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Abstract

Longshore sand ridges are frequently observed to occur on the continental
shelf where the overlying ocean is stratified. This study formulates a model
for the formation and evolution of three-dimensional longshore sand ridges
on the continental shelf. The model is based on the interaction of interfacial,
weakly nonlinear waves in a stratified ocean with the sedimentary bottom

topography.
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1 Introduction

Sand ridges are underwater barlike features composed of loose granular sediment.
Sand ridges hundreds of meters long and up to a few meters high are usually found
in groups, arranged in more or less parallel rows separated from each other by
hundreds of meters oriented normal to the direction in which the ow'/erlying water
waves propagate.

Shallow-water, weakly nonlinear interfacial waves appear as highly coherent
groups having well-defined wavelength and are observed propagating shoreward on
a density stratification, such as the picnocline. Their crests are generally oriented
along isobaths [Apel1979,Baines1981]. Their wavelengths range from 200 to 1600
meters, depending on the depth, which can be considerably larger than the local
water column depth. An estimate of the energy contained in the larger ones is
in the order of 0.1 MJ/m?. They have been seen to appear twice a day in some
areas, coinciding with the tidal cycle, and originate mostly in places where there
are sharp changes in the bottom topography, such as on the edge of the continental
shelf. Since the contribution of coriolis forces in this problem is negligible (i.e., the
wave periods for the waves under consideration range between fractions of a minute
and an hour), the sole forcing agent is gravitational. As the density stratification
collapses in the shallower reaches of the shelf, the water column is no longer able to
support an internal wave. Hence, in our formulation of the model for the internal
wave case, we assume that the wave field is strictly unidirectional.

Referring to Figure 1, we envision infragravity waves coming into the purview

of the model at the line £ = 0, where the long waves begin “feeling™ the bottom
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topography. The shoreward direction, r, increases as the wave travels shoreward.
The spanwise direction, given by y, is approximately parallel to the line of constant
phase of the incoming waves. The waves propagate shoreward, possibly at an
angle with respect to the prevailing direction of maximum gradient of the bottom
topography. The extent of the model is limited in the longshore direction by the
disintegration of the interface supporting the internal waves, by the approach to
the breaking zone, by any singularity in the depth, or by significant energy transfer
from low to high frequencies, reflecting a severe imbalance between nonlinear and
dispersive effects in the wave train. The spanwise direction is limited by the same

sort of issues. The absence of a reflected component originating, perhaps, in the

Figure 1: Aerial view of the problem

shoaling region may be justified by the collapse of the density stratification in the
shallower reaches of the shelf, the water column no longer being able to support,

an internal wave.



Field data from the continental shelf suggests that there are two time scales: a
fast time scale ¢, which measures the evolution of the fluid quantities, and a long
time scale T' which measures the evolution of the bottom topography. In addition,
the data suggests that the typical height and slope of the longshore sand ridges,
represented in this study by the function A, is such that ¢ = O(V*h) = O(«), where
« is a small-valued parameter typical of the ratio of the amplitude of the water
waves to the depth of the water column below the fluid interface in an assumed two-
density fluid. Furthermore, the type of longshore sand ridge under consideration
is such that longshore spatial variation is larger than the spatial variations of the
fluid quantities. It is proposed that the sand ridge shoreward variation be X = «az.

Hence, two scales of shoreward variation exist, so that
0z — 0z + adyx. (1

The bottom in scaled variables may be represented by
MX,y,T)=1+¢f(X,y,T), (2)

where the function f = O(1).

The plan of this paper is as follows. In Section 2. the main hydrodynamical
issues for the internal waves are considered, as well as the mass transport problem.
In order to illustrate the main features of the model, section 3 presents a few
computed examples, followed in Section 4 by some closing remarks and suggestions

for future work.



2 The Model

In this section we discuss both the hydrodynamics of the model and the mass

transport problem.

2.1 'The Hydrodynamics

We begin by developing the Hamiltonian formulation to the two-fluid internal wave
problem, relying on Bowman’s work [Bowman1986]. As illustrated in Figure 2, the
domain is described by O, =~ R? x [-H,7], and 2, = R? x [7, D). The lower
layer (1) has a uniform density p;, and the upper layer (2) a density p2 < p;. The
fluid is subjected solely to gravitational forcing. The velocity field is now given
in each layer by (u,w);, where the subscript refers to layer 1 or 2. The interface
between the two fluids is given by z = 7(r, t) and the bottom by z = —H(r,T). The
transverse variable r = (,y), where = increases shoreward and y is the spanwise
coordinate.

The fluid is assumed incompressible and irrotational in each layer. In terms of

a scalar potential, the velocity is given by

(u,w); = V3d,. (3)

From conservation of mass, the equations of motion within the fluid are

Azg; =0, in Q. (4)

At the interface, the pressure is continuous; hence the dynamical boundary
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Figure 2: Side view, internal wave problem
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The bottom, which is assumed impermeable, has a normal velocity that agrees
with that of the fluid. Thus

$,.=—VHVe at z=—H.

The kinematic condition on the interface is

Dz—7) __
—Dbt = 0. or

¢i,z =T + V(b,-Vn at z = n.

(7)



Finally, we make the simplifying “rigid-lid” assumption

at the constant air-water interface.

With conjugate variables n and U = p,V¢, — p, V4, the Hamiltonian system

that yields the description of the dynamics of the internal waves takes the form

n==V(52)
U= V(5 9)

where the Hamiltonian E is numerically equal to the sum of the potential and the
kinetic energy for this problem.

The potential energy is simply

5 1 .
v= [ Pr39(py — po)n’. (10)
R2

The total kinetic energy is the sum of contributions from both layers; thus

7

D
] . i ; . 1 C 2 . -
K =p, / dIr/ 5 [Vad, 2dz + p, / dlrf 5 |V3é,|"dz = K; + K. (11)
RZ —H = RZ -7 =
Define the parameters o < I, and f < 1. Assume that O(a) ~ O(8?%), and
take #/ = O(1), VH = O(a), n = O(a), ® = O(a). Further, consider the
differentiations ., 9,, V = O(f).

Referring to the results from [Restrepo & Bonal993b], we calculate the kinetic
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energy in the lower layer using an approximation for the velocity potential,
¢i(r,z,t) = Oi(r,t) — L122V2Q(r,t) — =zV-(HV®(r,1)),
O(a) O(ap?) O(aB?)

so that

1 H H3 .
Ki=py [ Er(G(H+1)(VO) + S(VEVEY - S (V8,)3,  (12)
R’ °
which is an expression of O(e*f?) and O(c28%).
The boundary condition given by Equation (8) can be exploited to find K, as
a surface integral. Using Green’s theorem and assuming that the gradients of the

potential tend to zero as |r| — oo, we have

Ky = —py / ErV®, V. (13)

R2
Define the pseudo-differential operator G = —k coth(HkD). lts precise struc-
ture is a result of satisfying the boundary conditions on the interface and on the
ocean surface. Adding the expressions for K; and K, using the definition of U.

and the operator (G, we obtain as the total kinetic energy

| . Hp, JH .
1\'=é/(z%-{pi(f1+n)uz+ UGU + 2o (VHUP) +0(®), (1)
~R2 1 1

1




or rearranging,

1 . H?p H?p po H . .
K= [ &@r{—((H+n) - S2U*+ —20.MU + 22 (TH. U2V 10(3 32
[ dri W +n) =B 4 = L (VH-UP}0(a*8?),
(15)
where M = £ + G = L — kcoth(HkD).

Depending on the size of D/A, there are three physically distinct possibilities:

e If D/A < 1, then U-MU = O(aD/X?), and M » 1/D~PY. For this case,
the terms nU-U and U-MU balance if «?D/A* ~ 1. A Boussinesq system is

obtained.

o If D/XA ~ 1, then U-MU = O(a?/)). For this case, if aA\%/D ~ 1, the result

is the intermediate long-wave equation.

¢ If D/A> 1, then U-MU = O(a?/)), and M = |k|. If a)\ ~ 1, the outcome

is the Benjamin-Ono equation.

Note that this last case corresponds to a very deep upper layer, lying over a thinner
lower layer, and hence is not considered relevant in this study.

By substituting the expressions for the potential and kinetic energy, Equations
(10) and (15), into Equation (9), the general equation for the dynamics of the

internal wave field is obtained:

- w1 - ZB1U) - &v. ’ ’
U, = ._V.{;z;?lU-U'}'(Pl — p2)gn}.

The result from linear theory may be recovered by neglecting second- and higher-




order terms in Equation (16). The solutions proportional to exp{i(kz —wt)} satisfy

wnp = (—L—%:zg-i-&%ﬂ)kHU

‘ (17)
wU = k(p; — p3)gn.

Thus,

=2 = e =pa)yy _p2pgy coth(kD)]. (18)
k P1 Py

The relevant case in this study is the first one. The Boussinesq system is then

e = —V-{3(H+7)U}- %%V-{H(VH)'ZU +1H2DVV.U} (19)
U = =V{55U0U+(p - p)gn}.

Equation (16) may be shown to be linearly unstable [Bonal975]. To circumvent
this problem, we carry out an ad-hoc procedure that “regularizes” the equation.

The lowest-order relations

e

U, = —=V{(p; —py)gn}

~V-{LHU} 20)

are used to modify the troublesome parts of the dispersive terms to get the regu-

larized model for the hydrodynamics relevant in this study. namely,

U, = V{3 UU+(p — p)gn}-

Let v = (ﬁl;—pﬁ be the Boussinesq parameter, and let the typical thickness of
1
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the lower layer be hy. The scaling adopted here is

h
t@@ U(—% n+—mnla he—% d(—% r 3, (22)

where the convention new « scale x old is being used. Equation (21) is, in scaled

variables,
Uy V'{pll(h +an)U} - dﬂzg%;v‘[v(hﬂt)] =0 (23)
U, + V{1U-U + 3} = 0.
Additionally, the spanwise variables are scaled to reflect the weak spanwise depen-
dence of the waves:

1/2

y — all?y j-u — a2, (24)

The substitution of a uniform expansion of the form

1= fotafitet ot

U = g0+a1g1+a2g2+--- (25)

into Equation (23), followed by matching order by order yields the internal wave
equation to lowest orders in «.

Explicitly, after crossdifferentiating Equation (23),

a’: Ly =0
a': Ly = Gi(no,uo,vo, Gz, X, y, t) (26)

4 20 £772 :g‘l(UO)uvaanl’uh'vlaC;;w7‘¥-yst)
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where

= B — ~D B, 0see
L = dtt 7(933 d 30, ,

(27)
= %f(X7 Y, T)
The inhomogeneous term in the first-order equation is given by
G = (v+ dm)noyy + G(v+ diﬁL‘ﬁ)nou +2(7 + d‘j—Ldi) TozX (28)

+(u3/2)e — (uomo)zt-

Assuming that lowest-order modal expansion for the surface velocity is of the form

uo(x, -X1 Y, t) = Z?:l aj(X'; y)ei(k"z_w’t) + c.c.., (29)

and making use of the lowest-order relation ug, +vVno = 0 to obtain the surface

amplitude
2

w; :
no(z, X,y,t) = Z —La;(X,y)eitz=wst) 4 e, (30)
j:l 7kj
we are able to obtain a lowest order description of the internal waves. A solution
of the above-mentioned form is possible if the relation between the frequency and
wavenumber of the modes satisfies the dispersion relation
2 k3 .
v+ dpet ot

The solution must also satisfy a compatibility condition. Since the linear operator
L in Equation (26) appears in every order, and terms of lower order appear in

the inhomogeneous part, secular terms arise. It is an artifice of having truncated

the expansion and is typified by the possibility of blowup due to resonance. This




resonance condition for j** interacting waves is

kjt---thkithky = 0
(32)
wit-rtwrtw = 0,
where the wavenumbers and corresponding frequencies obey the dispersion relation
given by Equation (31). In the scaling adopted in this study the O(k;) = O(w;).
As discussed in [Restrepo & Bonal993b], only weak resonance is to be expected.

Particular attention is given in this study to the weakly resonant triad case in which

ky = 2ky — 6, wy = 2w, where the detuning parameter § < 0. The compatibility

condition is

jkl -/'X0+27"/jk1

k(G + GF)dz = i =1,2,3... 3
57 Jx, e (G; + G )dz = 0, where j = 1,2,3..., (33)

starred quantities conjugated. Substituting Equations (29) and (30) into Equation
(26) and applying the compatibility condition, we obtain the equations for spatial

variation of the first two modal amplitudes

' -
a1z + iSfDl E] a — iaF'lalyy -+ ’I:(.YDl Sle_zaxa’;az = 0 (34)
@z + i f Dy Eyay — iaFaay,, + iangzeﬁ&a-% = 0,
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to O(6/X). The constants are

x
2 w
i = ]"1(7 ding"
Fj = 1/2k; (35)

S, = —E—@L{kz—k +_1.( 6_;).22.)}
S-z = 5'2'["12‘*‘2“’1

For resonant quartets the relation among the frequency and wavenumbers wj =
jwi, k2 = 2k; — 6, and k3 = 3k, — A is given by the dispersion relation. The

procedure is the same as the two-mode case and yields

Q1 + iSfDl E1a1 - iaFlalyy -+ iC!D152116 ibz *az + ZCZD15321€ A"”azag

Il
o

azz +ief Dy Eaay — taFhagy, + iaDzSze'H‘s”af + z'aDgSgue"A“’a’{ag = 0

a3z -+ iefD3E3a3 - iaF'3a3yy -+ iaD;;.S'::,e"‘A’ala-z = 0,

(36)
to O(6/.X). The constants are, with subscripts 1,2, or 3,
2 2
D; = 1/201 - 8L
2dp, 3 w?

E; = kilv— -—p,gri)

F; = 1/2k;

J / J (3,‘_)
Sy = —2+—kL{k R e 2L - 22}

Sz = ikf—i-?w‘
St = Gor{k =k + (% 4 20))

In this study we restrict our attention to the triad case.
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2.2 'The Mass Transport Problem

The drift velocity is the second-order steady state flow in the sediment-laden bound-
ary layer that hugs the bottom topography generated by the passage of the overly-
ing water waves. The boundary layer is assumed to have a characteristic thickness
0p < ho. The sediment in the boundary layer is assumed to move from place to
place at a rate equal to the drift velocity.

In order to compute the drift velocity, an explicit expression for the fluid ve-
locity immediately outside of the sediment-laden boundary layer is required. From

inviscid theory, in scaled variables, the shoreward velocity is explicitly

Uy = ~42-U(r,—h,t)
= qu(r,t) — 782 {—h[(hu(r,t)) + c(hvzy(r,1))] + 3h%(uza(r, t) + Qugy(r, 1))},
(38)

and the span-wise velocity

Vi = ‘/Z}'U(I‘, —h, t)
= 7u(r,t) — ‘//32{—h[(huxy(r, t)) + c(hvyy(r, £))] + %hz(uzy(r: t) + avyy(r, 1))}
(39)
in the neighborhood of the boundary layer. The bottom velocities to lowest order

are

r

lUoe = (uo +;5‘-’/_;3qu$)
= i Ciai(X,y)eltom=9h 4 cc.

o I2 3 L2
w = uo+ 1R, + 1,

—i Tt £ 1Ciai(X.y) + B (%), )=t | cc.,

where (", = (1 — /fkf%).




As shown in [Restrepo & Bonal993b], for high Reynolds flows, the equations

of motion in the boundary layer are given by

Pue + afluus + avy,] + cwu, = "gps + Unn

B, + afuve + avvy) + awv, = "gpy + Unn 1)
Pn = O(én)

B(uz + avy) + wy, = 0,

where the vertical coordinate yn = z + h. A locally flat bed has been assumed.

The following boundary data used to solve Equation (41) is

u=v=w=0 atn=10 (42)
and
u— Uy
(43)
v — V, n — co.

The velocity (Us, V) immediately outside of the layer gives rise to the following

pressure gradients:

By, = BUw+ aB(Uslsa + aViliy) (44)
—gpy = BV + af(UpViz + aViViy).

All the required information to solve for the velocities in the boundary layer is thus




at hand. Performing the expansion

u = Ug+ aiy---

v o= bo+abi--,

we obtain the lowest-order boundary layer equations

Biot — tonn = PUose
Boot — Bonn = BVose
Pon = 0
Bigz + Won = 0.

A solution of Equation (46) of the form

2
@ =Y o Pz, y,n)e®="t 4 cc

i=1

16

(45)

(46)

(47)

with a similar representation for ¥, subject to the boundary conditions given by

Equations (42) and (43), is found by integrating Equation (46). The result is

o = Yoo, Cia;(l - e“”"\l)e‘(kﬂ“"f‘) + c.c.

Bo = i, ki(BA(h2)yai/2 — Ciagy [k)(1 — e *Da)eilhm=:0) L e (48)

we = i Z'Jz=l k;Cia;(1 —ndj; — e"‘AJ)/t\.je"U‘J”“wi‘) +c.c.,

where \; = (1 —2)y/fw;/2. The vertical velocity @ is found by integrating the

continuity equation.
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The drift velocity [Longuett-Higgins1953,Restrepol992] is given by

U (u1) + ([ todEios) + (J¢ wodFiin)

(’01) + (ft ﬂod{’l‘jox> + <ft lbodfﬁon).

(49)

V

It is assumed that the viscous boundary layer is sediment-laden; composed of
cohesionless, rarely interacting sand particles.
The mass transport equation [Restrepo & Bonal993b] is

Oh(z,y,T) K ;
) (50)

where p, is the mean sediment concentration and u and v are the shoreward mass

flux and the longshore mass flux, respectively:

bu
v = /0 p(z, 2" YV(z,2"))d=". (51)

Note that when weak y dependence scaling is adopted in Equation (50) the long-
shore mass flux is O(«) smaller than the shoreward flux.

In the remainder of this study, we assume, for simplicity. that the sediment
concentration is constant and equal to p, in the boundary layer. In terms of
Equation (49), and upon use of Equation (51), the mass flux components, to lowest
order, are

2 2k; C2|a3|

P S

k;C?
1-1] + Z ﬂa_—lajl 23 + c.cC., (52)

g; i=1 7



where
‘HO" 3 1 -20
By = o3fu =" =5+ 5(1-Boy)e™ 2B
+e~*1%%cos ;6 — sin o;8y][1 Bo;(o;6u +1)]
and

3
Ty = 5(1/2—o;6w) + e/

—e~odu1 §105] cos ;8 + 2e=72%% sin gj

for the shoreward mass flux, and

2 :C%a%a:
v=Y IR 0 + e

j=1 i%;

for the longshore directed mass flux, with

1
J, = ojbp — 1 — 5(1 — 6—2016“) + 6_616"‘(cos o;6p — sin o;64)

+/3AJ[%(1 + 6_2016“) + e‘AJ5b‘(i6;,,o-j/2 — 1)]

18

(53)

(54)

(55)

(56)

The quantities Zyy, Ty, and J; are plotted parametrically in Figures 3, 4, and 5.
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Figure 3: Variation of Z,,, with 8, = 1.0 fixed

To summarize, then, the internal waves are obtained by solving the system

1z — 1K ayyy + iKs f(z,y)ar + iKse9%a%a, = 0

Qre — 1Koy + 1K f(z,y)ay + i]&'se“‘s“’af =0
Ai(y)
ax(z =0,y) = A(y)

a1($ = O’y)

plus appropriate boundary conditions on y =0 and y = N. The K coefficients are
O(«,¢), and are given by Equation (34) and Equation (35). The bottom evolution.

on the other hand, is Equation (50):

Feh(e 0. T) = Kn+n)
h(z,y,0) = H(z,y).

(53)

Equations (57) and (58) constitute the full model.
The solution of the system is achieved by using the following prescription: The

initial bottom configuration H(.r,y) determines the function f(x,y) in Equation




Cooyquuncy

Figure 4: Variation of T, with 85 = 1.0 fixed

(57) at T = 0. The flow on the interface is found by solving Equation (57). The
drift velocities 4 and v are computed and used in Equation (58) to update the
bottom k. The new bottom is then used in the triad equations, and the whole
process is repeated until some T final. If the value of T final is quite large, it could
be necessary to make the boundary conditions A; depend both on y and T, if the
conditions that generate them are changing over time. Except for periodic updates
on the boundary conditions, the prescription remains the same.

The properties of the quasi-linear hyperbolic mass transport equation are well
known [Lax1973], and the existence and uniqueness of solutions ware well estab-
lished: provided the initial condition A(rz,y,0) = H(r.y) is at least in the C!
class of functions, and the characteristics are nowhere parallel to the manifold on
which the initial data is prescribed, we have solutions in either the weak or strong
sense (i.e.. smooth, or shocklike). A shock solution either can be prescribed as
initial data or can occur at some later time when the characteristics cross in space-

time. These shocks are, in the context of sand ridge topographies, bottoms with




feonuuny

Figure 5: Parametric plot of J;, with &, = 1.0 fixed

sudden changes in elevation or steps. Alternatively, the bottom topographies will
have wavelike features. Since either possibility exists, it is worth considering what

causes either outcome.

Equation (58) may be recast as

Oh(z,y,T) ., 0p v
7 K (a—};hz + 8—hhy)
h(z,y,0) = H(z,y), (59)

assuming that the indicated differentiations can be performed. If in the above sys-
1 1 = QE al/ = * M ]
tem we identify ¢ = (01 . a—/:) = (c¢1.c2) as propagation speeds, we may reinterpret
1

the problem in terms of simple wave dynamics. Assuming the solution is wavelike.

it may be inferred that
h —H(z —Tei(h)) = O(a). (60)

Since vy, = O(«) the second term on the right-hand side of Equation (59) affects




ty
N/

the outcome very minimally. Assume that H is differentiable. Using the implicit

function theorem, we have

HI
1 + H'en T
_H 61
L+ H e T ' (61)

hr

Q

Q

z

It is evident from this pair of equations that, for ¢;; > 0, if H' > 0 for all z, both
hr and h; remain bounded for all time. On the other hand, if ¢;; < 0 at some
point, hr and k. diverge as 1+H'c;, T — 0. The situation is the reverse if ¢;; < 0,
of course. Otherwise, steplike solutions will not occur. The typical situation we
have found is the latter. For such a situation it is inferred that the characteristics
have wave-like dependence. Figures 6 and 7 illustrate the oscillatory nature of ¢;.

Insofar as the solution of the model’s system, we are concerned with the issue
of stability in the iterative solution of the internal wave/bottom system, which
constitutes the full model. We think of H as an entirely new initial condition as
input to the conservation law at each value of T. We may ask then, when do the
characteristics cross? Set

I + H'C”,,T = 0. (62)
If there is crossing of the characteristics, it will occur at

1

T=-— .
chlh

(63)
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¥, spanwise 50 o X, shoreward

Figure 6: ¢;(T = 0) for bottom f(T = 0) = 0.0lz + 0.005y. B = 0.08, ¢ = 0.2,

Q= 01, Wi = 1.2.

For the two-dimensional case

Ly, = _71(L?fl(h)_A/2(L;zz.ﬁ2(h)7
v = 4[\’;32132?Hj//1jw_7‘
3.,
L= (L= 23k, (64)

thus, crossing occurs when

l

= . , . 65
r Hl["/l(L%fl(h) +"/2”"§f2(h)] ( )
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50 X, shoreward

y. spanwise

Figure 7: ¢;(T = 0), when f(T = 0) = —0.01z — 0.005y, 8 = 0.1, £ = 0.2, a = 0.1,

wy = 1.2.

By assumption, H' = O(¢) = O(a). Since kj,w;, K.andH; are all O(1), and
B = 0(3'/%), then v; = O(3*?). Thus, an estimate for the time at which crossing

may occur is

1
" B0y >

which can be quite a large interval assuming that |e;| remains bounded and less
than one. This estimate applies to the three-dimensional case reasonably well since
y variation is O(«) smaller than r variations. Note that each iterate is effectively
a new initial condition for the hyperbolic equation and that the drift velocities

will be different at each time step. Hence, the previous analysis does not imply
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convergence of the iterative procedure but, rather, that there are constraints on

the time step-size in T between iterated for the procedure to make sense.

3 Qualitative Features of the Solutions to the

Full Model and Comparisons with Fiéld Data

The main qualitative features of the full model are presented in this section,
using examples computed numerically with the fixed-point method [Restrepo &
Bonal993a]. To better discern the effects of different bottom topographies on the
internal waves and on the eventual bottom topography after the passage of many
waves, we now turn to the case in which the initial bottom configurations are
strictly z-dependent and the boundary conditions are constant. Briefly, in this
case, a larger number of bars form when the gradient is slight, the distance sepa-
rating the bars increases seaward for the positively sloped case, and initial bottom
discontinuities in the z direction tend get “smoothed out” after the passage of
many waves.

Figure 8 shows the bottom topography, which was

0.005z = > 130.0 ~
f(e.y,0) = (67)
0 otherwise
at T = 0. The lighter line represents the bottom profile at T = 20AT; the darker

line is the bottom at T = 80AT. The parameters are a = 0.1, z = 0.2, 5 = 0.36,

and wy = 1.2. For the same range of parameters, Figure 9 shows the effect on the
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Figure 8: Cross-section of f(x,y,T). The bottom was initially sloped but feature-
less. The darker line represents the bottom at T = 80AT, whereas the lighter line

represents the bottom at T = 20AT.

surface and on the eventual bottom of an initial topography that is approximately
tuned to the interaction length of the surface waves.

A bottom that initially had gradients in the y direction bends the water waves,
affecting the eventual bottom topography by producing a series of bars with refrac-
tive features. Cousider, for example, the case in which the initial bottom topogra-
phy is f(r,y) = 0.0075z — 0.005y , the domain is 240Ar in length, and all other
parameters as before. Figure 10 shows the refracting bottom at T = 400AT. A
striking way in which refraction takes place can be seen in the case for which
the boundary conditions at £ = 0 are y dependent. Shown in Figure 11 for
(T = 400AT) is the case for which f(x,y) = 0 at T = 0 and the boundary

conditions are A; = 0.5 + 0.001y and A, = 0.02 4 0.001y. corresponding to an
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Figure 9: Effect of a tuned bottom, f = 0.5sin(0.412z) at T = 0, on the eventual
topography and ocean surface: Light solid line. Bottom at 7" = 100AT: Dark solid

line.

incoming gravity wave that has slightly higher amplitude at one end than at the
other.

Interesting configurations are achieved when the above-mentioned effects are
combined. Figure 12 illustrates the refraction pattern on one of the modes for
which A4, = 0.5 — 0.00ly, A, = 0.1 — 0.001y, and the bottom at T' = 0 was
f(x,y) =0.01y.

Another curious change in pattern direction is illustrated in Figure 13. In
this case A; = 0.5 — 0.00ly, A, = 0.1 + 0.00ly, and the bottom at T = 0 is
S(x,y) = 0.01y. All the parameters in Figure 13 are the same as those in Figure

12

S
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Figure 10: Refraction due to initial bottom configuration. Bottom at T = 100AT.

Shown here is the difference between the new bottom and the original topography.

4 Conclusions and Future Research Plans

This study shows how internal waves on the continental shelf, supported by the
interface in a two-fluid idealization of the stratified ocean, are capable of generating
striuctures on a sandy bottom that resemble sand ridges. [t is conjectured that a
significant but by no means exclusive agent for the formation and evolution of sand
ridges is the second-order boundary layer drift velocity that results from the pas-
sage of overlying nonlinear dispersive waves with wavelengths that are significantly
greater in extent than the local water column depth. Since the scouring action of
the drift velocity has wave-like spatial structure, it produces coherent undulating

patterns on the sandy hottom. While there are several types of sand ridges (and
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Figure 11: Refraction due to boundary conditions. Bottom at T' = 100AT.

most likely, a variety of sources for their formation), our model represents (albeit
crudely) a sensible explanation for the formation of longshore sand ridges that oc-
cur on the continental shelf, far from the shoaling area, in which wave breaking is
a rare occurrence and the wave field is nearly devoid of a reflected component.

While linear nondispersive gravity waves can produce a second-order drift ve-
locity in the boundary layer hugging the bottom topography, we conjecture that
weakly nonlinear dispersive water waves are more likely to be the agents of forma-
tion. The claim is that there exists a closer correlation between interbar spacing
and the ~interaction length” (i.e., distance in which the lowest modes of the non-
linear waves exchange their energy) rather than with the wavelength of the waves,
which wonld be the case for linear waves.

Preliminary experimental evidence supports this claim. Boezar-Karakiewicz
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Figure 12: Refraction due to antagonistic boundary conditions and initial bottom

configuration. Mode a; at T' = 0.

et al. [Boczar-Karakiewicz, Paplinska & Winiekil981], in a series of experiments,
were able to observe that there exists a relationship between the frequency, the
amplitude, and the dispersion, in the waves and the bar spacing. As described
in our model. the interaction length is a nonlinear relation that depends on the
frequency, the dispersion, and the nonlinearity of the wave. Through numerical
simulations it was found that the latter effect is less significant in the range of fre-
quencies of the long shallow-water waves of the continental shelf than the dispersion
[Boczar-Karakiewicz, Paplinska & Winieki1981].
The model developed here is truly evolutionary: given an initial bottom to-
pography. it is possible to obtain the topography at some later time. An equation

gives the water wave field for a particular bottom topography. Another equation,

B
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Figure 13: Refraction due to boundary conditions and initial bottom configuration.

Mode a, at T = 0.

the mass transport equation, updates the topography. These equations are inter-
dependent since the mass transport depends on the rate at which the drift velocity,
which is produced by the water waves, is capable of imparting momentum to the
sediment in the boundary layer, thus making changes in the bottom topography. In
turn, the water waves will respond dynamically to the changes in the topography.

The iterative solution of this coupled system is enabled by the vastly different
time scales in which the bottom and the waves evolve. The modal equations that
yield the internal wave field are solved numerically by using a combination of
finite-difference techniques and fixed-point methods. We refer to this scheme as
the fixed-point method. A full description of the scheme appears in [Restrepo &

Bonal99:3a).




32

The model is quite crude at this stage. The wave field is represented by its most
energetic modes, and the bottom evolution equation is a simple mass balance law.
We hope that further improvements in the characterization of the most relevant
physical processes, such as the use of the full Boussineq system as a model for
the water wave field and the parametric inclusion of sediment mechanics in the
mass transport equation, will yield a great deal more structural similarity between
field data and the model. Progress in our understanding of the current model and
further work in gathering field data will point us in the right direction for these
improvements.

An interesting question that has thus far received little attention is the subject
of steady-state bottom configurations. In numerical simulations of the present
model it has been observed that a common but by no means exclusive long-time
outcome for the evolution of the bottom topography is one in which the structure
of the modes and that of the bottom have similar qualitative features. It is also
quite common in these numerical simulations for the bottom to reach its steady
state in a gradual fashion rather than in small spurts of high activity followed by
relative inactivity, a common observation in the formation of sand ripples [Boczar-
Karakiewicz, Benjamin & Pritchard1987). Since the temporal characterization of
the evolution of actual sand ridges has not yet been systematically measured. it
is difficult at present to judge whether the temporal behavior of the sand ridges
created with the present model is in fact correct.

A number of interesting aspects of sand ridge dynamics require field observa-
tions. One is the measurement and characterization of the boundary laver velocities

and the search for observational evidence of a periodic structure in the drift, veloe-
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ity that can be correlated in some way to the passing waves. Another interesting
observational project is the measurement of the evolution of the spectra of inter-
nal waves in sand ridge evolution time scales, the aim being to discern how the
waves change with morphological changes in the bottom topography. By far the
most difficult experiment would entail the observation of the actual evolution of
the bottom topography.

It is not that surprising that very little is known about sand ridges in the
deeper reaches of the continental shelf from direct field measurements. While
more field data is being collected and analyzed, our best recourse at present is
to keep pursuing the development of models such as the one presented here. An

increased understanding of its inner workings may yield clues to the dynamics of

this beautiful natural phenomenon.
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