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ABSTRACT. The properties of periodized Daubechies wavelets on [0, 1] are detailed and con-
trasted with their counterparts which form a basis for L2(R). Numerical examples illustrate
the analytical estimates for convergence and demonstrate by comparison with Fourier spectral
methods the superiority of wavelet projection methods for approximations. The analytical
solution to inner products of periodized wavelets and their derivatives, which are known as
connection coefficients, is presented, and their use is illustrated in the approximation of two
commonly used differential operators. The periodization of the connection coefficients in
Galerkin schemes is presented in detail.

[1]. INTRODUCTION

Wavelets are finding a well-deserved niche in such areas of applied mathematics and
engineering as approximation theory, signal analysis, and projection techniques for the
solution of differential equations. While the concept of wavelets is not conceptually new
(1] (2] [3], the past fifteen years have produced much of the theoretical underpinnings for
the concept, as well as the generation of new wavelet families and the exploration of their
potential in various areas of applied science {1] [2] [3] [4] [5].

Wavelets have several advantages: (1) they have compact support or exponentially
decaying support; (2) their continuity properties may easily be increased, albeit at the
expense of a larger domain of support; (3) for a given spline order, a complete basis
may easily be generated by simple recurrence relations; (4) in the context of projection
techniques, their convergence properties are as good as or better than Fourier methods,
and they permit the analysis of extremely local functional behavior without the need for
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windowing and with little or no bias from global behavior; and (5) the manner in which
the space is broken down into a family of multiply-enclosed subspaces enables spatial or
temporal function multiresolution analysis.

To date, research has focused on compactly supported wavelets [2]; basic wavelets [3];
and smooth, exponentially decaying wavelets [6]. All of these wavelet families form a basis
for L%(R). Work is currently under way on the generation of wavelets that are capable
of spanning other classes of function space and/or domain. For example, Meyer [3] has
shown how compactly supported wavelets can be made to form a basis for L2([0,1]). He
generates the periodized family by wrapping the L%(R) basis on a torus.

This report shows in detail how such a wrapping procedure is accomplished using
Daubechies wavelets. The properties of the resulting wavelets on L%([0,1]) are then con-
trasted with more standard Daubechies wavelets, which are now extremely popular in the
signal processing community. This study also compares the convergence characteristics of
periodized wavelet interpolation of functions with the characteristics of the Fourier spectral
method.

The final section of this report is devoted to a derivation and numerical calculation of
connection coefficients involving periodized Daubechies wavelets. Connection coefficients
are matrix structures that result from the evaluation of inner products

— (d dy) dn
Ui = [ ool e,

where d; is the number of differentiation with respect to z of the scaling function ¢ =
w(x). Inner products arise naturally in the context of the Galerkin solution of differential
equations. The name for these inner products was coined by Latto et al. [7], who developed
a computational method that avoids the pitfalls of quadrature techniques. We use the
technique of Latto et al. to calculate connection coefficients for the periodized Daubechies
wavelets. A sample table of these coefficients appears in the appendix. Also included in the
appendix is information on how to obtain these and other tabulated values of connection
coefficients from the Mathematics and Computer Science Division at Argonne National
Laboratory.

1.1 Wavelets and Multiresolution Analysis.
The value of wavelets hinges on their ability to perform multiresolution analysis. A
multiresolution analysis is a nested sequence

Vo C Vi C...C LAR)

satisfying the following properties:

(1) ﬂjez V;=0.

(2) clost(U]-Ez Vi) = L*(R).

(4) There is a function ¢ € Vj, such that{po r(z) = ¢(z — k)}sez forms a Riesz basis
for Vj.
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The term ¢ is called the mother scaling function since, from (3), there exists {h¢} € 12
such that
o) =V2 S 22— )

keZ

This relation, called the scaling relation, will also hold for ¢(2z) and, by induction, for
@(27x). In accordance with the notation in (4), we denote the translates and dilations of
@ by _

ik(z) =252z ~ k).

The set {¢; r}rez forms a Riesz basis for V;. We define W; to be the orthogonal comple-
ment of V; with respect to Vj;,. Just as V; is spanned by dilations and translations of
the mother scaling function, so are the W;’s spanned by translations and dilations of the
mother wavelet. The mother wavelet is defined by

W(z) =v2 Z(—l)k"lh_k+1+2M¢1,k(x)a
k

with M a particular integer. Daubechies [2] constructed compactly supported wavelets and

scaling functions using a finite set of nonzero { hk}}cv:'ol scaling parameters with N = 2M

and Z,[::)l hi =+/2. With these scaling parameters, the recursion formulas generate the
desired orthogonal wavelets and scaling functions with supp(¢) = [0, N — 1]. Henceforth,
these will be the wavelets we shall use, which we refer to as DN or Daubechies wavelets
of order N. Values for ¢ are calculated using the scaling relation as indicated in the
following procedure. First, the values it takes are determined at integer points. Then
at the dyadic rationals at level 1 (the dyadic rationals at level j are D; = {Z}iez);
using that information, we calculate the values at DN2 and so on, until ¢ is defined at
the dyadic rationals at all levels. Since the dyadics are dense in the reals, we simply
extend ¢ continuously to R. This procedure creates a function that is continuous but not
differentiable for DN = 4, differentiable but not twice differentiable for DN = 6, and with
increasing regularity for increasing DN [2]. The nature of the scaling relation guarantees
that ¢ will be discontinuous in some derivative [8]. This procedure is easily accomplished
computationally.

Another pleasing feature of these wavelets is their compact support. Whereas Fourier
methods return global results, with compactly supported wavelets one can easily analyze
short-lived events or pulses. Wavelet projection methods avoid distortion that might result
from a local analysis with a windowed Fourier transform. As we shall see in the next section,
compact support also makes the periodization of these wavelets an elegant process.

1.2 Other Properties of Wavelets.

In addition to items (1)—(4) mentioned above, wavelets have a number of other inter-
esting properties. These will be given without proof. For further details, see Daubechies
(2] or Chui [1].

(5) {&Pj,k}jZO.keZ is an orthonormal basis for L?(R).
(6) Visn =V, W,
(7) L*(R) = clos2(Vo B2, W)
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(8) {wo,k:%;k}j>0kez is an orthonormal basis for L?(R).
(9) {9 kY150 < ) < J <1,k €Z}is an orthonormal basis for L*(R).
(10) f_:o p(z)dzr = 1.
(11) Zozocez po i = 1.
(12) [Z p(z)efde =0:k=0,...,M — 1.
(13) {=*}3! € Vo
Item (6) is really the heart of multiresolution analysis and provides wavelet-based analysis
with a distinctly different resolving quality in contrast to spectral methods: to go to a
higher resolution of spatial scale, one simply adds on the next wavelet level (the next
W;) as implied by item (6). At some given level (say, with a representation in V;), the
multiresolution property guarantees all spatial scale information at all coarser levels. In
contrast, with Fourier methods, information about one frequency gives no information
_about other frequencies.

[2]. PERIODIZED WAVELETS

The wavelets developed above are defined on R. For many applications, however,
wavelets defined on a periodic domain are needed. Interestingly, the wavelets defined
above can be periodized with a Poisson summation technique to give periodic wavelets [2]
that possess many of the same properties of their nonperiodic kin. Moreover, for large
enough j, the periodization of ¢;x and ;& is identical to their nonperiodic forms ex-
cept for wrapping around the edges of the domain; and for large enough j, this too can
be reduced to the nonperiodic case for most calculations. As would be expected, many
of the above-mentioned properties are preserved in the periodic case as a result of the
construction by the “scaling” property of the nonperiodic functions and their compact
support.

The wavelets are periodized as follows:

Gikl(z) = Zcp,-,k(w — 1) and 9 ¢(z) = Z“’Jﬁk(” ~ ).

l€Z 1eZ

By construction ¢ and i are periodic and are well defined on [0, 1] since ¢ and % have
compact support. Note that ¢;r = @; if k = k'mod(2’). Thus we shall restrict our
attention to 0 < k < 2/. The same holds for the ’s. In what follows, the properties of
the periodic wavelets will be investigated in detail.

Periodized wavelet bases are not generated in quite the same way as the nonperiodic
versions. In the nonperiodic case, bases are generated by repeated translation and dilation
of the mother functions; but this approach is not possible in the periodic case because
periodization does not commute with dilation. Therefore, the wavelet must be first dilated,
then periodized. Although proof can be shown for the general case, we shall instead show
that the elements in V; for ;7 < 0 are all constant functions. If dilation commuted with
periodization, this would not be true.

Proposition. For j <0, ¢ = 2%,

Proof. Since .
ik =22p(2z — k),
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o4

then

Bik = 25p(2(x ~ 1)~ k)
leZ

Letting y = 27x and summing over [/, we obtain

._)__1

2
Gik=2% Y 1=27.
b=0

0

The most important property to be carried over to the periodized case is, of course,
that the new functions form an orthonormal basis for L2[0, 1].

Proposition. {p;:j > 0,0 < k < 27} forms an orthonormal basis for L2[0,1].
Definition:. {f,g) = [ f(z)g(z)dz, the standard L? inner product.
Proof. We begin by showing that (3,37, k') = 0:

o 1 ) .

(Bim0i' ) =24 [ 5 0@ =) = (2 (2 = 1) ~ ¥)da.
0 trez

Let y = z — I', so that

ol _ ;
(Gik, 33" K) = 278 / Y oz — 1)~ K)p(2 (x ~ I') - k')dz
0 rez

Y - . . .1
25 [ @y 2= ) =kl y - K)o
= yrez

=2 Y [ ey 2 - ke y - K
rez v T

= {@jkraim Pirke) = 85jr Ok,
rez

with | — " = r. Thus @;; and $j ¢ are orthonormal. Next we show that they form a
basis for L?[0, 1].
Choose an arbitrary f € L?[0, 1]. Now consider

f(x) = f(z)x €0,1] = 0z ¢ [0,1).
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f € L*(R) and {p;+} form an orthonormal basis for L?(R), so we have f = Zo<] (Froin)
which, when periodized, becomes

@) =) fle=0= > (Foir) =D (F 54

leZ 1€Z 0<; 0<J
keZ kEZ

This final result is actually a finite sum since, for £ > 27 and £ < 1 — N, supp(p;e) N

supp( f ) = @. Thus f has a representation in the periodized wavelets.
¢

The proof that {@j,k,z/;,v,k 14" >7>0,0 <k <27} also form an orthonormal basis is

nearly identical. Since ¢(z) = iv___—ol hiw(2z — k), we can periodize both sides to get
G(x) =) plz—1)= Z Zhw@(w ~1)—k)
leZ
- Z Z hep(2(z — 1) — k)
P
= Z R, k().
k

Thus we have an orthonormal basis that still has a scaling relation. This means that in
comparison with the nonperiodic case, we have a chain of spaces Vo C V; C ... C L?[0, 1]
with the following properties:

(13) Ujso Vi = L2[0,1] with V; = span{@; s }i,’.

(14) Njez V; = {constant functions}.

(15) f(z) € V; & f(2z) € Vjt1.

(16) By defmmg W; = span{y; i, k}k- we see that Wj is the orthogonal complement of
Vi in Vi41. So then clos(V, B2, W;) = L*0,1].

Clearly differences exist between the properties of the periodic case and the nonperiodic
case. While they are both multiresolution spaces, the basis functions in the nonperiodic
case are all formed by translations and dilations of the mother scaling function, ¢, while
in the periodic case it is often impossible to derive ¢;41 from @; (for example, consider
$1 and Qo; the latter is a constant function and thus unable to represent the former). It
turns out, however, that there is no relation between (¢;4; and @; for very small ; only.
For j suitably large, the periodic case actually looks exactly the same as the nonperiodic
case. This result is formalized as follows.

Proposition. For j > log,(N — 1), @;0 = ¢j0, where ¢ is extended to R by setting it to
0 away from the unit interval.

Proof. supp(wjo) = [0,277(N — 1)}, so for j > logy(N — 1), supp(pje) = [0,5],8 < L.

Thus ¢j,0(z) = Ezez wjolr —1) = wjo.
v
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Thus, for large enough j, the periodization will affect the functions only by “wrapping
them around” the edges of the domain. This is also a strong argument for using the scaling
functions as trial-and-test functions when using periodized wavelets. By choosing j well,
calculations can be performed as in the nonperiodic case; if desired, a multiresolution can
then be performed easily. Calculations will not be so simple if Vo bi_, Wi is used as a

test space, because, for low k, the basis for Wi is not equivalent to the basis for Wy.

[3]. APPROXIMATION RESULTS AND METHODS

A function f € L?[0,1] may be projected into the wavelet basis and expressed as f =
Yk ak; B ks Where ag; = (f,$; k). Since the calculation of a;, is usually hard to evaluate
analytically, numerical methods must be employed. In [9], a method was developed by
using Taylor series expansions to approximate f. The method requires use of the moment
equations to make O(h") approximations for f € C'™. Unfortunately, in applications such
as signal processing or any area where only a finite number of samples of f are provided,
this method fails or requires interpolation. As an alternative, a function f given as samples
on D; N [0, 1] may be approximated by a function fe V

Deﬁne the samples of f as f € R, with the k-th component of f = f( ). Construct
@;.x from @; x as shown prevxously. This yields, for j > log,(N — 2), a linearly independent

—_—

spanning set for R? . Further, since supp(;0) = [0,277(N — 1), ¢« takes only N — 2
—

values on Dj, and (3j is just the k-th forward cyclic permutation of the elements of

—_—
$j0. The problem is thus reduced to finding the unique representation of f in terms of
— —
{¥j.kYo<k<2i, which is simply the solution of

—
= f,
——)
where A is the very sparse transformation matrix from the standard basis to the ¢ basis.

AN
Define f(z) = 53, v (k)@;,k(x). By construction, fly, = f.

In summary, this method involves solving the inverse problem with a sparse matrix, and
results in a function f with flg[pj = f. In essence, f will be equal to f at all the sampled
values.

We next show the manner in which the periodized wavelets may be used in the context
of functional approximation. Since the wavelets form an orthonormal basis, the orthogonal
projection operators onto V; and W; are defined respectively as

29 1 29 —1
Pi(f) =Y (Fdindbik Qi(f) =D (Fribik)dik-
k=0 k=0

As we have already seen, periodized wavelets provide a basis for L%[0,1] so we have ||f —
P;fll2 — 0, as j — oo. This is a property of any orthonormal basis of L%, but this
particular periodized basis has some additional properties.
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Theorem. If f is a continuous function on the torus, then ||f — P; f||ooc — 0 as j — oo.

Proof. We begin the proof by showing that our projection operator is bounded. P; is an

integral operator of the form P;f(z) = fo Zf o Pk (¥)@;.x(z)f(y)dy. Thus,

1 291

1P;loe < Supaeon) / 1S Bi(0)é54(2)ldy
0 k=0

27—
< supzepol Y @ik(@Bjklleo[27I (N ~ 1))
k=0
21 , .
L ~ ' 2 ~ —
< sup,epn2tl 3 B2 — B)2¥ [@]lw2b 2 (I — 1)]
k=0
2/ —1

< supsefo ]l Z (272 — E)lllélleo(V — 1).

Now, IZZ 32z — k)| < (N = 1)||¢]le since for j > log,(N — 1) there are at most
(N—-1)Fk's such that for a given z, {x} N supp(B; ) # 0. Hence, we have

IPjlleo < G115V ~ 1)%.

If we take f € J;en Vj, then 37 such that V5 > J,Q;f = 0. Thus, P;f = f for j > J.
Ujen V5 is dense in L?[0,1] which is dense in C(T), continuous functions of period 1 on
the unit interval, Finally, by the boundedness of P;, the theorem follows.

0
Theorem. (Daubechies) If f € L'[0,1], then ||f — P;flli — 0 as j — oo [2].
Proof. Since L'[0,1] C (C[0,1])*, we have

12 flls = sup{[(P;f,9)|; g continuous,[|g]lec < 1}
sup{|(f, P;jg}|; g continuous, ||gllcc < 1}

< [ f1l11P5glloo-

l

| Pjlloc is bounded by the previous theorem. Since | J,;cy Vj is dense in L?[0,1], which is
also dense in L'[0, 1], the uniform bound on P; is sufficient to prove our result.

0

These two results are strong, in contrast to the convergence properties of Fourier func-
tional approximations. In fact it has been shown that the continuous functions whose
Fourier series do not uniformly converge are dense in C(T) [10]. In this sense, wavelets
provide a much more general basis than Fourier bases and hence have potentially broader
applications.
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These results suggest that wavelets should do a better job at pointwise approximation,
especially for continuous functions. In Figures 1-4, we illustrate how wavelet and Fourier
functional approximations compare with each other. The figures are graphs of the pulse
function, P(z) = e~1750(z=3) and the step function, S(z) = Zjp,1}, against a 16-term (V)
D¢ discrete wavelet approximation and against a 16-term discrete Fourier interpolation.
These figures clearly show that for the C'* pulse function, the wavelets provide a much
closer pointwise approximation. In fact, the only significant overshoot by the wavelets is at
the base of the pulse. In contrast, the Fourier approximation shows a considerable amount
of aliasing spread over the entire domain. Overshoot on the step function is confined to a
neighborhood of the discontinuity. It is possible to resolve this inaccuracy with the wavelet
techniques while maintaining a low number of approximating terms by continuing to take
coarse approximations away from the discontinuity and projecting onto a finer scale in a
neighborhood of the discontinuity. From these graphs we conclude that the finite-term
wavelet functional interpolation is superior to its Fourier counterpart in approximating
functions that contain a great deal of local information; moreover, it is better able to
capture function discontinuities.

1.0 . -

0.8

0.6 F 7 4

04

03}

0.1+

. l VAN Y,

“0.0 0.25 05 0.75 1.0

FIGURE 1. 16-term Fourier approximation to P(r)
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FIGURE 2. V, wavelet approximation to P(x)
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FIGURE 3. 16-term Fourier approximation to S(z)
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FIGURE 4. V, wavelet approximation to S(z)

To measure the error to which a truncated projection will approximate a desired func-
tion, we shall estimate its convergence. The natural choice of norms with which to measure
convergence is the Sobolev norms. The sth Sobolev norm of a function f is defined as

1l = ( / (1 + 22y P(2)dz) b,

where H*® consists of those functions whose s Sobolev norm exists and is finite. Daubechies
[2] states that the norm for H* is equivalent to

oo = C D L+ 20, 0)")%
ogjkz<02f

Using this result, we easily find a bound for |[f — P, f||2 . For f € H*[0,1],

If=Poflla=1 > (fdiell
F2po<k<?’
-~ 2 1 22'73 ~ 2 1
= D (£ 951 = D 55 h 650
Ik Xk

LYFL

<> %Tz;;<f, 5]
1,k

_ 2_,,3[2 92is(f, szj’k)'Z]% < 277 fll pefo,n-
jik
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The same technique may be used to find error bounds in the H' norm for I < p:

1f = Pofllerony = ( 3 (14 20UF.650%)%
0§]k2<pzf

o (1 4 224(s=D) .
= (Zk:(l + 2211)%‘1“5‘27;7;% b))
b

S (142207073 (37 (1 4+ 2299(f,4h10)%) B

ik
<277 fll e o,y

(M0

These bounds are similar to those on Fourier series {11]. As illustrated in Figures 5 through
8, numerical results confirm the similarity of convergence rates for wavelets and Fourier
methods. In these figures the dashed curve represents the wavelet case. Figures 5 and 6
show the L? difference of P(x) and S(x) at dyadic points with their wavelet and Fourier
approximations, as a function of the number of interpolants. The curves show that the
convergence rates are of the same order.

Figure 5 also shows that for a lesser number of terms the two methods are comparable
in capturing the features of a smooth pulse in the L;, but as the number of terms is
increased, the Fourier method supersedes the wavelet method. Figure 6 shows that the
Fourier method is marginally better than the wavelet method for the step function. The
change in the slope of Figure 5 is due to the spectral shape of P(z): it is exponentially
decaying whilst the step function has a spectrum that decays monotonically. As is well
known, if the spectrum of a function has a finite rate of decay in k then this decay is
observed after some k,. If the Fourier interpolation is truncated below this threshold,
the approximation will be very poor [11]. In Figure 5, the Fourier interpolation of P(z)
becomes acceptable with more than some 64 modes. In Figure 5, however, the Fourier
approximation catches up to the monotonic decay of the spectrum of S(z) quite quickly.
Figures 7 and 8 show the L; approximation error. Figure 7 compares the error for the
smooth pulse function P(x); the wavelet case shows marginally better characteristics for
a small number of interpolants, but the Fourier method is clearly superior for a larger
number of modes. As could have been expected, for the less smooth step function S(z) the
situation is the reverse. For a larger number of wavelet interpolants the L error is smaller
than the Fourier counterpart, as is evident in Figure 8. Again, once the number of Fourier
interpolants is over 64, say, the interpolation is substantially better for the C'*f pulse. For
S(z), however, the wavelet interpolation gets progressively better than the Fourier result.




PERIODIZED DAUBECHIES WAVELETS

0.0
-10.0
200

=

[
Q
]
S
3 -30.0
g

Ui

3
-40.0
-50.0

!
50.0

2.0 3.0 40 50 8.0 7.0
Number of Interpolants (Log scale)

FIGURE 5. L? approximation error for P(z). Dashed curve corresponds
to the wavelet case.
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FIGURE 6. L? approximation error for S(z). Dashed curve corresponds
to the wavelet case.
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To summarize, both methods produce comparable approximations to the two illustrative
problems presented. For a small number of degrees of freedom, if one is interested in data
compression applications, the wavelet method is slightly better than the Fourier method,
in particular, for the C* function. If an adequate number of Fourier interpolants is used,
the Fourier method is better than the wavelet method. On the other hand, if the problem
at hand requires the examination of the L; error, and the function has algebraic spectral
decay, the wavelet method has a slight edge over the Fourier technique.

0.0 T —r

-10.0 +

L1 Error

.30.0 N " i i
3 290 3.0 4.0 50 8.0 70

Number of Interpciants (Log scale)

FIGURE 7. L' approximation error for P(z). Dashed curve corresponds

to the wavelet case.
-1.0 T T T ~r

L1 Emor {Log scale)

5.0 L " — N S
2.0 3.0 4.0 5.0 8.0 7.0

Number of interpolants (Log scale)

FIGURE 8. L! approximation error for S(x). Dashed curve corresponds
to the wavelet case.
[4]. METHODS FOR COMPUTING CONNECTION COEFFICIENTS

In wavelet applications, one often must represent operators in terms of wavelets [12].
An example of such an application is the Galerkin solution of differential equations. The
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formulation of solutions will require integrations of the form

1
dydavdn . (do) (dy)  (dn) _ _ (do) (d1)  (dn)
O krkn =< P ke Pk P >—/O Pka P ks P b AT

n

where ¢(®) = ?T:%' This expression is an n-term connection coefficient. Since ¢ cannot be
represented in closed form for DN > 2 and, by construction, has limited regularity, analytic
calculation of the integral is impossible, and numerical quadrature is often inaccurate as
a result of the wildly oscillating nature of the resulting kernels. An alternative approach
developed by Latto, Resnikoff, and Tenenbaum [7] circumvents some of the difficulty by
exploiting the scaling relation and the moment condition to reduce the calculation to
an eigenvector problem. Their method is designed for nonperiodic compactly supported
wavelets. However, by invoking an extension of the earlier result regarding the equivalence
of periodized and nonperiodized wavelets in Section 2, one may infer that for 7 > log,((N —
1)n), the periodized case yields the same result as the nonperiodized case. For illustration
and for completeness in what follows we adopt closely the general procedure given in
detail in [7] to the 2-tuple case. Several tabulated connection coefficients using periodized
wavelets are included in the appendix of this study.

First, integration by parts is performed repeatedly on the above integral to obtain

dy,da __ d, 0.d2+d;
Qs = (1T

?

where the periodicity of the wavelets has been invoked. By changing variables, we further
reduce the equation to

0,d __ No.d o ad _
kika ™ Qolky—ty = AL, _k,, where d = dy + da,

From these relations it is clear that any 2-tuple can be represented by a A%.

To construct the eigenvector problem, fix d, then solve for {1\%}051«2;‘ by creating a
system of 27 homogeneous relations in A¢ and enough inhomogeneous equations to reduce
the dimension of the associated eigenspace to 1. Although we are using the connection-
coefficient method for the nonperiodized case, we are computing them for the periodic case
(by equivalence), which is where the bounds on k come into play.

4.1 Formation of Homogeneous Relations.

. . Y . d
Fix d, 7 € N, such that cpg-d) is well defined. To simplify notation, denote gag-’ ,Z = &4,

In [7] it is suggested, without proof, that this method also holds for the first d for which
®? is discontinuous. For low-order differential equations, however, DN = 6 or DN =8
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wavelets should provide sufficient regularity. Since for every 0 < k < 27,

m=0

N-1 N-1
AL = / B () Bl (z)dr = / (D hm@m(28))( Y hidf, 54(22))2%d(22)
=0
= 24 Z Z hmhy / ®m(22)8¢, ;. (22)d(22)
m |

=203 3 bt [ @0(0)Ey k(G thus
m ]

N-1N-1

Ad = 2d Z Z hmhlA;i-ka—m'

m=0 [=0

In the above discussion, the integration is over the real line.
This linear homogeneous system can be represented as

AN =274\
—> —

where i\i = {Az}os k<2i- It is worth noting here that if one needs to compute an n-tuple

connection coefficient for j < log,((/N —1)n), then the periodic scaling relation can be used
to resolve each ¢; i into the sum of ¢ ¢’s with j' > log,((N — 1)n). Thus, the reduction
to the nonperiodic case is a universally applicable method.

4.2 Generating Inhomogeneous Relations.
To generate the inhomogeneous equations, we must first assume d < M — 1. The
moment condition then guarantees that

= ZZ\;I,",
€z
where M{ = (z%,p0.1). Setting z = 2/¢ and defining M{ = (2%, &), we have

M =2935(¢?, @) = 292

vl

Mf.

This gives the relation

¢t=>" Mie),
i€z

which, when differentiated d times, yields

dl =" M)

ez

Multiplying by @9 and integrating, we obtain

ZJVII“/QS(C)@?(CMC = d!/CPj,o(C)dC = di27F.

lEZ
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Thus Y, MA¢ = d'27%". The sum over [ is actually over Il < N — 2 since the ¢’s are

compactly supported. Thus, by changing the indices of summation by m = I4+1+4(N —2)
the inhomogeneous equations are

2N -3
d d
Z AmA/Im—-I—(N——Z)’
m=1

-1 d ~

with M = 2= 55 iyt

The linear system formed by the 27 homogeneous equations and the above inhomogeneous
equations has eigenspace dimension equal to 1. Thus, all that remains to specify the system

is to calculate M Id:

Mt = /wdcp(:v —l)dz = /(y +n)*e(y)dy
= /]}; (?)yink‘jw(y)dy

Since M = 1is a previously stated property of the ¢, the above relation is used to evaluate
recursively M # for all .

The linear system is now complete and fixes the values of A¢. Note that while the
scaling relation, which is used to generate the homogeneous relations, exists for periodized
wavelets, currently nothing is analogous to the moment condition that may be used to
generate the necessary inhomogeneous equations. One possible approach is to use the
scaling equation linked with the fact that V] = {constant functions} for j < 0 to find
additional inhomogeneous relations. Problems arise with relating [ @j41,0dz to [ ¢;edz,
however, since dilation does not commute with periodization. While this method could
probably be worked out, the periodic case can always be reduced to an equivalent non-
periodic case for which the method is already well defined. Thus, to compute an n-term
connection coefficient for periodized wavelets, one need only resolve the terms into Vj, for
some j > log,(N — 1)n and apply the above method. This approach takes full advantage
of the equivalence of periodic and nonperiodic scaling functions and circumvents the need
for a connection coefficient method particular to periodized wavelets.

4.3 Periodization of Inner Product Matrices.

The two most common situations that arise in the wavelet Galerkin solution of differ-
ential equations involve 2-tuples and 3-tuples. Periodic conditions require wraparound of
the A entries in 2 in the upper right-hand corner and the lower left-hand corner, assum-
ing that the matrix row index increases from top to bottom corresponding to the dyadic
points in [0,1). The wraparound will produce at most N(N + 1) additional entries in the
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matrix, where [0, V] is the support of the scaling functions. In this section we present
explicit schemes that enable the construction of these matrices. The 2-tuple case is easily
generated, since 2 is a circulant matrix of the form

Q= CiI’C(J\o,Al .. .AN,O, .. .I\_N,A_N_*.l, . '~A—1)

and = +Q7, depending on whether the operator is symmetric or skew-symmetric (see
Section 4.5).

The 3-tuple is somewhat more involved. The Ajr xv have the structure illustrated
schematically in Figure 9a. We call this structure the “index pad.” Let K = 2P — 1, where
the superscript p corresponds to the resolution of the scaling functions. A typical situation
in a Galerkin discretization when 3-tuples are involved would be the calculation of

K

Sk = E Qw1

=0

K
Wherewk,lz E thk,]',[,

=0

where a; and h; are the wavelet coefficients of the projection of real quantities A(z,-) and
H(z,-) into VP, and 2 is the inner product < (,b‘,f.‘(i)?z ¢}13 >. For a given k there is an index
pad in (J,!) over which these indices range when forming wg ; and s. Moreover, associated
with each index (7,!) in the pad there is a Aj» g, where j” = 7 — k and I = [ — k, which
gives the value of Qg ;. It is easier to think of the index pad as having a rectangular
structure in which the entries lying outside of the hexagon of the true index pad are zero.

1=j-N

1=k (1"=0)

=k ("=0)

FIGURE 9A. Structure of Aju kv index pad for 3-tuples in the (j,1)




PERIODIZED DAUBECHIES WAVELETS 19

plane. The index pad corresponds to N = 4 in the region where no
wraparound arises.
First consider the case in which there is no wraparound, that is, for N < k < &/, where
k' = K — (N — 1), the largest index & for which the support of the scaling function lies
entirely in [0,1]. Associated with each (j”,1") in the index pad, there is a connection
coefficient Aj» i». As k is varied, the pad centered at k, moves along the line [ = j in the
(7,!) plane. This is the “regular case” and is shown in Figure 9a.
Next, consider the case k£ > k'. Let £k = k' + 0, 0 < 0 < N — 1. The situation is
illustrated in Figure 9b. The index pad is beyond (j,!) = (K, K). For convenience identify
the following subregions.

Ak-N<L3<K
k—-N<I<K
By=K+144¢,0<¢<0o
=K —-t0<t<N-1
Cygy=K-t,0<t<N-1
[=K+1+4+4¢,0<¢<0o
Dy=K+144q¢0<¢<0o
I=K+14+¢,0<¢<o.

FIGURE 9B. Structure of Aj» g+ index pad for 3-tuples in the (j,1)
plane corresponding to N =4 for k = k' + 2
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Consider a given k, the corresponding index pad is subdivided into the four subsets
A, B,C, D defined above. When index pairs (j,) lie in subregions B, C, or D, periodization
comes into play since the corresponding basis functions have been perlodlcally extended.
We now consider the consequences of this periodization on the s; in detail. Note that sg
will be the sum of three partial sums, summed over subsets of the index pad. Next we
observe that the range of lis k— N <[ < K 414 0. We divide this range into two parts:
k~-N<I<Kand K+1<I<K+1+o0. Fortherange k — N <1< K, the index [ is
not affected by the periodization since { £ K. The index j, on the other hand, produces
a pair (j,() that ranges over the set A and B. Let wii = wf; +w} ;. Then

w};,, = Z hjAj» v, the regular part,
j=k—N
K+140o

“’Z,l = Z hj_g—1Ajn i , the periodic adjustment, and thus
j=K+1

K
1) } :

Ssc = Wi i,
{=0

where, throughout this section, we set 7" =j —kand I" =1 k.
Next we deal with the range K +1 <! < K +1+ 0. In this case the pair (j,1) € CUD.

When (7,1) € C,
K
WEl = Z thJ'H,(H.
j=k—-N

Now the index [ is affected by periodization, so that

K+1+4o

(2) Z Al K—-1WE,I-

I=K+1
When (j,1) € D, both indices are affected by periodization, thus

K+1+o

wig = Y hjxo1Aj
J=K+1

Then,
K+140o

S3) _ G
Sy = I-K—1Wk -

I=K+1

So, for k=k'+0,0 <o <N —1, combining, we have

= s D 4 ),
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We now consider the case when the index pad encounters the left boundary, ;7 = 0,
! = 0, which occurs for 0 < k < N — 1. Schematically, the situation is portrayed in Figure
9c. Denote the following subregions

A0<L,I<k+ N
BO<<I<N-1
—o—~1<53<-1
CO0<j<N-1
—o—-1<1< -1
D:—-og-1<3< -1
-oc-1<1< -1,

where 0 <o < N — 1.

FIGURE 9C. Structure of Ajs x» index pad for 3-tuples in the (j,1)
plane corresponding to N =4 for k=N ~3,0 =2

Again we divide the entire ! range —oc — 1 <! < k + N into two parts: 0 < 1<k + N
and —o — 1 <1 < —1. Counsider the range 0 <! < k + N for which the index pair (7,1)
ranges over B and A. When (7,1) € B, the index j is affected by periodization so that wg
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has a regular part and a periodic part. Let wg; = wf; +w? ,. Then

k+N
wzl = Z thjH,[H y the regula.r part, and
7=0
-1
wz’l = Z hgt14+50M50 0 5 thus
j=—0o—1
k+N

(1) E :
Sy = aQWg, |-

=0

Next we deal with the range —0 — 1 <1 < —1. In this case (j,) € C U D. For (5,]) € C,
we have

N-1
wk,l = E th]'u,lu_
j=0

-1
(2) Z
Then S = AK+1+41Wk, -

l=—0—~1
When (7,1) € D we have

-1
wk,l = Z hK’+]+jAj",l"
j=—0o—1
-1
3
and Sp = Z K 4+1+1WE,I-

l=—0o~—1
Combining, for k =N —0—-1,0< 0 < N — 1, we have

Sp = sgcl) - 522)

+ SSCB) .
The periodization is then complete. The result is the vector {s¢}. This procedure gener-
alizes to the n-tuple case in a straightforward manner.

4.4 Useful Connection Coefficient Relations.

We list a number of identities and relations that are useful in the manipulation of
connection coefficients. Many of these relations appear in [7] and [13]. Except for the
operator inversion relationship, most of the inner product relations can easily be derived
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by invoking integration by parts, translation, and change of variables.

- didy _ da,dy
(1‘) Ql,m - Qm,l
dy,dy di—1,da+1
(19) Adhdz,da — _Adl—lydﬁ'l»ds _ Adl—'lydz,d3+1
dy,dz,ds __ A d2,dy,d3
(20) Al,m - A—-I,m—l
: dy,da,dy _ A d3,d2,dy
(21) Al,m - Al—m,—m
dy
. di,dads d d1\ , 0,ds+i,dgtdstdy —i
(22) Ao = (-1 E :(i>A""‘2 srdsTiiTt

Another relation that is very useful in checking the construction and accuracy of 3-tuple
matrices is the check-sum procedure: the column sum of a 3-tuple matrix must equal a
corresponding 2-tuple vector component for component. For example, Z,}_(__O Q}’S{O = QLo

Lastly, we mention an efficient procedure for the inversion of a first order operator,
which exploits the symmetric or skew-symmetric nature of the matrix, Q = +Q7 so that
the matrix may be diagonalized, Q@ = ®Dq®7. A concrete example of operator inversion
appears in [13].

[5] APPROXIMATION OF DIFFERENTIAL OPERATORS

The spectrum {o;} of the continuous differential operator £ with periodic boundary
conditions on 0 and 1 is discrete. A discrete approximation L of the operator may be found
by projecting the operator onto the space spanned by the periodized scaling functions. The
discrete and continuous operators can be compared by looking at their spectra. By the
Galerkin procedure outlined in Section 4.3 one can form the matrix 2, an approximate
representation of L, in the subspace of periodized scaling functions of resolution p and of
order DN. In this section we examine the usefulness and properties of wavelet projection
techniques for differential operators.

The projection of the differential operator with periodic boundary conditions leads to a
2-tuple Q. Eigenvalues of this matrix may be found by two different methods: the circulant
matrix {2, once constructed, can then fed into an eigenvalue solver (ES); alternatively, one
can make use of the fact [14] that the eigenvalues A of a circulant matrix (EC) are given
by the expression

where a4 is an entry in the first row in the circulant matrix, namely, an element of the
set Ao, Ay...An,0,...A_N,A_Ny1,... A1, and j = 0,1,--- K. In the course of the
discussion on approximations to differential operators, qualitative differences between both
methods will be briefly explored.

The most important difference in the eigenvalue finding strategies is that the numerical
accuracy of EC is controlled solely by the accuracy in the calculation of the A’s whereas in
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TABLE 1. Residual for the least-squares calculation
of A’s used in Q%! as a function of p and DN

DN Residual

-2.1926904736347D-15
-8.4099394115356D-15
-8.3266726846887D-15
-2.6922908347160D-14
-2.1510571102112D-16
4.3905851176973D-15
4.3905851176973D-15
2.2332830029725D-14
3.2980562725271D-14
-1.6563139748627D-14
-1.6766260279716D-11
-3.3533817109376D-11
6.7080697513231D-11
1.3417001243474D-10
2.6830899981444D-10

PSRRI N B e U 5 O Y

PRI LN I e p O

D NIRRT Oy | [

[ LN B a3 WU

ES the accuracy is further controlled by the eigenvalue solver. The A’s were obtained by
the procedure outlined in the preceding section. The overdetermined system was solved
using a QR algorithm from LAPACK [15]. For Q%!, the residual as a function of the
resolution p and the order DN appears in Table 1.

The eigenvalues of Q%! calculated using the ES method are plotted as a function of p
in Figure 10a. The same calculation using the EC expression appears in Figure 10b. The
eigenvalues found using ES are complex conjugate, those found using EC are not. The
computation was performed in double precision using a standard eigenvalue solver from
LAPACK. Four sets are plotted: in increasing magnitude, they correspond to p = 4,5,6,7.
Regarding these figures, one can make three important observations. First, the imaginary
part of the eigenvalues grows only as O(A'), in sharp contrast to a spectral approximation
based on Chebychev bases. Second, we observe that the real parts of the eigenvalues are
comparable to the size of machine precision, again in sharp contrast to Chebychev and
Legendre bases investigated by Trefethen et al. [16]. Third, we saw little evidence of
contamination due to round-off error even for high resolution (in our experiments, we tried
values of p as high as 11), in sharp contrast to the experience of Trefethen et al. with the
above-mentioned bases functions.

The spectrum of the skew-symmetric operator 2”; is purely imaginary and equal to 27k,
where k € Z. Periodicity will lead to the eigenvalue 0 having multiplicity 2. Table 2 shows
the magnitude of the imaginary part of the first few EC eigenvalues, divided by 27, as
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FIGURE 10A. ES approximation to the spectrum of . In increasing
magnitude, for p = 4,5,6,7. DN = 6. Note the scale discrepancy
between axes.

20.0
16.0 " *r-ku? r
x| *
12,0 x x
. " x .
f -
8.0 @@w *—
& ke
b *
4.0 6
%
a a6
3 *
£
5 00 *
E
40 :
! .
| fg;
-8.0 *
k3
] "
-12.0 **" o
*
§ W ¥
-16.0 * gk o

.2019000-!3 -1.000-13 -2.52¢-29 1.000-13 2.00e-13 3.00e-13 4.00e-13 500e-13 6.000-13
real

FiGURE 10B. EC approximation to the spectrum of —sz for two different
resolutions. p = 5 (circles) and p = 6. DN = 6 (stars)

a function of p. It is clear from the table that approximations to the eigenvalue improve




26

JUAN MARIO RESTREPO GARY K. LEAF GEORGE SCHLOSSNAGLE

TABLE 2. Eigenvalues divided by 27 for increasing

p=4

p=26

resolution K = 27 calculated with the EC method. DN = 6

p=238

0.0D0

0.0D0

0.0D0

0.99997222310553

0.99999999300555

0.99999999999689

1.9967784015701

1.9999991102504

1.9999999997795

2.0423307943545

2.9999849535965

2.9999999962590

2.9532542889943

3.9998888924219

3.9999999720194

3.4758292699748

4.9994799193486

4.9999998667457-

3.7208826878105

5.9981781285634

5.9999995232107

4.0025895152829

6.9947814463569

6.9999985996877

TABLE 3. Real and imaginary parts of eigenvalues
of Ed; as a function of DN for p = 6. Real and
imaginary pairs are listed in consecutive rows

DN =4 DN =6 DN =38
0.99999690699928 0.99999999300555 0.99999999998407
1.4701230527654D-14 | 2.3748141621594D-14 | 2.0355549961367D-14
1.9999013641150 1.9999991102504 1.9999999916456
-1.6962958301139D-14 | -1.0177774980683D-14 | -1.5832094414396D-14
2.9992552692402 2.9999849535965 2.9999996834005
1.5832094414396D-14 | 2.7140733281822D-14 | 1.9224686074624D-14

as p is increases and the number of reasonably correct eigenvalues grows as well with p.
Parenthetically, we remark that with p = 6 we can go as far k = 11 for which A;; = 10.8
while retaining at least one digit of accuracy. In the case p = 8 we can go as far as k = 36
for which Az¢ = 35.8.

We examined the dependence of the eigenvalue convergence on both the resolution p
and the order DN. We did this by examining the imaginary part of several eigenvalues.
We found that the rate of convergence was almost exactly 277, while the dependence of
the rate of convergence on DN was essentially quadratic. Table 2 and Table 3 illustrate
the above-mentioned rates of convergence. v

For the ES method we found that when p increases beyond 7, the eigenvalues trace the
same figure as when smaller values of p are used; however, while the real part was strictly
positive for p < 7, the real part can be strictly positive for p > 8. We did not try cases
beyond p = 9. When the same calculation is performed in single-precision arithmetic,
the same sign reversal of the real part occurred for the same values of p. The outcome
is shown in Figure 1la. The flattened elliptical pattern in Figures 10a and 1la is due
to periodization. Figure 11b compares the computation of the 3% operator with periodic
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FIGURE 11A. ES single-precision (circles) versus double-precision (stars)
spectrum calculation of %: p=26

boundary conditions with this condition removed. The effect of removing the periodicity
terms in the operator matrix changes the pattern in the graphs of the eigenvalues, however,
reversal still occurs.

Qualitatively, we find the same type of behavior in higher odd-ordered differential op-
erators. Figure 12 shows the ES approximation to the spectrum of the operator -f:—s with
periodic boundary conditions. The reversal in the eigenvalues as a function of p occurs
for p much smaller than in the first derivative calculation. Moreover, we find the rates of
convergence very similar to those of the first derivative, with the proviso that the basis
functions had to be chosen with sufficient smoothness.

Finally we consider approximation to even-ordered differential operators. For example,
Figure 13a shows the ES spectrum of j"r—zg for periodic boundary conditions for the same
values of p. This case corresponds to the eigenvalues of Q%2. Each eigenvalue has a
complex conjugate, for which the imaginary part is slightly higher than machine precision.
The qualitative differences between the ES and EC methods in the calculation of Ed% are
shown in Figure 13b.

Again, we found the same rates of convergence as in the odd-ordered cases. Table 4
lists the real part of the eigenvalues as a function of p, as given by the EC method.

Using the eigenvalue data corresponding to the three differential operators, we have also
been able to assess numerically the size of the largest eigenvalues. This is a useful estimate,
for example, in the determination of time stability in numerical schemes for the solution
of differential equations. The estimate is that the largest eigenvalue is comparable in size
to Fourier spectral approximations; that is, the largest eigenvalue v/(27)" = O(K™"), for

n

%;, where n = 1,2,3, when K = 2? is large. For small K this is an overestimate.
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FiGURE 11B. ES real part reversal of the spectrum of 24;; for p =6
and p = 8 with periodic boundary conditions (triangles); for p = 6 and
p = 8 with boundary constraints removed (circles)
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FIGURE 12. ES spectrum of f:—s; for p = 4 (circles), p = 5 (squares),
and part of p = 6 (stars)

In summary, we have shown that common differential operators may be approximated
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FiGURE 13A. ES spectrum of H‘%; for p = 5 (stars), p = 6 (squares),
p =T (circles)

TABLE 4. Real part of eigenvalues for Ed;z- divided
by 4n? for increasing resolution p. DN = 6

p=4 p=2©6 p=2_8

1.1518884962509D-14 | 2.7645323910020D-13 0.0D0
1.0033162940157 1.0000135268157 1.0000000529814
4.1847329915128 4.0008582644240 4.0000033890207

10.666776606377

9.0096362703930

9.0000385683104

22.726823972803

16.053060704248

16.000216429062

41.582358732169

25.197220008678

25.000824274322

using wavelets. In light of other studies that compare several spectral approximations to
the above operators {16], the wavelet aproximations compare very favorably. We examined
two methods to obtain the wavelet approximation to differential operators, presuming that
in wavelet applications either technique could arise. We found that for low p or low-
order differential operators, the method’s performance is similar. However, care must be
exercised in interpreting results from the ES method when applied to problems with large
p or large order in the differential operator.

Taking the spectrun calculation of d—dx as an example of the general case, we find that
the ES method always yields complex conjugate eigenvalues, which is not the case for the
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FIGURE 13B. Spectrum of di;'f for p =4 and DN = 6. EC (stars), ES
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EC method. For the EC method, using special care in how the alternating series is added,
the accuracy of the eigenvalue calculation is limited by how well the A’s are computed.
With single as well as double-precision arithmetic we find that the eigenvalues of Q%! are
always complex. Since the size of the real part of the eigenvalues is comparable to machine
precision, it was not possible to asertain numerically whether the real part of the spectrum
decreased uniformly to a particular set of values, or zero, as the machine precision and p

were increased.
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APPENDIX

Tables of Connection Coefficients.

Connection coefficients: 2-tuples for p=0, N=6. Computed in double precision on a Sun
Sparcl workstation using LAPACK solver routines.

AP = — 3.4246575342471D — 04
AP = —1.4611872146119D — 02
AY' = + 0.14520547945205
AP = — 0.74520547945205
AP' = — 3.2049276679778D — 15
AT = 4+ 0.74520547945206
AY! = — 0.14520547945205
AY' = +1.4611872146119D — 02
AY! = +3.4246575342476D — 04

residual = 1.9680979936043D-16
for the least-squares solution of the overdetermined system.

AV = 4 5.3571428571412D — 03
A} = 4 0.11428571428572

AT =~ 0.87619047619048

AV =+ 3.3904761904762

AP! = — 5.2678571428572

Ad =+ 3.3904761904762

AV = — 0.87619047619048

AV = 40.11428571428571

Al = + 5.3571428571430D — 03

residual = 1.1362438767643D-16
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AMO = 4 5.3571428571412D — 03
AZ® = 4 0.11428571428572

AZ0 = — 0.87619047619048

AZ® = 4 3.3904761904762

AZ® = — 5.2678571428572

AZ® = + 3.3904761904762

A29 = — 0.87619047619048

AZ® = 4 0.11428571428571

AZ® = 4 5.3571428571430D — 03

residual = 1.1362438767648D-16

.

Send mail to wavelets@mcs. anl.gov.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.
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