COVF-Fy o ustf- 1y
SHNOGY-315T <

Autonomous, Teleoperated, and Shared Control of Robot Systems

Robert J. Anderson

Sandia National Laboratories
P.O. Box 5800, MS 1176

= ﬁJ%.J‘V i
MaR 1 1 1833

Albuquerque, NM 87185

bjander@isrc.sandia.gov

Abstract

This paper illustrates how different modes of operation
such as bilateral teleoperation, autonomous control, and
shared control can be described and implemented using
combinations of modules in the SMART robot control
architecture. Telerobotics modes are characterized by
different “grids” of SMART icons, where each icon repre-
sents a portién of run-time code that implements a passive
control law. By placing strict requirements on the mod-
ule’s input-output behavior and using scattering theory to
develop a passive sampling technique, a flexible, expand-
able telerobot architecture is achieved. An automatic
code generation tool for generating SMART systems is
also described.

1: Introduction.

Sandia National Laboratories is developing intelligent
robotic systems for unstructured environments. Typical
problems include the remediation of large waste storage
tanks, the decommisioning of nuclear facilities, and the
remote handling of hazardous waste. These tasks must be
accomplished in cluttered, poorly modeled environments
with limited human access. All of these tasks require a
number of mundane repetitive operations such as scan-
ning, scraping and bin disposal, combined with a number
of complex teleoperated tasks such as insertion, part
acquisition, and camera based path planning. In this
paper we describe how SMART: (Sequential Modular
Architecture for Robotics and Teleoperation) can be used
to accommodate all these different modes of operations.

SMART [1] is a modular telerobotic control architecture
which combines passive network based modules to imple-
ment telerobotic behavior[2,3]. Each module represents a
portion of real-time code which implements
position/velocity or force perturbations. There are mod-
ules for input devices, sensors, kinematics, dynamic fil-
ters, constraints, and robots. The operator combines dif-
ferent sets of these modules to implement a behavior. By
switching through different behaviors the task is accom-
plished.

DISTRIBUTION OF THIS' DOGUENT 1§ UNMITED ﬂ

OSTI

2: Building Autonomeus Control Systems.

True autonomous robots do not exist -- at least not at
Sandia. All robots receive command and control informa-
tion from a human operator in one form or another. This
interface may be as high level as a CAD-description of a
part to be designed and a request to “make part.” It may be
an intermediate level where the operator teaches points
using a teach pendant and then generates a robot program
with the robot following the pre-taught points, or it may be
a low-level interface, where the operator commands every
motion using a direct input device such as a space-ball or
force reflecting master.

For our purposes, the term “autonomous operations” will
refer to any operation in which the operator interfaces to
the robot only at an asynchronous level. Thus, if the oper-
ator specifies a series of tagpoints, and tells the robot to
move to them one at a time, it is an autonomous operation.
If the operator has to continuously press a button on a
teach pendant for the robot to move, then it is a teleoperat-
ed operation. In this section we will demonstrate how
SMART modules can be combined to implement
autonomous robot behavior.

2.1: Joint Space Motion.

The simplest type of autonomous robot controller is a joint
motion controller, which has two fundamental elements: a
trajectory generator and a joint servo-controller. In
SMART this is implemented using three modules, a PATH
module, a joint servo module (such as the
TITAN_JOINTS module), and a termination module
(KB1) (Figure 1).

The PATH module generates a joint-interpolated manipu-
lator path for a series of preloaded points. Between each
pair of points the manipulator accelerates, moves at con-
stant velocity, and de-accelerates following a trapezoidal
velocity profile. By overlapping the acceleration profile of
one path segment with the de-acceleration profile of the
previous path segment smooth transition speeds are

obtained.

A joint servo module such as the TITAN_JOINTS

KB1 PATH TITAN KIN TITAN JOINTS

module receives a steady stream of set-points from the
previous module and drives the robot accordingly.
This can be done by driving the manipulator’s actua-

tors directly in SMART or passing the setpoints to a
dedicated robot controller.

The termination module, KB1, insures that the velocity
commands generated by input devices such as the

Bg willwis v WIS W |l
NIIN Nls

<
Bl :’;

™o
EYN
W

PATH module, is directed toward the robot. It also
provides some additional filtering and reduces wave
reflections in the discretized system.

KB1 PATH

TITAN JOINTS

Bg ¢ Wi iwi vd wi
: N

Figure 1: Joint space autonomous controller for Titan
2.2: World Space Motion.

To implement world space motion a kinematics module,
such as the TITAN_KIN module needs to be added to the
system (Figure 2). The robot kinematics module continu-
ally maps the position and orientation of the tool tip to a
set of joint angles, and maps the force and velocity
between world space and joint space using wave vari-
ables.

The trajectory generator operates almost identically in
world space, generating straight-line paths between
taught positions and orientations. In world space, howev-
er, the motion is scaled to the maximum cartesian veloci-
ties, rather than the individual joint velocities.

2.3: Graphical Programming.

When working in unstructured hazardous environments
most operations are performed infrequently, and cannot
be taught using a standard robot teach pendant paradigm.
For these operations, researchers have developed a new
approach based on interfacing with a 3-D graphical
model of the environment using commercially available
robot simulators such as IGRIP, SimStation, or RobLine
(Figure 3)[4,5] . First, the operator calibrates the graphi-
cal world to the real-world using structured lighting, visu-
al targeting, and/or calibration probes. Once the graphi-
cal model is deemed suitably accurate, the operator
manipulates “tagpoints” in the workcell. The tagpoints
store the position and orientation of desired locations in

Figure 2: World space controller for Titan

the workcell and also record auxiliary data such as the
gripper state, the speed with which to proceed to the next
point, or the event that should be triggered when that
point is reached.

The supervisory graphical programming system takes the
tagpoints depicted in the graphical display and downloads
them to the PATH module. Once downloaded it initializes
a start motion command. The module will then continu-
ously generate motion profiles until the sequence of points
is completed. The connected kinematics module receives
the world space positions and orientations and continu-
ously maps them into the local robot joint space, while the
joint servo module receives a continuous stream of joint
set-points from the kinematics module and drives the
robot accordingly. In this fashion autonomous motion of a
robot is achieved.

3.0: Teleoperation.

Pure teleoperation requires that the operator directly com-
mand all motion of the slave robot in real-time. When the
operator is directing motion through the use of teach pen-
dants, space balls or force reflecting masters, the robot
should move. When the operator releases the device, the
robot should stop.

Figure 3:Graphical Programming

3.1 Joint-Based Teleoperation

The most direct teleoperation interface for a robot slave is
achieved with a scaled replica master input device. Any
motion on any joint of the master is directly conveyed to
the similar joint on the slave, and any force detected by a
joint on the slave is directly conveyed to the similar joint
on the master. If the joint torque signal provides a poor
measure of the tool contact forces, then a force sensor
may be used in conjunction with the master, but the forces
from the sensor must be brought into joint space by map-
ping through the manipulator Jacobian.

This system may be implemented in SMART using the set
of modules shown in figure 4. A force-reflecting master
module (in this case the OMEGA_JOINT module which
connects to the Schilling Omega force reflecting master)
replaces the termination filter on the left-end of the
SMART network, and a KBB2 module converts differ-
ences in position between the master and slave into a
force to drive the slave and to backdrive the master. The
JR3_JOINT module maps forces measured from a JR3
force sensor into robot joint space.

robot is an order of magnitude better than obtainable by a
scaled master device. For these reasons generic world
based teleoperation has been developed[6].

Generic teleoperation is implemented in SMART by uti-
lizing kinematic modules for both the master and slave,
moving the KBB2 module into world space to create a
world error function, and adding an INDEX module,
which enables arbitrary force and position scaling
between master and slave along each degree-of-freedom

(DOF) (Figure 5).
3.3: Unilateral Teleoperation.

Bilateral teleoperation, as illustrated in sections 3.1 and
3.2 can provide the operator with important force contact
information, but is expensive to implement and is often
fatiguing to operators. In many cases, unilateral teleoper-
ation is more appropriate. In unilateral teleoperation, the
operator drives the robot with a non-force reflecting input
device, either in “rate mode” or in “position mode.” In
rate mode the operator directly commands the robot
velocity, using either a teach pendant or a force/torque
ball. Figure 6 shows a SMART system for the Schilling

Titan manipulator using the CIS Dimension 6

OMEGA JOINTS

JR3_JOINT

TITAN JOINTS

p-
Wi g wi
N N

LS
ZzC
Zo

HE

force/torque ball.

In unilateral teleoperation the operator is dynamically
decoupled from the system, and the operator imped-
ance will not affect the system’s response. When
implemented in the bilateral SMART architecture,
however, the force information is still transmitted to
the input device module and can still be used to

Figure 4: Joint Teleoperation with Force Feedback

3.2: World-Based Teleoperation.

Joint based teleoperation has the advantage of being sim-
ple to implement, both algorithmically and computation-
ally. It also has numerous disadvantages. First, a kine-
matically identical master is needed for every slave to be
controlled. Second, it is potentially dangerous since

OMEGA KIN

s
X

|

small motions on the master may lead to very large
motions on the slave, since master workspaces are

TITAN KIN

TITAN JOINTS

typically a fraction of slave workspaces. Third, and
most importantly, the resolution of the slave is lim-
ited by how accurately the operator can hold the

master. For instance, if the master can be posi-

tioned precisely only within 1 mm and there is a|] L
1:10 ratio between master and slave, then the slave

can only be positioned within 1 cm. This is espe- k)

n3 wi
s V1w | J

@
Zzo
Ztm

L=

cially problematic when an industrial robot is used
as the slave since the positioning accuracy of the

Figure 5. Generic Teleoperation with Force Feedback

Cis

TITAN KIN

TITAN JOINTS

module only slows manipulator motion when actual

CHe

Wi Wiy Wi
N| N N Hie

E
«
<

{ AAAA.
1—VVW

v,
&V

joint velocities are about to be exceeded. This reduces
the fatigue of the human operator, but still ensures the
master and slave robots stay synchronized.

4.2: Superimposing Inputs.

One of the most natural methods to share autonomous
and telerobotic operations is to superimpose inputs.

Figure 6: Unilateral Teleoperation

enhance operations. In particular, all unilateral input
devices in SMART have a force threshold. If the operator
drives the robot so that sensor and virtual constraint mod-
ules generate a net force which exceeds this threshold,
any further motion in the offending direction is prevented.

4.0 Shared Operations

The previous two sections have shown the extremes of
telerobotics, where either the robot is operated solely by a
trajectory generator, or solely by the human operator.
Generally, a faster, safer solution is obtained by merging
human input and autonomous operations, with the appro-
priate combination depending on the task. In this section
a number of methods to achieve this will be discussed.

4.1 Imbedding World Knowledge

One of the first things to add to the teleoperator system is
world model information, such as the locations of known
objects and the limitations of the slave manipulator. Two
SMART modules have been implemented to incorporate
world knowledge into the system, the OBSTACLE mod-
ule and the CLAMP module.

The OBSTACLE module generates a virtual force field
around modeled objects in the environment. First the
robot tool and the environment are decomposed into con-
vex object primitives. Then every update cycle, the dis-
tance between pairs of objects are computed and used to
generate nonlinear spring-damper forces along the vectors
of nearest proximity[7]. The net force is injected into the
system and serves as a barrier force that prevents the
human operator from driving the slave into known
objects.

The CLAMP module prevents the operator from overdriv-
ing either the position or the velocity of the slave robot. A
nonlinear damping force is activated whenever any joint’s
velocity exceeds ninety percent of maximum velocity, and
a nonlinear spring-damper force is activated whenever
any joint comes within a few degrees of its travel limits.
Unlike a linear “coordinating torque” term which tends to
inhibit manipulator motion at any velocity, the CLAMP

Here the trajectory generator provides the dominant
desired motion, and the human operator perturbs the
base motion using a teleoperator input device. For
instance, in scanning the waste surface in a waste storage
tank a trajectory generator may control the scan path
across a surface patch, while the operator controls only the
vertical motion of the manipulator. The OBSTACLE
module may be used to simulate the contours of the waste
surface in this case. Figure 7 shows a superposition sys-
tem using both the OBSTACLE module and the CLAMP
module. Here a one-degree-of-freedom TORQUE_ARM
module is used as a force-reflecting master and a MULTI-
PLEX module is used to determine both the degree of
freedom of the coupled motion and the appropriate force
and position scaling along that degree of freedom.

4.3: Record, Replay and Training.

Another method to combine human path planning abilities
with robot repeatability is to train a system in a virtual
world and then replay the motion in the real world.

The REPLAY module uses “motion cassettes” to sample
the joint position and virtual manipulator state during the
training mode of operation, while the operator drives the
virtual system using teleoperator input devices. The
VISUAL module provides the communication link to a
remote graphics host running a 3-D robot simulator pack-
age to provide the operator with a virtual view of the oper-
ation.

The motion cassettes are then loaded into the actual sys-
tem for driving the robot. Since the entire motion path has
already been previewed for safe collision-free operation
using the graphical simulator, the operator can repeat,
slow or reverse motion along the recorded motion path as
desired. This is especially useful for operations such as
arc welding and cutting in which the operator knows the
path a priori, but must carefully monitor the speed along
the path during operation based on visual feedback. A
simple speed dial can then be used to control the rate of
motion along the previously taught path. Figure 8 shows
the SMART modules needed to implement both the train-
ing and the operational systems.

TORQUE2

MULTIPLEX PATH

OBSTACLE

TITAN KIN TITAN JOINTS

&

<
31::
Do S

WA vd Wi
8||N N

nZ

L3
E3
19
=

Figure 7: Superposition system with Imbedded World Knowledge.

4.4: Local/Remote Operations.

The SMART system is designed using transmission line
principles. These principles have been shown to lead to
guaranteed stable behavior for arbitrary time-delay in a
delayed master-slave system [8]. Nevertheless perfor-
mance of a bilateral master-slave system tends to degrade
after the time delay exceeds 200 msec. In these cases it is
advantageous to dynamically uncouple the teleoperator
from the slave system. This can be done by scaling either
the forces or the velocities to zero.

Figure 9 shows a bilateral master slave system imple-
mented using two remote SMART networks. The
RECEIVE/TRANSMIT module pair allow a SMART sys-
tem to be arbitrarily connected over ethernet. To dynami-
cally decouple the master and the slave the force scaling
on the SCALING module would be set to zero. In this
system local virtual forces are still generated on the mas-
ter side of the system to prevent collision with obstacles
and to prevent overdriving the robot. The remote system
combines local compliance in the KBB2 module with
force feedback from the JR3_JOINTS module to reduce
the effects of collisions with the SLAVE manipulator.

4.5 Task Sharing.

In many cases telerobotics is achieved not by having the
autonomous system and the human operator sharing every
task, but by splitting up the tasks into subtasks which are
performed either by the human, by the autonomous sub-

system, or by a combination of both. In this case the robot
control system must be able to rapidly switch between dif-
ferent modes of operation.

In dismantlement operations for example, the location of
manipulator tools are usually pretanght, and the robot will
execute an autonomous sequence to grab a tool. The
human operator may then teleoperate the robot to places of
interest,to drill or cut at a point for instance, and then the
system will take over to complete the operation. In sur-
face finishing or scanning the human may teleoperate the
robot to first delineate the corners of the region of interest,
and then while the robot scans the surface area, the opera-
tor controls motion normal to the surface.

5.0 Enabling Technologies.

The different collections of modules shown in the previous
sections illustrate some of the behaviors that can be
achieved by combining SMART modules. Currently over

KB1 TITAN JOINTS

b)

B wisl{wis
N N v,
“T

®. o]

=F
BT
2

AA

VW

-—

K

v
TITAN KIN

VISUAL

>
B2 wiu | Wi
N | N

Figure 8: Training system: a) Teleoperator Training in virtual world, b} Operations in real world.

KRAFT JOINTS KRAFT KIN OBSTACLE TITAN KIN SCALING
2) _ —
TR S Sl F1 T S o
BY K==
;
b) maps the Laplace variable, s, to the unit delay, d = Z’I s
RECEIVE JR3_JOINT TITAN JOINTS

Wi Wi < wi
N[N NN

using the bilinear transformation,
s = 2(1-d)/T(1+d)

where T is the sampling period. Force and velocity
signals at each module port are then mapped to the
wave variables, a, and b, using the mappings,

a=f+Zyv

Figure 9: Long Distance Teleoperation: a) Local master

system, b) Remote slave system.

a hundred different modules have been coded and tested,
including modules for seven different input devices, six
different sensors, eight different robots, and various
dynamics and constraint behaviors.

A typical telerobotic system in SMART may consist of up
to twenty different combinations of these modules each
containing from four to thirty modules, which the operator
will switch in to achieve different subtasks. A number of
technologies have been developed to help the system
designer build a system.

5.1 Achieving Modularity in a Discrete System.

The key to the flexibility of building complex modular
system is the inherent stability of the SMART architec-
ture. Each module is first designed as a passive subnet-
work in the continuous domain. Control laws are imple-
mented in a passive manner by simulating the behavior of
passive spring-mass-damper systems connected to inde-
pendent force and velocity generators. Non-linearities
due to kinematic mappings and constraint functions are
represented by memoryless Jacobian elements and nonlin-
ear dampers. All dynamic, energy-storing behavior is
incorporated into linear-time-invariant sub-networks.

By applying scattering theory techniques each module is
discretized while preserving its passivity. For example
each dynamic element is mapped to the discrete domain
using the passivity preserving Tustin's method, which

b =f- Zov

where f is the force across the port on the module, v, is

the velocity entering the port. The term, Z0, is called
the characteristic impedance. In a transmission line this
term would be derived from the line characteristics, and
is in general a complex number. In SMART however,
this number is a parameter under the designer's discre-
tion. By choosing Z to be a positive real constant, we
can guarantee that the output scattering operator mapping
for a module,

b=Sa

where, S, is the scattering operator, an induced norm less
than or equal to one. Connecting the output waves of
each module to the input waves of the neighboring mod-
ules completes the system.

Since the characteristic of a passive system is that the
scattering operator is less than or equal to one, scaling of
the wave signal by a sample delay, 5T, will not affect
the passivity of the module, and thus the modules stabili-
ty behavior is immune to sampling delay. This allows
SMART to transfer information between modules in any
order, simplifying the implementation of the modular
control system considerably.

Furthermore, each module can be tested for nonpassivity
simply by driving the module with a series of test input
waves at each of the module’s ports. If the sum of the
squares of the output waves exceeds the sum of the
squares of the input waves for a module, then the module
is non-passive and cannot be arbitrarily placed in a
SMART grid without additional considerations. These

stability techniques are discussed in detail in [9].

5.2: Position Synchronization.

Assuming that each module in the system fulfills the pas-
sivity requirements, then stability of the system for arbi-
trary connections of modules is assured. For a telerobotic
system, however, position tracking of the system must
also be achieved. A system based solely on force and
velocity signals implemented through wave variables
would eventually accumulate positioning errors, and the
robot motion would deviate from the operator’s intended
path.

In SMART exact position tracking is accomplished by
feeding the position and orientation forward throughout
the grid, summing up the net effects of all the input
devices, filters, and kinematic mappings until a final set-
point position is achieved for the slave robot at the end of
the grid. If the force/velocity feedback paths are stable
for any position using the scattering operator approach of
the previous section, then the modules can use the derived
force/velocity information to properly modify the posi-
tion/orientation feedforward path.

To insure that the position of the input devices is synchro-
nized with the location of the slave robot a synchroniza-
tion step is initiated every time a new grid is swapped in.
During the synchronization stage the feedforward position
propagation is reversed, so that the position of the manip-
ulator is propagated back through the kinematics and filter
modules until an initial starting location for the teleopera-
tor is derived.

5.3: Implementation Details.

Currently SMART is set-up to run on a VME system
under the VxWorks real-time operating system using C-
source code. The code is developed on a UNIX host
machine and cross-compiled for the VxWorks target cen-
tral processing units (CPUs) such as the Force 68k,
Motorola, and Heurikon processors. If desired, the code
may also be cross-compiled for one or more Mercury 1860
attached processors. Modules can be arbitrarily distrib-
uted across the cpus in the VME backplane. Typical
installations will use from two to five CPUs and a single
attached processor.

Associated with each module in SMART are a minimum
of four required routines, a initialization routine called
module_init(), a filter constant setting routine called mod-
ule_fc_set(), an update routine called module_update()
and a print routine called module_print().

Upon initialization the module_init() routine is called for

each module. This sets up I/O drivers, spawns processes,
allocates memory and does whatever else is necessary to
initialize a module on a given CPU. It will also set-up the
system with default filter constants if none have been pre-
assigned by the user. It then spawns the main smarz_sys-
tem_update() process, and if on the first cpu, spawns a
smart_monitor process as well.

The module_fc_set() routine is typically called before the

~ module_init() routine using the user’s predetermined filter

constants. It can also be called again at any time to
change the current operating mode of the module.

The module_update() routine is the main workhorse mod-
ule. It is called synchronously every few milliseconds by
smart_system_update() to process the wave and position
inputs and to generate the wave and position outputs for
the module.

Once the system is running the operator can do a humber
of things. The operator can change filter constants on any
module at any time. He can activate the robot. He can
download a set of points to the path module and execute
them. He can also swap in a new grid using the
smart_set_grid() command. This will automatically deac-
tivate any robots, reconnect the modules for the new grid,
and synchronize input devices to the robot's position.

The smart_monitor() task verifies that all CPUs maintain
a heartbeat and continuously updates the state of the sys-
tem. It ensures that all CPUs are initialized, that all mod-
ules are synchronized, and that robot activation com-
mands are acknowledged. :

5.4 Automatic Code Generation

To create a SMART system on the host computer, the oper-
ator first works with a Graphical User Interface (GUI) called
the SMART Editor[Fig 10]. By using the editor the opera-
tor defines the different grids of operation by selecting and
dragging the SMART icons onto a display field. Once the
grids are laid out and verified as valid (i.e., each grid must
represent a closed network, and each port must have consis-
tent degrees-of-freedom and orientation states), the operator
clicks the “Assign numbers” button. Using internal heuris-
tics and a knowledge of the available hardware, the sys-

-tem will then attempt to assign CPUs and attached proces-

sors for each module. In addition to the processor assign-
ment, a configuration file for each module is parsed which
contains sets of valid filter constants.

Using a GUI tool the operator can toggle thru the sets of
filter constants appropriate for each module by name.
Here the term ‘filter constants™ refers to any parameter
unique to a module that the operator might want to change

to achieve different operational modes. For instance, the
PUMA_KIN module has filter constants describing the
Denavit-Hartenburg-(DH) parameters for a PUMA robot.
In this case the user selects between pre-determined sets
of DH parameters corresponding to PUMA 560 series or
PUMA 760 series arms. '

Once the user has determined the filter constants and
processor numbers for each module in each grid, he clicks
on the “Generate Code” button. This will create C-source
code for each CPU in the target system, which describes
the system, the modules, and the initial filter constants for
each module. Numerous heuristics are used based on the
chosen set of modules and target hardware platform, to
determine an appropriate update period, 7, characteristic
impedance, Zgj, and distribution of modules accross the
cpus. Once generated, the user can include additional
application code as necessary.

Finally, pressing the Compile button will result in the
code being compiled for each processor, and the appropri-
ate VxWorks startup scripts to be generated. By resetting
the target VME the newly developed code will be auto-
matically downloaded and executed.

6.0: Conclusions.

In this paper we have discussed how the SMART system
can be used to achieve different telerobotic behaviors
ranging from pure teleoperation to pure trajectory track-
ing. Shared modes of operation included imbedded intel-
ligence, superposition, record and replay, remote and
local intelligence, and rapid reconfiguration between any
other mode of operation.

To date, SMART has been applied to tasks ranging from
force-reflecting bilateral teleoperation, to multi-arm robot
coordination, to flexible robot control, to painting with
redundant thirty foot robots. The development of the
COMM_RECVand COMM_XMIT module pairs com-
bined with special purpose remote viewing technology
has allowed us to conduct shared teleoperator develop-
ment and operations with remote sites.

Current work includes an extension of the OBSTACLE

module to include whole arm obstacle avoidance, and the
inclusion of more externally generated SMART modules.

7.0: Acknowledgements.

This work was performed at Sandia National Laboratories
and supported by the U.S. Department of Energy under
contract DE-AC04-76DP00789.

Figure 10: SMART Editor Window

References.

[11 R. J. Anderson, “SMART: A Modular Control Architecture
for Telerobotics”, IEEE Robotics and Automation Society
Magazine, Vol. 2, No. 3, Sept. '95 pp. 10-18.

[2] G. Raju, G. C. Verghese and T. B. Sheridan, “Design Issues
in 2-port Network Models of Bilateral Remote Manipulation”,
IEEE International Conference on Robotics and Automation,
Scottsdale, AZ, pp. 1316-1321, 1989.

[31 R. J. Anderson and M. W. Spong, “Bilateral Control of
Teleoperators with Time Delay”, IEEE Transactions on
Automatic Control, vol. 34, pp. 494-501, 1989.

[4] M. McDonald and R. D. Palmquist, “Graphical
Programming: On-Line Robot Simulation for Telerobotic
Control,” Proceedings of International Robots and Vision
Automation Show, Detroit, Michigan,, pp. 22.59-22.73, April
1993.

[5] J. H. Park and T. B. Sheridan, “Supervisory Teleoperation
Control Using Computer Graphics”, Proceedings of the 1991
1EEE International Conference on Robotics and Automation,
Sacramento, CA, pp. 493-498, April 1991,

[6] A. K. Bejczy, and M. Handlykken, “Generalization of
Bilateral Force-Reflecting Control of Manipulators,”
Proceedings of 4th RomAnSy, pp 242-255, 1981.

[7] R. J. Anderson, “Teleoperation with Virtual Force
Feedback”, Proceedings of the *93 SPIE Int. Symp. on Optical
Tools for Manufacturing and Advanced Automation, Sept. 1993,
Boston, MA.

[81R.J. Anderson and M. W. Spong, “Asymptotic Stability for
Force Reflecting Teleoperators with Time Delay”, The
International Journal of Robotics Research, vol. 11, pp. 135-
149, 1992. :

[91 R. J. Anderson, “Building a Modular Control System using
Passivity and Scattering Theory”, IEEE International
Conference on Robotics and Automation, Minneapolis, Mina.,
April 22-28, (accepted for publication), 1996.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

