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1 Introduction.

The problem of quark and lepton mass hierarchies and mixing is not addressed
by the Standard Model and has been a thorn in particle theorists side. Recent
developments, both experimental and theoretical, might shed new light on this
long standing issue. On the experimental side, it is the discovery of the top
quark (1} in the mass range of the electroweak scale: in more technical terms,
the top Yukawa coupling is found to be of the order of the gauge couplings.
On the theoretical side, the emergence of string theories as a universal theory
encompassing all known fundamental interactions including gravity provides a
unique framework which allows to relate features of the effective low energy
theory which seemed heretofore uncorrelated. Of special interest for the prob-
lem that we are discussing are: the presence of non-renormalisable interactions
(which can in principle be computed within a given string model); an often large
number of horizontal gauge symmetries, especially abelian, which are sponta-
neously broken at scales which may vary between the electroweak scale and
the Planck scale; a large number of Standard Model singlet scalar fields whose
couplings to ordinary matter are fixed by the latter symmetries.

All these properties have induced several groups to reconsider the original
idea of Froggatt and Niesen [2] which uses nonrenormalisable couplings of quarks
and leptons to electroweak gauge single fields and an horizontal symmetry to
constrain these couplings in order to generate mass hierarchies.The first results
are promising and lead to new theoretical developments and new ways to test
experimentally these ideas.

We address some aspects of this program in this paper. In section 2, we
recall the basic concepts and stress the relevance of some parameters, such
as the supersymmetric p-term. We then proceed to discuss the conmnection
between the phenomenological constraint coming from the quark and lepton
mass spectrum and the more fundamental issue of the anomaly structure of the
horizontal family. We show that, for a large class of models, phenomenology
requires our abelian symmetry to be anomalous, this anomaly being cancelled
by a Green-Schwarz mechanism [3]. This property obviously points towards
string theories. Section 3 is devoted to the the study of neutrino masses and
mixings when one adds to the particle content of the Standard Model right-
handed neutrinos. It is shown that the abelian horizontal symmetry provides
constraints on the neutrino mass spectrum as well as on the mixing angle. In
section 4, we consider another extension of the Standard Model: the spectrum
remains minimal but we allow for couplings which violate R-parity. Again, the
horizontal symmetry constrains these new couplings. Finally, section 5 gives
our conclusions.
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2 Strategies with chiral scalars.

The basic idea, which dates back to the early papers of Froggatt and Nielsen
[2] is to use an abelian horizontal symmetry U(1)x in order to forbid most
Yukawa couplings: in practice all but the top quark coupling or all but the
third family couplings. The hierarchies of fermion masses and mixings are then
generated through higher dimensional operators involving one or several elec-
troweak singlet scalar fields. These fields acquire a vacuum expectation value
which breaks the horizontal symmetry at some large scale and gives rise to the
ordinary Yukawa couplings. More specifically, if # is one such field of X-charge
-1, X-charge conservation allows for example the non-renormalisable term in
the superpotential:

o\
AZQ,"&J‘H.” (H) (1)

where Q); is the quark isodoublet of the ith generation, @, is the u quark-type
isosinglet of the j-th generation, H, is one of the two Higgs doublets of the
supersymmetric standard model. The coupling /\,Uj is expected to be of order
one and the mass M is a large mass scale, the order of which we will discuss
later. The positive rational number n;; is nothing but the sum of the X-charges
of the standard model fields involved, namely Q;, @; and H,:

Nij = Gi + Uj + A (2)
Once # gets a vacuum expectation value, one obtains an effective Yukawa
coupling: .
<@>\™
—\V
vy = (7)) ®

If < 8 > /M is a small number, and if the array of X-charges is sufficiently
diversified, one may implement in the theory various hierarchies of masses and
mixings. Our goal is to select a class of models where such a strategy proves
to be efficient as well as it leads to specific predictions. In this Section, we will
review the possibilities that are open to us in order to decide which lead to the
most interesting and fruitful properties.

The electroweak singlet fields # may appear in vectorlike pairs or as chiral
individuals. In the latter case, the low energy Yukawa matrix will contain zeroes
whenever the excess charge n;; turns out to be negative, since, in this case, the
holomorphy of the superpotential prevents [4] a coupling of the type (1): we will
thus refer to them as supersymmetric zeroes. Such a property may or may not
be a welcome feature, since it may yield too many zeroes in the mass matrix.
One may thus prefer to introduce a vectorlike pair (8, 8) of electroweak singlets
of respective X-charge (—1) and (+1). If they correspond to D-flat directions,
then naturally < § >=< 8 > and the low energy Yukawa couplings will be
of order (< 8 > /M)l irrespective of the sign of the excess charge ni; [5].




The problem with this approach is that a supersymmetric mass term M#4 is
perfectly allowed by the symmetries (unless one assumes an unwelcome fine
tuning, M is a large mass scale) and spoils the D-flat direction, leading to a
large hierarchy between the vacuum expectation values.

On the other hand, we have shown [6] that, in a large class of models with
a chiral 9 field, there exists an interesting connection between the fermion mass
spectrum and the value of the Weinberg angle. More precisely, the fermion mass
spectrum puts such constraints on the X-charges that the mixed anomalies of
the U(1)x symmetry are necessarily nonzero and must be cancelled using the
Green-Schwarz mechanism [3]. As generically stressed by Ibaiez [7], this in turn
fixes also the weak mixing angle which we find equal to its standard value of
sin? @y = 3/8 at the superheavy scale. We will return to this question below
but this attractive feature leads us to concentrate in the rest of this paper on the
class of models with only chiral electroweak singlet scalars (i.e. no vector-like
pair).

2.1 Filling the supersymmetric zeroes through wave func-
tion renormalisation

It has been stressed before {4, 8] that, in this class of models, non-renormalizable
contributions to the fermion kinetic terms may lead to filling the zeroes imposed
by supersymmetry (corresponding to n;; < 0). Let us take this opportunity to
discuss our general strategy. We are considering the effective theory obtained
from a more fundamental theory of typical scale M, well below this scale M.
The fields of the effective theory are, by assumption, those of the Minimal Su-
persymmetric Model plus electroweak singlet chiral scalars, generically denoted
as 8. We are writing the most general couplings including non-renormalizable
terms proportional to negative powers of M, compatible with the symmetries
of the effective theory, namely SU(3) x SU(2) x U(1)y x U(1)x. This yields
terms of the type (1), and similar couplings for the charge (—1/3) quarks and
charge (—1) leptons. It may also give rise to R-parity breaking interactions.
We will study this possibility in Section 4. Our concern here is that it also
gives kinetic terms for the fermions with a # dependent normalisation. The low
energy fermion fields are therefore obtained through a 8 dependent redefinition,
which may modify the § dependence of the Yukawa couplings.

For concreteness, let us consider the Yukawa couplings arising from (1). The
normalized kinetic terms originate from a diagonal quadratic Kahler potential
of the form

Ko(Qirj,--) = QF Qi +afa; +- - 4)

In our case, the Kihler potential as well receives non-renormalisable contribu-




tions; it reads, to lowest order in powers of 1/M:
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where H(z) is the Heaviside function (H(z) = z if # > 0, H(z) = 0 otherwise).
To bring the kinetic terms to their canonical form, we have to redefine the
matter fields ®; (& = @Q,4,d, L, é):

3, - V23, (6)

where the order of magnitude of the matrix elements of V¥ depends on the
relative charges ¢; of the &; fields:

» <0> |¢i—osl
Vg~ (S - ™)

It is useful to note that the structure ot the matrix Vp is simply that of the
identity matrix corrected by positive powers of < 8 > /M.
The Yukawa couplings in the canonical basis

}'}U = VQTvaﬁ . (8)
are now a sum of terms .
Yy =3 Yiju (9)
&l

where

<8 >) 1gi—gqrl+lur—ujlHqetusthy

Yijxt ~ H(ge + v + hy) ( i

(10)
One immediately infers that fQJU is at most of the order of magnitude that

would be obtained with a vectorlike pair of 8 fields: (< 8 > /M)I™sl. This

means that, as far as hierarchies are concerned, one does not gain much by

going to a vectorlike pair scenario, the weaknesses of which we stressed earlier.
In the case where n;; > 0, one deduces from (10) that

5 < 6>\
ygN( 5 ) . (11)

In other words, non-zero entries to the Yukawa matrix are left untouched by the
process of normalizing the kinetic terms.




On the other hand, in the case where n;; < 0, one can easily show from (10)
that

|ni; [+2maz(ng,ng;,nig)
<f>\" ’
) , (12)

M

which shows that Yg' is of order (< 8 > /M)I™i! or smaller.

As an example, we can apply the above results to the case where the (3,3)
entry to the Yukawa matrix is allowed by the U(1)x symmetry, i.e. nzz = 0.
Then applying (12) with all indices equal to 3 except for either ¢ or 7, one finds

Yiju = H(nw) (

Jnis| Jna; )
~ <@> - <é>
5g~<ﬁl> ,yg~(ﬂl) . (13)
Similarly, for ¢ and j different from 3, if both n;3 and ng; are negative
* [7is ]
S U <8>
Y, ~ (—M—> . (14)

Since m;; = mi3 + ngj, the corresponding zero in the original Yukawa matrix
results in this case from the simultaneous presence of zeroes in the third line
(n3; < 0) and third column (n;3 < 0). If, on the other hand, only one is
negative, say n;3 < 0, ng; = 0, then one shows that

. <6> |nijl+2min(ny ;,n; ;0 na;)
( ) . (15)

U
YU =

27

where 1’ # 1 # 3 and j' # 7 # 3 and one used the fact that det Yy # 0.

2.2 Horizontal abelian charges and the quark and lepton
masses

As introduced in Ref. [6], the most general assignment for an Abelian horizontal
charge to the particles of the Supersymmetric Standard Model reads

X = Xo + Xs + V3Xs, (16)

where X is the family-independent part, X3 is along A3, and X3 is along As,
the two diagonal Gell-Mann matrices of the SU(3) family space in each charge
sector. In a basis where the entries correspond to the components in the family
space of the fields Q, %, d, L, and €, we can write the different components in

the form
X; = (a;,b;,¢;,d;,€;) (17)

for ¢ = 0, 3,8. The Higgs doublets H, 4 have X-charges h, and hy respectively.
These could be assumed to be equal since, using U(1)y, we have the freedom to
redefine the horizontal symmetry in order to make these two X-charges equal.



We will return to this later. In any case, most of the following discussions
depend only on the sum of these charges and we thus define

2h = Ry + ha. (18)

Then the excess X-charges ni; defined in (2) read for the charge 2/3 quarks:

U 1 11
[—3-:’- — 2(as + bg)] 111
1 11
3(08 +bg) + ag + bs 3(0.8 +bg)+a3 —bs 3ag+as :
+ (19)

3(as + bg) —a3 + b3 3((13 + bs) —az —bs 3as—as
3bg + b3 3bg — b3 0

and similarly for the charge —1/3 quarks with the replacement (a,b) — (a,c)
and for the charge —1 leptons with (a,b) — (d, €). In (19) and the corresponding
matrices for the charge —1/3 and —1 sectors, we define the family-independent
overall charges:

Us = 3(ap+bo+ hy)
Dy = 3(ag+co+ ha) (20)
Ey = 3(do+eo+ ha).

Some of the excess charges in (19) might be negative leading to supersymmetric
zeroes in the Yukawa matrix, to be filled in the way described in the previous
subsection. But a very generic result, independent to a large extent of this filling
procedure, applies to the determinant of the Yukawa coupling matrices:

det YU ~ (< 8> [My)P
det YP ~ (< 8> /Mp)™ (21)
det YE ~ (< 0> /Mg)™.

The only assumption is that there are not enough supersymmetric zeroes to
make these determinants vanish (hence the u quark mass is nonzero [9]). In
these equations, we allowed for different scales M in the three different sectors.
We will come back to this in a later subsection.

The experimental values of the quark and lepton masses, extrapolated near
the Planck scale, satisfy the order of magnitude estimates [10]

T o008 . T - o
o O(A%), ooy o), (22)
mq _ 4 mg = 2
p O(2%), o o), (23)
Me _ 4 my - 2
Te s o), =009, (24




where, following Wolfenstein’s parametrization [11], we use the Cabibbo angle
A, as expansion parameter. Thus, the mass hierarchy appears to be geometrical
in each sector. The equality

my=mr, (25)

known to be valid in the ultraviolet [12], then yields the estimate

mMgmemyp

e = o(1) . (26)

Of course, all these estimates should be taken with some precaution since A is
not such a small parameter ( thus 2A™ ~ A"~!/2 ) and the exponents in (22-24)
should be considered as valid up to a unit. In particular, the ratio m./m. is
somewhat closer to A® [13], which, all other mass ratios being kept unchanged,
gives a ratio (26) of order A . We nevertheless find the geometrical hierarchy
an attractive mass pattern. Comparison of (26) with (21) yields in this case the
simple phenomenological constraint:

Do = Eo (27)

which, from now on, we will refer to as the geometrical hierarchy constraint.

Another low energy mass scale which will play an important role in the
discussion that follows is the so-called p-term. The origin of such a low energy
scale in any theory whose fundamental scale is of the order of the Planck scale
poses problem. The following solutions have been proposed:

(i) introduce a field N singlet under the Standard Model gauge symmetries
which has a trilinear couplings to the Higgs doublets [15]: W = ANH,H;.

(ii) introduce additional terms in the Kahler potential which are quadratic
in the Higgs fields (16, 17]:

6K = G(M, M*YH,H, + h.c. (28)

where G is some function of gauge singlet scalars M and their complex con-
jugates M*. If the function G turns out to be some function analytic in the
scalars M, then, through a Kahler transformation, this can be rephrased as
follows:

(iii) add a nonrenormalisable contribution to the superpotential quadratic
in the Higgs fields [18, 19}:

W = F(M)H,H,. (29)

In the context of string models, it is quite plausible that the singlet fields
involved are moduli fields which are neutral under the horizontal symmetry that
we consider. In this case, for any of these scenario to work, we need to impose
that h = 0. We will thus refer to it in the sequence as the h = 0 option. This
was the solution that we adopted in Ref.[6].




On the other hand, as emphasized by Nir [13] (see also Ref. [14]), the
singlet field # that we use might provide itself the solution to the p-problem
[4], following the same scenarios. In cases (i) and (iii), the following interaction
would be allowed by the horizontal symmetry:

9 2h
SW = MH,H, (H) (30)

where the holomorphy of the superpotential imposes that A > 0. The g term
thus obtained is of order M(< 8 > /M)*" and since, as we will see in subsection
2.5, M is a scale close to the Planck scale, one needs a large positive value for
h.

In case (ii), the Kahler potential includes a term*

g+\ ~2h
6K = H H, (M) , (31)

which obviously requires & < 0. The p term is then of order mz/2(< 8 > /M)~2"
and thus such an option works for values of & moderately negative.

2.3 Anomalies

In Ref.[6), we stressed the important connection between the anomaly issue and
the phenomenological constraints coming from the fermion masses. We will
repeat the analysis here in the more general framework that we have adopted
[8, 13]. '

The three chiral families contribute to the mixed gauge anomalies as follows

C3 = 3(2{10 + bo + Co) s (32)
Cy = 3(3ay+dy)+2h, (33)
Cl = Qg -+ 8b0 + 2C0 -+ 3d0 + 660 + 2h . (34)

The subscript denotes the gauge group of the Standard Model, i.e. 1 ~ U(1),
2 ~ SU(2), and 3 ~ SU(3). The important feature of these three anomaly
coefficients is that they depend only on the family independent charges Xo and
thus can be directly related to the determinant of the Yukawa matrices through
(20,21). The relation depends on the charge h whose connection with the p
parameter we have stressed in the previous subsection.

The X-charge also has a mixed gravitational anomaly, which is simply, up
to a normalisation, the trace of the X-charge,

Cy = 3(6ag + 3by + 3¢5 + 2dg + €5) +4h + Cy (35)

4A similar term involving the field 8 itself can be cast into the preceding form (30), through
a Kahler transformation; and terms involving both 8 and 6% are of higher order in 1/M.




where C,, is the contribution from the massless particles that do not appear in
the minimal N = 1 model. One must also account for the mixed ¥ X X anomaly,

given by
Cyxx = 6(ad — 263 + c3 — df + €3) + 2(h2 — h3) + 447, (36)
with the texture-dependent part given by
Ar = (3aZ + a2) — 2(3b3 + b3) + (3cE +c3) — (3dz +d2) + (3eZ +€2) . (37)

The last anomaly coefficient is that of the X-charge itself, Cx, the sum of the
cubes of the X-charge.

As just emphasized, it is of interest for our purposes that C;, Cs, C3 and
C,—C,' only depend on the family-independent charges and can thus be related
to the determmants of the mass matrices through (21) [6]. Indeed, one can easily
show that the only two independent combinations of these anomaly coefficients
which can be expressed in terms of Uy, Dy, Eg and h are

C3 (Uo + Do) —~ 6h,
8
Ci+Cy = §(Uo + Do) + 2(Ep — Dg) — 12h, (38)

i

which involve only (Us + D) and (Eg — Dy).

Interesting combinations are C; + C; — 8C3/3 which depends only on h and
Ey ~ Dy and plays a role in the models with a geometrical hierarchy [6]; and
C) + Cz — 2C3 which does not depend on A (8, 13].

It is interesting to express in turn the family independent charges in terms
of the anomaly coeflicients and the Higgs charges:

1,D
ag = +3( 30 ha) +%CD
1
bo = —-( —hs) -%Cp +3Cs
co = +3(___g ~ ha) —jl)rCD
Do 1 2
dp = -1(—= 3 — hg) 1Cp +302 3h
1 1
eo = +2(—3—° — hy) +1cD -3C+ g(CL+Ca— ‘203), (39)

where Cp = —(Cy—C,')/3+C1/6+C3/2+5C3/9 and we have arranged the right-
hand side of these equations such that contributions proportional respectively
to the Y, B — L and L charges of the corresponding fields appear in columns.
This shows that one can set ap = —co by using the U(1)y symmetry to
redefine the X charges. In this case, the first column is suppressed and all
charges are expressed in terms of the anomaly coefficients and of the two Higgs




charges (this does not mean of course that Dy can be made to vanish; instead
we have Dy = 3hg).

If the theory also has a U(1)p_r symmetry, one can further set ap = 0.
Moreover, since the gravitational anomaly Cy — C,' is exactly along the B — L
charge, one can altogether cancel it if one includes a right-handed neutrino to
make the U(1) 5., symmetry non-anomalous (i.e. traceless).

The parametrisation (39) allows to treat easily the case with no mixed gauge
anomalies: C; = Cy = C3 = 0. Indeed, one immediately reads off the charges
(with the Y component in the first column subtracted) and deduces that Uy =
3hy, Do = 3hg and Eg = 2h4 — h,. Assuming a geometric hierarchy (27) yields
—Uy = Dy = Eg (h = 0) which is easily seen not to hold.

We thus turn to the models where the anomaly coefficients are non-zero.
In this case, the anomalies must be cancelled by the Green-Schwarz mechanism
[3]. String theories contain an antisymmetric tensor field which, in 4 dimensions,
couples in a universal way to the divergence of the anomalous currents. One
can therefore use the Green-Schwarz mechanism to cancel the anomalies. Due
to the universality of the couplings of this axion-like field, this is only possible
if the mixed anomaly coefficients appear in commensurate ratios:

L= (40)

where the &’s are the Kac-Moody levels at which the corresponding group struc-
tures appear. They are integers in the case of non-abelian groups and all string
models constructed so far have ky = k3, which implies

Cz = 03. (41)

These Kac-Moody levels appear themselves in the gauge coupling unification
condition which is valid at the string scale, without any assumed GUT structure.
This condition reads:
kzgzz = kxgg( = gztring‘ (42)

As mentioned earlier, one can relate the ratio of d-type quark masses to
charged lepton masses with a combination of anomaly coefficients which can be
turned, using (40), into a combination of Kac-Moody levels, and, using (42),
into a combination of gauge couplings.

More precisely, using (20,21), one obtains, assuming Mp = Mg,

MyMsMp detf’D _ (< 9 >) 3(ao+co—do—eq) )
MeM My detYE Mp :
Hence, through (39),
mymgmy (< >\ *T(C1+C83C)/2 "
MeMy My Mp

10




In the A = 0 option, the geometrical hierarchy discussed above which gives a
mass ratio of order one yields the following relation among anomaly coefficients

[6]: ’

8
Cl + C2 = §C37 (45)
or, using (40-42),
i _ 9% _
G g 5/3. (46)

This fixes the value of the electroweak angle to its standard GUT value, without
any underlying GUT structure:

sin® By = g. (47)

Alternatively, one can start from (44) and impose the standard value for
the electroweak angle. This is only possible for a vanishing A in which case one
recovers the geometrical hierarchy, or a moderately negative b (in fact h = —1/2)
when one departs slighly from a geometrical hierarchy (me/m, ~ A%) [13]. As
discussed above, in the latter case, one may use the 8 field to account for the u

term; using (31) and (44), one obtains

MMMy W
Mmamsmp  M3g/2

(48)

The former case necessarily involves another gauge singlet field in order to gen-
erate a u term. ‘

2.4 Eigenvalues and mixing angles

In Ref. [6], we presented a result on the hierarchy of mass matrix eigenvalues
in models with a vectorlike pair (8, 8) of singlet scalars. This result can be
generalized to the class of models that we are considering in this paper, namely
models with a chiral singlet scalar 8. After filling the supersymmetric zeroes,
the orders of magnitude of the Yukawa couplings are:

. < 9 > Pij
Yij ~ (T) T (49)

where p;; is the power of the dominant term in the sum (9). This hierarchical
structure results in a strong hierarchy between the eigenvalues of Y. Provided
that p33 < pij, this hierarchy can be expressed in terms of the two following
quantities:

p = min(p11,p12, P21, P22) (50)
g = min{p11 + p22,p12 + p21) (51)

11




Normalized to the largest eigenvalue, whose order of magnitude is given by Vi3,
the mass eigenvalues are:

1 O8> /M)?E O(<0> /M2 if p>4
(52)
1 O(8>/MP 0OKé>/M)i-? if p<i

the only case of phenomenological interest being p < ¢/2.

In the simple case studied by Froggatt and Nielsen [2] where (a) all excess
charges are positive (b) nzgs =0 (¢) nij; > nyy fori > 4,5 > j/, we obtain from
(19):

= 3(as +bg) — a3z — b3,
g = 6(as+bs) (53)

Hence the eigenvalues are simply of order

P 3(as+bs)+asz+bs 9 3(ag+bg)—az—b3

We will refer to this case as the Froggati-Nielsen hierarchical structure.
Like the fermion mass ratios, the measured quark mixing angles show a clear
hierarchy, which is obvious in Wolfenstein’s parametrization of the CKM matrix

[11}:
1-22/2 A AX3(p +1n)
Voxu = - 1-2%/2 AN? (55)
AN (1 —-p+in) —AN 1

where A is the Cabibbo angle and A ~ 0.9 £ 0.1. When extrapolated near the
Planck scale, Vo ar keeps the same structure: the only parameter affected by
the renormalization is A, which is reduced by =~ 30% [10]. For our purpose, only
the order of magnitude of the mixing angles is of interest.

In order to determine the CKM matrix, we have to diagonalize both YV and
yD:

Diag(mtnmcy mt) = RgYURgT
Diag(ma,ms,ms) = RPYPRE! (56)
Vokm = RYRD!

This task becomes simpler if we assume that, in both charge sectors, the rotation
matrices Ry and Rp can be decomposed into three small rotations:

1 812 0 1 0 -—313 1 0 0
RL = S12 1 0 0 1 0 0 1 —Sa3 (57)
0 0 1 s13 0 1 0 s23 1

12




and similarly for Rg, with rotation angles s1,, si3, and s5;. In this parametriza-
tion, the CKM matrix reads, at leading order [20]:

U
1 b —812 — 803803 —s13 + 515803
Vekm = S12 + 813823 1 —$23 — 85813 (38)
D
513 — ShSa3  S23 + SHyS13 1

where s;; = si; — s7. With the additional assumption that, in each Yukawa
matrix, the coefficient in the (3,3) entry dominates over all other coefficients,
one can express the rotation angles in terms of the Yukawa matrix coefficients.
Unfortunately, these expressions are rather complicated [20, 4, 8], unless the
Yukawa matrices possess the Froggatt-Nielsen hierarchical structure. In this

case,

0(1) O(e73)  O(edpetas)
RE =~ O(ei) o) O(ege ™) (59)
O(e73%3)  O(e3r3~%3) 0Q1)

with ey =< 8 > /My; and similarly for Rf with ey replaced by ep, and Voxum
with ey replaced by max(ey, €p).

In the general case, it is more convenient for practical use to solve the equa-
tions derived from the requirement that the matrix R Y R}, be diagonal. The
rotation angles in the (1,3) and (2,3) sectors satisfy the following set of approx-
imate equations:

Y1813 + Yio8h3 — Yazsis =~ —Yis3
Yo15)3 + Yaos53 — Yazsoz =~ —Yo3 (60)
Y1813 + Ya1523 — Yazs)y =~ ~Yi
Y2813 + Yaos93 — Yagsyy =~ —VYi

Due to the hierarchical structure of the Yukawa matrices, it is easy to solve
these equations for a given Y at leading order. The rotation angles in the (1,2)
sector have more complicated expressions, involving the rotation angles of the
two other sectors. However, when s;3 < O(Y13) and so3 < O(Ya3) (this is the
case for most phenomenologically interesting Yukawa matrices), the expressions
of 512 and s}, reduce to the simple form:

Y11Ya21 + Y12Yo0
VE YR +Y4 -Y5h
sy~ Y11Y12 + Y1 Y22

YA -YA+Y5-Y3

S12 (61}

(62)

Since our motivation for introducing an additional U/(1) symmetry with a
chiral singlet scalar is to explain the observed hierarchies of fermion masses and
mixings, we must check that this class of models actually generates phenomeno-
logically viable Yukawa matrices. We will restrict ourselves here to the quark
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sector, which is much more constrained than the lepton sector. We assume that
the scale M is the same in both charge sectors (My = Mp = M). In order
to reproduce the experimental value for the Cabibbo angle, we also assume
< 6 > /M ~ X Using the result on the hierarchy of mass eigenvalues (52) and
the equations (60) and (61) for the mixing angles, one can search systemati-
cally for all quark Yukawa matrices (Y¥, ¥ P) reproducing the measured quark
masses and mixing angles. They turn out to be very few. In fact, the number
of phenomenologically viable Yukawa matrices is considerably reduced by the
requirement that they originate from a broken abelian symmetry with a chiral
singlet. Indeed, the excess charges n;; then satisfy the relations

Nij + Mg = Ny + Ny (63)
which are valid for both the charge -1/3 and +2/3 sectors, and
U U _ D D U U _

N33 — Mgz = N3 — Nig3 ngy — ngy = ngy — gy (64)
which relate the excess charges of the two charge sectors. In addition, the
number of negative n;; is restricted by the condition detY # 0.

In practice, we only found two sets of quark Yukawa matrices (YV,YP)
reproducing the measured quark masses and mixing angles. In the first one, YUV
and YP have no supersymmetric zeroes (all excess charges are positive) and are

of the form proposed by Froggatt and Nielsen(az = ¢z = 1/2,b3 = 3/2;as =
5/6,b8 = 7/6,03 = 1/6):

8 5 3 4 3 3
V=17 4 2 nP=13 2 2
5 2 0 100

65

A8 A5 A3 A3 A3 (%5)
YU | AT At A2 YD~ | A3 A2 A2
XAz A1 1

In the second one, both ¥V and Y2 have two supersymmetric zeroes, which are
filled in the way described in Subsection 2.1:

8 -1 -3 4 -3 -3
nU=|13 4 2| nP={9 2 2

11 2 0 7 0 0

66

DX LIRS T PRI CIND S (60
}"/U ~ Al A4 )2 f/D ~ 29 A2 a2
PRI TS| AT 11

Both sets of quark Yukawa matrices (65) and (66), together with any phe-
nomenologically acceptable lepton Yukawa matrix, can be generated from an
anomalous U(1)x with its anomalies compensated for a la Green-Schwarz.
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As written above, both (65) and (66) verify n; = nZ} = 0, which implies
that the Yukawa couphngs of the top and the bottom quarks are of the same
order at high energy: Y33 ~ Y33 ~ 1. Now if we translate the down quark excess
charges by a positive integer z:

nP=nl+z (67)
the down quark Yukawa matrix is simply modified by a factor A%, keeping the

same hierarchical structure:

VP = x=yP (68)
However, the presence of supersymmetric zeroes in (66) spoils this relation for
z > 2, so we can safely translate the n2 only by z = 1 or 2. Since ¥'P
and 72 have the same eigenvalues and rotation angles, (YU, Y’D) is still a
phenomenologmally viable set of quark Yukawa matrices, with ¥;% ~ 1 and
YJP ~ X® at high energy. As suggested by Jain and Shrock [22], this can
expla.in the low-energy hierarchy between the top and bottom quark masses in
a natural way, without requiring a large tan 3. On the contrary, the high-energy
relation Y;§ ~ Y32 ~ 1 is compatible with the low-energy top-bottom hierarchy
only for large values of tan 8 (tan 8 ~ m;/my) [21].

2.5 Mass scales

The fact that the horizontal symmetry that we consider is anomalous has im-
portant consequences on the scale at which we might expect its breaking.

Indeed, as a result of suming over the masless states, there is a tadpole
“anomalous” contribution to the D-term of the U(1)x anomalous symmetry.
The complete D-term reads [23]

Dx =

192 20 +g2¢1¢‘ ®; (69)

where g is the string coupling constant and ¢; is the X-charge of the scalar field
®; (the tadpole term could alternatively be written in terms of Mgring = gMp1).

This provides a natural scale for the breaking of the anomalous U(1)x
through a non-zero vacuum expectation value of our @ field of X-charge —1
given directly in terms of the anomaly coefficient:

<> 4
M 1231 19271'2 Co- (70)

Thus, if C, is not too large, the anomalous U(1) symmetry is broken one or two
orders of magnitude below the string scale. This provides us with an expansion
parameter

_1<8>]

Mo (71)
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which is naturally small and not too small — both properties are welcome if one
wants to relate this parameter with the Cabibbo angle.

3 The neutrino sector.

In this section, we consider generalisations of the Minimal Supersymmetric Stan-
dard Model spectrum which include right-handed neutrinos, thus allowing for
non-zero neutrino masses and mixings. We study how the horizontal abelian
symmetry discussed above constrains the neutrino spectrum {24, 25, 26]. For
simplicity, we will assume only one right-handed neutrino per family.

Suppose that we have three such fields, V;, each carrying X-charge. The
superpotential now contains the new interaction terms

— [!] Pij - 8 qij

L,;NjHu (E) + MoN.iNj (ﬂ;) s (72)
multiplied by couplings of order one. The first term is a Dirac mass term
whereas the second one is a Majorana mass term and involves the scale Mg
which is some mass of the order of the GUT scale or the string scale. In a
standard Es description, the fields V; may be found among the SO(10) singlets
or among the SU(5) singlets in the 16 of SO(10), in which case they are part
of a doublet under a right-handed SU(2)5.

We will assume here that the excess charges p;; and g;; are all positive and
that g3 (resp. pss) is the smallest of the g;; (resp. p;;) charges: pi; > pss > 0,
gi; = gs3 = 0. In other words, the 3-3 entry of the heavy and light neutrino mass
matrices are dominant. We denote the X-charges of the right-handed neutrinos

by an f3’f8'

For three families, the 6 x 6 Majorana mass matrix is of the form

(atr ae) (73)

In the above M is the AI, = 1/2 mass matrix with entries not larger than the
electroweak breaking scale, and M is the unrestricted A, = 0 mass matrix.
Assuming that the order of magnitude of the Al, = 0 masses is much larger
than the electroweak scale, we obtain the generalized “see-saw” mechanism.
The calculation of the light neutrino masses and mixing angles proceeds in
two steps. Let U, be the unitary matrix which diagonalizes the heavy neutrino
mass matrix My, that is
Mo = Uy D UT (74)

where Dy is diagonal. The orders of magnitude of this matrix are, using the
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invariance of the Yukawa couplings (72) under U(1)x,

62(fo+f3+fs) 62(f0+f8) e2fot+fa—rs
Mo=My O eg(fo+fs) e(z)(fo—fa+fs) egfo—fs—fs . (75)
62f0+f3—fs 62f0—'f3—fs 62(f0—2f8)
0 0 0

where ¢g =< 8 > /My. Its diagonalization yields the three eigenvalues

M, = MOO(eg(f°+f3+f8)), M, = MOO(Eg(fO_f3+f8)), M; = Moo(eg(fo—Zfs)) )
(76)
Under our assumptions the charges satisfy the inequalities

fo>2fs, 3fs > |fsl, (77)

which allows to use immediately the results of section 2.4. The diagonalizing
matrix is

1 e2|f31 63f8+f3
0 (1}
U= O eglfsi 1 5gf3_f3 X (78)
6g.fs+.f3 egfs—fz 1

and the inverse mass matrix reads

1 €2f3 €3fs+f3
1 2, o Sfa+3s
MGt =Uo"Dg (Uo") =57 0| & et Rt L (79)
1 63f8+f3 6gfs+3f3 6(2)(3fs+f3)

which is thus obtained from M, simply by replacing mq and ¢y by their respec-
tive inverses. Then in the “see-saw” limit, the 3 x 3 mass matrix for the light
neutrinos reads

~

Y, = —MMGMT = —(MU") DGt (MUL™)T. (80)
The electroweak breaking mass term yields the matrix

3(ds+fa)+da+fs  _3(dsg+fs)+da—fz _3dg+ds
€y €y GU
M=me3 O Ei(ds+fs)—ds+f3 eg(ds‘i’fs)—da—fs Egds—ds
€3f8+f3 e_gfs—fa 1

) (81)

where €, =< 8 > /M, and m is a mass of electroweak breaking size. We write
€0 = €2, with z > 0. We find that

: 6dg+2d, 6d, 3dg+d.
) 2 €, 3 €,°8 €, 3

v
Yu — 0 egdg Egds—ng 63ds—d3 , (82)
M3 6345-}-(13

g3ds—ds 1




where

-

m med® if 2<1,
m = me® 0(61(/1—5)(3fs+lf3l)) if z2>1, (83)

is the matrix whose eigenvalues yield the light neutrino masses and their mixing
angles. It is diagonalized by the unitary matrix U,:

Y, =U,D,UT, (84)

in much the same way as the heavy neutrino mass matrix Mgp. Assuming again
3ds > |ds|, one finds :

2|d:
1 eyl 3| 6ids+d3
U =0| ¢l 1 eBds=da | . (85)
63d8+d3 egds-'ds 1

The light neutrino masses are then
52

m

Y = —0 2(3dg+d3) ,

ml M3 (CV )
52

ma = GO, (86)
rh"’

My, = —]\4—3 .

In order to obtain the mixing matrix which appears in the charged lepton cur-
rent, we must fold this matrix with that which diagonalizes the charged lepton
masses. If we let ¢, = €%, with w > 1, the result is

1 egldal e3ds+ds
€
V=0| &6l 1 @ad | (87)
3dg+d. 3dg—d
ee 8 3 €e 8 3 1

When 0 < w < 1, the matrix has the same form with €. replaced by ¢,. It is
similar to the CKM matrix. We note that its elements satisfy

V'eu,, Vyu, ~ I/euf . (88)

Unlike quark masses and mixing, we have little solid experimental infor-
mation on the values of these parameters. The most compelling evidence for
neutrino masses and mixings comes from the MSW interpretation of the deficit
observed in various solar neutrino fluxes. In this picture, the electron neutrino
mixes with another neutrino (assumed here to be the muon neutrino) with a
mixing angle 6;12 such that

V1

jm2 —m2 | ~7x107%eV?; sin®20;5 ~5x 1073 . (89)
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The other piece of evidence comes from the deficit of muon neutrinos in
the collision of cosmic rays with the atmosphere. If taken at face value, these
suggest that the muon neutrinos oscillate into another species of neutrinos, say
T neutrinos, with a mixing angle f23, and masses such that

jm2, —m2 | ~2x 1072 eV?; sin®2025 > 5. (90)

Fitting the parameters coming from the solar neutrino data is rather easy, sug-

gesting that
V‘”y ~ 6§d3 ~ N ’ (91)

together with m,, =~ 10~3 eV. The atmospheric neutrino data would imply
Viw, ~87% = 0(1) . (92)

The relation m
2 & (Vi ) (93)

v3

would then imply that w > 1. For example the value 823 ~ % yields m,,/m,, ~
.02 , for w = 2. Thus we could marginally reproduce the “data”. The heaviest
neutrino weighs one tenth of an eV, not enough to be of use for structure
formation.

Generically, though, it is difficult to understand mixing angles of order one,
as suggested by the atmospheric neutrino data. The existence of only small
mixing angles in the quark sectors suggests either that the interpretation of
" the atmospheric neutrino data is premature, or that there is fine tuning in the
neutrino matrices.

4 R-parity breaking interactions.

The gauge and Yukawa couplings are not the only interactions allowed by the
gauge symmetries and supersymmetry. The following terms, which violate either
B or L, can also be present in the superpotential:

AiseLiLjgg + A:;jkLinCik + A%k(i,;d.jﬂk (94)

The two last ones are the most dangerous because they give rise to proton

decay, if simultaneously present. In the MSSM, R-parity is assumed in order

to forbid them. We consider here the most general case where R-parity may

be broken, and we therefore take into account all these terms (the L;H, term,

which one usually eliminate by a redefinition of Hg, will be discussed later on).
2z

The couplings Aijk, Al and Al must then be very small, otherwise they

would induce proton decay and lepton number violation at an unacceptable




level. The upper bounds, due to the experimental limits on respectively proton
decay, lepton number violation and neutron-antineutron oscillations, are [27]:

[ Msusy _13
PA oy
VAR < O _<1TeV)10 (95)
[ MSusy -3
A < 0-<——~——1T6V)10 ] (96)
i MSus 5/2 -
"o Yy 5
AN <O (——M) 10 (97)

Note that the most stringent constraint comes from proton decay (95). It is
satisfied if one of the two terms LQd or ddi is highly suppressed, or if both are.
Another possibility is that either LQd or dd@ do not appear in the superpoten-
tial. In the following, we shall look at both possibilities.

The horizontal symmetry U(1) x discussed in the previous sections naturally
generates small couplings [28]. Let us consider, for example, the L,de_;c term.
It carries the excess charge ik = li + ¢; + dk. If Zijr > 0, L;Q;dk will be
generated from the non-renormalizable interaction:

B g \ Tiik
aijr LiQjd (ﬁ) (98)

where a;;i is a factor of order one. The effective A;;x coupling will then be of
order (< 8 > /M)%i*. If z;;% < 0, the L;Q;d) term will not appear in the super-
potential. But, in the same way as the Yukawa couplings whose excess charges
are negative (see subsection 2.1), it can be induced by non-renormalizable con-
tributions to the kinetic terms. The effective A;j; coupling is then:

Aijk = Z H(xlmn)Aijk;lmn (99)
lymn

where Aijkimn is the contribution of the nonzero LiQmd. term to the L.Q,dy
term. It is given by:

<8d> [Li=lil+lgm —gj |+ |dn —di|+Timn
) (100)

Aijigimn ~ ( i

One deduces from (100) that A;jx is at most of the order of magnitude that
would be obtained with a vectorlike pair of 6 fields:

A < O <(<A(ir>>|zml) (i01)

If z;;. > 0, this bound is saturated because Ajjk;i;x = 1. Therefore, the diago-
nalization of the kinetic terms does not affect the order of the couplings which
are initially nonzero.
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The only difference with the Yukawa couplings is that the number of negative
excess charges is not limited by the condition of requiring a nonzero determinant:
a single positive z;jx is then sufficient to generate all other R-parity violating
terms of the same type. However, this mechanism tends to produce small cou-
plings. For example, in the particular case where there is a single positive excess
charge Zimn, one can easily show that the A;;; induced by the diagonalization
of the kinetic terms are of the order of:

<0> {zijk|+2Ztmn
Aijk"‘( i ) (102)

while, of course, Aimn ~ (< 8 > [M)®™~. If Zmy is large enough, this leads to
very small couplings. This property holds when there are several positive z;;i,
provided that all of them are large compared to unity.

We conclude that, in order to obtain small R-parity violating couplings, we
must choose the X-charges of the MSSM fields so that all positive z;;i are large.
The number of negative z;j; does not matter; the important point is that the
smallest positive excess charge be large. Thus all effective A;;; will be small. We
require that all of them be very small, because the physical couplings, which
enter the proton decay rate, involve mass eigenstates and therefore mix the
Ajjx. This mixing tends to attenuate the hierarchy between R-parity violating
couplings of the same type (say LQd), in disagreement with what is usually
assumed in phenomenological analysis.

In practice, it is not so easy to obtain large posmve excess charges for the
Aijk. Indeed, the family-dependent part of the X-charge is very constrained
by the quark phenomenology, and its family-independent part is fixed by the
Green-Schwarz compensation of its anomalies. These constraints disfavor large
values of the z,;;. The only freedom we have, provided that the neutrinos are
massless, is to choose the lepton charges. Unfortunately, they must have very
large values, which seems to be rather unnatural.

This is shown by the following example, where Yy, and Yp have the form
proposed by Froggatt and Nielsen [2]. The charge assignment is the following:

Table 1: X-charges of the MSSM fields accordmg to the family index i =
1,2,3 (first example).




1| 2/3|22/3|16/3|-12| 18

2 |-1/3|13/3 | 13/3 | -13 | 17 0

3(-7/3| 7/3 | 13/3 | 55 | -53

The corresponding Yukawa matrices are:

A8 A5 p3 At A% N3
YU~(A7 by )\2) YD~)\2<)\3 A? )\2)

A X A1 1

,\4 /\3 )‘67
YE~A| A3 A2 )68 (103)
/\71 /\70 1

where A = (< 8 > /M) is assumed to be the Cabibbo angle. The constraints
(95) to (97) are widely satisfied by a strong suppression of L violation:

A £ 0(107%)
A 0 (107%¥) (104)

<
A < 01077
but, as stressed above, the lepton charges are large, which gives rise to very
small coefficients in the lepton Yukawa matrix. Ben-Hamo and Nir [28] did not
encounter this problem because they did not consider the anomalies of U(1)x.
As mentioned above, another possibility for avoiding proton decay is that one
of the two dangerous terms LQd and dda be absent from the superpotential.
This happens when all excess charges for this term are negative, because all
corresponding couplings are then zero. For example, one can find a large class
of U(1)x models, in which there is no dda term. These models are interesting,
because the experimental constraints then reduce to (96), which is very easy to
satisfy. Unfortunately, they also have very large values for the lepton charges.
Our second example belongs to this class of models. The charge assignment
is the following:
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Table 2: X-charges of the MSSM fields according to the family index i =
1,2, 3 (second example).

i) g “ d; li | e | hu=hg

1]23/31 1/3 |-5/3| 23 | -17

2020/3| -8/3 | -8/3 | 22 | -18 0

3|14/3|-14/3 | -8/3 | -78 | 80

The corresponding Yukawa matrices are:

PASED LI At A3 )3
YU~()\7 A /\2) YD~A2(A3 A2 )\2)

AP 1 A1 1

,\97 /\98 1
As stressed above, there is no B violation from renormalizable operators, and
the remaining constraint (96) is widely satisfied:

/\4 /\3 ,\101
Ye~M [ A% X AlOO) (105)

A < 0(10719)
A < 0(107%F) (106)
A” — 0

We must also consider the possibility that the z;; be fractionnary, which
is generally the case. The effective couplings are then zero, unless they are
due to non-perturbative effects. Indeed, if one of the z;;; is fractionnary, all of
them are fractionnary. All A;j; are then initially zero, and remain zero after
diagonalization of the kinetic terms. This follows from the fact that the excess
charges of the Yukawa couplings are integers. Consider now the three terms in
(94). One can easily show that the excess charges of the first two terms are
simultaneously fractionnary or integers, while the excess charges of the third
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term can be fractionnary or integers independently from the first two terms.
We can therefore choose the lepton charges so that only the L violating terms
(resp. only the B violating term) are present in the superpotential, which makes
proton decay impossible in the absence of higher dimension operators.

So far, we did not consider the higher dimension R-parity violating operators.
Two of them give a significant contribution to proton decay [27, 28]:

!

Kijkl Kokt o _ 3
“AJ;'I—Q{QijLt + '—ﬁ‘uiujdkez (107)

The upper bounds on the « couplings are:

<ol (] o
K(KRphu < 0[(%%) (%) 10'8] (109)

where Ky is the quark-squark mixing matrix for the right-handed up quarks.
When there is no mixing (no FCNC), K¥5 = 0 and there is no constraint over
x’. These constraints are easily satisfied as soon as the lepton charges are large.
This is the case as well in the first example (103):

k < 0(107%)

£ < 01071 (110)
as in the second one (105):

k < 01072

£ < 0(107%) (111)

In the previous discussion, we did not mention the LH,, term, which should
be present in the superpotential, in addition to the three terms of (94). One
usually eliminate it by a redefinition of Hy. Starting with the following quadratic
part of the superpotential:

uH. Hy +o;L;H, (112)

and redefining H; = Hy + Y ,(oi/p)Li, one ends up with a single quadratic
term, pH, H). It is important to note that, in our model, this can be done only
after the breaking of U(1) x, because the H; and L; superfields carry different
X-charges. Now the redefinition of H, also modifies the Yukawa terms of the
down quarks:

- - a; - .
ARHQide — MLHQjdk - (7) MLL.Q;dy (113)

24




which gives a new contribution to the LinJk term (in a similar way, L;L;&
receives a contribution from HyL;&:). The effective A;jx is then modified as
follows:

Aijk = A+ (%) /\ﬁc (114)

Thus the L, H, term, if present, contributes to the L violating couplings, and we
must take it into account in our analysis. Note that, since the «; are generated
in the same way as the A;;x, they are zero as soon as the excess charges (I; + h,,)
are fractionnary or all negative. In this case, the LH, term does not appear
in the superpotential. Otherwise, it may give their dominant contribution to
the A;; . In particular, when the exgcess charges of the LLé and LQd terms are
fractionnary, only LH, contributes to the L violating couplings.
We can distinguish between two cases:

1. if LLé and LQd have fractionnary excess charges, the L violating couplings
A and A’ are generated from the LH, term. However, when h, € Z, LH,
is absent, and there is no L violation from renormalizable operators.

2. if LLé and LQd have integer excess charges, the LH,, term is present only
if h, € Z. When h, = 0 however, its contribution does not modify the
order of magnitude of the L violating couplings (this is the case in both
examples given).

5 Conclusions

Trying to explain fermion mass hierarchies and mixings by an ad hoc local
abelian gauge symmetry might seem, at first glance, an honest but somewhat
groundless attempt. Surprisingly, this leads to a very special type of abelian
symmetry, namely the anomalous U (1) whose anomalies may be cancelled by the
Green-Schwarz mechanism. This leaves some hope that, in the context of string
models, one may be able to make definite statements about mass hierarchies.
Indeed, because of the uniqueness of the dilaton field, such a U(1) symmetry
is unique and plays a central réle. One may therefore relate the charges of the
matter fields under this U(1) to central properties of the model. Such a U(1)
has already been advocated [29] to explain why a nonvanishing top Yukawa
coupling may appear at string tree level. Its properties may also allow to relate
the horizontal symmetry approach to the modular symmetries of the underlying
string theory [30].

Surprisingly little information from the anomaly structure of this symmetry
is used to derive the Weinberg angle — or, in a correlated way, the order of
magnitude of the i term in a certain class of models —. One may expect that
the rest of the information, in particular the mixed gravitational anomaly which




plays a réle in fixing the scale at which this symmetry breaks, can be used to
constrain further the models [31].

We have also studied two types of extended supersymmetric standard models
— massive neutrinos and R-parity breaking interactions —, where this approach
proves to be (mildly) constraining. It is for instance interesting to see that,
when trying to implement in this framework a generalized seesaw mechanism
for neutrinos, one ends up with a light neutrino mass spectrum which cannot
satisfy at the same time the cosmological and atmospheric neutrino constraints.
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