain the angle. The quads within the CCSX and CCSY, however, do not have
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such long lever arms. Consequently, the bend angle of bends B01C/D and B02A/B
are not well constrained by this process, and the dispersion within each CCS may be
poorly matched. The QT3/QT4 discpepancies remain unexplained.

Note further that, while SF1A and SF1B are at equal values of ., within the error
of the measurement, SD1A and SD1B appear to have 0.5 mm difference in their 7,
values. Such a mismatch could cause generation of second-order horizontal dispersion
(Ties); however, the magnitude of this aberration generated by such a small mismatch
in 7, is approximately 30% of the FFTB’s inherent Ty¢s, Which is a relatively small
contribution.

In conclusion, while progress has been made in using the horizontal dispersion
measurement, the domination of systematic errors and poor resolution of the energy

still prevents this measurement from being of great value in beamline tuning.

Vertical Dispersion

The design value of the vertical dispersion function is identically zero at all points
upstream of the extraction line vertical bends; the vertical dispersion measurement
is therefore a nulling test, as mentioned above, and relatively insensitive to scaling
effects between the energy BPMs and the main FFTB line BPMs. The vertical
plane is also more sensitive to all aberrations. This combination makes the vertical
dispersion measurement both more robust and more relevant to the overall tuning
scheme.

Figure 4.25 shows the vertical dispersion function measured prior to beam-based
alignment on September 3, 1994. The dispersion function is clearly nonzero, with a
peak of +3 mm at QN3B in the CCSY, and an oscillation of £8 mm between the
CCSY sextupoles, which continues into the final transformer. The figure shows two
measurements superimposed, and the agreement between the two is good.

Could such an oscillation arise solely from quadrupole misalignments? Consider

the 8 millimeter dispersion at SD1A (z = 250 meters in Figure 4.25). This point is %
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Figure 4.25: Vertical dispersion function measured prior to beam-based
quadrupole alignment on September 3, 1994, Note that the function
is manifestly nonzero, particularly in the vicinity of the SD1A/B sex-
tupoles.

out of phase with quadrupole QN1, at the center of the CCSX, with an R;o between
the two of -24.4 meters. A vertical dispersion of 8 mm at SD1A could be caused by
a vertical 7, of 328 um at QN1. This in turn can be caused by a misalignment of
QN1 of 1.5 mm in the vertical. While this is large compared to the misalignments
found for individual quads, recall from Figure 4.11 that the peak-to-peak vertical
misalignments of FFTB were over 500 um.

Figure 4.26 shows, on the same scale as Figure 4.25, the post-alignment vertical
dispersion from September 1994. The oscillation through the SD1A/B locations has
been reduced by a factor of 2 over the pre-alignment values, and the final transformer
oscillation is also reduced, albeit by a smaller factor. Interestingly, the dispersion at
QM2, in the center of the CCSY, and QN2B are also reduced by a' smaller factor
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Figure 4.26: Vertical dispersion function measured after beam-based
quadrupole alignment on September 3, 1994.

than thé sextupole oscillation. As in other analyses of the September 1994 local
correction data, the convergence of the fits, and the correspondence between fits,
degrades monotonically from upstream to downstream due to magnet excitations
upstream leaving their hysteresis curves.

Figure 4.27 shows the pre-alignment vertical dispersion measured on March 18,
1995; the scale in the top half is identical to the scale for Figures 4.25 and 4.26,
for comparison, while the scale in the bottom half is expanded. While the overall
dispersion pattern remains the same, the amplitudes are reduced still further from
Figure 4.26. This may be from the beneficial effects of recovering standardization
on all FFTB magnets. Figure 4.28 shows the post- alignment dispersion function,
and also a common-axes comparison between the pre- and post-alignment vertical

dispersion rays. The majority of the figure is unchanged: 7, reaches peaks of £2.5
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mm at SD1A and B, and a peak of 3 mm at QM2. However, the peaks at QN2B and
QCS are now larger than before alignment.

‘What conclusions can be reached from the transformations of the vertical dis-
persive ray from September 1994 through March 19957 For one thing, the vertical
dispersion is measurably reduced by beam-based alignment, assuming that the initial
alignment was sufficiently problematic. Second, the FFTB contains sources of vertical
dispersion which are not improved overmuch by beam-based alignment, which may
even be worsened by the procedure. One such source of vertical dispersion is rolled
bend magnets or quads in the dispersive region.

In order to determine possible rolled magnets and corrective strategies, a least-
squares fit to the measured dispersion of Figure 4.28 was performed. This fit forms
a curvature matrix from the linear beam transport properties, and inverts to obtain
a solution. In the fit, BPMs were considered firmly attached to their quadrupoles,
such that a quad rolled through an angle 6 contained a BPM rolled through the same
angle. Such BPMs give rise to spurious dispersion, since the vertical striplines now

sample the horizontal dispersion.

Magnet | Case "A” Case “B” Case “C” Case "D”
B0iB 0.0 —-9.2+£27 0.0 —15+1.3
QM3A | —41£11 0.0 —7.0+£0.6 0.0
QN3B 0.0 0.0 —3.8£09 | —2.7£0.9
B01C 11.3+28 10.0 £ 3.4 0.0 0.0
QN3C 89X1.2 85+1.2 9.0£1.1 8.7+1.1
QT4 [ -105E£27]-101+£27} -10.8E£27 [ —-10.1£2.7
QM3C | —84+£31 | -89£31 | —7.6x3T1 | —=85£3.1
OMIC | 7422 1 —77£22 | =70£22 | —=7.6x2.2
x°/v 10.8 / 17 125 /17 14.6 / 17 15.5 / 17

Table 4.1: Results of fitting magnet rolls to vertical dispersion data,

for four different cases. Roll angles are reported in milliradians.

Table 4.1 shows the fitted roll angles in four cases. Note that the solutions con-
tain several degeneracies: the fit cannot easily distinguish the effects of quads which

are close together in betatron phase (such as the quads on opposite sides of CCS
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sextupoles, or QT2A/QT2B), and so the total roll of both magnets in such a pair is
represented by a single quad in Table 4.1 (i.e., the “QN3B” roll angle of -3.8 mrad
in case “C” could actually be -1.9 mrad for QN3A and -1.9 mrad for QN3B). The
same is true for neighboring bend magnets. Note also that a rolled B01B is hardly
distinguishable from a rolled QMS3A, and similarly QN3B and B01C are hard to
distinguish.

While the four cases in Table 4.1 result in dispersive rays which are nearly indis-
tinguishable, Case “C” is of the greatest interest because it arises solely from rolled
quadrupoles. Because the FFTB magnets are on movers with a roll-angle degree of
freedom, it is conceivable that the rolls in Case “C” could be at least partially cor-
rected during the next FFTB run. In addition, the quad rolls in any of the cases in
Table 4.1 would give rise to the 1° roll measured at WS3 (see Chapter 3). Figure 4.29
shows the measured dispersion, and the expected dispersion from the rolls in Case
“C” including the effects of rolled BPMs.

The presence of uncorrected 7, in the FFTB lattice has several implications. First,
the ray used in Figure 4.29 has a value of 140 um at the FP, which would enlarge
the spot size through dispersion. As we shall see in Chapter 5, the total range of the
global 73 knobs is more than adequate to eliminate this problem. Second, the presence
of ver?ical dispersion at the optical elements creates the possibility of higher-order
chromatic aberrations which limit the achievable beam size at full energy spread. This
possibility will be addressed in Chapter 6, on chromatic studies and bandwidth of the
FFTB. Third, the vertical dispersion at the SD1 sextupoles will cause the sextupole
mover knob for the FP (see Chapter 5) to also change the FP dispersion. We can
measure this effect by noting that the FP value of 7, is 1.3 mrad. Therefore, a 1 mm
waist shift will cause 1.3 ym of 7. Since the design value of 8§ is 100 um, a 1 mm
move of the waist is quite large, and therefore the change in dispersion of 1.3 um is

the largest which is likely to occur due to this effect.
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Figure 4.29: Measured dispersion ray (points and dashed line) and Case
“C” fit (solid), described in Table 4.1.

4.4 Lattice Diagnostics

The process of lattice diagnostics is in many respects the opposite of quadrupole align-
ment: while the former changes the strength of a quadrupole in order to determine
its offset from the beam, lattice diagnostics changes the trajectory of the electron
beam through a region in order to determine the transport properties from one point
to another. From this information, the strengths of individual quads can be inferred.

The traditional lattice-diagnostics algorithm, as performed in linacs and storage
rings, is as shown in Figure 4.30[50]. A vertical or horizontal corrector is stepped
through a range of values, and the displacements at a downstream BPM are measured
at each value of the corrector. By correlating the position with the corrector, the Ris

from the corrector to the BPM can be determined. This is typically done using a
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‘.

Figure 4.30: Schematic of conventional lattice diagnostics for a FODO
array. The beam is offset in the magnet, and the kick thus imparted is
measured downstream.
BPM and corrector separated by 90° of betatron phase, such that the angle kick at
the corrector is converted into a position kick at the BPM.

Such a scheme is optimal for a matched FODO lattice, such as a storage ring,
in which the set of correctors in a ring span the full range of betatron phases. Due
to the unusual phase-advance properties of the FFTB, it is generally impossible to
locate a corrector exactly 90° degrees away in betatron phase from a given magnet

or BPM. Therefore, an alternative scheme had to be devised.

4.4.1 Alternative Lattice Diagnostics Algorithms

Figure 4.31 shows the first approach considered for FFTB lattice measurements. Two
correctors are employed in such a way as to produce a pure position or angle oscillation
at the location of the CCS sextupoles. In this way, an oscillation equivalent to a single
corrector at the correct phase is generated. By producing both position bumps and
angle bumps at the sextupole, both betatron phases are probed. The “zeroth-order”
bump test is merely to ensure that the angle bump closes, and that the position bump

is of equal amplitude at both ends of the —I transform. Modified versions of this

159

Figure 4.31: Schematic of proposed FFTB lattice diagnostics. Two
correctors are used to produce oscillations in each phase, including pure
angle bumps (left) and position bumps (right).
test can be employed to test a magnification module; and the deviations from perfect
behavior can be used to measure individual quads in the CCS regions.

The bump method described above has several drawbacks, which eliminated it
from serious consideration early on. First, creating a pure position or angle bump
from two correctors requires precise knowledge of the corrector strengths as a function
of current. Tests of the FFTB corrector magnets with beam indicated significant scale
factors (in some cases, over 10%[51]). Second, the tests of quad strengths and —I
transport properties relied upon the linearity and scale factors of all BPMs in the
system. Like the horizontal dispersion measurement described in Section 4.3.2, this
is not a nulling test. In order to use the corrector method, both the corrector and
the BPM must have scale factors and linearity known at least as well as the desired
resolution of the quad strength, and the ratio of oscillation size to BPM resolution
must be of the same order. In order to diagnose quadrupole errors at 0.1%, therefore,
the 1 um BPMs must be linear to within 0.1% out to 1 mm offsets, and have scale
factors known to 0.1%.

A method which eliminates some, but not all, of these difficulties is shown in
Figure 4.32. In this case, the magnet mover is used to create the bump, and the quad
strength is determined by the ratio of the amplitude of the kick downstream to the
amplitude of the motion. The magnet mover positions are externally monitored by

the LVDT system, and the mover system as a whole is calibrated to um precision and
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Figure 4.32: Schematic of magnet-mover based diagnostic. The quad
to be measured is moved transverse to the beam, and the kick produced
by the change in position is measured downstream.

0.1% accuracy over its full range of motions {31]. In this case, both the quadrupole
being moved and any quads between it and the target BPM are being measured.
However, this test still requires high precision and accuracy from all BPMs.

The technique which ultimately was used in FFTB is shown in Figure 4.33. In
this algorithm, several quadrupoles are moved at one time, in a pattern which will
produce a closed orbit bump - the BPMs downstream of the last quad will see no
motion if the magnets are at their design strengths. This test is a nulling test, in that
no change on the BPMs is expected if the quads are at their design strengths. The
offsets are small compared to the linear range of the system. In addition, the scale-
factor of the BPMs in use in the system no longer couples to the absolute strength

of the quax'is, but to the strength errors of the quads. In other words, a 10% scale

Figure 4.33: Schematic of lattice diagnostics method used in FFTB.
Several quads are moved via their movers simultaneously, in patterns
which will produced a closed oscillation if all quads are at design
strengths.

factor error will not result in a 10% miscalculation of the quad strength, but a 10%
miscalculation in the strength error (deviation between design and actual strength).
In this respect the test is similar in its result characteristics to the vertical dispersion

test described in Section 4.3.2.

4.4.2 Detailed Description of the Algorithm[52]

The lattice diagnostics algorithm has been developed in such a way that data acqui-
sition is performed by the SLC Control Program, primarily using correlation plots
(although the magnet configuration and online model facilities are also used), while
analysis is performed offline. This is due to the large size of the data set which is fit:
because a closed bump generally requires 3 or 4 quadrupoles moving synchronously,
the deviation of the downstream trajectory is a function of several different quadrupole
strengths. In order to separate the effects of the different quads, each quadrupole is
included in several different bumps, and the full set of 100 bumps is used to fit
30 quadrupole strengths. In addition, each bump is repeatedly cycled across its full
range, and many BPM samples are acquired at each step. Fitting such a large dataset
with so many parameters is de facto an offline task.

Despite this difference, the lattice diagnostics algorithm bears many similarities
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to the quad alignment and lattice dispersion algorithms described above, both in

acquisition and analysis. The acquisition algorithm is as follows:

o Acquire reference orbit with no bumps present

o Select next bump to introduce, maximum amplitude, number of steps, and
number of iterations of stepping to use

¢ For n = 1 to number of iterations of stepping do

— for m = 1 to number of steps for this bump do

* Set the bump to the required amplitude
* Acquire 50-100 pulses of BPM data for all FFTB BPMs

— End do (steps for this iteration of this bump)
o End do (iterations of this bump)

o Select next bump and appropriate iteration parameters, repeat above until all
bumps are exercised.

Typically each bump would be set to 5-10 different amplitudes, the full pattern
of amplitudes would be performed 5-10 times, and 50-100 pulses would be acquired

at each step of each bump. The analysis algorithm is as follows:
¢ For n=1 to number of bumps do begin

— Identify all pulses with bump amplitude=0, select first pulse to be “tem-
porary reference orbit”

~ Subtract “temporary reference orbit” from other amplitude=0 orbits, use
BPM data upstream of bump and at high 7 point (if necessary) to fit
x,2, 9,9, 6 for each of these pulses

~ use theoretial (no-error) optics to subtract jitter from each amplitude=0
pulse; if residual for a pulse is large, discard the pulse; average residuals at
each BPM and add to “temporary reference orbit” to form final reference
orbit

— Subtract final ref orbit from all others, fit incoming oscillation as described
above; elminate contribution of incoming oscillation at all BPMs; at each
bump setting compute average and RMS of each BPM, eliminate fliers

~ Fit correlation of BPM values computed above vs. bump amplitude to
straight line, using BPM RMS as weighting factor; eliminate BPM values
which do not fit straight line

e end do

o Slope and error of straight line fits, along with x? of straight line fits, become
the input data for MINUIT fit of magnet strengths.
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Figure 4.34: Relative strength errors, (Kmoder — Kmeas)/ Kmodet, for
FFTB quads from QN3A in CCSX to QC3 in FT. Result for QT2A is
not shown.

4.4.3 Results of Lattice Diagnostics

The earliest set of data taken with quadrupole movers utilized single-magnet open
oscillations. This data determined that the BPM system is operating with an overall
scale factor of 13% (i.e., the BPMs are over-reporting deviations by 13%). This factor,
and variations in same between BPM units, was a prime mover in the decision to use
closed bumps for lattice diagnostics. The BPM scale factor is still needed to reduce
the x? contribution coming from BPMs inside quads which are moved in a given
bump.

Early measurements using small sets of closed-bump oscillations sho‘wed'persistent
difficulty in reducing the x? to reasonable values. It was shown that the difficulty was

a mismatch between the actual energy of the incoming beam and the energy of the
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Figure 4.35: Resolution of FFTB lattice diagnostics algorithm for all
quadrupole scanned from QN3A to QC3 (QT2A excepted).

lattice. There is a difference between a scaled quadrupole and a scaled energy, which
is that the lattice between BPMs downstream of the stepped quad is also incorrect.
In a large dataset, this manifests itself with a common strength scaling factor for all
quads. The resolution of the lattice diagnostics measurement to incoming energy is
20-30 MeV (recall that the beam energy is 46.6 GeV). Bump-based lattice diagnostics
are now routinely done early in an FFTB run, in order to correctly set the beam
energy. The energy measured at the beginning of the run is typically high by 100-300
MeV relative to the FFTB design.

Figure 4.34 shows the quadrupole strength error, (Kmoget — Kreat)/ Kmodel, from
a simultaneous fit of over 100 bumps. Note that virtually all quads are within 2
standard deviations of the model (a quad at its model strength has a deviation of

zero in Figure 4.34). Figure 4.35 shows the statistical measurement uncertainty of
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the quad strengths. Figures 4.34 and 4.35 include all quads up to the doublet, save
for QT2A. The relative strength error reported for QT2A is —0.103 & 0.045. The
reason for the large error is that QT2A and QT2B are too close in physical space to
decouple in this measurement. Note, however, that typical resolutions in Figure 4.35
are 2 x 1073, with a worst-case of 7 x 10~2 for QCS3.

The reason for the large QC3 error is that QC3’s measurement is strongly coupled
to the measurements of the strength of the doublet magnets. The doublet strengths
are arguably the most crucial in the FFTB system, and yet ironically their measure-
ment precision is poor, on the order of 1% for each magnet. The first extraction-line
quad, QP1A, has a precision worse than 3%. The doublet magnets are long, pow-
erful devices set close together. Because of their arrangement on the common table,
the freedom of motion for the magnets is minimal. Furthermore, the arrangement;.
of BPMs downstream of the doublet is far from ideal for this measurement. The
most useful location, the FP, does not have a BPM of any kind (largely because the
relevant real estate is crammed with beam size monitors). A doublet strength mea-
surement would be quite useful because the doublet quads are each unique (unlike
the virtually-identical FFTB standard quads), and are too strong to mini-standardize '
when scanned (see Section 4.2.4). In addition, the settings of the doublet which set
the waist at each monitor have never reproduced well from run to run (see Section

5.3.2). However, such a measurement is essentially prohibited by the FFTB geometry.

Measuring Quadrupole Roll Angles

A feature of the FFTB latttice diagnostic procedure is the ability to diagnose rolled
quadrupoles. This is done by introducing a horizontal bump and measuring the
vertical kick imparted, or vice-versa. For a quadrupole with a known Ry and Rys,

the out-of plane kick element, Ry, for a roll angle 8 is given by:

R41 = %sin 20(}243 - Rgl), (4.14)
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and Rag is equal to Ry in this case. For an FFTB standard quad operating at 300
kilogauss integrated gradient in a horizontally-focusing polarity, Ry; = —0.19015m™!,
and Ry3 = 0.19397m™!. To lowest order, therefore, we expect that the resolution for
sin 20 will be equal to the resolution for the normal quadrupole strength. This will
yield a resolution for § which is on the order of 1 mrad.

The difficulty with this measurement is the possibility that the mover axis is not
parallel to the magnetic coordinates of the FFTB. For example, consider a magnet
which is not rolled in some coordinate system, and a mover system which transports
this magnet; and postulate that the mover coordinate system has an angle ¢ relative
to the magnet, such that a move in the “x” coordinate of the mover by an amount
p causes a translation of pcos® in the horizontal and psin in the vertical. In this

case, the “effective Ry, or Ry ey, is:
Rayesr = Ryzsini. (4.15)

The only difference at this level between a magnet with roll angle 20 and a magnet
mover with a roll angle 9 is that Rys does not exactly equal 3(Ry3 — Ra). If 2 mag-
net has a mover with rolled coordinate axes, the roll angle determined by introducing
horizontal bumps will therefore be different from the roll angle determined with ver-
tical bumps; this difference permits the rolled mover and the rolled quadrupole to be
distinguished. Note, however, that the difference between R,3 and %(R,,s — Ryy) is
only 1% of Rys itself. Unless the roll angle can be determined with 1% precision, it
is not possible to tell the difference between rolled movers and rolled magnets. Fur-
thermore, at the level of hundreds of urad, the roll angles of the BPMs themselves
‘become suspect. The problem of defining a coordinate system for a beamline, and
rolling all devices onto that system at the milliradian level, remains for the present

unsolved.
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Systematic Errors

The role of BPM scale factors in systematically altering the correction applied to the
magnets has been discussed above. As mentioned, a global scale factor can result
in a fractional change in the applied correction, but this problem can be eliminated
through repeated applications of the lattice diagnostics algorithm. Another possible
systematic error is the aforementioned rolled mover system. As shown above, a mover
system with a roll angle ¢ will produce a move which is scaled by cos% in the plane
of the bump. This in turn will lead to a magnet strength which is also scaled by cos
from the actual value. Even large values of ¢, such as 10 mrad, result in a systematic
error at the 107 level, too small to see with this technique and this dataset. An
individual mover scale factor will directly scale the strength of a magnet (as opposed
to BPM scale factors, which scale the correction to the strength of the magnet). Such
a scale factor is only possible in the case of a common scale-factor for all 3 LVDT’s
incorporated into a given mover. Note, furthermore, that a common scale factor for
all mover LVDT’s will result in all magnet motions having a common scale factor,
and this will be interpreted by the fitting process as a contribution to the BPM scale
factor; only the case of 3 LVDT’s with a common scale factor placed on a §ingle mover
will result in that magnet’s strength fit being scaled. The expected amount by which
a given LVDT may be scaled relative to the ensemble is 0.1% [31], and therefore the
amount by which 3 LVDT’s may be collectively scaled relative to the ensemble is
close to 0.05%.

4.5 Sextupole Alignment

Once the linear optics elements of the FFTB line have been measured in strength and
alignment, the CCS sextupoles (SF1A/B and SD1A/B) are excited to magnetic field
levels near their design values (f Sdl = 33,000 kG/m, where design ~ 32,500 kG/m

for Laser-Compton BSM operation). Because horizontally-misaligned sextupoles pro-



168

duce normal quadrupole effects (causing waist shifts and horizontal dispersion at the
FP), and vertically-misaligned sextupoles produce skew quadrupole effects (causing
coupling and vertical dispersion at the FP), it is necessary to move the sextupoles onto
the line through the quadrupoles determined in Section 4.2. This, in turn, requires a
beam-based alignment technique for sextupole magnets.

The technique uvsed at the SLC Final Focus for sextupole alignment is to measure
the waist location, coupling, and dispersion at the IP for two or more levels of sex-
tupole excitation [53]. Such an approach was considered for the FFTB as well. The
method has the advantage of directly sampling the effects which must be cancelled
(quadrupole aberrations). The disadvantage of the technique is that it requires the
ability to measure the beam at the FP as a prerequisite, which implies that some
degree of tune-up be performed prior to this alignment (tune-up which becomes to
varying degrees obsolete once the sextupoles are moved into position). The technique
also becomes more sensitive as the FP beam size decreases and the horizontal and
vertical divergences increase. Thus the FP-based technique would benefit from use
of the experimental beam-size monitors, which in turn requires that all BSM-related
overhead and preparation be absorbed prior to sextupole alignment.

The FFTB’s arrangement of sextupoles on movers invites an alternative tech-
nique, which depends only on the BPMs and magnet movers, can be performed at
low divergences and at any stage of tune-up, is relatively quick to implement, and

extremely simple in design and execution.

4.5.1 FFTB Sextupole Alignment Method [54]

Consider the vertical magnetic field, By(z, y), in a magnet with (potentially) nonzero
dipole, quadrupole, and sextupole terms. The field as a function of coordinates
(%m,Ym), where z,, and y, are the coordinates relative to an arbitrary origin (such

as the origin of a magnet-mover system), is given by:

By(xm) ym) = BOy + GNTm — Gsym + SN(z?n - y?n) — 255%mYm. (4'16)
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Here Gy and Gfs refer to the normal and skew components of the quadrupole feld,
respectively; and Sy and Ss refer to half the normal and skew components of the
sextupole field, respectively (see Appendix B for details of this expansion). We can

apply a coordinate transformation to a different origin:
Tm =T + Zp, Ym =Y+ Y0, (4.17)

where z and y represent the distance from the new origin to the point of interest,
and z, and yp the distance from the mover origin to the new origin. Substituting

Equation 4.17 into Equation 4.16 allows us to expand and collect terms as follows:

By(z,y) = Boy+ Gnwo— Gsyo+ Sn(zE — y3) — 2Ssz0v0 (4.18)
+ Gnz — Gsy + 25y (220 — yYo) — 25s(xyo + yxo)
Sn(z? — y?) + 2Sszy.

-+

A further collection of terms can be made, in which we replace all constant terms

with a single term, B, and gather terms proportional to = and to y:

By(z,v) By (4.19)

+ z(Gn + 2Syzo ~ 25sy0) — ¥(Gs + 2Snyo + 25s0)
+ SN(:E2 - y2) + 2S5s2y.

We can now require that in the current coordinate system, the coefficient of z and
the coefficient of y are identically zero. In this coordinate system there is no gradient,
and the coordinates (g, %) represent the transformation from the origin of the initial
coordinate system to the center of the sextupole, defined as the point at which the

gradient vanishes. After some algebra, we find:

_ —GnSy—GsSs
ST (N N (4.20)
SsGn — GsSn

o= TS+ s
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We may also derive the values of the original Gy and Gs in Equation 4.16:
GN = 285y0 — 25,,10, Gs = —2SNy0 - 235130. (4.21)

We can also rewrite Equation 4.16 in another fashion, that of a parabola in x:

By(TmyYm) = Sv(zm—B)?+C,  where (4.22)
_ 255ym — G -
B = BT 5 =zp, and
_ 2
C = Boy— Gsym — Snvt ~ (?_'ESEL"__G_N) )
2SN

Equation 4.22 indicates that if B, is measured as a function of 2, the correlation
between the two will be parabolic, with extremum occurring at T, = 3§5%v'ﬁ”- Let
(z1,71) be defined as the initial position of the magnet in question, such that the
initial (zm,ym) are given by (21 + Zo, %1 + %0). In this case, the extreme value of the

parabola, zg, can be shown to be given by:

TE =20+ n s (423)

I

The measurement of By can be practically accomplished by moving the sextupole
across the incoming beam via its mover. This produces a horizontal kick which
translates to horizontal offset in position downstream. By plotting the beam position
at a downstream BPM versus the mover position, a parabolic correlation can be seen.
The mover position which minimizes or maximizes the horizontal BPM signal is zg
from Equation 4.23. Note that in the case of Sg = 0, scanning the magnet horizontal
position will always give g = zo. If we assume a skew sextupole contribution which
is no more than 10% of the normal sextupole, and a magnitude of y; no larger than
1 mm, we find that 2z may deviate by 100 um from zg

Let us now assume that the magnet is moved to position zg from Equation 4.23,
and rename this point zo. In analogy with Equation 4.22, we can write an equation

for By as a function of y,:

By(Tm\Ym) = —Sn(ym— B)*+C, where (4.24)
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_ —283%Tm—Gs _
B = QSN =Yg, and
_ — 2
C = Boy+Gyom+Syz? — (%) .
N

Some manipulation reveals a relationship between yg, the value of ¥, at which the

extreme value of By occurs, and yq:
52
YE=%Y+Y% (3,22) . (4.25)
N

The error contribution in this case is reduced by a factor of Sg/Sy, as we have
assumed that the magnet was moved to within ylgfl- of g in the horizontal. It is
evident that repeated iterations of this procedure will suffice to converge (2, ys) to
within any desired precision of (zq, %0)-

During FFTB sextupole alignment, the CCS sextupoles are stepped from -1.4
mm to +1.4 mm in the mover coordinate system, in steps of 400 um. At each mover
position, the downstream BPMs and the BPMs adjacent to the sextupole are read out
for 9 pulses. This allows sufficient redundancy to discard individual bad pulses, and
does not significantly increase the time needed to perform sextupole alignment (as the
time needed to reposition the magnet is the rate-determining step). The procedure
calls for only one iteration of horizontal and one iteration of vertical alignment per
magnet. Equations 4.23 and 4.25 show that such an algorithm creates the potential for
systematic misalignments, in the presence of nonzero skew sextupole. This possibility

is considered below.

Expected Resolutions and Systematic Errors

In order to determine the expected resolution of the parabolic fit to a sextupole mover

scan, it is necessary first to consider a quadratic fit:

Tppr = Go + 01T + 4922, (4.26)
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where zppa; is the beam position at the BPM and z is the sextupole mover position.
‘We can construct a curvature matrix for the polynomial fit:

1 T a2
by T5par x "?3;;51 by "?ssaw
o = Zs Ts Za . 4.27
$ by TEpar by TBpM by ok pM ( )
A ol o

V] 2 2
BPM TBPM °BPM

Because the pattern of z, steps is symmetric about zero, all odd-powered sums in
Equation 4.27 are identically zero. Substituting the step pattern described above for
zs and assuming 1 pm for the resolution oppas allows us to invert o into an error

matrix, €. For the sake of brevity, only the relevant terms of ¢, are reproduced here:

€s(a1,a1) = 1.49 X 1077 = 0, €5(az,a) = 2.33 x 107%um™2 = 02, ¢,(a1,02) = 0.

(4.28)
Recalling the conversion from a; to parabola coefficients y = A(z — B)? + C, we

find that B = ~305, and therefore
oB\® 8B\?
0'% = 0‘% (a—al> + 0‘% (8—@) (429)
= % (af + Bzag) .

Given the values of oy and o3 in Equation 4.28, the error term proportional to B con-
tributes when |B| ~ 1mm, and represents the familiar difficulty of fitting a parabola
center when one wing of the parabola dominates. For this analysis the “one-wing”
term will largely be ignored.

All that remains in determining the value of B is to determine the value of 4, the
parabola curvature parameter. “A” represents the response of the beam measurement
at the BPM to the movement of the sextupole, and can be approximated by A =~
K Rg—8PM  where K; = E%QB%’ the integrated sextupole strength divided by the
magnetic rigidity. For FFTB sextupoles at integrated second derivative (“BDES”)
of 33,000 kG/m, K, = 10.61 m~2. Given the choice of downstream BPMs (based

largely on experience, observing which BPM gives the best resolution for a given
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sextupole), the values for A are: 2.23x10™*um™? for SF1A, 9.86x10~5um™! for SF1B,
4.24x10~3um"1 for SD14, and 6.00 x 10~5um™? for SD1B. When we substitute these
velues for A into Equation 4.29, we obtain the following resolutions for the sextupole

alignment procedure:
osr1a = 1.7um, ospip = 3.9um, ospia = 9.1pm, gspip = 6.5um. (4-30)

The resolutions quoted above are only appropriate for BPM resolution of 1 pum;
however, no attempt has been made to fit out incoming jitter from the BPM values,
and 9 BPM values are read in at each mover position. The effect of this is to worsen
the resolution by a factor of o;;/3, where g3 is as shown in Figure 4.3. Including

this factor, the expected statistical resolution falls to:
osr1a = 3.8um, ospip = 3.9um, ospia = 12.1um, ospip = 34.7um. (4.31)

Note that, while the sextupole alignment resolution with jitter and 9 pulses per mover
value remains within the global tolerances quoted in Table 2.3, significant improve-
ment is possible for SD1B with reconstruction of incoming trajectories.

In Equations 4.23 and 4.25, the systematic error arising from the initial position
of the magnet is noted. The maximal systematic error is estimated with a skew
sextupole content of 10% relative to the normal sextupole content. In Appendix B,
the technique for sextupole field measurements with a stretched wire is described. The
measurement includes a determination of the roll angle of the sextupole field relative
to the split planes (i.e., the roll angle needed when the magnet is installed, “upright”
relative to its mechanical coordinates, to make the skew sextupole field vanish). The
maximum value found for this angle is 2.5 mrad. Assuming an installation error
of 2.6 mrad as well, the maximum roll angle of the sextupole field with respect to
the external coordinate system is 5 mrad. This gives a skew component equal to
S sin(38), or 1.5%. For a 1 mm initial offset of the magnet, this translates to 15 pm
systematic error in the initial determination of zg. With a second pass of horizontal

alignment following the vertical, this error can be reduced below 1 ym.
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The other potential source of systematic error is a magnet mover which moves
the magnet at an angle relative to the beamline coordinate system. Consider in this
case a sextupole magnet with no skew component, sitting at some position, (z1,91),

relative to the magnetic center:
By = Sn(a} — 4}) + Bo. (4.32)

Now assume the magnet mover horizontal axis is set at an angle # relative to the
magnetic fleld axis. When the magnet is translated by an amount p along this axis,
the translation in  is pcosd, the translation in y is psind. At this location the

magnetic field is given by:
By=By+ Sy [(:c1 +peosf)? — (y1 + psin 0)2] : (4.33)
A certain amount of manipulation gives a magnetic field equation in terms of p:
B, = By + Sn(p — po)?, where po = y;siné — z; cos . (4.39)

If the magnet mover is now positioned at the location p, along its direction of travel,

the resultant coordinates in the magnetic coordinate system are:
z = 21(1 ~ c0s? 0) + y; sinfcos b, y = y;(1 +sin?§) — z; sinf cos 4. (4.35)

For any reasonable roll angle, the cos® @ contribution to the z position can be ignored.
The significant contribution is that the new z position is different from the magnetic
center position by %-sin20. For an initial offset of 1 mm, and a mover roll angle of 10
mrad, the accepted value of z differs from the center position by 10 um. Based upon
lattice diagnostics, a 10 mrad angle for this quantity is large, but not implausible.
Note that, as in the case of skew sextupole content, this error depends upon the initial
offset of the non-scan plane from the center, and can easily be eliminated by iterating

the tuning procedure.
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Figure 4.36: Horizontal BPM reading from QM2 BPM as a function of
SD1A vertical mover position.

4.5.2 Results of Sextupole Alignment

Figure 4.36 shows a representative BPM position versus sextupole mover scan. The
characteristic parabolic dependence is clearly visible, along with the pulse- to-pulse
jitter discussed above. The scan in Figure 4.36 has a fitted center resolution of 8 pum.

Note that the concavity of the parabola is a function of sextupole polarity and
transport properties from the sextupole to the BPM. In the FFTB, all sextupoles
have the same polarity; therefore, for BPMs separated by 7 or less in betatron phase

from the sextupole being scanned, the expected concavity is “up” for vertical mover

scans and “down” for horizontal. During the first FFTB sextupole alignment tests

in April of 1994, the first CCSY sextupole (SD1A) was found to have the opposite

concavity pattern. Gaussmeter tests subsequently confirmed that the sextupole had
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Figure 4.37: Resolution of sextupole alignment procedure from March
1995, for both horizontal (dark) and vertical (light) measurements.

been miswired.

Figure 4.37 shows the horizontal and vertical sextupole alignment resolutions from
March of 1995. While most results were within a factor of 2 of the expected resolution,
the horizontal resolution for SD1A was considerably worse than expected. This is
because the horizontal distance between the center of the mover system and the
position which centered the magnet on the beam was almost 1 mm, and the second
term in Equation 4.29 became significant.

Once all local diagnostics have been performed, and corrections applied, the FFTB
optics can be adjusted for large FP angular divergences, using the incoming beam
matrix measured in Chapter 3 to compute settings for the beta matching quadrupoles.
The match is verified on WS2 and WS3, and the final tuning is then performed using
the FP beam size monitors. This tuning is the subject of Chapter 5.
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Chapter 5

Global Beam-Based Diagnostics

-

Once the local tuning procedures of Chapter 4 have been performed, and the incoming
beam has been measured and matched via the techniques described in Chapter 3, the
only remaining diagnostic is the beam size at the focal point. The design spot size at
the focal point of a linear collider is the smallest of the entire machine, and the only
one which sees the entire beamline up to the collision; it is therefore de facta the only
point relevant for final tuning 1.

Tuning the FP spot size implies several pre-requisites: one or more beam size
monitors which may be used to measure the beam; a finite list of aberrations which
are to be tuned by minimizing the measured spot; and orthogonal knobs for changing
the strength of each of these aberrations.

Section 2.5.4 described the two exotic spot-size measurement devices present at
the FFTB focal point, and Section 2.5.2 described WS6A and WS6B, the more con-
ventional solid-wire measurement devices. All of these play a role in the tuning of
the final spot, and their uses are described more fully in Section 5.2 below.

Table 2.2 lists the principal aberrations which are expected at the FFTB, and the

knobs which are expected to cancel same. Note that Table 2.2 includes only those

11t is conceivable that a final focus system could be designed with a tuning image
downstream of the IP [55], which would see the entire beamline; only the IP, however,
will be sensitive to the smallest aberrations.
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aberrations which are inherent to the FFTB, i.e., those which arise from errors in
the strength, alignment, or construction of the magnets in the FFTB itself. Three
additional errors are possible in the FFTB. The horizontal and vertical 8* can be mis-
set, and this arises primarily from errors in the measurement of the incoming beam
and/or errors in matching verification. An additional error is coupling between x and
y at the F'P, which can come from the incoming beam or from a roll angle in the beam
size monitors, but not from errors in the FFTB itself. As discussed in Sections 5.2.2
and 5.2.3, the Laser-Compton BSM is potentially subject to errors in roll installation,
while the Gas-Ion BSM is immune to same. WS6A is, of course, also subject to these
errors, but since WS6A cannot be used to measure the minimt?m spot size this is
not a critical limitation. Corrections for each of these three additional errors are
possible within the limits of FFTB optics. The betatron error can be corrected
with a magnification “Irwin Knob” of the type discussed in Section 3.3. The xy
coupling or monitor roll is more difficult. The FFTB contains 3 skew quadrupoles,
such that the incoming coupling can be tuned to eliminate xy and x’y coupling at the
FP (corresponding to Irwin notation elements b* and d*, see Appendix A), and the
third skew quad can be used to eliminate the effects of rolled quads in the FFTB. In
practice, the location of QSM2 (see Section 2.1.2) is nearly degenerate with QSM1 for
all reasonable strengths of Q5 through QAl. A knob for tuning the xy coupling at the
Laser-Compton monitor has been devised which uses QSM2 in the beta match and
QS3 in the final transformer; essentially, the two skew quads fight one another, and
the QSM2 also gives a very small amount of b*. This knob is sufficient to diagnose a
roll angle in the monitor, and to correct approximately 0.5°, according to simulation.
For larger roll angles, the knob begins to break down: as the determinant of the
out-of-plane R sub-matrix diverges from zero, the determinant of the in-plane sub-
matrices diverge from 1, and the in-plane beam begins to change. One way to think
of this is that the first skew quad produces coupling between the xx’ and yy’ phase

planes; the second skew quad also produces such coupling, but the two phase planes
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are already coupled by the first skew quad. Thus the combined effect of the two skew
quads is to cause a net change in the downstream xx’ phase plane which depends

upon the upstream xx’ phase plane.

5.1 Generation of Global Knobs

Horizontal and Vertical Waist: The FFTB waist knobs use the QC2 and QC1
magnet strengths. The range available is considerable: in 1993 operations, these
knobs were used to move the waists onto WS6B, 75 cm downstream of the Laser-
Compton monitor. These knobs are specific to particular FT and final doublet con-
figurations; in particular, different QC2 and QC1 coefficients are needed to move
the waists for each of the three possible FP’s (Laser-Compton, WS6A, Gas-Ion).
While the knobs ere designed to be orthogonal and linear around zero, they are
non-orthogonal and noticably nonlinear outside of £5 cm motions.

Horizontal and Vertical Dispersion: Horizontal and vertical dispersion knobs
use correctors H5D and V5D (in the final transformer) to displace the beam in the final
doublet. The strong chromaticity of the doublet generates n* in the appropriate plane.
Knobs are orthogonal and linear up to the corrector strength limits (corresponding
to 73 = £4.9 mm, 7 = £691 pm).

Coupling: The x’y coupling term is controlled by QS3, which produces this
aberration in nearly pure form (due to its proximity to the doublet). The knob is
calibrated in units of Ry [56], where o% = 0 + R30/Z. In this, the R, knob functions
similarly to an “out-of-plane waist” knob [57]. The knob range is up to Ry = £33 mm,
which would enlarge the vertical spot by almost 6 um.

Sextupole: The four sextupole aberration knobs are determined by first-principle
calculations of the optics. A normal sextupole will produce a horizontal kick given
by:

Az’ = Ky(z® -9, Ay = 2Ky, B GHY
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where K, = %g;. This kick will then propagate to the FP:
Az* = RppK (2 —y%),  Ay* =—2RuK.axy, (5.2)

where the x and y on the RHS of both equations is the position of the test particle
at the sextupole. We can convert this into the angle of the test particle at the FP
by noting that the transport from almost any point in the beamline to the FP is

parallel-to-point, therefore:
Tseqt = —Ry22™, Ysext = _R3dy’t) (‘5'3)

where Ryo34 are the terms in the transport matrix from the sextupole to the FP.

Combining this expression with Equation 5.2 yields:
Azt = — K (R3,2"* — RipR3,y™), Ay* = +2K R R2,2"™y"™. (5.4)

We see that a normal sextupole produces two aberrations: one aberration propor-
tional to R,, which enlarges only the horizontal beam size; and one proportional to
R12R§4, which enlarges horizontal and vertial sizes. A suitable combination of two
such sextupoles can be used to produce the two aberrations independently. Similarly,

the effects of a skew sextupole on a test particle are given by:
Az* = +2K,R2, Ryz'y"™, Ay* = —K(R?,Raz" — R3y™2). (5.5)

Thus the skew sextupole gives rise to two vertical aberrations, one of which has the
same dependencies as a single horizontal aberration. Two skew sextupole magnets can
therefore be adjusted in combinations which excite only one of the two aberrations,
and hold the other fixed.

The approximation of linearity and orthogonality for these knobs is good over
their entire range. The range of adjustability (starting with all sextupoles at zero)
is: NSXX (normal sextupole, x and y aberration), 1.3 units; NSX.YX, £2.7 units;
SSX_YX, £1.8 units; SSX.Y, £1.7 units. The knob scales are adjusted such that
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1 “unit” of any knob will enlarge the beam size by 41% of 0j,qn; in other words,
turning the knob by 1 unit will add 1.0 63,,,, in quadrature with the design spot.
With the exception of NSX X, the knobs are scaled based on their effects on the
vertical beam size.

Chromaticity: Because the FFTB sextupoles are not interleaved, the horizontal
chromaticity may be adjusted by changing the SF1 strengths only, while the vertical
may be adjusted by changing the SD1 strengths. As shown in Figure 2.11, the uncor-
rected chromaticity of the FFTB line is enormous; therefore, the range of correction
is similarly enormous.

The global tuning knobs described above have several operational difficulties. The
waist knobs are difficult to scan reproducibly because of magnetic hysteresis effects,
and because the required step sizes are quite small. The dispersion knobs produce
steering in the FT sextupoles, introducing additional normal and skew quad effects,
and also produce orbit changes in the extraction line. For these reasons, the FFTB
also makes use of a set of seztupole mover knobs?. These knobs make use of the normal
and skew quad effects generated when a beam passes through a normal sextupole off-
center. Because the FFTB CCS sextupoles are all in phase with one another, the
linearity and orthogonality of these knobs holds for larger ranges — in effect, the
sextupoles do not “see” the effects of upstream sextupole translations. In addition,
the sextupole movers operate without hysteresis, and with micron precision, which
enhances the settability and reproducibility of the knobs.

The knob coefficients can be calculated by simulating the effect of a thin quadrupole
at each of the sextupole locations. The quadrupole will produce waist shifts, coupling
and dispersion at the FP, and a linear correlation between quad strength and aberra-
tion derived from linear optics. The thin quad strength is then converted to sextupole
offset to determine the transformation from sextupole motion to aberrations at the

FP. This relationship is inverted to obtain the transformation from desired aberration

2The sextupole mover knobs were proposed by K. Oide.
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to sextupole motions, M.

There are four CCS sextupoles, each of which may be moved in x or y, for a total
of 8 possible knobs. In practice, five knobs are used routinely (x and y waist, x and
y dispersion, Xy coupling), while a sixth quantity (second-order dispersion, Tigs) is
held fixed. While the range of each knob is quite considerable, the strengths of the
sextupoles ultimately may need to be varied to minimize the chromaticity. Therefore,
some understanding of the interaction of sextupole strength with the mover knobs is
required before use.

Consider the horizontal motions of the sextupoles, and the normal-quadrupole
aberrations arising therefrom (waists, 7., Tigs). The relationship between these quan-

tities can be written as a matrix equation:

SF1Ax 2,515 5.055 93.69 —8.425 W,
SF1Bx 2.857 2.695 —93.69 8.425 W,
= , or (5.6)
SD1Ax ~1.028 -15.79 —-357.1 --41.62 Nz
SD1Bx 0.903 -—28.57 357.1 41.62 Ties
§ = Mk

The first column of M shows the moves needed for 1 mm of horizontal waist; the
second, one mm of vertical waist, etc. The knob units are all mm, and the mover

units are all pum. We can invert this relationship:
E=M"38. (5.7)

Increasing the strength of the SF1 sextupoles by fraction fis equivalent to multiplying
the first two columns of M~! by a constant 1+ f; similarly, increasing the SD1 strength
by fraction d will increase the third and fourth columns of M~ by (1+d). Let W be
defined as the matrix which is formed by these transformations to M~!. When the
mover kno.bs are incremented, the driving software will use M to move the magnets,

but the matrix W converts these moves into real changes in the beamline:

]-V:real = WMErequest- (58)
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The product WAL contains all information sbout the scaling and crosstalk of the

hard- wired knobs due to sextupole strength changes:

1+f 1.448(f — d) 0 0
+0.004(f — d)

~2.83x10"% 1+ f 0

x(f —-d) —0.004(f — d)

WM =
-3 _ -2
—1.09(f — d) 7.52 x 10 1+f 5.3 % 10
x(f—d) —0.403(f — d) x(f —d)

~1.3 x 10~2 —8.6 x 10~2 —4.48(f — ) 1+ f

x(f - d) x(f - d) —0.597(F — d)

(5.9)
Equation 5.9 shows only three cross-talk terms which are non-trivial: (WM);2,
(WM)s1, and (WM),3; these terms relate the crosstalk from the y-waist fo the x-
waist, from the x-waist to 7%, and from 7% to Ty, respectively. The (WM ), is not
significant because typical vertical waist motions are hundreds of microns, while £} =
10 mm. Similarly, while (WM )43 could potentially increase the Tjys by millimeters,
this still only amounts to a horizontal beam size increase of nanometers at the full en-
ergy spread. The only mixing term of concern, therefore, is (WM)s1, whicfl increases
the horizontal dispersion if the horizontal waist is not set to zero. Note further that
if f = d, corresponding to changing both sextupole pairs by the same fraction during
chromaticity scans, then Equation 5.9 reduces to scaling all the knobs to 1 + f of
their set values.
How far may the sextupole mover knobs be moved from their zero (aligned) po-
sitions? In order to answer this question, it is necessary to determine the maximum

value of f needed to constrain the chromaticity. Simulation studies have shown that,
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Knob | Total Range T Maximum | RMS value from
Set Value | sext. alignment
X waist | $400 mm +32 mm 2.28 mm
y waist [ +35 mm +£435 um 640 um
Nz +28 mm | £3.2mm 38 um
My +1.6 mm | +£104 um 17 pm
i3 +46 mm +1.9 mm 490 ym
Tiss +24 mm | 629 mm 372 pm

Table 5.1: Range considerations for sextupole mover knobs. The total
range is determined by allowing the sextupoles to be scanned up to 1
mm from their aligned positions; maximum set value is derived from
the “scan with impunity” criterion in the text; the RMS value is the
quantity of each aberration caused by the finite sextupole alignment
resolutions in Figure 4.38.

at the design energy spread of 0.3%, a scan of 6% of the sextupole strength is suffi-
cient to determine the sextupole strength which nulls the chromaticity to within the
tolerance, assuming a BSM with 10% resolution. Similarly, a scan range of £4.6% is
required to null the vertical chromaticity to within the tolerance. Any knob which
is not set to zero, therefore, will become 6% stronger at one extreme of a horizontal
chromaticity scan, and 6% weaker at the other; and similarly the vertical chromaticity
scan will change the strength of the knobs by +4.6% and -4.6%.

The limits on the sextupole mover knobs can be determined by applying a “scan
with impunity” tolerance: over the total range of the sextupole scan, changes in the
strengths of the mover knobs do not change the FP spot size by more than 2%, and
therefore the chromaticity scans can be considered unambiguous. With the expected
beam conditions, this means that the horizontal waist can shift by up to 2 mm, the
vertical waist can shift by up to 20 um, and 7} can shift by up to 113 um. Therefore,
2 mm represents 6% of the maximum setting of the horizontal waist knob, 20 um
represents 4.6% of the maximum setting of the vertical waist knob, etc. The full
ranges of the sextupole mover knobs are shown'in Table 5.1.

One other factor in the use of sextupole mover knobs is that the sextupole align-
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ment procedure in Chapter 4 has a finite resolution, shown in Figure 4.37. Therefore,
the residual incoherent misalignments of the sextupoles after beam-based alignmnent
will give rise to waist shifts, dispersion, etc. The expected RMS values of these aber-
rations from residuel misalignments are the last column of Table 5.1. For most of
the knobs, the RMS aberration from this source is small compared to the maximum
value of the knob which is allowed. This is not true for the vertical waist knob: the
RMS waist shift from misalignments is 50% larger than the “scan with impunity”
maximum value. This introduces ambiguity into the sextupole scans. Because of
this, the chromaticity is measured via a different procedure, described in Chapter 6.

During the initial tuning of the FP spot, the value of a given sextupole mover
knob which minimizes the spot size is frequently out of the allowed range shown in
column 2 of Table 5.1. In this case, the desired value of the mover knob is converted
to an equivalent magnet knob, which is then set to minimize the spot. Thus, while
the mover knobs are always used for FP scans, only small increments of the knobs

are applied.

5.2 Tuning on the Beam Size Monitors

Once a complete set of multiknobs is defined for each set of beam size monitors, the
global tuning procedure can begin. This tuning takes somewhat different forms on

each monitor, corresponding to their various designs.

5.2.1 Tuning on WS6A

In order to prevent breakage of the 4 um carbon wires which make up WS6A, it is
necessary to maintain beam sizes such that 0,0, > 3um? (see Section 2.5.2). This
leads to a conundrum: how can one guarantee that the beam sizes are a priori large
enough to measure with the wires without first making such a measurement?

In early FFTB runs, no systematic attempt was made to answer this question,
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Figure 5.1: Use of WS6A to tune aberrations. In this scan, the vertical
waist has been moved off the wire such that the minimum spot seen by
the wire is 1.2 pm, while the focused spot is close to 300 nm.

and as a result several wires were in fact broken. During this time it was noticed
that the strength of QS3 needed to optimize the beam size on any monitor never
exceeded 1 kilogauss. For later runs, a technique was developed which allows the
beam to be tuned on WS6A without breaking any wires, by first setting QS3 to 10
kilogauss to ensure that the vertical beam size is large enough to prevent breakage.
The aberrations (waist, dispersion, coupling) can then be tuned, so long as at least
one aberration remains large enough to maintain the beam size. For example, after
setting QS3 to 10 kilogauss, the value of QS3 is slowly reduced until the beam size
at WS6Ay reaches 2 pum. At this time the waist knob is moved until the beam size
reaches 4 um, and the coupling is scanned. Figure 5.1 shows such a scan. The
technique works because the location of the minimum of the parabola depends upon

the measurements in the wings of the parabola, and not the measurement of the
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minimuim.

What is the advantage of tuning the beam size on WS6A? Sections 5.2.2 and 5.2.3,
below, note among other things the difficulty of acquiring a signal on the more exotic
beam size monitors. The Laser-Compton monitor, in particular, has é. very small
dynamic range — the “Small-y” mode can measure reliably only between 45 and 200
nanometers. The process of obtaining a 200 nanometer spot becomes a potentially
painful exercise in bootstrapping, unless the total aberration content at the waist can
be reduced before looking for a signal at the BSM. The waist can be moved to WS6A,
at which point the dispersion and coupling can be minimized. The optics needed to
focus the waist at WS6A and either of the two beam size monitors are sufficiently
similar that this technique allows reduction of the two aforementioned aberrations,
and increases the likelihood of capturing a signal in the Laser-Compton or Gas-Ion
BSMs with only waist scans. While this technique has been developed too recently to
be fully exploited, future FFTB runs will certainly utilize it for increased efficiency.

One difficulty encountered in using the WS6A wires is that the wires are fixed in
position; WS6A tuning is always preceded by several wide scans used to find the wire
clusters. This is especially problematic in the vertical, where the corrector magnet
which scans the beam across the Laser-Compton BSM'’s interference pattern is used
to scan the beam across the wires. The total range of motion is quite small, and
frequently either the horizontal or vertical wires have not been located at all due to
installation alignment difficulties. This problem is being addressed by a redesign of
the wire scanner forks: the vertical yoke will retain 50 um wire spacing but will be
strung with 20 or 30 wires, while the horizontal yoke spacing will be increased to 100
pm {58)].

5.2.2 Laser-Compton Beam Size Monitor

In order to tune the electron beam on the Laser-Compton Beam Size Monitor, it is

first necessary to tune the monitor itself, most particularly the many laser pathways,
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Figure 5.2: Scan of a single laser pathway with the electron beam, for
transverse alignment of the laser pathway. Note that the size of the
resultant Gaussian is simply the RMS size of the laser.

the Nd:YAG laser itself, and the signal-to-noise performance of the system. Each of
these is discussed below.

Tuning the Laser Pathways:

In order to form the interference pattern shown in Figure 2.13, it is essential to
cross the two laser pathways at a point in space; and furthermore, to ensure that the
point is also a point along the path of the electron beam. This involves a transverse
alignment, and also a longitudinal alignment. Each laser pathway includes at least one
mirror which may be rotated in two degrees of freedom to accomplish this alignment.
The total system also includes mirrors used for the alignment of the incoming laser,
mirrors for feedback on the laser position, etc. These additional mirrors and their
functions are beyond the scope of this discussion.

Transverse alignment of the laser pathways is done explicitly with the electron
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Figure 5.3: Loss of transverse alignment of the Laser-Compton BSM
relative to the electron beam (oval) results in both reduced modula-
tion depth and reduced average intensity, since one laser pathway now
contributes relatively few photons in the path of the electron beam.

beam. The shutters inside the BSM are adjusted such that only one laser pathway is
available (thus no interference pattern is formed); the electron beam is scanned across
the laser path, and the photomultiplier tube downstream is read out. The resulting
pattern of the detected photon intensity vs. electron beam position is a Gaussian
distribution, with RMS width given by the width of the laser beam at the FP, and
offset given by the misalignment. The laser path is moved by the amount indicated
by the fit, and the scan is repeated until convergence. Figure 5.2 shows such a scan.
Note that the RMS width of the laser is only 25 um. Earlier operations with the
BSM used a larger laser “target”. The smaller laser size at the FP results in higher
photon intensities at the FP and lower intensities at the lenses in the BSM, but also
makes the alignment more critical.

All of the laser pathways may be aligned in turn. This alignment needs to be
repeated periodically during the course of a day. As Figure 5.3 shows, the diagnostic

signal that triggers transverse alignment is weakening of the average Compton signal
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Figure 5.4: Longitudinal alignment of the Laser-Compton BSM. A slit
is inserted into the path of the lasers, which prevents the laser from
passing through if it is more than 50 pm from the slit center (case
€b)), but permits it to pass through and strike a photodiode otherwise
1case {a)). This constrains all laser pathways to meet at a common z
ocation.

at the PMT.
Longitudinal alignment of the laser pathways is done initially without the electron

beam. A slit is introduced into the center of the FP chamber (Figure 5.4); the laser

longitudinal motors are stepped, and the laser intensity in a photodiode across the -

cavity from the mirror is read out. The slit width is 100 pm, and the photodiode
intensity is nearly constant as long as the laser beam is within the aperture; the
center of the flat-top distribution is determined manually. Each of the laser pathways
is aligned in turn in this fashion, and the slit is removed.

Note that the longitudinal alignment described above does not guarantee that the
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beams are longitudinally aligned at the location of the electron beam. A second pass
of longituainal alignment is required, in which one of the laser pathways is moved,
and the beam size measured as a function of the waist knob. The minimum spot
size from this procedure occurs when the longitudinal overlap of the laser pathways
is maximized.

One important factor in the longitudinal alignment is that poor longitudinal over-
lap does not reduce the average signal seen by the PMT; rather, the sinusoidal modu-
lation is reduced because the interference pattern is weak or missing. Therefore, such
a misalignment will result in systematically enlarged spot size measurements.

Tuning the Nd:YAG Laser:

The primary features of the laser oscillator itself which require tuning are the
power output, timing, and spatial and temporal coherence. These are primarily
tuned in the laser shack itself, with the exception of the timing of the iaser pulse
with respect to the electron beam. The relative timing is done by scanning the laser
trigger time and maximizing the PMT signal from the electron beam-laser ir‘lteraction.
While reduced laser power output results in poor signal strength, spatial and temporal
coherence of the laser result in systematic errors which are discussed in Section 5.2.2.

Tuning the Backgrounds:

The strong dependence of the Laser-Compton BSM upon the maximum and min-
imum heights of a sinusoid implies that backgrounds, which will tend to “fill in” the
minimum, are to be avoided at all costs. This is done by adjusting' the collimators
and the extraction orbit of the beam to minimize the signal seen on the PMT GADC
(Gated Analog-to-Digital Converter) when the laser is absent. In the May 1994 FFTB
run, & major improvement was made by designing a “low-noise” extraction optics, in
which vertically-focusing QP1 and QP2 quads were run at full strength to reduce the
size of the electron beam in the other extraction quads. In practice, i‘t; is possible to
reduce the background to as few as 20 counts, although 35 is more common. The

average Compton signal seen during the September 1994 FFTB run, with all systems
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Figure 5.5: Laser-Compton beam size measurements with (left) and
without (right) pulse-to-pulse background subtraction. Note that the
pattern on the right is systematically higher.

tuned up and a near-maximal electron population in each bunch, was in the vicinity
of 100 counts, with 200 counts possible and expected during later runs. Clearly, a
background of 35 is far too large without some correction scheme.

Currently the Laser-Compton BSM operates with a background subtraction algo-
rithm.” While the electron beam operates at 30 Hz, the laser only fires at 10 Hz. Each
pulse with laser present is preceded and followed by a pulse with laser absent. The
average of the preceding and following GADC values is subtracted from the with-laser
GADC value; 6 repetitions of this pattern (6 pulses with laser and 12 without) are av-
eraged to comprise one point in the BSM scan. Figure 5.5 shows one Laser-Compton
BSM scan, both with and without this background subtraction. The error-bars on
individual points are given by the RMS of the 6 pulse-patterns averaged to form the
data point, divided by v/6. The unsubtracted scan has a fitted size of 88 nm, while
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Figure 5.6: Laser-Compton beam size measurement performed in May
of 1994. The measured size is 777 nanometers.
the background-subtracted scan has a fitted size of 75 nm.
1t is worth noting that while the same PMT is used for both signal and background
detection, the two inputs reach the computer through different GADC’s. A systematic

difference between the two is possible.

Result of Laser-Compton BSM Tuning

Figure 5.6 shows a 77 nm beam spot measured in the KEK BSM in May of 1994
Figure 5.7 shows a histogram of the size measurements made over the course of several
hours during that run. The average measurement is 77 nm, with an RMS width of
7 nm. For the laser intensity available at the time, the 10% width is consistent with
the measurement uncertainty of the individual measurements.

The 77 nm beam size is known to be enlarged by 10% over the actual beam size



194

o
I

N
|
I

Measuremenis

\Y)
I
l

0 l l l l |
45 55 65 75 86 - 95 105

oy (nm)

6-94 7697A2

Figure 5.7: Histogram of measurements made during the last 3 hours

of the May, 1994 FFTB run. Average size measured was 77 nm, with

an RMS of 7 nm.
by a systematic error related to the longitudinal size of the laser pattern. The RMS
size of the laser beam at the FP was known to be 50-60 um from scans similar to
Figure 5.2. Because the electron beam has a §; of 100 pm, the laser interference
pattern is long enough in space to sample the beam at locations where the beam is
not in focus. These tend to systematically enlarge the measured size, and the 60 ym
laser measurement was found to correspond to a 10% enlargement. The beam size
in May of 1994 is therefore believed to have been reduced to 70 nm. This systematic
was another motivating factor in retuning the laser to a smaller cross-section at the
FP, since the current 25 um pattern causes an enlargement of less than 1%.

The 70 nm vertical size was reacquired in September of 1994; however, at no time

did any measurement show any sign that the beam had been reduced to a significantly
smaller size. At the time, the emittance was averaging approximately 2x10~'m - rad,

and the RMS energy spread was 5 x 10~%; the linear beam size /ef* expected for
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B; = 100um was 45 nanometers. Contributions from uncancelled aberrations have
not been estimated for these parameters; however, the below-design emittance and
energy spread both imply that the total blow-up will be less than the 10% predicted
for the design parameters; therefore, a beam size under 50 nanometers should have
been possible. The most likely explanations of this discrepancy are errors in the beam
optics and/or tuning, and systematic errors in‘the measurement process. Possible
contributions to each of these are discussed below. Note that, with the exception of
the background subtraction GADC issue mentioned above, all systematic errors lead

to an overestimate of the beam size.

Possible Tuning Errors in the Beamline

B; Tuning Errors:

The most straightforward tuning error imaginable is simply mis-setting the verti-
cal betatron function at the FP. When ¢, is as small as 2 X 10! m - rad, the vertical
beam size is too small to measure on WS3; and while WS2 can measure the WS3
divergence, this measurement requires several wires and is quite time-consuming, and
thus is not often done. It is thus not inconceivable that the linear beam size is set
incorrectly at the FP. Furthermore, larger values of §* correspond to smaller FP
angular divergences, which in turn correspond to smaller beam sizes in the FFTB
apertures. Therefore, background tuning will tend to “favor” larger 8* values, creat-
ing an operational tendency to raise 8*, or at least to not reduce it, when backgrounds
are intractable.

The FP divergence monitor, WS6B, is generally capable of yielding an aberration-
free measurement of the value of 8}, presuming that the vertical emittance measured

at WS1 and/or Sector 28 of the linac is to be trusted:
0, (WS6B) = o (FP)L(FP — WS6B) = \/%L(FP WS6B),  (5.10)
v

where Equation 5.10 assumes that the distance from the waist to the beam size

monitor is small compared to the distance from the monitor to WS6B (which in
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this case is 75 cm), and that the beam size at the monitor is small enough that
oy Ray3(FP — WS6B) is negligible.

The Laser-Compton BSM was well-tuned and measuring reproducible 70 nm spot
sizes during a period from September 14 through September 16, 1994, In this same
period the Sector 28 vertical emittance €y was oscillating about an average value
of 2 x 107® m-rad. Seven measurements of o,(WS6B) made during this period
give a weighted average of 362 urad, with an RMS of 32 urad. Assuming that the
projected emittance at the FFTB FP is given approximately by scaling the Sector
28 normalized emittance by the appropriate relativistic factor, the divergence of 362
prad corresponds to a By of 167 um. Such a large B; would result in a linear beam
size of 60 nm. The WS6B measurement is also affected by systematics, principally a
possible reduction of the measured beam size due to limited acceptance of the photon
extraction line downstream of the FFTB; the FFTB’s measured value of €y is typically
smaller than the Sector 28 number would indicate, by up to 15%. Thus the 167 pm B,
represents an upper bound, but one which is not likely to be wrong by more than
25%. .

Additional software tools have been added to the SLC control system to allow
faster and more efficient evaluation of the angular divergence measurements at WS2
and WS6B. These should reduce the risk of inadvertant mis-tuning of the betatron
function.

Geometric Sextupole Errors:

Section 2.4.1 mentions that the tolerances on the allowed sextupole content of
the final doublet quads are quite tight, while the tolerances on the remaining FFTB
quads are also strenuous. In bench measurements, the FFTB standard quads were
found to contain an RMS sextupole content approximately twice the allowed value
(see Appendix B). The doublet quads were not machined to meet this tolerance [14],
but were instead machined to meet the looser tolerance on octupole content; the

sextupole content was then measured and eliminated using a set of trim windings
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on each magnet. The measured sextupole contents of the doublet magnets are large
enough to increase the FP beam size from 46 nm to almost 70 nm when the emittances
and betatron functions are set as they were in September of 1994. Because the doublet
sextupole measurements were equivocal [59], the decision was made to include the
FT sextupoles and eliminate sextupole content globally by scanning the sextupole
aberration knobs, rather than using the doublet trim winding scheme.

The FT sextupole magnets made a measurable improvement in the beam size
measured at the Laser-Compton BSM in May of 1994; their effect was more equiv-
ocal in September of 1994. Shortly after this it was determined that the alignment
tolerances of the FT sextupole magnets are quite tight: while the SK2/SX2 magnets
have tolerances of 200 ym in x and in y (defined by the misalignments which will
cause 2% spot dilution due to waist or coupling at the full sextupole strength), the
SX1 horizontal and SK1 vertical tolerances are 25 um.

An experiment in January of 1995 (see Section 5.3.1) determined that the sex-
tupoles were misaligned, by up to 1 mm in some cases. While the gross errors were
then corrected by mechanical realignment, it is not practical to attempt to align
the sextupoles down to their tolerances because these magnets are not supported on
remotely-controlled movers. In addition, the sextupole content of the beamline is
expected to be quasi-static, and therefore the sextupoles will not need to be quickly
and efficiently scanned repeatedly. In future runs a “2.5-dimensional” scan will be
used: the current sextupole knob will be set to a value, and each of the waist and
coupling will be optimized; this will be repeated at each setting of the knob, and the
best value determined from this set of scans. Once set, the knob is unlikely to require

scanning again.

Possible Systematic Errors

Spatial and Temporal Coherence of the Laser:

The phase coherence of the Nd:YAG laser source in both position and time is
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Figure 5.8: Poor spatial coherence of the Nd:YAG laser results in non-

planar interference fringes, as shown. The electron beam can no longer

pass through a well-defined “null”, resulting in an enlarged beam size

measurement.
critical to constructing and maintaining stable interference patterns. Temporal inco-
herence would result in the interference pattern “jittering” in the path of the electron
beam. Spatial incoherence would result in fringes which are not planar: the incoming
laser beam is no longer a pure plane wave, but rather a set of plane waves with phase
differences across the area of the wavefront. A minor case of spatial incoherence pro-
duces fringes with “hooks” as shown in Figure 5.8. This effect fills in the minima in
the fringe pattern, again resulting in larger measured spot sizes.

The spatial and temporal coherence of the laser oscillator were measured in the
September 1994 FFTB run. The temporal coherence was found to be quite good,
while the spatial coherence was poor [60]. This situation was corrected, resulting
in instant reduction in the measured spot size. Laser coherence is now routinely
measured prior to FFTB operations.

Longitudinal Size of the Laser Spot:

As mentioned above, the longitudinal extent of the interference pattern can sys-
tematically enlarge the measured spot. This is because, with a 8} of 100 um, a large

interference pattern will produce Compton scattering at locations where the beam is
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Figure 5.9: Beam envelope and interference pattern when 8} < o, of
the laser. Scattering at points distant from the FP will systematically
enlarge the measured beam size.

larger than the focused size, as shown in Figure 5.9. Furthermore, the length of the
laser pulse (in time) is enormous compared to the length of the electron beam (in
time). Therefore the probability of scattering off the wings of the laser beam, where
the electron beam is large, is equal to the probability of scattering off the core of the
laser beam, where the electron beam is small.

During the May 1994 FFTB run, the size of the interference pattern was approxi-
mately 60 pm, resulting in a 10% increase in the measured size of the electron beam.
During the September 1994 run, the pattern size was reduced to 25 pm, which re-
duced this effect to a 1% correction. Note that there is a trade-off between a large
laser spot (which produces a systematic dilution of the measurement), and a small
laser spot (which requires more frequent alignment).

Longitudinal Overlap of Laser Pathways:

The effect of longitudinal misalignment of the laser pathways was mentioned previ-

ously in this section. Because the electron beam is still intercepting the same number
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of photons as in the fully-overlapped case, the average Compton signal is not reduced;
however, the nulling of the photon intensity at the troughs of the interference pattern
is weakened. A worst-case of this situation is one in which the laser pathways do not
overlap longitudinally at all at the location of the electron beam, resulting in a total
absence of the sinusoidal interference pattern. This loss of alignment results in an
increase in the measured beam size.

In practice, this source of systematic error has been quite significant, especially in
measurements made during September of 1994, when changes in ambient temperature
drove diurnal variations in the laser transport line from the source to the Laser-
Compton BSM housing in the tunnel. The reduced transverse size of the laser at the
FP served to exacerbate this problem. While it is possible to correct this problem
during tuning by frequently optimizing the longitudinal overlap, it is crucial that this
additional tuning item be executed faithfully.

Rotations of the BSM housing:

Two significant rotations of the housing of the Laser-Compton BSM are possible:
a roll, resulting in xy mixing; and a pitch, resulting in the electron beam path leaving
the plane of the fringes.

The case of a roll results in & straightforward enlargement of the measured beam
size by o} sin @, where 8 is the relative rotation angle. The horizontal beam size of 1.7
- 2.0 um, and a vertical size of 70 nm where 45 nm was the best possible, results in
an upper bound of 32 mrad for 8. Experience with the tight rotation tolerance of the
WS3 yoke (Section 3.3) suggests that installation tolerances which are a fraction of 32
mrad can be met; therefore, this seems like an unlikely candidate. A multiknob which
uses QSM2 and QS3 to roll the FP spot has been prepared, and will be used in future
runs to measure this effect. A more reasonable estimate of 3 mrad installation error
for roll results in a contribution of 5 nm added in quadrature, which is negligible.

Figure 5.10 illustrates the effect of pitching the beam relative to the plane of

the interference pattern. In this case, scanning a perfectly flat electron beam across
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Figure 5.10: When the electron beam trajectory does not lie in the plane
of the interference fringes, a beam which nominally passes through
the null of the pattern intersects the higher-intensity regions at the
longitudinal extremes of the laser. This results in higher scattering
rates at the “nulls” and lower rates at the “peaks”, and increases the
measured spot size.

the pattern will no longer produce a full-modulation Compton signature, and the
measured beam size of such a beam will no longer be identically zero a$ a result. The

measured beam size in this case is related to the actual vertical size by:

2 — 2 2 2
Omeas = Oreal + ¢ Uz.laser1 (5'11)

where ¢ represents the relative angle between the beam trajectory and the plane of
the fringes. For gyeq = 40 nm and o0 jg5er = 25 pm, a pitch angle of 500 urad results
in a 5% correction to the beam size. Such a relative angle is not inconceivable.

Typically, the beam size seen by the BSM is measured as a function of FP angle
during the course of FFTB operations. No meaningful correlations have been seen
during these scans, indicating that the beam and the fringes were probably coplanar
at the level of 500 yrad.

Beam Jitter and Magnet Vibration

Pulse-to-pulse jitter in the incoming beam will result in consecutive pulses not

passing through the interference pattern at the same location. This in turn will
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result in a variation of the signal at the PMT. While jitter at the midpoint between a
peak and a trough of the interference pattern will average out to the jitter-free signal
level, jitter at the peak will reduce the measured peak intensity (which is obtained
by averaging 6 pulses), and will increase the measured trough intensity by a similar
amount. This will increase the beam size at the FP. The increase in the beam size
can be determined by adding the pulse-to-pulse jitter amplitude in quadrature with
the actual spot size.

K. Oide has pointed out [61] that while the FP spot size averages over jitter in
this fashion, the incoming emittance is also measured over a large number of pulses;
since the measured size on a wire scanner is increased by jitter in a mathematically-
identical fashion to the Laser-Compton BSM, the emittance measurement should
already include the effect of the beam jitter. While the wire scanner software is
capable of eliminating incoming jitter pulse-by-pulse, the software is not sufficiently
sophisticated to do so correctly during a Quad Emit scan, when the optics through
the FFTB are changing due to quad scans. At this time it is impossible to eliminate
jitter from the Laser- Compton BSM’s measurement, as there are no BPMs with
sufficient resolution at the correct phase. Therefore the emittance measurements
made at WS1 should also be configured to leave residual jitter in the measurement
for a more accurate comparison.

While the incoming beam jitter contributes to both the WS1 measured emittance
and the BSM measured spot size, only the BSM sees the effects of jitter introduced by
vibrations of the FFTB magnets. Therefore, any jitter coming from the FFTB’s own
vibrational properties will cause a spot size increase which is not consistent with the
. WS1 emittance value. The Laser-Compton BSM is attached securely to the doublet
table, in the expectation that the monitor and the doublet quads will oscillate coher-
ently and the effects of vibration will cancel out. While the expectation is certainly
correct at the level of microns, the nanometer level is less certain. Measurements of

the vibrational properties of the doublet/table/BSM system are ongoing; in addition,
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a high-resolution RF BPM has been installed in the Laser-Compton BSM housing, in
an effort to directly measure the relative vibration between the incoming beam and
the BSM.

5.2.3 Gas-Ion Beam Size Monitor

In order to measure the beam size via the Gas-Ion Beam Size Monitor, several aspects
of the monitor must be properly tuned first. These aspects are: the microchannel
plate (MCP) high voltage; the injected gas pressure; the longitudinal slit which defines
the device’s longitudinal acceptance; and the beam-induced backgrounds.

MCP High Voltage:

The relative sensitivity of the MCP ion detectors is a nonlinear function of the
applied voltage. Therefore, increasing the voltage increases the percentage of ions
detected, which in turn improves the statistical precision of all measurements. How-
ever, the MCPs also detect particulate backgrounds which are created by the beam;
the signals from such particles scale identically to the ion signals. As the high volt-
age increases, these backgrounds become amplified, and the danger that a transient
“spike” in the backgrounds can damage the MCP amplifiers also increases.

In general practice, the tuning of the backgrounds (see below) and the t;.ming of the
high voltages is performed as a cycle: the voltages are increased until the backgrounds
induce a certain number of counts in the MCPs; at that time the backgrounds are
reduced until the number of background events is too small to accurately measure,
and the high voltage is then increased again until the background counts reach the
maximum tolerance. Once the high voltage is set above 1900 volts, measurements
can generally be performed.

Injected Gas Pressure:

The appropriate quantity of gas to be injected for each pulse of beam is & function
of the beam size, particularly the vertical size. A relatively high pressure of gas

increases the number of ions, and therefore the counting rate improves. For measuring
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the size of flat beams, however, the relative ion counting rates around the azimuth
of the device must be measured with minimal systematic skewing between horizontal
and vertical MCPs. During flat beam measurements, it was observed that the beam
size was dependent upon the pressure of injected gas, with lower pressures reducing
the measured vertical beam size.

The pressure-dependent beam size phenomenon was explained by ion“pile-up:”
the number of ions incident upon the horizontally-mounted MCPs exceeds their max-
imum counting rate, and therefore the number of ions in these MCPs is reduced,
while no such reduction occurs in other MCPs which have fewer ions incident upon
them. This reduces the measured ratio between the number of horizontally-kicked
ions and the number of vertically-kicked ions, resulting in a larger measured beam
size. Note that reducing the gas pressure reduces the number of counts on each elec-
tron beam crossing, which increases the number of electron beam pulses needed to
make 8 measurement with the desired (10%) precision.

Longitudinal Acceptance:

The ionization and acceleration effects measured by the Gas-Ion BSM occur at
all points at which the electron beam and injected gas interact; in particular, the
beam jonizes and accelerates helium atoms both at the focus and at short distances
away from the focus. The ions from the focal point, where the beam size is at its
smallest, are therefore counted along with ions produced where the beam has diverged
and is no longer as small. These latter ions tend to dilute the measurement of the
small spot. This problem is exactly analogous with the difficulty encountered in the
Laser-Compton BSM when the laser longitudinal size is large compared to the vertical
betatron function (see previous Section).

In the Gas-Ion BSM, the problem is resolved by placing a narrow slit between
the beam-gas interaction point and the MCPs. The slit aperture can be remotely
enlarged or contracted, in particular it can be reduced down to a total size of 200

pm. The vertical betatron function is on the order of 100 um. For the very smallest
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beams, therefore, some residual systematic dilution can be expected, due to the large
acceptance of the slit.

Early tests revealed an installation defect with the longitudinal slit: the slit was
installed with an angle relative to the beam trajectory. This resulted in unequal
longitudinal acceptance on the North and South sides of the BSM. In particular, at a
setting of 200 um, the ions on one side of the device were almost completely excluded.
This defect was corrected mechanically, and tested by measuring the intensity of a
fluorescent light mounted inside the BSM as & function of azimuth angle, for slit
apertures down to the minimum.

Backgrounds:

Because the Gas-Ion BSM does not require detectors which are, essentially, di-
rectly in the path of the electron beam, background tuning for this device is less
difficult than for the Laser-Compton BSM and WS6A. The large scattering-angle re-
quired for a beam particle to enter the MCPs directly generally indicates that only
electrons and secondaries far from the beam core will be relevant, and backgrounds
incurred in the extraction line can be ignored. In addition, the upstream face of the
BSM is shielded locally with approximately 1 inch of lead. Nonetheless, the back-
ground counting rates of the Gas-Ion BSM (rates measured with no gas injecfion) are
like other backgrounds around the FFTB in that a “happy medium” of collimator
settings is required: far enough in to eliminate long beam tails while not so far into
the beam pipe that the core begins to scrape on the collimators and repopulate the

tails,

Result of Gas-Ton BSM tuning

Figure 5.11 shows the azimuthal distribution of ions obtained during a beam size
measurement made in the September 1994 FFTB experiments. Coupled with the
time of flight measurement (not shown), the estimated beam size is 1.6 um in the

horizontal and 80 nm in the vertical. The estimated total error (systematic and
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Figure 5.11: Azimuthal distribution of detected ions at Gas-Ion BSM.

The amplitude of the “twin-peak” anisotropy coupled with the time-

of-flight measurement (not shown) yield a beam size of 1.6 ym by 80

nm.
statistical) on the measurement is 0.1 pm (x) and 25 nm (y). The error on the
horizontal beam size is dominated by statistical error, while the error in the vertical
is dominated by uncertainties in the correction for ion “pile-up.” In future runs, the
gas pressure will be reduced to relieve this source of systematic error.

Note that the measured beam size above is larger than the best vertical beam size

measured at the Laser-Compton BSM, by about 10%. However, in order to move the
vertical waist downstream by 52 centimeters, it proved necessary to reduce the overall

demagnification of the Final Transformer by that same factor, such that the expected
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value of 3; is now 120 um. When this fact is considered, the beam size measured
by the Gas-Ion BSM is completely consistent with that measured with the Laser-
Compton BSM. While this improves confidence that the various systematic errors of
the two devices are under control and not arbitrarily enlarging the measured beam
size, it also strengthens the case for a beam-optics explanation of the unexpectedly
large beam size.

Two advantages of the Gas-Ion BSM are worth mentioning here. The first is
that the device can measure a relatively large beam size (up to 40 pm has been
achieved) with fairly simple adjustment of its parameters. In particuler, the time
window of the acquisition system is stepped until ions appear: while a large beam
will produce only very slow ions, these can nonetheless be detected by forcing the
acquisition electronics to delay measurement. The second advantage is that the Gas-
Ion BSM has full azimuthal detection of the azimuthal ions, and therefore is able to
unambiguously measure the roll angle of a focused beam. In particular, the azimuthal
angles of the centers of the “horizontal” peaks in Figure 5.11 determine such a roll
angle. On one measurement performed in September of 1994, a roll angle in excess of
4° was seen [62). Another measurement, made in March of 1995, found that the roll
angle was varied when the vertical dispersion was scanned, and that the roll angle
was zero when the minor axis of the beam ellipse was minimized. The conclusion
drawn at the time was that the horizontal dispersion was not optimized, and that
introducing vertical dispersion caused a spurious horizontal-vertical correlation. This
is assumed to be the culprit in the September 1994 measurement as well.

Since the beamline tuning errors do not differ between the two BSMs, it is more
fruitful to consider at this time the possible systematic errors in the Gas-Ion BSM

measurement.

Possible Systematic Errors

Acceptance Anisotropy
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Figure 5.12: Gas-Ion BSM measured time-of-flight versus vertical waist
position. In the linear regions of the curve the o > o and thus the
"TOF measures primarily oy; in the flat section o3 > oy, and the constant
value of o; dominates the TOF measurement.

The possible effects of an anisotropy in the acceptance of ions was discussed pre-
viously in this section. The principal effect is to reduce the number of horizontally-
accelerated ions relative to the number of vertically-accelerated ones, increasing the
measured spot size. This effect was measured and corrected down to a few percent
prior to the September 1994 FFTB run.

Unequal Detector Responses

Unequal calibrations of the MCP and amplifier gains around the azimuth of the
BSM would result in distortions in the azimuthal distribution of the ions, and could
either increase or decrease the measured beam size. In order to eliminate this source of

error, a radioactive source (specifically, Americium) was used to calibrate the system:
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a source placed in the center should generate equal numbers of counts in all MCP
readouts. (An exception is the horizontal MCP units: in these, the width of the
individual readout strips is reduced by half, and the number doubled, to improve
resolution of the beam roll angle [63]. In this case, the number of counts should be
reduced by exactly 50%.) An additional calibration was made by setting a round
beam in the center of the BSM. Because the time of flight corresponds to the size of
the beam’s major axis, a vertical waist scan against the time of flight will produce
a constant time of flight when o, < 0,, and the time of flight will increase linearly
when oy > 0. At the turnover between constant TOF and linearly-increasing TOF,
the beam sizes in x and y are equal. This situation is shown in Figure 5.12.

Bunch Length and Intensity

Because the Gas-Ion BSM measurement couples to the beam size through the
electric field of the bunch, knowledge of the intensity and bunch length are essential
in correctly measuring the absolute beam size. A sufficiently low charge density will
eliminate the ion trapping which produces the two-peak anisotropy in Figure 5.11,
and will increase the time of flight as well, resulting in increases in both measured
numbers relative to the actual beam size.

The bunch intensity is measured by a series of toroids in the linac, with an expected
accuracy of 2% at FFTB currents. The bunch length is measured by activating
the SLC main bend, 50B1, bending the beam into the SLC arcs, and reflecting the
resultant synchrotron light into a streak camera. Such a measurement cannot be made
during FFTB running; it is necessary to tune up FFTB beam conditions, make the
bunch length measurement, and assume that the conditions do not change overmuch
during the FFTB run. Such a measurement was made in March of 1995, and showed
an RMS bunch length of 600 pm, with precision of approximately 15%. It is therefore
expected that charge-density effects could result in as much as 1% systematic error
in the horizontal measurement.

Non-Gaussian Beams
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Direction of travel
Figure 5.13: Head-tail effect in Gas-Ion BSM. The positive ions pro-

duced by the head and core of the beam are attracted to the negative
charge in the offset tail; this results in a change in the azimuthal dis-
tribution of ions at the MCPs.

By far the most significant measurement difficulty observed with the Gas-Ion
BSM is non-Gaussian distributions in the beam. In particular, a head-tail effect of
the type shown in Figure 5.13, in which the tail has some transverse deflection relative
to the head, can produce a serious error in measurement. This is because the tail
tends to attract ions which form when the head passes through the injected helium. A
vertically-deflected tail will therefore pull all the ions in the vertical direction, causing
the horizontal peaks of Figure 5.11 to appear with a separation different from 180°;
while a horizontal tail will enhance one of the peaks and reduce the other. Simulation
studies show that the sum of the two peak amplitudes is also reduced; therefore, such
tails introduce an increase in the measured spot size which cannot easily be corrected
to yield the correct value [64].

In actual operation, it is often possible to correct the head-tail effect by steering
the beam in the linac. Offsetting the electron beam in the disc-loaded wave guide
can produce a head-tail effect which cancels the effect seen at the BSM. Another
tuning technique which has some effect in this case is changing the relative phase
of the bunch and the linac RF, the “phase-ramp”. Changing the setting of “phase-
ramp” works to introduce a head-tail energy correlation; this can cause the tail to be
overbent and/or over-focused relative to the head, which can then have the effect of
straightening out the bunch (BNS damping works in a similar fashion). Neither of

these techniques is guaranteed to work, however. In particular, the stability of the
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linac is*a key to their success or failure, and the probability of success for tuning such
head-tail effects is known to be higher during the night than during the day (due,

presumably, to thermal changes in the linac itself).

5.3 Other FP Tuning Issues

In addition to the phenomena described in the preceding sections, a handful of other
issues relating to global spot-size tuning have been observed and/or measured. These
include the alignment of the FT sextupole magnets, and the doublet settingé required
to set the waist at each of the BSMs.

5.3.1 FT Sextupole Alignment

The sextupoles in the FT are only 3% as strong as the CCS sextupoles, and do
not have magnet movers. Therefore, the technique described in Chapter 4 for CCS
sextupole alignment is not applicable. Instead, a variation of the SLC technique [53]
is used, in which the sextupole strength is changed and the movement of the waists
and change in coupling at the FP are measured by scanning the appropriate knob.
In this case, each of the sextupoles is powered independently, which is an advantage
over the SLC FF technique.

The sextupole alignments were measured during January of 1995, using the WSGA
wires. In order to perform the measurement, it was therefore necessary to maintain
a large amount of x'y coupling in order to prevent wire breakage. When the x’y cou-
pling knob was scanned, a step size was selected which would reduce the likelihood
of breaking a wire. In any event, no wire was broken. The waist and coupling mea-
surements were performed at 5 values of the sextupole strength. In order to estimate
the amount of natural drift of the waists and coupling, the waists and coupling were
scanned before the sextupole was first stepped, and then again after it was set back

to zero strength. The RMS drift of each knob, over the four hours of the experiment,
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Figure 5.14: Optimal value of the x’y coupling knob versus SX2
strength. The linear correlation indicates a vertical misalignment of
the sextupole, of approximately 1 mm.

was added in quadrature to the statistical uncertainty of the optimal knob setting.
Knob scans were performed using the sextupole mover knobs.

Both the horizontal and vertical waist scans coupled to horizontal misalignment of
the normal sextupoles and vertical misalignment of the skew sextupoles (i.e., normal
quadrupole aberration). While the two measurements agreed within their errors, the
vertical measurement was generally of too low a precision to use. Misalignments were
therefore determined by horizontel waist measurements using the horizontal wire, and
coupling measurements using the vertical wire.

Figure 5.14 shows the optimal knob setting versus sextupole strength for the best

correlation observed in this procedure, specifically SX2 strength versus coupling. The
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slope of the line indicates a vertical misalignment of over 1 mm, with a statistical
error of approximately 50 pym. Several misalignments between 500 ym and 1 mm
were observed, and statistical errors ranged from 50 to 150 um. The misalignments
over 500 um were corrected mechanically. It is, however, expected that the operation
of beam-based alignment will cause systematic shifts in the beamline larger than
the alignment tolerances of the small sextupoles (tolerances are as low as 25 um).
Therefore, the multi-dimensional scan described in Section 5.2.2 will be used in the

future.

5.3.2 Reproducibility of Final Doublet Optics

The excitation of the final doublet magnets is the most crucial factor in positioning
the horizontal and vertical waists. It has been our unfortunate experience that the
exact excitations which provide the desired positionings do not reproduce at all well.
The design value for QC1’s integrated gradient for Laser-Compton BSM operation
is 1,848 kilogauss; during FFTB runs, the actual value used has varied from 1,700
to 1,950 kilogauss. This range of values corresponds to over 10 cm of waist motion
(as the doublet waist knob uses approximately 20 kG to move the waist 1 cm). Such
large shifts in the required doublet strength cannot be explained by mismatch of the
incoming beam, or by CCS sextupole positioning. At this time, the only explanation
for the strange variability of the doublet is that these magnets are extremely sensitive
to hysteresis effects; because the precise history of scans and optics changes is not
the same from run to run, the doublet value needed changes from run to run. This
is a problem which causes some annoyance; however, simulation studies reveal that
scale-factor errors in the doublet quads cause principally waist shifts, which can be
corrected easily. It is worth noting, however, that magnets with such sensitivity to
excitation history may also experience higher multipole aberrations due to differential

sensitivities in the different pole-pieces.
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Chapter 6

System Performance and

Chromatic Considerations

One of the crucial design issues for a linear collider final focus is its tunability. Specif-
ically, the final focus system must converge upon an optics suitable for delivering lu-
minosity in a length of time which is small compared to the length of the luminosity
run, and also small compared to the length of time needed for the various drifts in
the system (magnet strength and placement, etc.) to drive the system away from
its high-luminosity optics. If either of these conditions are not met, the collider in
question will spend most of its operational lifetime struggling to achieve luminosity
and almost none will be delivered to the experiment. This is true for any collider;
the extremely tight tolerances on emittance and aberrations in a linear collider, and
the absence of equilibrium states which are present in storage rings, imply that the
linear collider will have a more complex tuning sequence which must be repeated, in
part or in full, more often. Therefore, the tunability requirements on linear collider
subsystems are significantly more demanding than those on a storage ring.

Another significant design issue for a linear collider final focus is the overall chro-
matic behavior of the system. As shown in Chapter 2, the leading aberration which

works to prevent arbitrarily small beam sizes is the chromaticity, and the correc-
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tion of this aberration essentially drives the entire design process for such systems.
Chromatic aberrations are of greater concern than geometric aberrations for several
reasons. First, final-focus correction of chromatic aberrations requires placement of
high-order correction magnets in the dispersive regions of the system, and this is a
much more difficult endeavor than correction of geometric aberrations with magnets
in non-dispersive regions. Second, the longitudinal emittance of the beam emerging
from the linac is generally quite difficult to reduce: while all linear collider designs
call for transverse emittances which are one or two orders of magnitude smaller than
those in the SLC, the IP energy spread is expected to be larger by a factor of two
than for the existing SLC. Finally, the chromatic properties of a final focus system
are also connected to the luminosity delivered when the energy centroid is marginally
off the expected. When one considers the thousands of klystrons expected to provide
the energy in most linear collider designs, the need for good performance if & few fail
to fire, or the beam is fractionally off in timing, becomes clear.

In the case of the FF'TB, measurement of the chromatic properties serves an addi-
tional purpose. Chapter 5 showed that the minimum spot size achieved was not the
expected spot size. One possible reason for this failure is improper tuning of chro-
matic aberrations, or presence of unexpected chromatic aberrations. Measurement of
the chromatic properties of the FETB would shed some light on this possibility.

In this chapter, therefore, both the overall tunability and the chromatic properties
of the FFTB are considered as indicators of the overall merit of the FFTB design

approach.

6.1 Tunability and Convergence Speed

The Final Focus Test Beam has never run for a continual period in excess of 19 days.
It is therefore imperative that the total tune-up time from the “cold iron” state to

small-spot running be as short as possible. In particular, the days which precede each
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run must be maximally utilized for pre-beam checks, and the early run-time must be
as thoroughly packed with principal and “parasitic® programs as possible.

The run sequence for pre-operation and the first four days of the September, 1994
run is summarized below. This was the longest FETB run.

e Verify operational status of all hardware (movers, power supplies, rack electron-
ics, lasers, gas injectors, computers, etc.) to the extent possible without beam
(3-7 days). Select/generate configurations for initial operation.

¢ Establish beam to main dump in low-divergence optics. Use ST62 to establish
coarse energy match, steer to dump, establish semi-fine energy match; beam
checko)ut; of BPMs, safety devices; establish launch and energy feedback (4
Hours).

¢ Verify wire scanner functionality, tune linac emittances (4 hours).
¢ Measure incoming beam matrix (14 hours).
o Local Diagnostics (23 hours).

e Match incoming beam and verify on Beta Exchanger wire scanners; tune back-
grounds for Laser-Compton BSM (17 hours).

Tune horizontal beam size on Laser-Compton BSM (2 hours).

Tune vertical beam size on Laser-Compton BSM (8.5 hours).

Commission Gas-Ion BSM and tune beam sizes (16 hours).

The list of activities above comprises approximately 4 days of beam time, at the
end of which global tuning has been performed on each of the BSMs. In addition,
mainy of the activities listed above would be further optimized as the procedures
were debugged and the FFTB optics more fully understood in an operational sense.
Measuring the incoming beam, for example, was performed on 3 occasions during the
September 1994 experiments. The first time, shown above, required 14 hours; the
second required 5 hours; the third required 1.5 hours. Matching the incoming beam
required 17 hours when first attepmted, and later in the run was accomplished in
2 hours. In addition, many activities are not repeated during the FFTB run. For
example, beam based alignment and lattice diagnostics are performed only at the
beginning of the FFTB run. Experience with recovering small spots after various

outtages (described below) indicates that this is sufficient.
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An additional test of the tunability of the FFTB is the recovery speed from other
programs in the FFTB area, or from long outtages of the accelerator complex due
to other systems. For example, during the 13th and 14th of September, the FFTB
was used to perform other experiments and also entered for adjustment of the Laser-
Compton BSM. Recovery from tunnel access to tuned horizontal and vertical spot
sizes at the Laser-Compton BSM on this occasion required a total of 16 hours.

It must be noted that the initial tune-up of the FFTB is performed with an energy
spread 5% below § x 1074, as measured by the ESM in the extraction line. This is an
aid in tuning the FFTB which is not likely to be available to future linear colliders.
However, the short startup period of 4 days, coupled with the outtage recovery time
of 16 hours, indicates that the FFTB can be tuned and retuned in adequately short

periods of time.

6.2 Chromatic Studies

In the FFTB, the only chromatic aberrations which may be tuned directly are disper-
sion and chromaticity in each plane, and horizontal second-order dispersion. These
are tuned by steering the beam at the final doublet to introduce dispersion, changing
the sextupole strengths to change the chromaticity of the beamline, or moving the
CCS sextupoles to introduce first- or second-order dispersion. The first-order disper-
sion corrections are routinely applied during FP global tuning, while second- order
dispersion has not been tuned.

Because the sextupole alignment tolerances for scanning the sextupole strength are
tighter than the procedure in Chapter 4 can achieve, scans of the sextupole strengths
are not generally performed. Instead, two techniques for more globally measuring
the chromatic properties of the FFTB are utilized. The first is a monochromatic
technique, in which the energy centroid is moved; the second requires increasing the

energy spread of the incoming beam and retuning the FP spot. Each technique is
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Figure 6.1: Design curve for waist shift with changing centroid energy,
for a monochromatic beam with properly-set sextupoles.

described below.

6.2.1 Energy Centroid Scans [64]

Figure 6.1 shows the expected waist position as a function of energy centroid offset
for a nearly-monochromatic beam. The waist clearly shifts by an appreciable amount
over a small range of energy change: at -1% the vertical waist shift is over 200 um,
twice the betatron function in that plane. It should therefore be possible to measure
the vertical waist shift as a function of the energy offset and verify the predicted
behavior of Figure 6.1.

Figure 6.2 shows the results of the first such scan in September 1994. The mea-

sured data, given by the squares, do not agree with the design curve. A previous
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Figure 6.2: Measured waist position as a function of beam centroid en-
ergy (boxes). The solid curve is the design prediction; dashed line shows
the prediction when the energy centroid error of +0.73% is included.

measurement of the beam energy via the lattice-diagnostics techniqﬁe described in
Chapter 4 had indicated an energy error of +0.73%, which had not yet been cor-
rected. Including the energy offset, but making the assumption that the waist had
been adjusted to the FP via the final doublet at the higher energy, yielded the dashed
curve. The agreement between the dashed curve and the data was taken as verifica-
tion of the lattice measurement of energy matching, and the energy was subsequently
lowered by 300 MeV.

Once the new energy centroid had been tuned, a second set of data was taken by
moving the energy centroid and measuring the waist shift. This data is indicated by
crosses in Figure 6.3, along with the first set of data. While the crosses fall closer to

the design curve, some discrepancy remains. At this time, it was noted that the SD1
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Figure 6.3: Measured waist position as a function of beam centroid
after correcting the energy match between the beam and the magnets
(crosses); the dot-dash line represents a fit which includes a 3% error
in SD1 settings, as described in the text. Previous scan data and fit
are also shown for comparison.

sextupoles had been set to a value 3% above design due to an early misinterpretation
of the data from Figure 6.2. The dot-dash curve in Figure 6.3 represents the model
preciiction of such a situation, and this curve fits the data well. Based upon Figure
6.3, the chromatic properties of the FFTB, in the vertical plane, are felt to be well-
matched to the expected. Further studies of the chromatic waist shift, with energy

and sextupoles properly matched, are a priority for future runs.
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Figure 6.4: Changing the energy spread via phase-ramp. The bunch
riding the crest of the RF will have relatively little energy spread be-
cause the bunch length o, is small relative to the RF wavelength; a
bunch which is off crest by A@ will have a head-tail energy difference
due to different gradients at the head and tail.

6.2.2 Increased Energy Spectrum Measurements

A further test of the chromatic properties of the FFTB is to directly increase the
energy spread of the beam, and measure the FP spot size. This is a more direct test
of the properties as they affect the main parameter of interest, namely the beam size.

In order to t'une the energy spread, the extraction-line optics are first retuned to
provide a vertical waist at the ESM; once the beam size is measured with these optics,
the “low-noise” optics is restored, and the ESM beam size is measured again. This
allows the geometric and dispersive contributions to the “low-noise” beam size to be
deter-mined; this in turn allows the geometric beam size to be subtracted in quadrature
from the ESM measurements, and permits the energy spread to be estimated directly.
The “low-noise” optics produced a beam at the ESM with an RMS of 635 um, while
the waist optics yielded a beam with an RMS of 298 um. This indicates that the
narrow energy spread was 5 x 10~ (RMS), while the monochromatic contribution to
the beam size in the “low-noise” optics was 561 um.

Once the various contributions to the ESM beam size are determined, the energy



222

spread is increased by changing the relative timing between the linac RF and the beam
in the waveguides, via the “phase-ramp” knob. Figure 6.4 shows two bunches in the
linac. The bunch riding the crest of the RF will have a center-head and center-tail
energy difference due to the head and tail recieving slightly less acceleration than the
core; however, the RMS bunch length is 600 pm, while the wavelength of the SLAC
linac (v = 2856 MHz) is 10.5 cm. The energy difference over 600 pm is therefore
expected to be only cos(600xm/10.5cm), or 99.998%. The bunch which is off-crest,
however, will have a centroid energy which is proportional to cos A§. The centroid-
tail energy difference can be estimated, in the limit where AgpA8 >> o, as the energy
derivative with respect to longitudinal position multiplied by the bunch length:

Oz
ARF

Ap . :
+ 2r——sin Af. (6.1)

To increase the centroid-tail energy spread by the FFTB design value of 3 x 1073,
therefore, will require a phase-ramp change of 83.7 mrad, or 4.8°. Note that increasing
the energy-spread via phase-ramp is likely to produce transverse head-tail offsets; such
offsets increase the complexity of measuring the beam size via the Gas-Ion BSM, which
in turn means that this measurement is best made with the Laser-Compton BSM.

Figure 6.5 shows the measured beam spot at the ESM with phase-ramp tuned off
its optimum by 5°. The RMS bunch size is 2.26 mm, corresponding to an RMS energy
spread of 3.6 x 103 once the geometric contribution is subtracted in quadrature and
the 60 ¢cm vertical dispersion is divided out. Note that the resultant energy spread
is quite non-Gaussian; in fact, it is the twin-horned distribution which is expected to
be seen at future linear colliders 1.

Prior to enlarging the energy spread, the weighted average of 11 beam size mea-
surements was 82.34% 1.4 nm, with a x*/v of 1.27.. At this time, the Sector 28 vertical
emittance was measured to be v, = 2.2x 10~ meter-radians. After the enlargement,

beam size was tuned with the standard set of knobs (waist, dispersion, coupling).

1Sometimes known as the “Steining Distribution,” after R. Steining, or the “Bat-
man Distribution,” for obvious reasons.
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Figure 6.5: Vertical beam profile at the ESM after moving phase-ramp

off its optimal setting by 5°.
The weighted average of 7 beam size measurements performed after this .tuning was
96.0 £ 2.7 nm, with a x2/v of 1.16. The measured Sector 28 vertical emittance at
this time was ve, = 1.8 x 1075 meter-radians. Assuming that these measurements
are valid, we can estimate the maximum possible chromatic contribution to the beam
size at the lower energy spread. Consider an aberration which scales as ¢f, where n
is a positive integer:

Achrom = Ago}. (6.2)

The ratio of the aberration content at the lower energy spread to the content at the

higher energy spread is therefore just the ratio of the energy spreads raised to the

power n:
Asmall o.small n
chrom __ & (6 3)
big - big : ‘
chrom Os '

The worst case dilution of the beam size at the low energy spread occurs when the

RHS of Equation 6.3 is maximized for 3™ < g%, This occurs when n=1. Asa
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worst-case for the low-energy-spread case, we can therefore state that:

(50 = o3+ A3(o3eY, (6.4)

(o.zmall)2 0’3 + Ag (a.gmall)Q‘

Subtracting the two measured beam sizes in quadrature yields an expression for Ay:
(96.0nm)? — (82.3nm)? = 43 [(057)? — (og™e1)7]. (6.5)

Therefore, AZ{(3.6 x 107%)2 — (5 x 10~%)?] = 2400nm?; this gives a value of Aq of
1.37 x 10* nanometers. The chromatic beam size growth at the smaller energy spread
is therefore 6.9 nanometers added in quadrature with the geometric spot size, which
is negligible. Note that this is an upper bound on the chromatic contribution. The
chromatic contribution could be smaller if the measured contribution at large energy
spread scales with a higher power than the first power, especially since the bunch
charge appears to be concentrated in the wings of the distribution, as shown in Figure
6.5. It is possible that the Sector 28 emittance measurements are not valid at the
required level of precision, since such small emittances frequently result in beam sizes
which are comparable to the default step size of the wire scanner stepper motors. The
larger energy spread could also cause a head-tail effect in the beam which enlarged
the measured RMS; it is not inconceivable that such an effect would be too small to
affect the linac emittance measurement but large enough to dilute the Laser-Compton
beam size measurement. Finally, the size with the larger energy spread could be a
systematic effect of a non-Gaussian distribution affecting the Laser-Compton BSM
[66].

While the result above absolves the chromatic aberrations from the diluted beam
size at low energy spread, the total contribution at the large energy spread is 49
nanometers added in quadrature to the geometric spot size. This is much larger than
the largest expected uncorrected aberration of the FFTB beamline (See Chapter 2).
For the design vertical beam parameters (¢, = 3.0 x 10~ m - rad, 8} = 100 um), the
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linear monochromatic beam size is 55 nm; an aberration of 49 nm added in quadrature
would enlarge this to 74 nm.

Assuming for the moment that the beam size increase is due to chromatic aberra-
tion, what could possibly cause such an effect? In Chapter 4, evidence was presented
for a persistent vertical dispersion, up to several millimeters in amplitude, through
the CCSY and FT sections. Such a vertical dispersion would cause both high-order
chromatic aberrations, such as Tz, and high-order chromo- geometric aberrations,
such as Ty and T32. In simulation studies, a beam with a Gaussian energy distri-
bution with RMS of 5 x 10~* and the typical FFTB emittances can still be tuned
to 45 nanometers; however, a beam with a flat energy distribution with RMS of
3.6 x 1072 and the typical FFTB emittances can only be tuned to a minimum spot
size of 78 nanometers. The difference in quadrature between these two beam sizes is
65 nanometers, quite close to the observed 49 nanometer aberration. Such a result is
another strong argument for attempting to null the observed #, through the FFTB
during the next run; nonetheless, the overall chromatic properties of the FFTB must
be considered well under control, since the uncorrected chromaticity (as shown in
Figure 2.11) is enormous.

With chromatic aberrations of the FFTB eliminated as suspects in the dilution of
the beam size, it is necessary to turn to geometric aberrations, and systematic errors
in the beam size measurement processes. In an attempt to measure the collective
geometric aberrations, the beam size was measured as a function of the vertical emit-
tance. Vertical emittance was varied by introducing dispersion in the damping ring
extraction line, which filamented into additional emittance at the end of the linac;
emittance was measured by the Sector 28 multi-wire station. The measurement was
inconclusive: a line through the data points with no monitor offset and a line with
a 40 nanometer offset fit the data equally well [65]. Such measurements are difficult
because at the default scan ranges and step sizes for the Sector 28 wires change as a

function of emittance, as do the linac and FFTB collimation settings required to elim-
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inate backgrounds on the Laser-Compton BSM. A more careful set of measurements

of this type is planned for the future FFTB experiments.
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Chapter 7

Conclusions and

Recommendations for NLC

The Final Focus Test Beam has achieved and measured a vertical beam size of 70
nanometers at the Focal Point while operating with a vertical emittance of 2 x 10~
m-rad, and an RMS energy spread of 5 x 10~4. This beam size has been achieved
repeatedly, recovered after interrruptions in FFTB running of up to four months,
and measured by two extremely different beam size monitors. Measurements over
time have indicated that the spot size is stable over many hours, to th;a extent that
scans of the waists, dispersions, and coupling serve to restore the measured beam
size. A direct test of the chromaticity of the beamline indicates that the chromatic
correction is behaving as predicted; a global test of the chromatic aberrations indicates
a maximum chromatic contribution to the beam size of 49 nanometers at an energy
spread of 3.7 x 10~3, which is added in quadrature to the monochromatic beam size.

What is the significance of such a result for the Next Linear Collider design effort?
The optics and tolerances of the FFTB were mapped out in advance of construction
through an array of theoretical studies and simulations; these tolerances and other
requirements were engineered into the systems a priori, and factored into the lo-

cal and global tuning strategies; and the resultant system very quickly converged
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upon a final state near to its design goals. The indication is that the physics of large
demagnifications, and small 8* values, is understood at the level which permits calcu-
lation of optics and tolerances ~ we can be confident that we know enough to specify
many of the tolerances of NLC Final Focus systems. Furthermore, the FFTB has
demonstrated the feasibilty of a new generation of precision correction and diagnostic
elements which have immediate application in the NLC design process. Micron-
resolution BPMs, laser-compton and gas-ion beam size monitors, 3 DOF magnet
movers with submicron step size and placement accuracy, part-per-million high- cur-
rent powei' supplies — such devices are no longer conjectural or theoretical in nature.
Already BPMs with FFTB-level performance are being included in tuning simula-
tions of the NLC [67}, and several different variations of beam size measurement by
Compton scattering are expected to be used in such a collider. The experience of the
FFTB leads to the expectation that such devices can be made to work because they

already have.

7.1 Future Issues for the FFTB

The Final Focus Test Beam cannot be counted as a completed endeavor. Many areas
remain to be explored, or explained. The most obvious.of these is the fact that the
FFTB has never achieved the beam size anticipated when the vertical emittance is
considered. At the reduced vertical emittance and low energy spread quoted above,
beam sizes under 50 nanometers should have been achieved. Furthermore, spot size
dilution observed when the energy spread is increased is not consistent with the FFTB
design. These difficulties represent a modest increase in the FFTB beam size, but
would completely dominate the NLC colliding beam size. It is therefore imperative
that these phenomena be understood.

At the lower energy spread, Chapter 6 argues that the sum of all chromatic aber-

rations is far too small to account for the discrepancy between the expected beam
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size and the achieved. The remaining suspects are: geometric aberrations; wake-
fields; vibration-induced beam jitter; and unexplained measurement errors. Chapter
5 discussed the difficulties in using the Final Transformer geometric sextupoles to
eliminate manufacturing defects in the quadrupoles and imperfections in the CCS
sextupole system (strength imbalances and rolls). These difficulties have been un-
derstood, and will be addressed procedurally in future runs via a multi- dimensional
scan. In addition, a careful measurement of the focused beam size as a function of
incoming emittances will give more general information on the presence or absence of
higher-order aberrations. Using the beta match steering magnets to introduce posi-
tion and angle changes at the FP has also been suggested [68] as a means of probing
the aberrations of the FFTB. Wakefields seem an unlikely source of spot size dilution
in this case, because the bunch charge in the FFTB is small and the FFTB itself is
relatively free of tight vertical apertures. One probe of this possibility would be to
reduce the incoming intensity and measure the beam size again. This is a touchy
measurement, because so many other parameters typically couple to bunch charge
(extraction emittance from the demping ring, for example). Decoupling any beam
size change from the intensity alteration from other effects would be difficult, but in
principle such a measurement is possible. Finally, the arena of unmeasured measure-
ment systematics is one which is dominated by the imagination of the experimenters.
Such measurement errors which have already been considered are routinely measured
and found minimal. This remains an area of ongoing concern. One recommendation
which has been made is the inclusion of a 6° vertical measurement mode in future
versions of the Laser-Compton BSM. Such a mode would measure the vertical beam
size from 750 nm to 3.4 um. The advantage of such a mode is that beam sizes of
350 nm, which are routinely and easily achieved in the FFTB, would appear in such
a vertical mode as 100% modulation. Thus, measuring a 100-300 nm beam in a 6°
mode would ensure that no error in the laser or the mirror system was causing the

nulls in the interference pattern to fill in.
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While the chromatic aberrations appear to pose no problem at the lower energy
spread, understanding their source and determining a correction scheme are imper-
ative for the NLC, which will not have the option of operating in such a condition.
The vertical dispersion noted in Chapter 4 begs the question: is the vertical disper-
sion measured by varying the centroid energy related to the FP chromatic aberration
observed at large energy spread? Such an aberration could occur via the interaction
of vertical dispersion with the chromaticity of the quadrupoles and the sextupole field
of the sextupoles, resulting in additional second-order effects. The measured vertical
dispersion ray could result from rolled bend magnets or rolled quadrupoles. In either
case, the first-order effects (dispersion and coupling at the FP) can be corrected by
magnets in the FFTB, but no scheme for tuning the second-order “feed-down” effects
exists, save to eliminate the incoming dispersion directly. Should the dispersive ray
in Chapter 4 prove to be a result of rolled quadrupole magnets, it is also conceivable
that the coupling observed at W33 in Chapter 3 arises from the same source. The
possibility that all of these phenomena are generated by simple uncorrected rolls in
the bends and/or quads of the FFTB highlights the utility of maximal local correction
of beamline errors: much time has been spent understanding the rolled spot at WS3,
and any situation which invites untunable feed-down errors is to be discouraged.

In addition to the correction of aberrations already observed, the FFTB remains
the best possible test-bed for prototyping NLC Final Focus technology and algo-
rithms. As noted above, scanning the global aberration knobs is a standard means to
reduce the spot size, and this is periodically necessary to retain good beam conditions.
A significant improvement in the overall final focus system would be elimination of
this requirement. A major driving force in the slow dilution of the beam size is be-
lieved to be the CCS central quadrupoles, QN1 and QM2. Misalignment of these
magnets causes steering errors between the SF1 or SD1 sextupoles, resulting in waist,
dispersion, or coupling at the FP. The alignment tolerances for these elements is on

the order of 0.3 um [69]. Two approaches which address this difficulty are the use
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of feedback loops which use the BPM readings from quadrupole BPMs on either side
of each sextupole to correct for any such steering effect, and a stretched-wire system
which monitors the relative position of each magnet in the FFTB {70]. Tests of both
systems are in the works, and a feedback similar to the CCS feedback described above
has been proposed for NLC [67].

‘While the FFTB BPMs are capable of 1 um resolution at the design intensity,
measurement of far smaller variations in beam position is expected to be'a necessity
at’any collider with beam sizes in the nanometer range. The FFTB currently contains
a BPM which uses C-band (5712 MHz) trapped modes to measure beam position [71],
and this device has achieved an approximate resolution of 100 nm. Future runs will
include several such devices, with a goal of demonstrating a resolution in the vicinity
of 1 nanometer. Such high-resolution BPMs will allow pulse-to-pulse jitter correction
at the Laser-Compton BSM, and tests of a feedback which maintains collisions at the
nanometer level (in this case, the BPM functions as a “target,” substituting for the
other beam). In addition, the small beam sizes at FFTB, coupled with such BPMs,
will allow the contribution to beam jitter from magnet vibration to be measured
directly, and compared to theoretical predictions. This is vital, as a'well-developed
theory of ground-motion effects is essential to the NLC Final Focus. Ultimately,
a “feed-forward” based upon geophone measurements of magnet vibration may be

possible.

7.2 Recommendations for NLC

The experiences of the Final Focus Test Beam, both positive and negative, make
possible several specific recommendations for the design of the NLC Final Focus.
These recommendations are summarized below.

Clean living pays off: In general, the more vigorously any particular toler-

ance could be attacked, the less beam-time was required by it. Magnet strengths,
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for example, were determined and fixed very carefully: magnets were given indepen-
dent power supplies which regulate with significantly greater precision than required;
magnet hysteresis curves were carefully measured, and the standardization cycle in-
cluded in the control system; power supplies were equipped with dual readbacks to
reject common-mode failures of the transductor. Because of the effort invested in all
the systems which connect the magnet strength in the control system with the real
magnet strength, relatively little beam time has been lost to quad strength errors,
drifting power supplies, etc. On the other hand, planarizing the FFTB (ensuring that
magnets, movers, and BPMs all conform to the same x-y coordinate system) received
somewhat less attention, and this remains a possible problem with implications for
tuning and chromatic aberration; and FT sextupole alignment was not considered
a priority, and many hours of beam-time were used to determine that the magnets
could not be scanned with impunity.

More specifically, pre-beam tests to ensure the planarity of the final focus at the
sub-milliradian level are clearly in order for the NLC. Independent power supplies
for each maﬁnet, with independent controllers, are highly recommended. A recurring
problem in the SLC, and many other accelerators, is turn-to-turn magnet shorts,
which are invisible to constant-current power supplies. A system which monitors the
resistance of the magnets (via the power supply voltage) and flags any units which
are significantly different from some reference value, would reduce the incidence of
this problem.

Magnet Movers: The ability to align FFTB magnets remotely with high preci-
sion has been tremendously helpful. In addition, unexpected benefits of the system
have included the sextupole mover knobs, mover-based lattice diagnostics, and steer-
ing knobs whose absolute accuracy is coupled to the accuracy of quadrupole strengths
and mover LVDT readbacks. The final focus is likely to be the area of the NLC which
demands the greatest flexibility in tuning and diagnostics, and movers for every final

focus magnet will likely be required.
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Specific improvements to the beam-based alignment algorithm are discussed in
Chapter 4. A system which uses the more sophisticated cuts described in Chapter 4
would be useful if sufficient computer time were available. In addition, a system which
aligns the entire beamline to a common line is conceivable. Such a system might use a
more optimized algorithm for quadrupole alignment, and possibly a “soft constraint”
on amplitude of magnet motion [47]. Adaptation of the sextupole alignment algorithm
to the NLC appears feasible, especially since the beam jitter at the IP phase will be
quite small, and therefore a relatively simple jitter-correction algorithm will enhance
this procedure.

Coupling Correction and Beta Matching: Both the FFTB and SLC Final
Focus are constructed with beta-matching normal quadrupoles, skew quadrupoles,
and emittance measurement wires interleaved in one region. This arrangement is
vulnerable to many difficulties, including “dead zones” in the parameter space where
correction is not possible. Furthermore, both final focus systems have been con-
structed such that only two out of four coupling terms may be corrected. This leads
to difficulties interpreting beam size measurements and beam matching. For example,
the angular divergence measurement will be coupled by (z'y')*, leading to a rolled
beam on the divergence wire. This begs the question: is the roll angle equal to what
the emittance measurement predicts?

Because of these difficulties, the NLC Final Focus is envisioned to fully separate
coupling cancellation, emittance measurement, and beta matching [72): a set of four
skew quads, set in betatron phase to cancel all four coupling terms, are followed by
a set of beam size measurement devices which are phased to perform a full 4D beam
reconstruction; these are then followed by the normal quads which match the beam. In
this way the emittance wires can make a measurement of the residual, post-correction
coupling, eliminating the difficulty of measuring emittance when the projected vertical
emittance is dominated by coupling. Furthermore, the final focus beamline is then

uncoupled from the last correction skew quad to the IP, with the possible exception
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of a single QS3-style doublet skew quad, and can be easily understood and tuned.
All final focus wires should produce an unrolled image. Finally, the use of multi-wire
emittance eliminates the invasive quad emit measurements.

Some consideration of the beta matching quads is required to determine whether
the system is sufficiently flexible. The FFTB beta matching region includes one
quad with a reversible power supply (QAO), which has been essential in operating in
conditions other than the design (such as low-divergence). The use of such quads for
“Irwin Knobs” (see Chapter 3) should be anticipated. '

A beta matching program which is more fully optimized to the optics of the final
focus is conceivable. Specifically, such a program should use the fully- correlated error
matrix from beam measurement to predict the uncertainty in the beam parameters at
the tune-up points. Even more useful would be a system which preélicts uncertainty
in beam sizes and waist positions rather than in £ and a.

Beam Size Measurements: The inclusion of an IP image point in a final focus
system is a topic of considerable debate. In the FFTB, the wire scanners at the image
points (WS2 and WS3) have been used to verify the match of the incoming beam.
Because WS2 and WS3 are easier to use and less exotic than the BSMs, these gave
the fastest and most reliable information about changes in incoming beam conditions.
While inclusion of an image point is therefore recommended, it is further suggested
that an image point with an aspect ratio greater than 50:1 be avoided if possible, due
to the unreasonable constraints on beam size monitor installation thus engendered.

In practice, it is not always possible to design an aberration-free final focus system
which contains an image point upstream of the IP. Chapter 5 mentions the possibility
of a tune-up image point downstream of the IP. Such an arrangement has some
advantages: it relieves a constraint on the design of the body of the final focus,
places the image downstream of both sextupole families so that horizontal and vertical
chromaticities can be simultaneously cancelled at the image, and couples the beam

size at the image to all the magnets upstream of the IP. The main disadvantage is
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that the extraction line must also accept beamstrahlung photons, e*e™pairs from the
IP, and the disrupted outgoing beam; to add an IP image to the design is a potentially
serious complication. This is nonetheless an idea which deserves some consideration.

Because of the extreme power density of the NLC beam, it is unlikely that any 4
pm or 7 um wires can be used at all. More exotic devices such as the laser-Compton
BSM or a simpler laser-wire [73] will be necessary for the smaller beam sizes, while
divergence monitors can probably make do with larger and less vulnerable wires. A
laser-wire device is currently in development for SLC; in all likelihood, both types of
measurement devices will be well-understood by the time NLC is built. .

At the present time, no technology seems likely to permit direct single-beam mea-
surements of the NLC’s focused spot in the vertical. The presence of a particle physics
detector complicates the design of any such device in any case; while a beam size mon-
itor can be envisioned which allows tuning of the various knobs (via finding the center
of a parabola), only beam-beam scans seem usable for measuring and tuning the final
spot. The advisability of installing a tuning beam size monitor for “capture” tuning
depends upon the anticipated difficulty of measuring beam sizes via beam-beam de-
flection scans when both beams are large and poorly tuned. This situation makes the
desirability of IP image beam size monitors even greater for NLC than for FFTB.

Global Xnobs: The FFTB uses two sets of global knobs: a magnet set for
implementing relatively large changes, and a sextupole mover set for scanning and
implementing small changes. This is an approach which has worked well, and is
recommended for NLC. One difficulty is that NLC Final Focus designs have extremely
strong sextupoles and large Ry 34 matrix elements from the sextupole to the IP, such
that the necessary motions of the CCS sextupoles are sometimes as small as tens

of nanometers. One sensible workaround is to fashion the CCS sextupoles as a pair

of magnets: One large, powerful magnet which supplies almost all of the chromatic .

correction, and a set of trim sextupoles at the same locations, which are short and

have large apertures and supply perhaps 1% of the chromatic correction. Such an
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arrangement also allows the two main sextupoles in each CCS (x and y) to be powered
or controlled together even if they are poorly matched: if the desired strength of each
sextupole is K, then the sextupoles can be set to K +dK; and K, — dK, while the
trim sextupoles are set to —dK; and +dKj, respectively. Finally, this arrangement
decouples the chromatic correction from the sextupole mover knobs, by allowing the
main sextupoles in a pair to be scanned in strength (assuming they are sufficiently well
aligned). Such a scheme — using small sextupoles on movers for scanning ~ must be
well-integrated into the overall scheme of the final focus. Specifically, the time needed
for the movers to converge on a new position must be short, preferably comparable
to a single wire scan (a few tens of seconds).

Alternatively, a set of weak quadrupoles at the CCS sextupole locations can be
used for scanning. This would require two quads at each sextupole (normal and skew),
and introduce some concern about thermal effects and hysteresis of the magnets.

The inclusion of geometric sextupole correctors is recommended, in that the tol-
erances on magnet construction errors may be loosened significantly. Geometric oc-
tupoles seem unneccessary at this time.

Feedbacks: The FFTB operates with two principal feedback loops (in addition
to all the loops which operate in the injector, the damping ring, and the linac): launch
and energy. The launch feedback utilizes only 2 BPMs upstream of the FFTB, while
the energy loop utilizes 5 BPMs in the extraction line. In general a system with
more BPMs is advisable, in the event that one or more fail. The launch feedback,
for example, could use every BPM in the emittance section of the NLC Final Focus,
which would redundantly span the entirety of (x,x’) and (y,y’) space.

Placing critical feedbacks in the downstream end of the NLC Final Focus is not
recommended. For one thing, the post-collision beam in NLC will have an enormous
emittance due to disruption; this will weaken confidence in any sensitive electronic
systems (such as low-noise stripline BPM readout electronics), and also dilute the

correlation between post-collision and pre-collision beam conditions. Furthermore,
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the FF'TB energy feedback cannot operate when the tune-up stopper ST62 is inserted;
ideally, the energy feedback should be upstream of any major tune-up stopper or
single-beam dumper. Finally, the BPMs which have the largest dispersion (and the
largest coupling to the energy) should have the smallest coupling to geometric beam
jitter which can be arranged. An ideal location for the energy feedback sensors in
NLC is in the upstream half of the bend region which bends the beam from the
linac into the final focus, as shown in Figure 1.1. This is similar to the SLC energy
feedback, which uses BPMs in the upstream portion of the arcs [74)].

Extraction Line: One of the most difficult experiences in the FFTB has been
learning anything about the final doublet, or the magnets which immediately precede
it in the Final Transformer. It is essential to remember that the extraction line will
include all diagnostics which look at these critical magnets, and detectors for any IP
beam size monitors which are installed. It is therefore crucial that the extraction
line optics be arranged to allow such devices to do their job. Because the extraction
line must also accomodate the disrupted outgoing beam and the etepairs created at
collision, adequate design of the extraction line may be one of the most challenging
aspects of NLC.

Because the final doublet strength determines the location of the focused beam in
2, it is recommended that the doublet be tunable to some degree, rather than using

permanent magnets for the entire doublet.
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Appendix A

Machine and Beam Parameters in

a Telescopic System

The familiar machine and beam parameters of accelerator physics were derived to
describe the properties of closed, periodic storage rings and the beams which were
recirculating therein. These derivations do not apply directly to the Final Focus
Test Beam, nor to any other beam line constructed primarily of modules with pure-
telescopic behavior. Nonetheless, the familiar 8, «, etc., are used throughout the
FFTB design and operation. The purpose of this Appendix is to provide an under-
standing of how such parameters may be adapted to the unfamiliar environment of

telescopic, single-pass lattices.

A.1 Twiss Parameters: §,a,7,¢€

The most commonly-used parameters in accelerator physics (other than energy, lumi-
nosity, and cost) are the Twiss parameters: 8, ¢, v; and the emittance, e. In order to
fully understand the issues of these parameters, it is necessary to consider briefly the
single-particle dynamics of & beam transport line. The following derivation is heavily

influenced by several sources, most notably Wiedemann [75], Brown and Servranckx
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(5], and Carey [76].

A.1.1 Derivation of the Twiss Parameters

Let us consider for this derivation a beam transport system with no cross-plane cou-
pling and no dispersion. In such a transport line, we may write the equation of motion
for a charged particle as:

u©"(s) + K(s)u(s) = 0, (A1)

where u is taken to be a generalized position coordinate (x or y), prime designates
differentiation along the longitudinal axis of the beam line, and K(s) is the focusing
field strength at the location s, as defined in chapter 1. For a constant K(s), of
course, Eq. A.1 is a simple harmonic oscillator. Let us therefore assume a solution of

the form
u(s) = /W(s) cos(s(s) — ¥o), (A9

in which the oscillator’s amplitude # and phase 9 are functions of s, and W and ¢ are
constants of integration. We may test the validity of this solution by differentiating
twice and substituting back into Eq. A.1. For notational simplicity, the variables

u, B, and 9 are all understood to be functions of s.

o=V - vo) - B -], (a3

= \/——[ﬁ ﬂs/gz(ﬁ) cos('([) ¢'0) \/—- Sln('(,[) 1/)0)

—y/Bsin(e — Po)y" — \/Ecos('(/; — o) (@) ] (A.4)

When we substitute this expression back into Eq. A.1, and require that the solution
hold for all values of 7, we find that we get two conditions, one from the sine terms

and one from the cosine. From the sine terms, the relevant condition is:

VI [/By" + %’] =0, ' (A5)
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while the condition from the cosine terms is:
B8B" — 3(6
VI [—25 = ;2( y VB + K \/B] =o. (A.6)

Note that Equation A.5 can be used to derive a relationship between the amplitude

and phase angle in Eq. A.2. We can multiply through by \/‘_%-, obtaining:
BY" + Y =0, (A7)
and, recognizing that (8y') = By" 4 B4, we write
(B¥) =0. (A8)

We can therefore assert that fy’ is a constant. If we define this constant to be 1,

then
v= s%. (A.9)

The parameter #,when defined as in Equation A.9, is known as the phase advance
between the initial point and point s.

Equation A.6 can now be used to determine the evolution of 8 from one point
of the beamline to another. Defining the addtional Twiss parameters, o and 7 as
follows:

1., 14a?
=-3f, 7= 7 (A.10)

we can solve Eq. A.6:
o =K@ ~1. (A.11)

In addition, let us explicitly write ¢/ in this notation:
o =VW cos sin A.l2
W[ 7o = ¥0) = \/ﬁ (% — o)) (A12)

We may now solve for W using our epxressions for u (Eq. A.2) and v/ (Eq. A.12) to
find: ’
yu? 4 20uw’ + Bu? = W. (A.13)
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Flgure Al Elhpse defined by parameters 3, o, v, with area W, in the
uu’ plane.

The significance of Equation A.13 shall be discussed shortly. For the time being,
it is worthwhile to note that Equation A.13 is the functional form of an ellipse the
uy plane. The arrangement of this ellipse in the uw' plane is shown in Figure A.1.
Any particle at longitudinal location s in this beamline, whose motions are described
by a given set of parameters W, 3, c, will have position and angle relative to the
reference line of the system which satisfies Equation A.13. The parameters 8, , v are

collectively known as the Twiss parameters.
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A.1.2 Twiss Parameters and the R Matrix

Let us now perform two transformations to the particle trajectory determined by A.2
and A.12. First, let us eliminate the arbitrary phase angle 15 and instead write both
position and angle in terms of a component proportional to sint and a component

proportional to cos:

u = ay/fcosy + b\/,Esim/), (A.14)

- 1

U = a(——\/—% cosp — %simj}) +b(——\/§sin¢+\/—ﬁcoszb). (A.15)

Second, let us define an arbitrary starting point, s = 0, at which we define:
u0)y=wup, v(0)=up BO)=H, o0)=ap ¢(0)=0. (A.16)

Once this is done, we can define ¢ and b in terms of the initial position and angle of

the particle in question:

Uy ' QU
a=—, b=uy/B +—. A7
iy PRt g (A1)

We can now use A.17 to eliminate a and b in Equations A.14 and A.15. This gives us
u(s) and 4/(s) as a function of up and uj. Note that this is simply the definition of
the R matrix between the initial point and the point s. Thus we can write the 2 x 2
R matrix as a function of the Twiss parameters at the beginning of the line, the end

of the line, and the phase advance between the two:

\/:%(cos P+ opsing) VBBesiny
-"‘jﬁ; costp — Z;o siny \/-%T(cosd) — apsine)

Once this is done, we can invert this relationship, writing a matrix for Twiss param-

R = (A.18)

eters at the point s as a function of the Twiss parameters at the starting point and

the R matrix between the two:

B R}, —2Ry Ryo R}, Bo
a | =] —RuRa 1+2Rpp Ry —RypRy op |- (A.19)
Y R} —2Ry Ry R3, Yo
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A.1.3 Matched Twiss Parameters

Let us return to Equation A.18, which relates the uncoupled R matrix to the Twiss
parameters at the endpoints of the segment of interest and the phase advance from
one to another. Let us now consider the R matrix which represents a single turn
around a storage ring, from a selected point S to itself, which we shall denote by M.
Does there exist a set of Twiss parameters which is transported by M back to itself?

We can rewrite Equation A.18 for such a special case:

M= cos i+ asinu Gsinp (A.20)
—ysing cosp —asiny .
where we have used p to indicate the phase advance due to one turn around the ring.

‘What is the significance of Equation A.20? For one thing, for the special case of the
Twiss parameters which are transported back to themselves, these Twiss parameters
are a function of the R matrix alone, and not of any other conditions. While the
derivation of the betatron function, etc., was done in complete generality, we see here
that there is a special relationship between this set of Twiss parameters and the R
matrix of the storage ring.

In addition, consider Equation A.13, in which the Twiss parameters define an
ellipse in the uu’ phase plane. We see that the ellipse whose Twiss parameters are
given by Equation A.20 is also transported into itself by a single turn around the
storage ring. This ellipse is called the machine ellipse at point S, and its significance
is that particles which lie on the machine ellipse at one time will remain on the ellipse
in subsequent turns. Note that the position of an individual particle in the phase
plane is not stationary; rather, a particle whose position and angle lie on the ellipse
at one time will, after one turn, have a position and angle which is a different point
on the same ellipse.

Now let us consider a large ensemble of particles which are all described by the
machine ellipse at S. On subsequent turns around the storage ring the particles will

exchange their positions on the phase plane with one another, but no particle will
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migrate to a point off the ellipse. Because the particles are not distinguishable from
one another, an observer measuring the phase space distribution of such particles
would note that the distribution at S remains the same after each turn. Such a
stationary distribution is called the matched beam at S; as we have seen, the Twiss
parameters of such a distribution can l;e obtained solely from the R matrix around
the storage ring from S back to itself.

There remains one free parameter in Equation A.13. This is the parameter W,
which carries the information about the total area of the machine ellipse. Particles
described by the parameters of the machine ellipse, but with different values of W,
will lie on concentric similar ellipses. It is possible to choose a characteristic value
of W which will describe the overall properties of the beam, and the total phase
volume it inhabits. For example, we see from Figure A.1 that the ellipse is bounded
in spatial extent by +/W3. Let us define € to be that value of W such that the RMS
distance of the particles in a bunch from the reference line is given by +/€B. This is
the definition of a beam’s emittance in use at SLAC. We can also see from Figure
A.l that the RMS angular divergence of the beam is given by \/&y. Note that the
definition of ¢ is arbitrary up to an overall scaling factor. Fermi National Accelerator
Laboratory, for example, defines the area of the machine ellipse to be ¢, and not 7e,
and defines the ellipse such that \/"‘ﬂI = 20,[78].

A matched beam injected into a storage ring at a given point will remain matched
(ie, described by the machine Twiss parameters) for all time. What happens if a
mismatcheci beam is injected instead? Such a situation is shown diagrammatically
in Figure A.2. Note that while the phase volume of the beam is not similar to the
machine ellipse, is still possible to draw a machine ellipse, of arbitrary area, which
encloses the beam in phase space. In this situation, the beam’s phase volume is less
than the volume of the machine ellipse needed to enclose it — the machine ellipse is
not full. The ratio between the machine ellipse which is needed and the actual phase

volume of the beam is a parameter known as BMAG in SLC notation. BMAG is a
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A Matched Ellipse
Area= TE x BMAG
- U
\_Beam Ellipse
Area = Tte
Y

Figure A.2: Injection of a mismatched beam into a storage ring. The
“maximal machine ellipse” needed to enclose the beam ellipse is shown.
The particles within the beam ellipse will, on repeated turns, trace out
the ellipses concentric to the maximal machine ellipse.

“mismatch parameter,” such that a BMAG of 1.0 means a perfectly matched beam,
and a BMAG greater than unity represents some severity of mismatch.

Note that, for any particle in the real beam, it is possible to draw an ellipse similar
and concentric to the “maximal machine ellipse” which passes through that particle’s
position in phase space. We can regard that particle as lying on the machine-like
ellipse, in which case it will be transported on subsequent turns to other points on
that machine-like ellipse. This exercise can be carried out for each particle in the
mismatched beam. In the case of perfectly linear transport, this will result in the
ellipse containing the real beam precessing around within the maximal machine ellipse
without distortion.

The real world is seldom as simple as purely linear beam transport, however. For
one thing, the beam in a real storage ring will generally have a finite energy spread.

At injection, we can think of this as injecting several bunches, each of which has
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initially the same phase space coverage but at different centroid energies. As these
bunches circulate around the ring, the leading effect of chromatic aberrations of the
storage ring will be to cause the bunches at different energies to precess about the
phase plane at different rates. This will result in an equilibrium situation in which the
maximal machine ellipse has been completely filled. This process, known as emittance
filamentaton, essentially guarantees that any bunch injected into & properly tuned
storage ring will conform to the matched beam parameters in short order. The only
parameter which is purely a function of the beam and not set by the machine is the
emittance!. Because of this phenomenon, when the Twiss parameters are referred
to by accelerator physicists, it is generally understood that the matched machine
parameters are meant. )

Let us return our attention to Equation A.20. While we have defined the matched
Twiss for a circular, closed beam line, Equation A.20 places no such requirements
upon us. Any beamline with a known R matrix can be decomposed as shown, and
yield a “matched beam” which is the same at the exit as at the entrance. For a
sufficiently long system (such as the SLC linac), the mechanism of emittance filamen-
tation will even guarantee that the beam is matched at the end of the system, albeit
with a potentially enormous emittance. The principal limitation is that R matrix be
amenable to the decomposition of Equation A.20. Note, for example, that the trace

of the matrix will yield the phase advance as follows:
Tr(R) = 2cos p. (A.21)

Consequently, only a beamline whose R matrix has a trace between -2 and 2 can be
decomposed in this fashion. One type of beamline for which this is not the case is a
pure magnification, which has trace M + ﬁ In this case, some simple algebra shows
that |Tr(R)| = 2 for the case of M = %1 and is larger for all other values of M, which

agrees with our commonsensical notion that a magnification should not be capable of

1In fact, in electron storage rings, even the emittance is a function of the machine
lattice, as synchrotron damping forces the beam to the ring’s equilibrium emittance.
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transporting any phase space distribution into itself 2. While a —I transform has a
trace of -2, this requires a matched phase advance of 7. According to Equation A.20,
therefore, Ryz = 0 for all values of the betatron function. This, again, agrees with
our expectation that the —I transform will transport any phase space distribution
without distortion.

If our formalism indicates that pure magnification modules of any kind do not
have a betatron function as we have éome to understand the term, then this begs the
question: what do we mean by “the betatron function” in such a context? In order

to answer this question, it is necessary to define the sigma matrix of a beam.

A.1.4 The Sigma Matrix and the Beam Ellipse.

In contrast to the Twiss parameters, the sigma matrix of a beam can be quite simply
defined. Consider a set of n particles distributed about some centroid (mean posi-
tion), and let the distance of the particle from the centroid be given by coordinates
(%:)1—n. We shall let { vary from 1 to 6, and use the standard beam physics notation:
coordinate 1 is horizontal position (in meters or microns); coordinate 2 is horizontal
angle ("7‘}), in radians or microradians; coordinates 3 and 4 are the vertical position
and angle; coordinate 5 is longitudinal distance from the centroid, in meters or mi-
crons; and coordinate 6 is the fractional energy deviation, which is dimensionless.
The sigma matrix is the set of second moments of the beam in this coordinate set,

defined as follows:

Oy = <4igj > — <5 >< ;>
1 n 1 n n
= 7 Z;(zi)q(“’j)q ) E(“’t)q > (@5)e. (A.22)
9= gq=1 q=1

There is another notation used to refer to the beam second moments, which I define

here for completeness. This is the correlation matriz notation, which defines a vector

2This is not to imply that a magnifying module does not have any phase advance,
but only that the inconsistent requirements that it magnify and yet leave the phase
space distribution unchanged leads to a nonsensical result. .
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of beam sizes:
O; = /0y (A23)
and a matrix of normalized correlation coefficients, denoted by 7:

[£7]
b
(T

Returning our attention to the sigma matrix, we can easily determine the rules

i J. (A.24)

Ty =

by which a sigma matrix is propagated by a linear transport system. This is done
by considering the transport rules for the coordinates of the constituent particles,
namely x;(2) = R}%z;(1), in which summation over repeated indicies is implicit.

We can apply this rule to the particle coordinates in Equation A.22 to obtain:

o5(2) = - E 2i(2)x;(2) — E 7(2) 3552

gq=1 q--l
= ZRI“%& (VR *m(1) - = ZRI‘%L(l) Z RY™m(1)
g=1 g=1
= R,!',?2R]1-?2 Ezk(l)x,(l - = le.(l) Z(El(l
g=1
= RIR 1*%k,(1), (A.25)

where the positions z;, etc., are understood to be the positions of the gth particle.
This propagation rule can be rewritten as a matrix equation by the non-intuitive step

of replacing Rj; with (R%);:
0i5(2) = Rixow (1) (R (A.26)

o(2) = Ro(1)R". (A.27)

Let us consider, again, a beamline which contains no coupling elements (skew
quadrupoles, solenoids, etc.), and also an initial sigma matrix which contains no
cross-plane correlations. In this case we can reduce the both the sigma matrix and
the R matrix to block-diagonal forms, three 2 x 2 matrices along the diagonal of the

6 % 6 matrix. In such a system, it has been shown [77] that the determinant of each
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of the uncoupled sub-matrices is always unity. Combining this fact with Equation
A.27, we see that the determinant of the uncoupled sub-matrices of the sigma matrix
is unchanged by linear, uncoupled transports.

Let us consider now only one of the sub-matrices of the sigma matrix, which shall
be arbitrarily denoted as the xz' submatrix, using coordinates z; and z,. Since the
determinant is constant under the beam transport considered here, the matrix cén
be factored into its determinant, given here by £2, and a matrix of parameters with

determinant 1. Note that Equation A.22 requires the sigma matrix to be symmetric,

so that:
b
MR P O (A.28)
gn 022 a ¢

where 7 is defined as the matrix of parameters whose determinant is unity. From
Equation A.28 and the definition of the sigma matrix, we can see that the mean-
squared distance of particles in the bunch is given by £b, and the mean-squared angle
by £c. The determinant £ can now be eliminated from the rule for sigma matrix

transport and Equation A.27 rewritten in terms of the 7 matrix:
T(2) = RT(1)R". (A.29)

Because the 7 matrix is symmetric, it contains only 3 distinct parameters 4. It is
therefore desirable to write a transport equation for the parameters of the 7 matrix

which takes this into account. This yields a matrix equation for the parameters:

b(2) R} 2Ry Ry R}, b(1)
a(2) =| Ry Ry 1+ RiaRs RisRao a(l) . (A.30)
c(2) R 2RnRyp  Rh e(1)

3In fact, even in the case of a coupled sigma matrix, it can be shown that the
2 x 2 block-diagonal matrices have constant determinants when transported through
an uncoupled linear beam line.

1Because 7 is symmetric and has unit determinant, it only contains 2 free param-
eters; the third “distinct” parameter is necessarily a linear combination of the other
two.
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The equation for transporting the 7" matrix parameters is hauntingly familiar. If, for
example, we replace b with 8, a with —a, and ¢ with v, we see that Equation A.30 is
identical to A.19.

What is the significance of all this? Remember that the Twiss parameters, and
their transport laws, were originally derived without any assumptions about the type
of transport system in use, other than that it be linear and uncoupled. The decom-
position of Equation A.28 reduces the beam sigma matrix to an invariant component
and three parameters; these three parameters correspond to the beam size, its an-

gular divergence, and the correlation between position and angle within the bunch,

in the same fashion as the Twiss parameters. In other words, for an arbitrary beam’

with a known distribution function, it is possible to decompose the sigma matriz into
a set of parameters which are mathematically identical to the emittance and Twiss
parameters. Thus, we can adapt the machine parameters 3, o,y into beam parame-
ters in an environment in which the matched Twiss parameters are not defined. The
advantage of this decomposition, and this notation, is that it automatically separates
the portion of the beam matrix which cannot be manipulated by the linear transport
system (emittance) from the parameters which can be so manipulated. This is helpful
in that it implicitly prevents us from trying to independently adjust the beam size
and angular divergence at the waist. It is also helpful because it allows us to adapt
other concepts from storage rings, such as chromaticity, which are derived in terms
of the betatron function. In sum, the machine ellipse is a special case of the sigma,
matrix decomposition shown here, with the caveat that a periodic system will force

the beam sigma. matrix to conform to the machine ellipse.

A.2 Twiss Parameters: Alternate Approach

In recent years, Irwin [79] has developed an alternate approach to the development of

matched Twiss parameters. His approach bypasses the equations of motion entirely,
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and relies only upon the linear transport matrix around one turn of the storage ring.
In addition, the Irwin formalism is more easily extended to the case of a storage ring
with x-y coupling in its lattice. In order to lay the groundwork for deriving the frwin
Parameters, which specify the intensity and phase of such coupling, his approach is
summarized here.

As in Section A.1.3, M(s) is defined to represent the linear transport matrix
around one turn of the storage ring, beginning and ending at point s, and we require
(for the time being) that M be uncoupled and have zero dispersion (Mg = 0 for all
i # 6). In this case, as before, we can consider M to be a 2 x 2 matrix around the
storage ring. Consider now the eigenvalues and eigenvectors of M. Because M is a
real symplectic matrix, if X is an eigenvalue then A\* and % are also eigenvalues (where
in this context \* means complex conjugate of A, not the value of A at thg IP). We

can express all the values of A, in the most general case, as:
A=t A =e*H . (A.31)

where u is a real, positive value. Because we want to limit our consideration to stable
storage rings, we reject the real eigenvalues (which would cause the beam to explode
out of the ring after some number of turns) and turn to the complex eigenvalue. The
complex eigenvalue corresponds to a complex eigenvector, which we shall denote v:

Moy = e, 4 (A.32)

From this equation and the requirement that M be real, we can find the eigenvalue of
e~ to be v*. Using these relations and general relations between complex conjugates,

we can write the following:

M +v*) = #v + e #v* = (v + v*) cos p + (v — v*) sin (A.33)
iM—v") =i(e*v —e¥v*) = —(v+v")sinp+i(v —v")cosp. ~ (A.34)

Let us, for notational convenience, make the following definition:

U=sv+v, = —i(v —v*), (A.35)
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where both I/ and V are explicitly real vectors. We can now rewrite Equations A.33

and A.34 as the following;:

Mulhy + My = Uycosp— Vising,
Moglhy + Mally = Uscosp— Vysinp,
—MpWV, = MpVy, = —Using— VY cosy,
—Ma V) = MaVa = —Uspsing —~ Vscosu. (A.36)

Let us now define a transformation matrix, Ag, based upon the vectors I and V:

m v\
do=| P M, (A.37)
Uy Vo
and a rotation matrix, R{u):
cosf  sinp
Ru) = ( . ) . (A.38)
—sing cosp

With these definitions, we find that Equation A.36 is equivalent to a simple matrix
equation:

We can now go one step further, and define M in terms of R and Ag:
M = AR(p) Az (A.40)

1t is worthwhile to note at this point that the matrix R(u) represents a rotation

in a single plane, and can therefore be rewritten:
R(p) = REORMRE) ™. (A41)
This allows us to rewrite Equation A.40 as:
M = ARER()R(E) ™ A5" = ABYR(1)A(9) ", (A42)

in which we have defined A(6) = AR(8).
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Because M has a unit determinant, there are three independent parameters in
Equation A.42. One is the rotation angle p, which completely determines R(z). This
means that A(f) can have only two parameters which are determined by the value
of M, out of a total of four entries. This implies that there are two parameters
in A(6) which may be altered without changing the value of M. One of these is
the determinant: because |A(6)] = (JA(F)7])~L, the value of |A(6)| cancels out in
Equation A.42. Therefore we can, without loss of generality, require [4()| = 1. The
remaining degree of freedom is 8, which is set below.

When we multiply out Equation A.42, we find:

sin p(Af; + A2,)

cos p + sin p(Ay1 Az + A2 Ass)

Me cos p — sin (A1 Ag + Ao das)
—sin p(A3) + A)

) . (A43)
We can now use our degree of freedom, 8, to adjust A(f) such that A(#);,=0. When

this is done, Equation A.43 becomes:

( cos i — sin (A1 Az) sin p(Af) )

M= (A.44)

—sinp(A) + A3)  cosp+sinp(Anda)

At this point, we can use Equation A.20 and obtain the values of A(9) by inspection:
vB 0
A(9) = . A45

©) e (4.45)

In sum: from a consideration of the mechanics of eigenvalues for a one-turn matrix

for a storage ring, we can decompose the matrix into a component which carries the
information about the phase advance, R, and a component which carries the Twiss
parameter information, A(6). We can perform one additional decomposition to A(f),
sp'eciﬁcally into a component which relates the correlation between position and angle

in the beam (o), and a component which carries beam size information (8):

A9) = vE 0 (1 0). (A.46)

. - 1

0
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Now let us consider the sigma matrix. From our previous experience, we have
seen that the matched sigma matrix can be characterized by an emittance, ¢, and the
Twiss parameters, 5, o, -y, without any consideration of phase advance. Consequently,
we see that, in this notation, the sigma matrix must be a function of the emittance

and A(8) only. If we begin with the sigma matrix:

o= ( # e ) (A.47)
-0 €y

then we can, almost by inspection, decompose this into:
o = A(B)EA(9), (A.48)

where we have defined £ to represent the “emittance matrix:”

es(; 0). (A.49)

A.3 Irwin Parameters: a,b,c,d

The approach taken in Section A.2 can be extended in a straightforward fashion to
the case of a fully-coupled one-turn matrix around a storage ring. Consider the 4 x 4
transport matrix M. In this case we have two degrees of freedom, conventionally x
and y. We therefore expect to have two sets of eigenvalues which satisfy the same

constraints set forth for the two-dimensional case. We can define the eigenvalues thus:
/\1 = e*"“’, )\2 = e*""’, (ASO)

where 1 and 2 (rather than x and y) represent the degrees of freedom to avoid pre-
judging the situation. We can define the eigenvectors of these eigenvalues as v* and
v, and their complex conjugates. This then leads us to define the linear combina-

tions of the eigenvectors:
UD =y 4y PO = (0 _ D),
UD =@ @ YA = i — @), (A.51)
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a transformation matrix Ag:

U YO @ Y@
u(l) v(l) u(2) v(2)

A= e v | (4.52)
U PO @

u}l) v§l) UF) vgz)

and a rotation matrix for two degrees of freedom, R():

R(E) = ( Rlm) 0 ) , (A53)
0 R(p2)

where [ = (1, 42) and R(u) is the 2 x 2 rotation matrix as defined in Section A.2.
We can write

M = AgR(7) A5 (A.54)
and, defining A(5) in analogy with Section A.2, we can write:

M = AGYR(B)AG) . (A.55)

In this notation, the full rotation matrix R(f) represents the phase advance of the
storage ring in each of the normal-mode degrees of freedom, and A(g) includes the
usual scaling and rotation of the normal-mode phase planes and the transformation
between the normal modes and the coordinate system used in defining the real beamline.
This transformation between the normal modes and the coordinates in which M is

represented is the coupling of the M matrix.

A.3.1 Factorization of A(f)

The state of affairs is now similar to that for the single degree of freedom case, in
that we have a matrix, A(B-), which contains within it the beam transport properties
of the single-turn matrix M; and this matrix has two degrees of freedom, represented

by @ = (61,6,). In addition, let us assert that the matrix A(8) is symplectic [79] , ie:

ABPTAB) = J, (A.56)
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where J is defined:
0 1 0 O
-10 0 0
J= . (A.57)
0 0 0 1
0 0 -10

Let us consider the properties of a generic 4 x 4 symplectic matrix, m. If m is

known to be symplectic, then we can decompose it into four 2 X 2 submatrices:

m= ( M me ) : (A.58)

mg My

where |my| = [m4] = ¢° and |my| = |ms). I can now define a pair of matrices with

unit determinant based upon m; and my:

my my
N=—, Ny=—, A.59
1= 2= (A.59)

and install these as the block-diagonal components of a 4 x 4 matrix N:

NE(N‘ 0 ) (A.60)
0 M

It is not difficult to show that I can now write m in a fascinating new form:

N 0 I  N{'m
m = NN‘m)=| g 1
0 N2 N{lma gI

= NS, (A.61)

where N represents all the “in-plane” phenomena of the two normal modes, and S
represents all the “skew,” or “cross-plane” effects between the normal modes and the
coordinate system.

Now that we have isolated the “in-plane” effects of the two degrees of freedom, we
are free to define A(é‘) such that Ny and N, have zeroes for their (1,2) elements, as does

the A(f) matrix in Section A.2. The properties of N} 2 — namely, unit determinant
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and a (1,2) element which is zero — permit us to factor them into betatron and alpha

sub-matrices as we did before:

\/ﬁm 0 1 0
Nl,2 = 1 .

0 V- -0 1
= Bioda. (A.62)
We can therefore write:
(2[5
0 B 0 A4
= BA. (A.63)

As a final note, while we have chosen here to factor the normal component to
the left of the skew component, it is easy to demonstrate that factoring the normal
component to the right will result in a different skew matrix, but leaves the normal

matrix unchanged.

A.3.2 The Structure of the S-Matrix

We are now left with the problem of determining the most general possible coupling
matrix of the form in Equation A.61 above. In order to determine this transformation,
we can simplify matters by using the Lie Transformation approach to accelerator
problems used by Irwin [80] and Roy [6]. In this approach, we begin by writing the

generator of the most arbitrary coupling in the x-y basis 5:
S = —axy - bry' — cz'y — d2'y/, (A.64)

where a, b, ¢, d can arbitrarily vary from —co — oo. The transformation given by the

generator S can be determined by allowing the related Lie Transform to operate on

5There are several variants of the Irwin coupling notation, which vary in their
assignment of the terms a, b, ¢,d and the overall sign. Here I define the terms as they
have been defined in the SLC control system.



258

an arbitrary 4-vector, :

T = %43, (A.65)
where the definition of : S : is as given in [80]. While the effects of a Lie transform can
in general be quite messy, in this case we find that the expansion of €547 converges
upon a simple form. This allows us to write the Lie transform & as a matrix.

Let us define D as:

D =bec~ad, . (A.66)

and define g and A in two alternate forms:

sinhvD
vD '’

g=cos\/m, h=si_n|__\/\/D_||DT|, D <. ‘ (A.67)

We can now write the matrix S given by the generator S:

d
gl h ( € b )
§= . T (A.68)
h gl
-a -

A.3.3 The Fully-Coupled 4 x 4 Sigma Matrix

g=coshvD, h=

D >0,

We can now complete our examination of the matrix A(). Using the form of S
determined in Equation A.67, we can now fully express A(5) as the product of three
matrices:

A(f) = BAS. (A.69)

In analogy with section A.2, we can define the normal-mode emittances, ¢; and ;.
These are the invariant emittances obtained when the beam is considered in the

normal-mode coordinate system. We can now write the sigma matrix in terms of
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A(9) acting on the emittance matrix:

€1 0 0 O
0 0 0
£= € . (A.70)
0 0 € 0
0 0 O €

In analogy with the uncoupled case, we can write:

AB)EAD):
BASEStAtB. N )

o

1

1l

Without further ado, the fully-expressed elements of the sigma matrix in terms of the

normal-mode emittances, Twiss and Irwin parameters are:

on = B [gzel + h2(02 + d2)62]
1
m = & {g2(1 +a})er + BP[(a + ayc)? + (b + ald)2]eg}
12 = -g2a161 - h2[c(a -+ alc) + d(b + 0!1d)]62 (A72)

o33 = [alg’er + h2(H? + d2)ey]

o = ﬁ1; {92(1 + af)es + h¥[(a + anb)? + (c+ azd)z]el}

o = —gtoner — hi[b(a + azb) + d(c + cad)]e (A.73)

o3 = \/ﬂlﬂzgh(b€1 + cer)
o = \[Bobiot et + (- arce
0o = \/%gh[—(a +anc)ez + (d — anb)el]

1
gy = —mgh[(am — da + boaa — )€y
+ (aqg — day + cazan ~ b)es). - (AT4)
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The preceding derivation was done for a closed storage ring, using the one-turn
transport matrix M. However, we have already seen that the betatron and alpha
functions may be adapted from machine parameters to beam parameters, and thus
B and A can be written for an arbitrary beam in any environment; and that the
emittance matrix £ is explicitly a function of the beam alone. Finally, the matrix S
is the most general coupling matrix; consequently, we expect that the decomposition
of coupling it represents does not require a closed storage ring to be valid (ie, a zero-
length coordinate rotation between x and y can be represented by an S matrix). We
can therefore state that any beam matrix can be decomposed into two emittances,
two betatron functions, two alpha. functions, and four Irwin paramters; and that the
relationship between the parameters and the sigma matrix is as given in Equations
AT2 - AT4.

A.3.4 Properties of the Irwin Parameterization

There are several useful properties of the Irwin parameters, and of the sigma matrix
decomposition shown in Equations A.72-A.74. We have already encountered D, which
is the negative of the determinant of the upper-right submatrix of the S matrix. We
can also define 7:

P=d P+ +d (A.75)

It is possible to show that both r and D are invariant under uncoupled beam transport.
If we define the projected emittances via the determinants of the upper-left and lower-

right submatrices of the sigma matrix:

€ = \Jonoan — ol (A.76)
€y = \/033044 — o3 (A7)
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then we find the following relation holds between the projected and normal-mode

emittances®:

e = ge} + h' D% + ¢®hr%ereo,

e = g% + K D% + g*h*rerca. (A.78)

From Equation A.78, it can be shown that the projected emittance can never be
smaller than the smallest of the two normal-mode emittances. The converse is not
true: the projected emittances can be made arbitrarily large, and can be larger than
the sum of the normal-mode emittances. Consider the case of emittances given in
Equation A.78, in which the values of g and h are given by their hyperbolic forms. In
this case all three terms contributing to each projected emittance are positive-definite,
and g1 > 1.

Finally, let us consider the significance of the betatron and alpha functions de-
termined in the decomposition of A(f). It was mentioned in Section A.3.1 that the
normal component of A(g) could be factored to the right of the skew component,
and this would result in a different skew matrix (with the same functional form) and
an identical normal matrix. Let us call this skew matrix S. In this case, the sigma

matrix decomposition of Equation A.71 becomes:
o=SBAcABSt. (A.79)

In Equation A.79, an uncoupled beam sigma. matrix is constructed by the innermost
matrix product, BAEA!B!, and the coupling applied to this matrix after the fact.
The innermost matrix product therefore represents the normal-mode beam matrix,
with normal-mode emittances and normal- mode Twiss parameters, and the 5 ma-
trix represents the requisite coordinate transformation between this and the external
coordinate system. Because the B and A matrices are identical to those extracted

in Equation A.71, we can conclude that the Irwin recipe for decomposing the sigma

SThese relations were originally worked out by P. Raimondi.
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matrix extracts the normal-mode Twiss parameters, as well as the normal mode emit-

tances.

A.3.5 Alternate Parameterizations: The Spence Parame-
ters
Another parameterization of the coupling in common use at SLAC was developed by

W. Spence. The approach is similar, but the matrix S defined in Equation A.68 in

the following way:

B, B
bSpenceI ( Bu Bu )
= 21 22 ( A.SO)
—By Bpe
bSpenceI
By -Bu

The upper-right 2 X 2 matrix is known as the “B-matrix”. By comparing the Spence

and Irwin parameters, we arrive at the following relations:

—sink®*vD, D>0 (|B|<0),
sin®4/|D|, D<0 (|B]>0),

bSpence = v 1- IBI =g. (A81)

A general purpose conversion between the Spence and Irwin parameters can easily be

|B|

deduced from these relations.

Each of the two parameterizations has its advantages. For example, in the Spence
approach, |B| < 1, which puts implicit constraints on the values of B;;. A large,
negative value of Bg; coupled with a small positive value of Bje will result in a
|B| value greater than 1. Consequently, an arbitrarily-selected set of B;; values will
not necessarily correspond to a physically realizable transformation, whereas any
combination of Irwin parameters will yield a real S matrix. On the other hand, it is

possible to select multiple sets of Irwin parameters which yield the same S matrix.

263

Consider the case of ¢ = —b = ¢. In this case, D = —¢?, g = cos(¢), h = %é—), and

we can write the S matrix:

cos ¢ 0 sing 0
0 0 i
S = cos¢ sin ¢ . (A.82)
—sin ¢ 0 cos¢g O

0 —sing 0 cos¢

If we now let ¢ = —b = ¢ + 2mr, we find the S matrix changes as follows:

cos(¢ + 2x) 0 sin(¢ + 2m) 0
Sy = . 0 cos(¢ + 2r) 0 sin(¢ + 2w) (A3
~ sin{¢ + 2m) 0 cos(¢ + 2) 0
0 —sin(¢ + 2m) 0 cos(¢ + 2m)

which equals S; by inspection. In sum, it is easier to go from Irwin parameters to a

proper S matrix, but less ambiguous to go from an S matrix to Spence parameters.

A.4 Dispersion Parameters: D and 7

So far we have considered only a linear system with no energy-dependent transport
properties. Let us now consider the effect of lowest-order energy dependence. In a
bending field which produces a radius of curvature p(s), the off-energy particles will be
over- or under-bent relative to the on-energy particles. If we define the reference orbit
to be the closed orbit of the particles at the design trajectory, then this differential
bending will result in the off-energy particles deviating from the reference orbit. We
can quantify this effect, which leads to a modification to the equation of motion,
Equation A.1:

" _¢ '
v+ K(s)u= ) (A.84)
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where § = —AE—E, and p(s) is the instantaneous radius of curvature at s7. The complete

solution to Equation A.84 is given by [81):

u(s) = u(0)C(s) + v'(0)S(s) + 6D(s),
u'(s) = u(0)C'(s) + ' (0)S'(s) + 6D'(s), (A.85)

where C(s) and S(s) are the conventional sinelike and cosinelike rays from the initial
point to point s, and D can be determined by the method of Green’s functions
from C, S, and p between the initial and final points. C and § are, of course, the
familiar R;; and R;s elements; C' and S’ are the Ry and Rao. If we identify § as the
sixth coordinate of the particle (the fifth is longitudinal position from the centroid,
which is not & crucial parameter in final focus systems), then the characteristic rays
Dy, Dy, Dy, Dy, translate to the Rye, Ras, Ras, Ris-

Let us consider only the zz' plane, which is the usual bend plane, with the un-
derstanding that all discoveries there can be equally well applied to the yy' plane if

necessary. Let us now consider the 3 x 3 matrix R:

Ry Ry Ry
R=1| Ry Ry Ry |- (A.86)
0 0 1

Furtherinore, let us define M(s) to be the one-turn value of R from s back to itself:

My Mg Mg
M= My Mgpn My |. (A.87)
0 0 1

For a particle with coordinates (z,2',6) = (0,0,0), we can see trivially that the
particle will return to the same position after one turn, and this defines the reference

orbit. A particle with an energy offset only will begin at (0,0,6) and return to

7In reality, the inhomogeneous term in Equation A.84 should indlude § = %, and
not 8. The use of § is traditional, and a good enough approximation for most cases.
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(M6, Mos6, 8). This begs the question: for & given value of §, does there exist a
combination of position and angle at s which is transformed into itself? If so, this
would constitute the closed orbit for off-energy particles, or (putting it another way)
would show how the reference orbit is deformed for particles of different energies.
Let us define this position to be (76,76, §) for the case of linear transport. We can
determine the values of 77 and 7’ by expressing the stability condition:

Mu Mz My né né
Moy Maz My 76 | =| 76 |. (A.88)
0 0 1 5 )

From Equation A.88, we see that in general the characteristic functions n(s) and 7'(s)
depend upon all the elements of the matrix M.

One special case of Equation A.88 is the case in which, for some location sg, both
M;e and Mag are zero. In this case, 7(so) and 7'(so) are both required to be zero as
well, and the reference orbit for on-energy and for off-energy particles will coincide
at point so. Let us now define Rj3™° and R$J™° to be the Rys and Ry from the
aforementioned sy to some other location s. A particle with coordinates (0, 0,6) at
point sp will be transported to (R{3°6, R33°6,6) at point s. Since the actions of the
storage ring must transport this particle back to its starting position, it follows that
the path of the particle around the ring constitutes the closed orbit for particles at
its energy. Therefore, The condition described above requires that, at any point in

the machine,

n(s) = Ry,
n'(s) = R (A.89)

A.4.1 Dispersion Matrix Decomposition

Before considering the application of the dispersion formalism to linear collider final

focus systems, it is worthwhile to note a property of the dispersive transport matrices
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in the previous section. Specifically, any of the matrices shown can be factored

trivially into a geometric matrix and a chromatic matrix:

Ryy R Ry 1 0 Ry Ry Rpp O

Ryy Ryp Rss | = |01 Ry || Ry Ry O

0 0 1 60 1 0 0 1
= DM. (A.90)

A.4.2 Dispersion and the Beam Matrix

We saw in Section A.1.4 that it is possible to define a beam matrix which carries all
the information pertaining to the second moments of the beam’s distribution. We
can extend this technology trivially to the case of systems with energy-dependent
beam transport, using the same propagation law, Equation A.27. For simplicity, let
us consider here only storage rings which have a point at which the on-energy and
off-energy closed orbits coincide, as described above.

At the point of coincidence, we can see by inspection that the.stationary beam dis-
tribution is given by the monochromatic Twiss parameters, which can be determined
by application of Equation A.20. To obtain the matched beam at an arbitrary location
downstream, we can apply the transport rule, Equation A.27, and the decomposition

shown in the previous section:

g9 = RO‘lRt
= DMoM*Dt (A.91)

It is worthwhile to note that Mo M* is the beam transport for a non-dispersive
system. Furthermore, it can be shown easily that o35 = 096 = 0 at the point of coin-
cidence. Therefore, if we define o{?) to be the full beam matrix including dispersion,

and ™) to be the monochromatic matrix determined by use of A7, then we find:
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oY = ofi? + Rol" = o0 + n2(s)0l",
o) = ol" + Riole" = ol + 4%(s)ol”,
o) = oft” + RiRasols) = 03" + () ()",
oif = Ricol) = n(s)old?,
o) = Rasolt" =1/(s)ols”,
oég) = créé"). (A.92)

Furthermore, if we take the step of directly substituting o‘éM) = Moy M* into
Equation A.91, we find:
0P = oM P, , (A.93)

We can now use the sigma matrix decomposition of Equation A.71 to substitute for
aéM), to find:
0P = DBASES A BDY, (A.94)

where we have extended the definition of the emittance matrix thus:

@ 0000 0
06000 O

0000 o (A55)
0000 O
0000Ga O
0000 0 (%)

A.4.3 Dispersion in Linear Collider Final Focus Systems

Now let us consider a linear collider such as that depicted in the schematic of Figure

1.1, and let us assume that the design is such that, at the nominal entry to the final

focus, Rjs and Ry from the exit of the damping ring are both zero. We can define this

- ——
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entry location to be a “treaty point” at which » and #' are also zero. While no ”closed
orbit” exists for a linear, single-pass system, we conventionally define the functions
7n(s) and #'(s) for this region as though the treaty point was a dispersion-free point
in a storage ring, ie, as in Equation A.89. This is known as the lattice dispersion of
the beamline.

We saw in the previous section that, at points where the on-energy and off-energy
reference orbits coincide, the energy-position correlation terms (o35, ¢ 7 6), are identi-
cally zero. While we have defined the dispersion functions at the entrance of the final
focus to be zero, this does not affect the incoming beam, which may have nonzero
energy-position correlations. This arises from imperfections in the real lattice. At
this location, however, orbit deviations with changes in the centroid energy are nét
reliable measures of dispersion. For one thing, the presence of steering feedbacks will
tend to eliminate the effects of such deviations. For another, the beam energy is
general}y changed by changing the accelerating properties of the linac at a given lo-
cation; this location may be upstream or downstream from the source(s) of unwanted
dispersion. Instead, we can examine the beam matrix itself, and use Equation A.92

to extract the residual dispersion:

(0 — 916
®  og
/(0) — 926
* 066’
(0) . 736
v O65’
0 = 28, (A.96)
J66

These values can be used to determine a D matrix, as in Equation A.94.
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A.5 Chromaticity

The quantity known in closed storage rings as chromaticity is usually defined as the

change in the tune around the ring with energy:

_Av Ay

=25~ IAs (A.97)
It is also legitimate, therefore, to define £ as the change in phase advance of a section

of beamline with energy. Using this definition, it can be shown [82] that:

1
by = 5= [ K()Bayds, (A.98)

where K(s) is here understood to be positive for focusing in the plane of interest
(in other words, for computing vertical chromaticity, horizontally-focusing quads are
considered to have negative K(s), vertically-focusing positive).

Let us consider the beam shape and phase advance at the IP or another waist
point of the final focus system. At this point, & = 0 and consequently 7* = -51-
Using the Twiss-transport shown in Equation A.19, we can write an equation for the
betatron function a distance s from the IP:

82
B(s) =B+ i (A.99)
The expression for 8(s) can then be substituted into the defining equation for phase
advance, Equation A.9, to yield a relation between the drift distance from the IP and

the phase advance:

Agp = tan™? I—Bs:, or s=/3"tanAy. (A.100)

The value of Ay can be replaced as shown in Equation A.97

s = B tan(2wEAS). (A.101)

A simple reading of Equation A.101 would indicate that the waist shift is a peri-

odic function of the energy offset of a given particle, and therefore that the waist
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should be restored to its nominal position for particles with § = £/2. In practice,
however, the waist shift is 2 monotonic function of energy offset. The reason for this
is that as the energy of the beam changes, the betatron function in the quadrupoles
changes. As Equation A.98 shows, this results in a value of £ which is a function of
energy. In practice, therefore, the energy-dependent waist shift can be approximated

by Equation A.101 about the § = 0 point:
s & 2mBrEAS. (A.102)

Note that Equation A.99 can also be used to obtain an expression for the linear

beam size off the waist by a distance s:
52
0% = ¢(f* + 7) (A.103)

We can now combine Equations A.102 and A.103, and determine the beam size at

the IP. location due to changes in the focal point from chromaticity:
0*(8) = ¢B*[1 + (21€6)?. (A.104)

If we convolve ¢%(6) with a Gaussian energy distribution of RMS width 22, we obtain
an expression for the beam size at the nominal IP as a function of the emittance,

betatron function, and energy width:
o =ef" + 47r2§2(%’i)2. (A.105)

Equation A.105 is identical to Equation 1.5, with on exception: the definition of £ used
by Roy is greater than the definition of £ used here by a factor of 2r. Consequently,

a factor of 472 appears in Equation A.105 which is not present in Equation 1.5.
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Appendix B

Measurements of FFTB Magnets

A considerable insight into the properties of accelerator electromagnets and their ap-
plicatons can be extracted from the two-dimensional multipole expansion of the mag-
netic field. In this Appendix, the expansion is presented in both polar and Cartesian
coordinate systems. A description of the two techniques used to measure the mul-
tipole characteristics of the FFTB standard quadrupole and sextupole follows, with
a discussion of the results of the techniques. The author is indebted to J.K. Cobb
of SLAC for many fine papers on the theory and practice of magnetic measurements

(83], [84], and also for his description of the rotating- coil technique [85].

B.1 Expansion of the Magnetic Field

A beamline magnet of the type used in the FFTB can be approximated as follows:
between | = 0 and [ = lo, B = E(’r, 6), while outside of these bounds B=y
and B, = 0 at all points. Within the z-axis bounds of the magnet, therefore, an
appropriate coordinate system to use is planar polar coordinates. If we postulate
that the magnetic field inside the aperture is constant in time at all points, and that

the aperture contains no currents, then we are justified in defining a magnetic scalar



o
-3
o

potential, ®. This leads to the familiar equations for the magnetic field :

B=V®, and (B.1)
V2% =0.

The equation for ® can be solved in a straightforward fashion by the separation of
variables technique; rejecting solutions which diverge at the origin of the coordinate
system, we find:

o
& =3 K,r"sin(nf — ay). (B.2)
n=l

The magnetic field vector at any point inside the magnet can then be found by

application of v:
B(r0) = #3 Ky sin(nd — n), (B.3)
+ 03 Kunr™ ! cos(nd — ay).
The relative strengths of the K, and the values of oy, are determined by the
boundary conditions. In order to understand these, it is instructive to rewrite sin(nf—

o) as a separate sine and cosine term, and to rewrite the first three terms of ® in

cartesian coordinates:

i

> Knnr"sinnd + Y Ky s cosnd (B.4)

I

Kyny + Ky sz
+ 2K nay + Ko s(2? — )
+ Kan(32% — %) + K (2 - 3y%z) + ...

The components of ® can be controlled by forcing the magnet to have an equipo-
tential surface whose geometry corresponds to the desired term in Equation B.4. For
example, a magnet which contains a nonzero Ky, and no other components, must

have an equipotential surface at y = =y, where yp is some constant. Similarly, a

1This treatment defines ® opposite in sign to the usual convention.
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Figure B.1: Shaping of iron pole-pieces required to generate pure dipole,
quadrupole, or sextupole magnetic fields.
magnet which contains only Koy must have an equipotential surface at zy = =+gg,
where g is a constant. The equipotential surface in a warm-iron magnet is formed
by shaping the iron pole- pieces, since to good approximation ® = 0 at the surface
of the iron. Thus a magnet with hyperbolic pole-pieces will be a pure n = 2 pole,
or a quadrupole magnet. Figure B.1 shows the pole-face shaping required to obtain a
pure dipole, quadrupole, or sextupole magnet. All the magnets shown in Figure B.1
are so-called “normal” magnets, in which K, ¢ = 0 for all n. To form a magnet with
non-zero K, s terms, a “skew” magnet, it is necessary to roll a normal magnet by an
angle w/n, as Equation B.4 shows.
Let us now apply the v operator in cartesian coordinates to the first 3 terms of

& in Equation B.4, to obtain the magnetic field:

Bz,y) = §[Kin+2Konz — 2Ky + 3Ksn(a® — o*) — 6Ks sy + |(B.5)
+ &[Kys +2Kony + 2Ks,57 + 6Kanzy + 3Ka,s(2® — 37) + ...

Equation B.5 demonstrates immediately the essential properties of accelerator mag-
nets. The Kjn/s terms constitute a constant kick in the horizontal and vertical,
respectively; the Ky v terms provide the focusing effect of quadrupole magnets (in

which the kick received by the particle is proportional to its distance from the origin),
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and also contain the polarity of the focusing (in which a horizontallly-focusing magnet
is vertically defocusing, and vice versa); the K ¢ terms constitute a skew focusing, in
which the horizontal kick is proportional to the vertical offset and vice versa. Finally,
it can be shown from Equation B.5 that a beam offset horizontally in a sextupole
will receive additional normal quadrupole kicks, while a beam offset vertically in a

sextupole will receive additional skew quadrupole kicks.

B.1.1 Additional Definitions

Real magnets in accelerators act on the beam over a finite length. For this reason

the integrated field, [ Bdl, is usually used to characterize such magnets. We can take

advantage of the longitudinal symmetry postulated above and rewrite Equation B.5:

/E(m, ydl = § [Bo,yL + Gnz — Gsy + Sn(z® — *) — 2Sszy] (B.6)
+ #[BooL + Gy + Gsz + 25wy + S5(a® — 1),

where the length of the magnet is L. The coefficients nLK, vg in Equation B.5 have
been replaced in Equation B.6 with a series of integrated quantities: the integrated
gradient, Gnys, and the integrated sextupole, Syys. The integrated sextupole is defined
here such that, at a radius 7o, the f Bdl from the sextupole field is given by SyrZ.
The integrated second derivative of the magnet is twice the value of Snyg, and this
quantity is also frequently used to specify the strength of a sextupole magnet, or the
sextupole content of a multipole magnet.

The choice of coordinate system also provides three degrees of freedom: the co-
ordinate system in which the magnetic field expansion is performed may be selected
by moving the origin and rotating about the longitudinal axis, yielding x, y, and 6
degrees of freedom. For magnets which are intended to function as quadrupoles, the x
and y coordinates are typicaily chosen such that the dipole field component vanishes,

and the roll is chosen such that the value of Gg vanishes:

/ B(,y)quaedl = § [GN-’L‘ + Sn(z? — %) - 2Ss:1;y] (B.7)
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Figure B.2: A rotating coil in an arbitrary magnetic field.
+ &[Gy +2Svay + Ss(a® - v?)] -

For sextupole magnets the x and y coordinates are chosen such that the Gy and Gg

vanish, while the roll is chosen such that Sg vanishes:

/E(xay)sextdl = :l; [BO,yL + SN(xz - y2)] (B8)
+ #[BogL +2Snay].

With these definitions in hand, we may now examine the two methods used to

measure the FFTB magnets.

B.2 Rotating Coil Measurements

Consider a situation as depicted in Figure B.2: A rotating coil of length [; and radius
1 is inserted into the aperture of a magnet of length L, and rotated asymimetrically
(i.e., one end of the coil moves while the other is stationary) with frequency w. If we

define the stationary leg of the coil to be at the (z,y) origin of coordinates, and leave
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the & = 0 rotation arbitrary, then the total magnetic flux through the coil when it
sits at angle 6, can be computed from Equation B.3:

=L r=r
B5(0=6,) = /’=0 dl f . " drBo(r,01) (B.9)
LY Kurfcos(nf) — ay).

Because the coil is rotating with frequency w, we can replace 8; with wt;. Furthermore,
the rotating coil gives rise to an induced EMF:

= _d% =LY nKyriwsin(nwt — ay). (B.10)

Equation B.10 shows that the induced EMF is a funcfion of time, and that the the
2n-pole moment of the magnet generates an EMF which oscillates with a frequency of
nw. The relative contributions of the different multipole moments can be deduced by
separating the different frequency components of the EMF signal as the coil rotates
in the magnet aperture.

The extraction technique for the coefficients used for the FFTB magnets has been
in regular use at SLAC for many years [84]. The loop is rotated at a frequency which
is carefully maintained at a constant value, and the potential difference around the
loop is measured at M intervals equally spaced around the full circle of its rotation.
Because the rotation speed is constant, the M equally-spaced measurements of V'
constitute a series of samples equally separated in time. By performing a fast Fourier
transform (FFT) of the voltages measured at the M intervals, therefore, the multipole
components up to n = M/2 can be computed.

In an ideal situation, the M/2 Fourier coefficients can be extracted from the
rotating-coil measurement without any interference between coefficients. In a real-
world situation, however, precision becomes limited by the precision with which V
can be measured. In particular, a very large signal from a low- frequency component
can force the use of a coarse voltmeter setting, which in turn results in poor signal-
to-noise performance for the smaller signals of high-frequency components. This is

especially a problem if the coil center does not precisely match the desired center

Figure B.3: A two-coil system used to null EMF from odd-harmonic
magnetic fields; such a coil gives higher precision measurement of the
quadrupole field.

of the magnet (null-bend point for quads or null-gradient point for sextupoles). If
a particular harmonic is to be measured with high precision, an appropriate coil
design can improve the signal- to-noise behavior. For example, precision quadrupole
measurements can be made by constructing two coils with a common axis, as shown
in Figure B.3. In this case, the sum of the two coil voltages is measured. In this case,

the voltage measured will be:
V=LY nK.riw[sin(nwt — op) + sin(n(wt +7) — ay)] . (B.11)

For even harmonics, such an arrangement doubles the signal, while for odd harmon-
ics the sum of the two sinusoidal terms cancels. For measuring the quad term, this
arrangement rejects the misalignment background and any other backgrounds at the
rotation frequency (such as motor-induced backgrounds), but also rejects the sex-
tupole, decapole, and other odd harmonic multipole terms. This is the arrangement
used to measure the quadrupole excitations (G versus current) for the FFTB quads.

Figure B.4 shows a typical result for the measurd Gy for an FFTB quadrupole,

as a function of the excitation current I.,. A coil of radius 8.66 mm was used for
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Figure B.4: Magnetic field hysteresis curve for a typical FFTB stan-

dard quadrupole. The lower curve represents the rising-current mea-

surement.
the measurement. The expected statistical error on the measurement of each value
of Gy is 0.02% of the value itself, and comes from the resolution of the voltmeter,
the precision of the rotating coil frequency, and the stability of the quadrupole power
supply; while the systematic error is expected to be 0.04% of the value of Gy, arising
primarily from possible calibration errors in the coil and the power supply transductor
[85]. Figure B.5 shows the RMS distribution of Gy values at each current used for
measurement.

Let us consider the first two terms in the harmonic expression of Equation B.10,

which in the case of the two-coil system are quadrupole and octupole:
V=L [2K2rfw sin(2wt — ap) + 4K yriw sin(dwt — a4)] + ... (B.12)

‘We can rewrite this with G and the integrated octupole, O, and define the coordinate
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Figure B.5: RMS deviations of the quadrupole field measurements for
all currents. Deviations are shown as fraction of average strength at the
given current. Both rising-leg (dark) and falling-leg (light) are shown.

system such that as = 0:
V = Gyriwsin 2wt 4+ Orf sin(dwt — ay) + ... ' (B.13)

The magnitude of the integrated quadrupole field at 7 = 7 is given by Gy71, and that
of the integrated octupole field is given by Or}. Let us assume that the resolution
of 2 x 10 given for Gy corresponds to a 2 x 10~* resolution of the integrated
quadrupole field at 7. Furthermore, let us assume that this limitation implies the
overall statistical limitation of the measurement of the integrated magnetic field at
71. It therefore follows that the magnetic field due to octupole moment at = r; can
be measured to 0.02% of the magnetic field due to quadrupole moment at r = .
The tolerance on higher-order multipole fields for the standard quads is 0.1% of the
quadrupole field at 70% of the aperture. The coil is capable of measuring a higher-
order even multipole field equal to 0.02% of the quadrupole field, and its radius is



280

75% of the aperture. Because the multipole fields are expressed as a ratio between
two fields, the systematic errors cancel out in this case. Out of 174 multipole content
measurements on the FFTB standard quads (6 multipoles on each of 29 quads), only
3 were found to be at the tolerance stated above, with all others significantly lower.

The primary purpose of the rotating-coil measurements was to determine the
quadrupole strength as a function of power supply current, in order to derive a polyno-
mial for use in the control system. Secondarily, the measurement was to measure the
even-harmonic multipole moments, especially the “allowed” harmonics. “Allowed”
multipole moments are those which arise from construction phenomena which affect
all poles symmetrically. For example, the pole-faces in the FFTB quadrupoles are
not infinite in the vertical or horizontal. The truncation of those pole-faces leads to
12-pole, 20-pole, and 28-pole moments. As described above, the “allowed” multipole
contents were found to be quite small relative to the construction tolerances. The
sextupole component not an allowed harmonic, and is therefore expected to be small.
However, the sextupole field is proportional to r%, which is the lowest power or r after
the quadrupole. Therefore, relatively small construction errors at the pole-face will
translate to larger sextupole errors near the center of the magnet, where the beam is
present.

After the rotating-coil measurements described above, each FFTB standard quad
was disassembled in order to insert its BPM, then reassembled. The reassembled quad
was then placed on a test-stand which was used to simultaneously calibrate the BPM,
measure the quadrupole field to ensure that the magnet had reassembled properly,
measure the magnetic center relative to the mechanical center of the magnet, and
measure the sextupole component. This set of measurements is described below, save

for the BPM calibration which is described in Appendix C.
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Figure B.6: Schematic of the stretched-wire measurement apparatus,
including Stage Controller (SC), Integrating Digital Voltmeter (IDVM),
Spectrum Analyzer (SA), Frequency Generator (FG) and horizon-
tal/vertical driver Switch Box (SB). The mounting table and Coor-
dinate Measuring Machine (CMM) are not shown.

B.3 Stretched-Wire Measurements

Figure B.6 shows a schematic diagram of the apparatus used for the stretched-wire
measurement. A gold-plated tungsten wire 35 um in diameter is strung through the
magnet aperture, and attached to a 150 gram mass; the resulting wire tension is near
the breaking tension. The resulting wire sag over the full 1.8 meter length of the
wire is 12 pm; however, the wire position is measured at stations at either end of
the magnet, and the sag between the end of the magnet and its center is close to 1
pum. The wire is made parallel to the magnet at the 0.05 mrad level via a Coordinate
Measuring Machine (CMM), not shown in Figure B.6.

Once the wire is installed, the oscillation drivers are activated, and driven by a
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frequency-generator at the wire resonant frequency of 83 Hz. With the quadrupole
magnet excited by 165 amperes, the vibration results in an EMF across the wire.
Like the rotating-coil method described above, the EMF at the driving frequency
is due to the dipole term in the multipole field, and the second harmonic (166 Hz)
is due to the quadrupole term. The EMF is monitored by attaching the wire to a
spectrum analyzer (SA). By exciting the vertical driver and moving the wire in the
horizontel until the 83 Hz component of the signal is nulled, the horizontal center of
the quadrupole can be located. Similarly the horizontal driver allows determination of
the vertical center. A modest extension of this technique [86] allows determination of
the magnetic center in x, y, and z. The coordinate system of the computer-controlled
motion stages is then set to the point determined by this procedure.

In order to measure the magnetic field and sextupole content, the stretched wire
is moved (via the stages) by a known vertical or horizontal distance about a central
point (z,%). The wire is in this case connected to an integrating digital voltmeter
(IDVM). Given a magnetic field described by Equation B.7, the integrated voltage
can be written as a function of the svsl'eep center (z,%), the total sweep distance §, in

the horizontal and 4, in the vertical, and the field components:

2
det = & {GN:H- Sn(z? -y SJIV;"] (B.14)
Ss62
-~ & [GNy + 2Snzy + Ss(z® — y?) + —15—2—2] .

The grid of measurements used is shown in Figure B.7. A grid of 25 center points,
from -4 mm to +4 mm in x and y, with a horizontal sweep of 2 mm and a vertical sweep
of 2 mm, gives a total of 50 measurements, with the wires never more than 5 mm from
the center of the magnet in x or y. The total grid of 50 measurements was repeated 10
times in order to determine the repeatability of individual measurements and to allow
sufficient redundancy to perform cuts. Once cuts to the data had been applied and
appropriate error-bars for each data point established, the map of (z,y, 6z, &, f Vdt)
data was fitted to Equation B.14 via a MINUIT-mediated x? minimization. In the
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Flgure B.7: Arrangement of the 50 stretched-wire sweep measurements
in the quadrupole aperture.

fit, horizontal and vertical offsets, and roll angles, are included as fit parameters.
In order to determine some possible sources of noise in the system, several test

measurements were performed. These tests are described below.

B.3.1 Test of the Stretched-Wire System

The first test of the stretched-wire system was a null-field test: the system was
installed as shown in Figure B.6, the vibrating-wire operation was performed to locate
the center of the magnet, and the magnet was then turned off. After a suitable period
of time, the measurement sequence described above was initiated. This would allow
determination of the background noise in the system with no magnetic field present.

For each of the 50 points in the (z,y, d;,6,) grid, the average [ V'd¢ over 10 mea-

surements and the RMS were determined. These are plotted in Figure B.8. Because
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Figure B.8: Distribution of average integrated voltage and RMS devi-

ation from same over the grid of null-field measurements described in

the text.
all the values are clustered about an RMS width of 0.080 uV - sec, it follows that
the background noise in the system, with the magnet power supply deactivated, is
approximately 0.080 pV - sec.

A second, complementary test of the system was also performed. In this test the
magnet power supply was activated, the magnet excitation current was set to 165
amperés, and the wire moved to the center of each sweep on the grid, but no actual
sweep was performed. Instead the IDVM integrated while the wire was nominally
stationary, and the 250 resulting [ V' dt measurements were expected to be consistent
with zero, with some RMS.

When the stationary-wire test was performed, it was determined that the average
of the measurements was indeed close to zero, but the RMS in this case was 0.38
BV - sec, significantly larger than in the zero-field case. Why this should be the case

is not known. One possibility is that the supposedly-stationary wire is in fact moving
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in small increments as the feedback loop for the wire stages operates, but in this
case the signal strength at each point should correlate with its position, which was
not seen. A second stationary-wire test, with the magnet power off, revealed similar
results but a smaller, 0.26 xV - sec RMS value for [ Vdt.

An additional feature of the powered stationary-wire test was a series of “noise”
events, in which the value of a measurement at a given location was several pV - sec
different from the average at that location. This feature was not seen with the magnet
power supply off, and was believed to be caused by other electrical devices in the
vicinity briefly drawing power away from the magnet power supply. The noise events
were found to appear with a simple periodicity in the measurement process. When
the length of time required for a measurement was increased, the frequency of the
noise events was observed to decrease, indicating that the events were periodic in

time and not in measurement number.

B.3.2 Results of the Stretched-Wire measurement

The FFTB standard quads were measured in the stretched-wire technique at an ex-
citation of 165 amperes, to be consistent with one of the data points taken with the
rotating coil. At each point in the grid, 10 x-sweep measurements and 10 y-sweep
measurements were taken, for a total of 500 points. The 10 x-sweep measurements
were then combined to form an average and an RMS, after filtration of noise events
such as those described above. This reduced the total dataset to 50 measurements
and 50 RMS values.

A MINUIT fitting engine was then employed to fit the parameters in Equation
B.14 to the 50 data points, using the RMS values divided by /m as uncertainties,
where m is the number of readings averaged to give a single data point. Because of the
filtration of noise events, m is not constant for all data points. It is interesting to note
that the RMS values observed at each data point were in general consistent with the

0.08 1V - sec observed for the zero-field swept-wire measurement described previously,
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and not with the larger values observed for the stationary-wire measurements.

Early results with the fit as described were not encouraging. A search for sys-
tematic errors determined that the Gy value obtained using only horizontal sweep
data was different from the value when only vertical sweep data was used. The fit
was expanded to include a seventh parameter, a global scale factor by which horizon-
tal position data was multiplied to make it consistent with the vertical data. This
value was found to oscillate about 0.997, and the convergence was improved with its
inclusion, but the value of x%/v was still too high. '

An additional source of error was speculated to be the stages and/or their con-
troller. It was presumed that the stages might have some overall positioning accuracy
over millimeters of motion which was larger than the micron-sized precision of the
system: over the 10 measurements of a given (z,%, 6z, §,) sweep, the stages were re-
producibly returning the stages to the same location, but that location was not the
location expected by the measurement program or reported by the stage controller.
An ad hoc assumption of a 3 pm positioning error in each plane was found to fit
the data relatively well, and also to fit the data obtained in the CCS sextupole mea-
surements (see below). This overall accuracy number is a systematic error in that it
cannot be reduced through additional measurements of the same data; consequently
it forms the main source of error in the measurement. It is worth noting that magnets
which were measured under cool-weather conditions reached x2/v values much lower
than 1, indicating that the temperature in the equipment room was a factor in this

source of systematic error.

Standard Quadrupole Measurements

In addition to the systematic errors listed above, six of the FFTB standard quads
measured by this procedure had extremely anomalous results: while nothing quali-
tatively wrong appeared in the data, these magnets reported a very large sextupole

component, a scale-factor quite different from 1, and a poor x?/v value (1000-2000
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Figure B.9: Comparison of the stretched-wire Gy measurements (dia-
mond) with the rotating-coil values (square).

per 43 degrees of freedom). The cause of this difficulty was never isolated, and there
was some concern that the cause was an actual problem with the magnets, especially
since five of the six magnets were consecutive in serial number (specifically magnets 2,
4, 5, 6, and 7; magnet number 3 was never measured). However, magnet number 23
was originally found to be anomalous, but was remeasured and found to be normal.
This lends weight to the possibility of an undetermined measurement error. Magnet
29 was also anomalous, but no remeasurement was made. Since 25 magnets were
measured, & total of 19 yielded non-anomalous results.

Figure B.9 shows the measured Gy values for the FFTB standard quads with 165

amperes excitation current, from both the stretched-wire (diamond) and rotating-coil

(square) measurements. The rotating-coil measurements have been scaled from the

precise current at which they were performed to the precise current at which the

stretched-wire measurements were made for direct comparison. In several cases, the
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Figure B.10: Fractional deviation between the rotating-coil and
stretched-wire measurements of Gy for FFTB standard quads.

stretched-wire currents were not properly recorded, and the average stretched-wire
current of 165.845 & 0.185 amperes was used; this uncertainty in the current results
in the large uncertainties on several of the scaled rotating-coil measurements. The
resolution of the stretched-wire system is 0.007 T/m, or 0.025%.

Figure B.10 shows the relative difference in the two measurements: [Gy(wire) -
G (coil)]/Gn(coil). Overall, a scale factor of 0.2% is indicated, with the rotating coil
reporting the larger strength number. Some fliers exist, indicating that the systematic
discrepancy is not quite so simple. In addition to the 0.3% systematic error from
the scale factor, other possible sources of error include: the transductor used to
measure the magnet current; an overall scale factor to the wire-mover stages; and
hysteresis-related errors in scaling the rotating-coil measurements to the stretched-
wire currents. Nonetheless, the £0.2% agreement indicated in Figure B.10 indicates

that no unacceptable damage occurred to the quads during BPM installation, and
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Figure B.11: Measured quadrupole roll angles, in milliradians. The
distribution is more indicative of the precision with which the magnet
icta;réllge placed on the test stand than of any characteristics of the magnet
that the stretched-wire technique used here is an adequate one, with potential for
improvement through vigorous elimination of systematic errors.

Figure B.11 shows the fitted quadrupole roll angles relative to the coordinate sys-
tem of the wire stages. The resolution of this measurement is close to 80 urad. It was
initially hoped that the fitted roll angles could yield some insight into the orientation
of the quadrupole field with respect to the mechanical split-planes of the magnet;
however, the few magnets which were repeatedly measured did not yield repeatable
angle measurements. The roll angle is therefore primarily a measure of the accuracy
with which the magnets can be installed on the test stand. The extremely high res-
olution of this technique, however, makes it a potentially useful one in developing a
planarized NLC final focus at the milliradian level, as discussed in Chapter 7.

Finally, Figure B.12 shows the overall sextupole content of each of the 19 magnets
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Figure B.12: Total sextupole content of the FFTB standard quads, as

measured by the stretched-wire technique. Dashed line represents the

construction tolerance described in the text.
with good convergence: Sror = \/m The resolution of each of the normal
and skew components was approximately 1.0 T/m, for a resolution of Sror of 1.4
T/m. The dotted line represents the tolerance value, 3.5 T/m, corresponding to
a magnetic field from sextupole component equal to 0.1% of the field from quad
component at a radius which is 70% of the aperture. All but 1 of the magnets lie
at or below the tolerance, to within the measurement error. Note, however, that
the construction tolerance is approximately twice the optical tolerance established in
Chapter 2. Because the optical tolerance was set for a 2% increase in spot size, the
logic of quadrature arithmetic indicates that the spot size increase from sextupole
aberrations at the construction tolerance is close to 8%. It is worthwhile to note that
the normal and skew sextupole components did reproduce on magnets which were

removed from the test stand and later reinstalled.
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Figure B.13; Measurements of the CCS sextupole magnet Sy values
from stretched-wire technique (diamonds) and from rotating-coil tech-
nique (squares). The discrepancies are larger than the discrepancies for
the quads; however, in the absence of precise excitation current data
for the stretched- wire measurements, the discrepancy is equivocal.

CCS Sextupole Measurements

The four CCS sextupoles were measured using the stretched-wire technique, with a
sextupole excitation current of 215 amperes. The actual currents were not recorded,
and therefore no direct comparison with the rotating-coil are possible. However,
figure B.13 shows the stretched-wire measurements (diamonds) and the rotating-coil
measurements scaled to 215.0 amperes (squares). The agreement is good at the
level of 0.5%. The resolution of the sextupole component is about 1.2 T/m; at the
excitation level of 1630 T/m, this corresponds to a resolution of 0.07%. The value of
x*/v fell between 0.8 and 1.2 for the four measurements with 3 pm positioning errors
assumed. The roll angles were all within 2.5 milliradians of zero.

The symmetries of a sextupole magnet do not require that the dipole field and

quadrupole field vanish at the same point in the magnet. In the fit of the sextupole

S
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magnets, the fit was configured to adjust the origin of coordinates such that the
quadrupole terms were nulled, and to fit horizontal and vertical dipole kicks at the
origin. The largest such field observed was 6.7 X 1074T - m, corresponding to a kick
to the 46.6 GeV electron beam of 4.3 prad. The resolution of the dipole field fit was
1.0 x 10T - m.
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Appendix C

Beam Position Monitor

Calibration

The FFTB Beam Position Monitor (BPM) system is a crucial element of numerous
tuning and stabilization algorithms, including the launch and energy feedbacks, beam-
based alignment, dispersion, lattice diagnostics, wire scanner jitter correction, and
CCS stabilization feedbacks. In future linear colliders the BPMs are expected to
be even more important, as they can monitor the behavior of every pulse without
impacting the luminosity.

Because of its importance to the FFTB and the future linear collider, a procedure
for bench-testing the FFTB BPMs was developed and implemented as part of the
overall magnet fiducialization described in Appendix B. In order to understand the
bench-testing, it is also necessary to summarize the theory and practice of stripline

beam position monitors.
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Figure C.1: Infinite line charge in a metal pipe of radius a. The induced
- surface charge at locations (a, ) around the pipe is a function of the
charge ¢ and its position (r, ¢).

C.1 Principle of Operation of Stripline Beam Po-
sition Monitors

Consider the situation depicted in Figure C.1: an infinite line charge passes through
a metal pipe of radius a; its position in the pipe’s coordinate system given by (r, ¢).
The surface charge-density og at all points (a,8) on the pipe can be derived in a
straightforward manner from Poisson’s equation [87]:

q a2 -2

oe(e,6) = 2ma a? + 12 — 2ar cos(0 — ¢)’ 1)

where q is the charge per unit length of the source term. Equation C.1 can be rewritten

as an expansion in powers of £ by performing a Fourier cosine transform:

ogla,d) = % [1 +2 i (-z)n cosn(f — ¢)] . (C.2)

n=1
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Equation C.2 can be further transformed by noting that, in the coordinate system in
use in Figure C.1, x = r cos ¢, y = rsin ¢, where x and y are the cartesian coordinates

of the line charge in the pipe:

oq(a,6)

L{1+2[£c050+gsin9] (C.3)
2wa a a

+

2,0
2 [:c azy cos29+2% sin20]

3 _ 2 2 _ .3
2 [%cos39+ %Tysin%] + }

Let us now consider only the charge density induced at four points around the

+

pipe wall, specifically those points which are the furthest North, South, up and down
{denoted henceforth by N, S, T, B). These directions correspond to § = 0, =, %, 37",
respectively. Table C.1 shows the contributions to the charge density at each of these
points from various orders of the expansion in Equation C.3, normalized to-;Z-. Table
C.1is instructive in that it indicates how knowledge of the surface charge distribution
can allow estimation of the location of the source charge in the pipe. The first-order
expressions for the beam horizontal and vertical positions are given by:
n= M, hy = M-
(N+9S) 2(T +B)

(C4)
Furthermore, the sum N+4-S+T-+B gives an excellent estimate for the charge g, in that
all z and y dependence cancels out of this summation.
Let us examine the approximations in Equation C.4 more carefully. The expression

for z, yields:

22—3 2
I -l (C.5)

142850 .,
24 .2

x[l—m -I;y +}

a
A similar expression holds true for y;:

2+ 2
y1=y[1—z = +] (C.6)

T
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Table C.1: Contributions to charge density at North, South, Top, Bot-
tom locations in units of 5.

At a given location (z,y), therefore, the approximation of the source-charge location
in Equation C.4 is good up to an overall scale factor; and the scale factor is identical for
the two cartesian axes. The error induced by this method of position determination,
therefore, is in its radial distance from the center of the pipe; the angle within the

pipe is determined correctly. Furthermore, a second approximation of the form:
2, .2 2 .2
a? + 23 +
e L+ B50), gy (142200 (©7)

will result in an overall radius error which is on the order of (2)4. Note that while
the sum N-+-S+T+B contains no dependence on the location of the charge, using this
sum in the denominator of Equation C.4 would result in a more complicated form for
the nonlinearity correction, including an error in the angle determination.

While the computation of position estimates from surface charge densities is of
academic interest, surface-charge meters are not a standard component of a scientist’s
toolbox. In order to construct an actual BPM, it is necessary to take advantage of
the pulsed nature of the beam. When the beam is not present in the pipe in Figure
C.1, the surface charge density on the pipe is isotropic; when beam is present, the
charge is redistributed as shown in Equation C.1. Therefore, the arrival of the beam
must cause the charge to flow between the two distribution states, and this flow of

charge can itself be monitored.

Figure C.2: Schematic diagram of a stripline BPM. A strip of length L
is inserted into a metal pipe a distance a from the centerline. The gap
between the strip and the wall, da is determined to give an impedance
Zy equal to Ry. For simplicity only one strip is shown.

Consider a situation as shown in Figure C.2: a stripline is inserted into the beam
pipe a distance a from the center of the pipe; the distance between the stripline and
the pipe wall, da, is adjusted to give an overall impedance Z, to the stripline-pipe
system. The strip is terminated at either end with resistances Ry = Z,.

In the absence of the beam, the stripline is free of surface charge. When the
beam arrives, a surface charge is attracted onto the stripline and the pipe in order
to maintain overall electrical neutrality; in the case of the stripline, the charge is
transported through the resistor. The current flowing through the resistor causes a
voltage to appear across the resistor, which can be monitored by a voltage-measuring
device. The time-structure of the voltage surge is close to a delta function, and will
be so treated in the subsequent formalism. In the case of an electron bunch, the
stripline must be at a voltage below ground to attract positive charge, and so the

surge is negative in polarity.
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Figure C.3: The voltage detected at the upstream end of a BPM
stripline consists of a delta-function pulse of amplitude V;, followed
by a pulse of amplitude —V}; a time 2L /¢ later.

The beam propagates down the pipe at the speed of light, and the surface charge
on the stripline (ideally) does so as well. At the downstream end, the surface charge is
returned to the ground through the downstream termination, causing a voltage delta
function which is equal and opposite to the initial pulse. This voltage propagates back
up the stripline to the upstream resistor. As a result, the voltage-measuring device
detects a negative voltage pulse and a positive voltage pulse, separated in time by %,
as shown in Figure C.3. The relative amplitude of the surges as a function of stripline
position and beam position are as shown in Equation C.1. While this description
of a BPM stripline has assumed a matched termination at the downstream end, it
can be shown that the upstream signal is the same regardless of the resistance of the
downstream termination [88].

The processing electronics which is used to detect the voltage surge shown in
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Figure C.4: |V (w)], normalized to the maximum voltage of |V|v/2/+/7.

Figure C.3 has a finite bandwidth, while the surge itself has components up to infinite
frequency. A voltage V(t) = Vo[6(t) —~ 6(t — 2L/c)] can be Fourier-transformed:

\/% /_ : V(t)etdt T (©8)

\/—‘% [1 — exp(2iwL/c)].

The absolute magnitude of the voltage surge in the frequency domain, |V (w)], is given

by:

V(w)

7)) = 'Vj'ﬂ ol (©9)

The value of |V(w)| is plotted in Figure C.4. Note that the magnitude of the signal
achieves a maximum at a frequency v = %, and zeroes at v = 7.

The FFTB standard BPM has a stripline length of 457 mm [89], corresponding

to & maximum voltage at v = 164 MHz. The bandwidth of the electronics used for
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processing is on the order of 30 MHz [88]. In this low-frequency limit, |V (w)| ~
L‘Lf"/;‘/—i |“’—c"‘|, thus the signal strength increases approximately linearly with the stripline
length. The frequency response of the cable used to transport the signal from the
BPM to the electronics will also tend to attenuate higher frequencies more than
lower frequencies, leading to enhanced low-frequency components. The processing
electronics must amplify the signal from the BPM striplines, detect the peak, and
measure the peak pulse height. This pulse height is digitized and the resulting digital

words from the four striplines are used to compute the beam position and charge.

C.2 Calibration of Stripline Beam Position Mon-
itors

In the previous section, we saw that the signal at the digitizer output is a function
of the BPM stripline unit, the processing electronics, and the cables between the
striplines and the electronics. The system can be subject to offset-type errors which
result in offsets in the measured positions relative to the actual beam position, and
to gain-type errors which result in scaling factors and nonlinearities in the BPM
response. Each segment of the system is therefore subject to vigorous calibration in
an effort to eliminate these errors.

The cables used to carry the four stripline signals out of the tunnel are matched
to within 100 picoseconds, or roughly 1 part in 1000, to optimally match the signal
attenuations within a given BPM [90]. Electronics calibration is accomplished by
introducing the signal from an external pulser to the two channels (N/S or T/B),
and comparing the digital words which are generated [91]. While the cable matching
is done at installation only, the pulsers are a component of the BPM processing
hardware and can be used to calibrate the electronics at any time.

The BPM calibration was accomplished on the same test stand used to measure

magnetic fields and magnetic centers, described in Appendix B. In this case, the

Figure C.5: Wire grid positions used for BPM calibration.

stretched-wire was connected to a pulse generator which emits 20 nanosecon'd pulses;
these pulses excited the striplines in the same way that the electron beam would. A
single channel of BPM electronics was then used to read out each of the four strip
signals in turn, and these numbers were combined to reconstruct a BPM position
measurement, (z1,y1), as in Equation C.4.

As in the magnetic measurements, the stretched wire was positioned at different
locations about the BPM aperture via the moving stages; the BPM striplines were
read out at each location. In this way a map of (z1,y1) as a function of (z,y) can
be constructed. Finally, the map between estimated BPM positions and known wire
positions was fitted, with an overall scale factor and horizontal and vertical offsets
parameters to be determined. In this way, the contribution to scale factor and offset

which is purely a function of BPM geometry and installation can be determined.
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Figure C.6: The effective value of a/2 determined by bench tests with
st%retched wire and pulser. The dashed line represents the average value
of 5.28 mm.

C.2.1 Details of the Procedure

The grid of wire positions used is shown schematically in Figure C.5. The furthest
position from the BPM center is (+3 mm, +3 mm), with a total distance from the
origin of 4.2 mm. This distance is approximately 35% of the total radius of the BPM,
which results in a 12% discrepancy between the lowest-order position estimate and
the actual position. Consequently, the fitting algorithm includes the (£)? correction
term in Equation C.5.

While the electronics used with actual beam is capable of measuring with a res-
olution of 1 um, the electronics used for this application is somewhat more coarse
in its resolution. Furthermore, the pulse used on the wire is much longer and much

lower in amplitude than the beam, resulting in extremely weak signals. As an ad hoc
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Figure C.7: Results of bench-test measurements of distance between
BPM electrical centers and quadrupole magnetic centers.

assumption, the total wire-positioning resolution was assumed to be 20 um in x and
20 pm in y. This error includes the possible scale factors and positioning errors in
the wire, as well as the electronics readback resolution. A more detailed study of the

repeatability of measurements was not performed.

C.2.2 Results of the Procedure

From purely geometric considerations, scale factor between (N-S)/(N+S) and the
beam horizontal position was expected to be in the neighborhood of 5.75 mm, while
POISSON simulation reported a scale factor closer to 5.6 [88]. As shown in Figure
C.6, the actual measured scale factor averages 5.28 mm, with an RMS fluctuation

over the ensemble of approximately 4%. The expected resolution of the fitted value
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is approximately 20 pm, or 0.4%. The fitted scale factor disagrees with the simple
geometric calculation by 8.2%, and with the POISSON calculation by 5.9%. Beam-
based measurements described in Chapter 4 indicate that the 5.28 mm value may still
be 12% too high. The cause for this discrepancy is not known.

The location of the electrical centers of the BPMs with respect to the magnetic
centers (determined via vibrating the wire, see Appendix B) of their respective quads
is shown in Figure C.7. With the exception of a one flier in x and one in y, the
horizontal separation averages to -3 um with an RMS of 64 um, and the vertical
separation averages to 34 um with an RMS of 62 um. The expected fit resolution

from the bench-test procedure is approximately 40 um in each plane.
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