CONV =604 5 -~]

SANDDS-0397 ¢

RECENT DEVELOPMENT FOR THE ITS CODE SYSTEM
- PARALLEL PROCESSING AND VISUALIZATION

A
A

Wesley C. Fan
C. David Turner
John A. Halbleib, Sr.
and
Ronald P. Kensek
Sandia National Laboratories
P. 0. BOX 5800 - SENR
Albuquerque, NM. 87185
(505) 845-7977

ABSTRACT

A brief overview is given for two software developments related to the ITS code system. These
developments provide parallel processing and visualization capabilities and thus allow users to perform
ITS calculations more efficiently. Timing results and a graphical example are presented to demonstrate
these capabilities.

I. INTRODUCTION

The Integrated Tiger Series aTS)! provides state-of-the-art Monte Carlo solutions of linear, time-
independent, coupled electron/photon radiation transport problems with or without the presence of
external electric and magnetic fields. It has been widely used in simulator design and analysis, radiation
dosimetry, radiation effects studies and medical physics research. Since its inception, the goal of the
ITS developers has been to simultaneously maximize physical accuracy and operational efficiency.
This is accomplished by employing the most complete physical models describing the production and
transport of the electron/photon cascade, the best available cross-section data and sampling
distributions, and variance reduction techniques for various difficult applic:ations.2 In this work, we
focus on two major software developments for the ITS code system to further improve the operational
efficiency. First, we implement parallel-processing capabilities so that ITS calculations can be
performed more rapidly, either on a cluster of workstations or on a massively parallel machine. This
reduces the notoriously high computational expense often associated with the Monte Carlo method and
allows users to solve extremely complex problems with fast turnaround time. Second, ITS has been
coupled with the Ballistic Research Laboratory CAD package (BRL-CAD)? to provide a means for
interactive geometry modeling and to display particle tracks. These capabilities reduce the effort
required to construct very complicated three-dimensional geometries, and enable users to gain useful
insight into the physics of the problem.

In the following sections we first discuss the parallel algorithm appropriate for the ITS code system
and its implementation. Two techniques that proved effective for load balancing across multiple
processors and machines are briefly discussed. Timing results and performance evaluation for selected
problems are described. Finally, we briefly discuss the interface software which provides arbitrary
geometry modeling capability for ITS using the BRL-CAD system.

DISTRRUTICN OF THIS DOCUMENT 1S ummm% M A STE R

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

II. PARALLEL PROCESSING

Advances in computer hardware and communication software have made it possible to perform
parallel computing for many scientific/engineering applications. Monte Carlo calculations are
inherently parallelizable because the individual particle trajectories can be generated independently
with minimum need for interprocessor communication. Furthermore, the number of particle histories
that can be generated in a given amount of wall-clock time is nearly proportional to the number of
processors. This is an important fact because the inherent statistical uncertainty in any Monte Carlo
result decreases as the square root of the number of histories increases. For these reasons, researchers
have expended considerable effort to take advantage of different parallel architectures for a variety of
Monte Carlo radiation transport codes, often with excellent results.

In ITS, the particle histories are divided into “batches” of equal size and the evaluation of the
estimated quantities are performed using batch-averaged sample statistics. Since the batchwise
evaluation can be performed independently, it provides a natural partition for parallel processing. At
present, the parallelized version of ITS is based upon a message-passing model in conjunction with a
master/slave paradigm. The basic operations of the parallel code can be summarized as follows: (1) the
master process performs the input functions, starts up the slave processes, processes the problem-
dependent parameters and sends a copy of parameters to all slaves, (2) the slaves perform the Monte
Carlo calculations, i.e., generating particle trajectories and scoring, and (3) the master receives and
combines the data tallied by the slaves, and finally outputs the results. With efficient network
communication, it is obvious that step (2) will require the majority of the computation time. Since each
slave process can carry out these tasks concurrently, this requirement can be reduced almost linearly
with the number of processors.

The generation of random-number sequences for large-scale Monte Carlo simulations in a parallel-
processing environment poses a non-trivial problem. The random number sequences for each processor
must be independent, with good “randomness” property, and with sufficient long period. Here, we
adopt the pseudorandom number generator, RANMAR, proposed by Marsagalia and Zaman. Detailed
information and implementation can be found in the review article by J. ames.> The basic algorithm of
RANMAR is a combination of two different sequences, namely, a lagged Fabonacci sequence which
must be initialized by an integer, and a simple arithmetic sequence. The final random number is then
produced by a subtraction operation. The most exceptional property of this generator is the extreme
ease of generating independent disjoint sequences, which can be accomplished by initializing the
generator with different integers. Furthermore, RANMAR has been tested for randomness, and has
been demonstrated to have very long period. It is noted that this generator is more expensive to
compute than the simple multiplicative linear congruential generators since all the operations are
carried out in floating-point. However, the effect of this may be insignificant since the computing time
spent in the random number generation is almost negligible in comparison to that for particle tracking.

We have developed two updates to ITS 3.0 which will support various parallel-processing
environments. These updates are designed in such a way that users can adapt them to construct and
tailor the codes for their specific applications. The first update is designed to work on a cluster of UNIX
workstations (either homogeneous or heterogeneous), where the communication tasks and process
control are handled by the software Parallel Virtual Machine (PVM).6 The second version is designed
to run on a massively parallel computer such as the Intel PARAGON. In this case, the message-passing
is handled by the native operating system calls (SUNMOS/NX).7 It is noted that these updates also
provide the basic structure to port ITS to other parallel computing platforms (such as IBM SP2), which
can be accomplished by simply replacing the PVM or NX calls with the system specific functions.

ILA. LOAD BALANCING

The goal of load balancing is to enhance performance and achieve the greatest possible speedup of
a parallel program. A balanced program can usually keep all processors busy and have them finish
roughly at the same time. Otherwise, valuable processor cycles are wasted if some processors have to
wait on others to finish. Load balancing is essential in parallel processing ITS since the computing time
for each batch may vary, and thus adversely affect the performance. This variation in computing time
may result from the following reasons: (1) the stochastic nature of particle histories, (2) difference in
computational power on each machine in a heterogeneous configuration, and (3) change in
computational performance in a multiuser environment. These considerations must be taken care of by
adjusting the way the problem is distributed in a parallel system.

The current version of ITS provides two load-balancing schemes, namely, the static and dynamic
methods. The static method is simple and easy to implement. In this method the required tasks (or
batches) are divided up and assigned to the available machines or processors. The number of batches
can vary from machine to machine to account for different computation power for different machines.
These assignments are set at the start and will not be adjusted to the actual loading and performance. As
one may expect, this scheme can be quite effective on a dedicated or lightly loaded system (either
homogeneous or heterogeneous). Dynamic load-balancing is accomplished by the classic “pool-of-
tasks” paradigm. Initially, each slave process is given a batch just as in the static scheme. As a slave
process finishes its task it will receive another one. With this scheme all the slave processes are kept
busy as long as there are batches remaining in the pool. The work load for each machine is adjusted
according to the “realistic” computational performance which can be changing dynamically as other
users share the resources. An intuitive way to implement the dynamic scheme is by dividing up the
problem into small batches (small number of particles per batch) which may be easier to balance across
the available machines than the large batches. However, the number of batches should not be so
excessive as to incur extra overhead in communication and output processing.

ILB. PERFORMANCE EVALUATION

The goal of parallel processing is to make the program run faster (shorter wall-clock time) than it
would in the corresponding serial run. A speedup ratio is often used to evaluate the performance of a
multitasking program. On a dedicated system, the speedup ratio can be calculated in the following
manner:

R W
FP
1—FP+F

Sy =

2*]| o

where Sy is the speedup ratio if N processors are used in the calculation, T'¢ is the elapsed wall-clock
time for a single processor, T is the wall-clock time for N processors, and F p is the fraction of the
program that can be run in parallel (sometimes called the parallel efficiency). The second part of this
equation is known as the Amdah!’s law from which one can estimate the parallel efficiency based on a
set of measured speedup ratios. It is important to note that the parallel efficiency gives a measure of the
extent to which a given program can potentially be parallelized, but it does not account for other effects
such as multitasking and communication overhead.

Table 1 summaries the measured speedup ratios for seven test problems on a cluster of SUN
workstations. These test problems include the three standard codes (TIGER, CYLTRAN, and
ACCEPT), two P-codes, and two M-codes of the ITS system, and utilize many tally and biasing options
of the system. Sufficient particle histories were required so that the input/output and communication
times were negligible in comparison to the overall CPU times. It is observed that the speedup ratios
increase almost linearly with the number of processors. The parallel efficiency approaches 99%, except
for the ACCEPT-M code, where it is around 93%. Further studies indicated that the relative poor
performance of the ACCEPT-M code was caused by an anomalous batch which consumed ~ 50% more
CPU time than the other batches. It is believed that one or more electrons entered a vacuum region with
a uniform magnetic field with velocities almost perpendicular to the field so that they drifted very
slowly through this region. Consequently, extra computing time was needed to calculate these orbits,
thus prolonging the CPU time for that batch.

To further demonstrate the beneﬁt of parallel processing, we consider a timing benchmark problem
proposed by Rogers and Blelajew This problem was originally designed to assess the feasibility of
using Monte Carlo method in radiotherapy treatment planning. To make a Monte Carlo code clinically
useful on a routine basis, the gatlent dose calculation should be done in 5-10 minutes. The benchmark
problem consists of a (10 cm)” plane parallel 20-MeV electron beam incident on a patient. The patient
is modeled as a (19 cm) phantom (mainly water) with 1 cm? voxels everywhere except in the 1 cm?
central region, where the voxels are (2.5 mm)? by 1 cm thick except at the peak dose region where there
are four voxels, each 2.5 mm thick. There total number of voxels is 7624.

For timing assessment, we used the ACCEPT code to determine the dose distribution in all voxels.
Simulation of 3.6 millions source electrons produced an uncertainty of 2% at the peak of dose-depth
curve. The elapsed computing time is 108 minutes on a SUN Sparc1000 with 8 processors and 25
minutes on an Intel PARAGON using 120 processors. These timing results are very encouraging.
Although these values are unacceptable relative to the requirement for routine treatment planning, they
are short enough for research and development in treatment methods. Moreover, further reduction in
the wall-clock time can be easily achieved by increasing the number of processors and/or by using
more powerful processors which are currently available.

III. VISUALIZATION

Visualization capabilities for the ITS code system have been realized with a software tool that is
designed to interface with the Ballistic Research Laboratory CAD package (BRL-CAD). Originally
developed for military vehicle design, BRL-CAD is a powerful solid modeling system which provides
an interactive geometry editor, a ray tracing library, and a large collection of related tools and utilities.
Its basic functions allow users to construct a geometry interactively and use ray tracing for model
interrogation. Moreover, an image of a geometry model may be displayed with proper three-
dimensional perspective from any viewpoint. As an example, Figure 1 shows a BRL-CAD Model of
the bremsstrahlung convertor and collimator configuration for the EG&G LINAC.

In BRL-CAD, geometrical models are represented by the Constructive Solid Geometry; that is, a
model is constructed by combining a suite of solid primitives through boolean operations. This is
essentially the same combinatorial method used in the ITS/ACCEPT codes. For this reason, a simple
interface software (GIFTEX) has been developed to extract information from the BRL-CAD geometry
database and convert it to the ITS input format for subsequent calculations.

We are currently developing computer software to process particle tracks generated by the ITS
calculations and display them together with the problem geometry using BRL-CAD. In this

implementation, ITS generates a file containing selected information on the particle history, which
includes particle type, energies, weights and positions. A utility is then used to filter this information at
the user’s discretion and prepare a data file for BRL-CAD to access. The final display will support
three-dimensional rotations, translations, zoom features, and provide illustration of particle types and
energies by color.

ACKNOWLEDGEMENTS

This work was supported by the U. S. Department of Energy under Contract No. DE-AC04-
94A1.8500.

REFERENCES

1. J. A. Halbleib et al., “ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo
Transport Codes - Version 3.0,” IEEE Trans. Nucl. Sci., Vol. 39, No. 4, pp.1025-1030, 1992.

2. J. A. Halbleib et al., “Version 4.0 of ITS Electron/Photon Monte Carlo Transport Codes,” Trans.
Am. Nucl. Soc., Vol. 75, pp.329-330, 1995.

3. M. J. Muuss et al., “The Ballistic Research Laboratory CAD Package Release 4.0,” U.S. Army
Ballistic Research Laboratory Technical Report, Volume I-V, 1991.

4. W.R.Martin, “Monte Carlo Methods on Advanced Computer Architectures,” Advances in Nuclear
Science and Technology, Vol. 22, pp.105-164, 1991.

5. F.James, “A Review of Pseudorandom Number Generators,” Computer Physics Communications,
60, pp.329-344, 1990.

6. G. A.Geist etal., “PVM 3 User’s Guide and Reference Manual,” Technical Report ORNL/TM-
12187, Oak Ridge National Laboratory, 1994.

7. K. S.McCurley, “Intel NX Compatibility Under SUNMOS,” Technical Report SAND 93-2618,
Sandia National Laboratories, 1994.

8. D.W. O. Rogers and A. F. Bielajew, “Monte Carlo Techniques of Electron and Photon Transport
for Radiation Dosimetry,” in The Dosimetry of Ionizing Radiation, Eds. K. R. Case, B. E. Bjarngard,
and F. H. Attix, Academic Press, 1990.

Table 1. Measured Speedup Ratios* for Various ITS/PVM Applications

Number of Processors
Code
2 4 8 12 16
TIGER 1.99 3.81 7.39 10.88 14.19
CYLTRAN 1.97 3.92 7.32 10.93 14.31
ACCEPT 1.99 3.93 7.42 10.64 14.2
TIGER-P 1.97 3.93 7.77 11.5 14.39
ACCEPT-P 1.96 3.88 7.64 11.35 14.03
CYLTRAN-M 1.96 3.87 7.42 11.06 14.56
ACCEPT-M 1.80 3.49 5.83 7.75 10.78
Amdahl’s Law
with 1.98 3.88 7.48 10.81 13.91
99% Efficiency

* Speedup relative to a single SUN4/75 workstation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, preduct, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

. manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

' mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Lead Collimator

Beam Stop

Tantalum

Convertor Mounting
Plates
Flange

Electron Beam

Figure 1. A Cross-Sectional View of the BRL-CAD Model of the EG&G LINAC Bremsstrahlung
Convertor and Collimator.

