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Abstract
Dealing with quantum weirdness: Holism and related issués
by
Andrew Richard Elby
Doctor of Philosophy in Interdisciplinary Studies: Philosophy of Physics
University of California at Berkeley

Professor Geoffrey Chew, Chair

I discuss a variety of issues in the interpretation of quantum mechanics. All of
these explorations point toward the same conclusion, that some systems are holistically
connected. In other words, some composite systems possess properties that cannot,
even in principle, be reduced to (or “built up" from) the properties of its subsystems.
This, I argue, is a central metaphysical lesson of quantum theory, a lesson that will
pertain even if quantum mechanics eventually gets replaced by a superior theory.

After outlining this dissertation in chapter 1, I jump into issues of nonlocality in
chapter 2. There, I establish a new, probabilistic framework in which to formulate
"algebraic" (perfect correlations) nonlocality proofs. Working within that framework, I

rule out hidden-variable theories that approximately reproduce the perfect correlations of
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quantum mechanics, as well as theories that obey locality conditions weaker than those
needed to derive Bell's inequality.

In chapter 3, I discuss Superconducting Quantum Interference Devices (SQUIDSs).
Contra Leggett, I show that SQUID experiments cannot rule out Macrorealism. What
they can rule out is non-invasive measurability, the assumption that it's possible (in
principle) to measure a system with arbitrarily small disturbance to its future dynamics.
Failure of non-invasive measurability is best explained as resulting from a holistic
connection between measuring device and measured system.

Chapter 4 looks at the interpretational issues surrounding decoherence, the
dissipative interaction between a system and its environment. Decoherence alone neither
constitutes nor points to a specific interpretation of the quantum formalism. It can,
however, help "modal" interpretations pick out the desired “preferred" basis. After
raising some potentially fatal objections to the modal interpretation, I show in detail how
decoherence comes to the rescue. Modal interpretations explicitly incorporate holism. -

Finally, in chapter 5, I explore what varieties of causation can and cannot "explain”
the EPR correlations. Any purported causal explanation of EPR within the context of
relativistic quantum theory must renounce the “generative" causal intuition that causes
bring about their effects. I explore the philosophical ramifications of this result,
concluding that instead of relying upon "watered down" causal explanations, we should

instead develop new, holistic explanatory frameworks.
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Preface

Hi, Andy here. So, you actually want to read (parts of) this dissertation. I thought
it would never happen, but hey, I'm happy to be proven wrong.

If youre an expert on any of these topics, you might not want to read the
corresponding chapter of this dissertation, which spends a fair amount of time
establishing context and explaining the central issues to interested philosophers and
physicists. Instead, you might consider looking up my published papers on these topics.
(See the references at the end of this dissertation for a partial list.) I've tried to write
these thesis chapters in such a way that they could serve to introduce someone to the

field, in the style of a good review paper.






Elby Chapter 1: Overview 1

CHAPTER 1: OVERVIEW

Does quantum mechanics force us, or at least invite us, to revise our metaphysical
views? And if so, how radically? In this dissertation, I’ll argue that we should abandon
a causal explanatory framework in favor of a holistic one. By “holism,” I mean that a
composite system can possess properties that are not reducible to, and cannot be “built
up” from, the properties of its parts, even in principle.

This argument is hard to make, because many examples of “quantum weirdness”
can be explained nonholistically. Indeed, none of my chapters directly argue for a
holistic world view. Instead, my strategy is to show, in a variety of quantum contexts
that a holistic outlook is one of only two or three viable alternatives. So, none of my
chapters on its own favors holism. But since all the chapters are about different issues in
philosophy of quantum mechanics, and since they all establish that a holistic outlook is
one of only a few viable alternatives, the dissertation as whole manages to argue--almost
by “brute force”--that holism deserves a closer look.

For instance, consider the nonlocality explored in chapter 2. There, I establish a
new, probabilistic framework in which to formulate "algebraic” (perfect correlations)
nonlocality proofs. Working within that framework, I rule out hidden-variable theories
that approximately reproduce the perfect correlations of quantum mechanics, as well as
theories that obey locality conditions weaker than those needed to derive Bell's
inequality. We can interpret this irreducible nenlocality as resulting from

A) a superluminal causal influence, or from direct action at a distance; or

®3B) a holistic connection between the two wings of the experiment.
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Explanation (A), though unsettling and problematic, stays within a “classical causal”
framework, in which individual systems all “have” separate (nonholistic) properties, and
causal inter;icﬁons are what bring about changes in these properties. Chapter 2 can’t pick
out which metaphysical outlook--holism or causal nonlocality--is the best choice. It can
merely present you with those options.

In chapter 3, I discuss Superconducting Quantum Interference Devices (SQUIDs).
Contra Leggett, I show that SQUID experiments cannot rule out Macrorealism. What
they can rule out is non-invasive measurability, the assumption that it's possible (in
principle) to measure a system with arbitrarily small disturbance to its future dynamics.

Failure of non-invasive measurability could be explained in terms of

(A) a weird kind of causal interaction, the severity of which cannot be made
very small even in principle; or
3B) a holistic entanglement between the measuring device and measured

system.

Again, I can’t firmly establish that we should choose (B) over (A). But it’s intriguing
that the causal alternatives in chapters 2 and 3--choice ;‘A” in both couplets--are
problematic for different reasons.

Chapter 4 looks at the interpretational issues surrounding decoherence, the
dissipative interaction between a system and its environment. Decoherence alone neither
constitutes nor points to a specific interpretation of the quantum formalism. It can,
however, help so-called "modal” interpretations pick out the desired "preferred” basis.
After raising some potentially fatal objections to the modal interpretation, I show in

detail how decoherence comes to the rescue, making modal interpretations one of the
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few viable classes of interpretations currently out there. Modal interpretations explicitly
incorporate holism. The fact that an aggressively holistic interpretation can “harness”
decoherence in order to explain our familiar classical reality makes it plausible that
holism is compatible with everyday experience. Once again, I can’t argue that the
holistic story here is better than (say, Bohm’s) causal story. But the holistic modal
interpretation, with some further work, may be just as viable. (And besides, Bohm’s
theory may well incorporate holism, t00.)

Finally, in chapter 5, I explore what varieties of causation can and cannot “"explain"
the EPR correlations. Any purported causal explanation of EPR must renounce the
"generative” causal intuition that causes bring about their effects. I explore the
philosophical ramifications of this result, concluding that instead of relying upon

"watered down" causal explanations, we can either

(A) accept one of these eviscerated causal explanations, or

®B) develop new, perhaps holistic explanatory frameworks.

As you can see, no one of my chapters should convince you that holism is the way

to go. But taken together, they present a strong case.
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CHAPTER 2: PERFECT-CORRELATIONS
NONLOCALITY PROOFS

Section 2.1: Introduction

With the exception of Selleri and his "enhancement hypothesis" coterie (see Lepore
and Selleri 1990), most philosophers of physics agree that Bell's theorem and related
results show that nature is nonlocal or "contextual” in some sense, assuming the
predictions of quantum mechanics (QM) are more or less correct. But in what sense?
Some, such as Home and Sengupta (1984) and Fine (1982), have claimed that Bell-type
results have little to say about nonlocality. Furthermore, the dozens of clever new
nonlocality proofs discovered over the past seven years (cf. Hardy 1993, Mermin 1990,
Greenberger et al. 1990) rely on essentially the same deterministic locality assumptions
used by Bell way back in 1964. To make useful philosophical headway, we must first
establish, once and for all, that Bell-type results really do say something about
nonlocality. Then, we must weaken the assumptions used to derive a nonlocality no-go
theorem, thereby helping us to zero in on what locality assumptions must be renounced,
and to cut off options previously available to "local realist" hidden-variable theorists such
as Selleri. In this huge chapter, I will try to accomplish these goals.

First, in section 2.2, I help to establish that Bell-type derivations really do bear on
the issue of nonlocality, by refuting Home and Sengupta's (1984) argument to the
contrary. Then, in section 2.3, I criticize Heywood and Redhead's (1983) nonlocality
proof on the grounds that it relies on too many assurﬁptions. Section 2.4 reviews a
cleaned-up version of Heywood and Redhead's proof. Then, in section 2.5, I present the

first-ever "algebréic" nonlocality proof that relies on probabilistic (as opposed to
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deterrniniétic) locality assumptions. An "algebraic" nonlocality theorem invokes the
perfect EPR-type correlations of QM, as opposed to the statistical correlations exploited
by Bell-type inequalities. Section 2.6 cuts off another road previously available to
hidden-variable theorists, by showing how theorem 2.5 can be modified so as to rule out
theories that almost, but don't quite, reproduce the perfect correlations of QM.
(Throughout this dissertation, I name theorems by the section in which they appear.)
Finally, returning to the perfect correlations, I derive a nonlocality theorem using
weakened locality assumptions. The result is, to my knowledge, the "best" nonlocality
no-go theorem to date, in the sense of using the weakest locality assumptions.!

Sections 2.2 and 2.3 are nitpicky and dull, recommended only for those with a

masochistic interest in nonlocality proofs. The real action starts in section 2.4.

1Bell-type results that attempt to use counterfactuals without assuming counterfactual
definiteness, if valid, also use very weak assumptions. Comparing the "relative
weakness" of my locality assumptions to (for instance) Stapp's (1993, 1994) locality
assumptions is extremely difficult, because the assumptions take such different forms
(conditional probabilities versus nested modal-logic counterfactuals). I won't attempt that
project here.
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Section 2.2: Nonlocality is the issue

§2.2.1. Introduction

Home and Sengupta argue that “contextuality," not nonlocality, is the philosophical
lesson to be drawn from Bell-type inequalities. In this section, I refute their claim. But
first, let me set the stage by summarizing another challenge to the "standard”
interpretation of Bell inequalities.

Fine (1982) shows that if Bell-type inequalities are satisfied for a given set of
events, then there exist well-defined joint probabilities for all pairs of events in question.
For instance, if a Bell inequality is satisfied for events a, b, ¢, and d, then there exist
well-defined joint probabilities p(a,b), p(a.c), and so on. But according to QM, some
events are incompatible, and hence do not correspond to a well-defined joint probability.
For instance, if operators A and B don't commute, then QM does not ascribe any
meaning, much less a well-defined value, to the joint probability p(A=a, B=b), where
"A=a" refers to observable A being measured to have definite value a. Using these
facts, Fine argues that "what the Bell inequalities are all about" is making "well-déﬁned
precisely those probability distributions for noncommuting observables whose rejection
is the very essence of quantum mechanics.” For Fine, locality simply isn't the issue.

Svet]iéhny et al. (1988) refute Fine in several ways. First, they show that if
probabilities are interpreted as relative frequencies (in the standard von Mises-Church
sense), then a Bell inequality can be derived even if some joint probabilities are assumed
not to exist. But more important, tﬁey point out that just because a set of assumptions
(i.e., those leading to Bell inequalities) imply the mathematical well-definedness of
certain joint probabilities, this does notf mean that those joint probabilities correspond to

physical reality. For instance, the Stapp-Eberhard-Redhead (see Redhead 1987) version
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of a Bell inequality is derived without assuming joint probability distributions for
quantum-mechanically incompatible events. Fine's proof shows that consistent, well-
defined joint probabilities indeed exist for those incompatible events. But in the theories
considered by Stapp and Eberhard, those joint probabilities are meaningless, mere
mathematical artifacts without any physical content or significance. For this reason, the
locality conditions used to derive Bell inequalities do not commit us to physically-
meaningful joint probabilities for incompatible events. Bell inequalities are "about"

locality, not about joint probability distributions.

Another challenge to the orthodok view that Bell's inequality is a nonlocality result
comes from Home and Sengupta (henceforth H&S). They claim to derive a Bell-type
inequality assuming only a noncontextual hidden-variable framework, thereby showing
that no noncontextual theory reproduces the statistical predictions of quantum mechanics
(QM). Specifically, H&S claim that their derivation, unlike usual Bell arguments,
invokes no locality condition.

I éhow that their derivation assumes determinism. Also, H&S's "local
noncontextuality" is a physically implausible restriction unneeded in Bell arguments.
Furthermore, not only does their noncontextuality condition encode a weak locality
assumption, but their inequality fails to rule out an important class of strongly-nonlocal
theories. Upshot: The only "local” theories constrained by H&S's inequality satisfy

implausible conditions not assurned in standard Bell arguments.

$§2.2.2. Notation and Preliminary assumptions
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Consider an electron in a 2P, ,, state (orbital angular momentum equals 1, total

angular momentum equals 1/2, in units of ). The wave-function is
w= (V2Y5 ®X* - YK ®@X¥ )3,

where YkLm is the spatial spherical harmonic corresponding to total orbital angular
momentum 1 and k component of orbital angular momentum m, and where spin states
XX, and XX. correspond to k component of spin up and down. Note that the spherical
hannonic; specify the electron’s state relative to the nucleus; more on this point in
section 2.2.5.

Let 1, and S, denote the operators corresponding to the n component of orbital
angular momentum and n component of spin, while 1, and S,, denote the corresponding
observables. Let 1,(t) and Sp(f) be the values obtained upon measurement of 1, and S, at
time t, where we take S, =1 instead of £1/2.

Finally, let L(t) be the "dichotomized" measured value of 1,(t), where

(@) if 1,(D=0, then Ly(t)=+1;

(b) if I(D=t1, then L (t)=-1.

Formally, L=f(1,), where f(w)=1-2w2,
Notice that for all directions (unit vectors) a and b, L, and 1, commute with Sp, and

hence 1, and Sy, are commeasurable according to QM.
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§2.2.3. Determinism
In this section, I trace H&S's derivation of a Bell-type inequality, revealing their

determinism assumption.

Since L,(t), La(t), and Sy(t) all equal +1, H&S claim that inequality (1) follows:

) L2 (OLa(t) + L2(OSp(0) - La(H)Sp(t) 2 -1

The authors write: "Since we are considering the dispersion-free states to be
noncontextual, it implies that if the outcome [of measuring] S; is Sj(t) in one pair, it will
also be S;(t) in the other pair involving S;." Inequality (1) necessarily holds, however,
only under the following condition: If we measure Sy, and 1, at time t and obtain Sy(t),
then Sy(t) necessarily would have been obtained had we measured Sy, and 1, instead. In
other words, the result of measuring Sy, must be counterfactually definite. As Redhead
(1987, pp. 90-96) and others show, counterfactual definiteness relies on determinism.
The following intuition underlies their formal arguments: Suppose measurement of 1, or
1, in no way affects measurement of Sy. Even so, we cannot assert what Sy(t) would
have been had conditions differed, unless we assume determinism. For, if the result of _
measuring S, is truly indeterministic (irreducibly random), then measuring Sy, and 1,
might have yielded a different Sy(t) than was obtained measuring Sy, and 1, not because
measurement of l, or 1, disturbs measurement of S, but simply because Sy(t) is random
and therefore might have come out differently. Therefore, in writing inequality (1),

H&S assume determinism.
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Here's another way to see that counterfactual definiteness enters in. The first term in
inequality (1) has meaning only if measurement results of two incompatible

(noncommuting) observables, L, and L,, are simultaneously well-defined. But if (say)
L, gets measured, then "L," can only mean the result we (counterfactually) would have
obtained upon measuring L,. Fortunately for H&S, since we can define those two
values counterfactually under an assumption of determinism, it is irrelevant that we

cannot measure them simultaneously.

Next, H&S note that, for state ¥, if we let directions k and z coincide, then S, and
L, are perfectly correlated: QM predicts that simultaneous measurement of S, and 1, (or

L) yields S,(t)=L,(t) with probability one. H&S use this correlation to modify (1):
@ =-Sz()La(t) + Lz(©)Ss(t) - La(DSu(t) 2 -1

H&S write: "Summing over the relations of the [form (2)] over all the dispersion-
free subensembles constituting the quantum mechanical ensemble and taking the
average, we obtain the following inequality involving the quantum-mechanical

expectation values:

3 -<S;L>¢ + <LSp>y - <L Sp>y =-1."

Quantum mechanics predicts a violation of (3) for suitably chosen angles between a, b,

and z.
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§2.2.4. Local noncontextuality

So far, I've shown that the H&S Bell-type derivation rests on determinism. I now
argue that H&S's noncontextuality assumption is physically unmotivated.

H&S write that their derivation applies to all noncontextual theories. We must
clarify the meaning of "noncontextual” in order to compare it to the locality assumption
usually employed in Bell arguments. Generally, "noncontextuality” means the

following:

Full noncontextuality: The result of a measurement on a system does not depend on
which other simultaneous measurement(s) we perform on that same system or on a

second system.

The locality condition used to derive a Bell inequality in a deterministic framework (cf.

Redhead 1987) is

Bell locality: The result of a measurement on a system does not depend on which
measurement(s) we perform on a second system, where measurement of the second

system occurs spacelike separated from measurement of the first system.

Clearly, full noncontextuality implies Bell locality. Therefore, if H&S were to assume
full noncontextuality, their derivation would lose much of its physical interest, because
their assumptions (full noncontextuality and determinism) would be stronger than the

usual deterministic Bell assumptions (Bell locality and determinism). H&S stress,
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however, that their derivation refers to measurements associated with a single system

"having no spatially separated components.” That is, they claim to assume only

Local Noncontextuality : The result of a measurement on a system does not depend on

which other simultaneous measurement(s) we perform on that same system.

Full Noncontextuality is equivalent to the conjunction of Local Noncontextuality and Bell
Locality. To justify inequality (1), H&S invoke Local Noncontextuality: Sy(t) may not
depend on which orbital angular momentum component (1, or 1,) undergoes
measurement at t.

Although obeyed by QM itself, Local Noncontextuality is an unreasonable general
restriction to place on hidden-variable theories. It is physically motivated only for
theories in which the measurement result (or measurement-result probability) for a given
observable depends entirely on the state of the system being measured. By contrast,
consider Bohm's theory (cf. Bohm et al. 1987); in which measurement results for many
observables depend both on the hidden-variable microstate of the measured system and
on the hidden-variable state of the apparatus. In a "spinless" version of Bohm's theory,
measuring the angular momentum of a system would inevitably involve disturbing its
position in some manner, which is turn affects the outcome of "spin" measurements.
(That's because "spin," in this version of the theory, is not an "internal” variable, but is
instead the "byproduct"” of the particle's position in relation to the magnets involved in
measuring its spin. The details aren't worth dredging up here.) Since all these

measurements take a finite amount of time to complete, the two measurement processes
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would have to occur simultaneously or immediately after each other. In either case, the
"disturbance" argument just given applies, even though the relevant quantum mechanical
operators commute. By contrast, in "regular” QM, that disturbance argument could be
sidestepped, at least in principle, for simultaneous or nearly-simultaneous measurement
of commuting observables. In brief, Local Noncontextuality is physically unmotivated
for theories in which the "microstate” of the apparatus matters.

Since we can derive a Bell inequality without assuming Local Noncontextuality (see
Jarrett 1984), and since such derivations apply to theories incorporating apparatus-
microstate dependence, the fact that H&S's inequality restricts only Local

Noncontextuality-obeying theories lessens the physical interest of their considerations.

§2.2.5. Locality and the H&S derivation

In this section, I reveal H&S's implicit locality assumption. I also argue that any
reasonable theory obeying H&S's noncontextuality (Local Noncontextuality) also obeys
Bell locality.

Implicit locality. H&S, discussing inequality (3), write, "We have, therefore, an
example--albeit in the form of a thought experiment--indicating the incompatibility of
Bell's inequality with quantum mechanical predictions concerning simulténeous
measurement of commuting observables associated with a system having no spatially

separated components."

The "system" is the 2P, , electron, while the "commuting observables" are a

component of spin and a component of orbital angular momentum. Inow argue that a



Elby Chapter2: Nonlocality u

component of orbital angular momentum is a property not just of the electron, but of the

whole system comprised of electron and nucleus.

Consider 1, the z component of orbital angular momentum with respect to the
nucleus. That observable is a function of the relative positions and relative momenta of
the electron and the nucleus. Formally, 1,=pyx - px-y, where py is the difference
between the electron's x component of momentum and the nucleus's x component of
momentum. Similarly for py. Also, x is the difference between the electron’s x
coordinate and the nucleus's x coordinate. Similarly for y. In brief, a component of
orbital angular momentum is not a property of the electron; it is a relational property of
the electron and nucleus. Therefore, a measurement of the electron alone cannot, in
practice or in principle, constitute a measurement of 1, (or L,). To measure 1,, we must
measure the system-as-a-whole, or some other object (such as an emitted photon)
produced during an interaction of the electron with the nucleus.

For instance, we could measure 1, by taking spectra of a lithium ion in state ¥. But
the measured energy level "fixes" a component of the ion's center-of-mass velocity,
because the Doppler shift of the spectral line establishes a component of the ion's
velocity with respect to the lab frame. The point is, we cannot measure 1, without
measuring some observable that "belongs" to the whole electron-nucleus system (in this
case, the ion's center-of-mass velocity). I claim this conclusion does not depend on my
choice of experimental procedure; any experiment to measure the relational property 1,
inevitably involves a measurement (or disturbance or “fixing") of the ion-as-a-whole or

of the nucleus, not just of the electron.
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We now see the falsity of H&S's claim that a laboratory test of their inequality
involves "measurement of commuting observables associated with a system having no
spatially separated components." H&S make this assertion to stress that their Bell
argument, unlike its predecessors, does not assume locality. But in fact, H&S's
noncontextuality assumption incorporates a weak locality condition. Their actual

assumption is

H&S noncontextuality/locality: The result of measuring Sy, does not depend on which

measurement (1 or 1) we perform simultaneously on the electron-nucleus system-as-a-

whole.

This is in part a weak locality condition, because part of the system-as-a-whole is
the nucleus, which is spatially separated from the electron. The condition also
incorporates Local Noncontextuality, because part of the system-as-a-whole is the
electron itself. My argument that Local Noncontextuality is physically unreasonable
therefore applies to H&S noncontextuality/locality.

Bell vs. H&S Locality. H&S's weak locality is less restrictive than Bell Locality.
Nonetheless, H&S's inequality (3) restricts only the most implausible Bell-nonlocal
theories, because only the most physically unreasonable theories obey H&S
noncontextuality/locality but not Bell locality. Here's why:

H&S noncontextuality/locality demands that a measurement result on the electron
not depend on the state of a measuring device that acts on a nearby system (i.e., the

nucleus, or the electron-nucleus composite system). Bell locality demands thata
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measurement result on the electron not depend on the state of a measuring device that
acts on a distant (spacelike separated) system. Only a crafty hidden-variable theo'ry will
allow the states of distant devices, but not the states of ﬁearby devices, to influence |
measurement results. For if some mechanism allows a distant apparatus to affecta
measurement, then surely that same mechanism will allow a nearby apparatus to affect
the measurement. In short, a theory obeying H&S noncontextuality/locality but not Bell
Locality must assume the existence of a "field" that propagates instantaneously and acts
at a distance, but never acts locally. Such a "field" seemé utterly unbelievable. For
instance, even the strong nuclear force binding quarks in a hadron does not entirely
vanish at close range. Also, Bohm's "quantum potential” acts both locally and
nonlocally.

In summary, not only do H&S implicitly assume a weak locality assumption, but
any reasonable theory obeying H&S noncontextuality/locality also obeys Bell locality.
Hence, H&S's inequality rules out only the most physically unreasonable Bell-nonlocal

theories.

§2.2.6. Conclusion

First, I showed that H&S rely upon determinism. Then I discussed Problems with
their Local Noncontextuality, which standard Bell arguments do not use. H&S's
argument rests not only on Local Noncontextuality but also on a weak locality
assumption. Finally, we saw that only the most implausible Bell-nonlocal theories obey

H&S's noncontextuality condition. Except for those unbelievable theories, therefore,
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H&S's inequality only restricts deterministic Bell-local theories--the same theories
restricted by standard Bell derivations in a deterministic framework.

Furthermore, as H&S admit, Kochen-Specker (1967) type results show the
incompatibility of quantum mechanics with a broad class of noncontextual hidden-
variable theories. Since H&S rely only on locally maximal observables (spin and orbital
angular momentum), their derivation is slightly more general than Kochen and
Specker's. But as argued above, their assumptions (which include Local

Noncontextuality) are less general than those used in standard Bell arguments.

For these reasons, Home and Sengupta’s derivation, though ingenious, does not set
significant new limits on hidden-variable theorists, and does NOT displace locality as the
central "issue" addressed by Bell inequalities.
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Section 2.3: Extraneous assumptions: A case study

My argument of last section, combined with refutations to various other challenges
(e.g., Fine vs. Svetlichny), establishes that Bell inequalities and kindred results have
something to say about locality (or about noncontextuality, which is stronger than
locality). Unfortunately, when formulating no-go theorems, we must be careful to
invoke as few and as weak assumptions as possible. Otherwise, we can't narrow down
what "flavor" of nonlocality nature violates.

In this section, I'll show how extraneous assumptions can scuttle an otherwise-
impressive proof.

In 1983, Heywood and Redhead presente_d the first-ever "algebraic” nonlocality
theorem. As noted above, "algebraic” theorems rely only on the perfect EPR-type
correlations, not on the statistical correlations invoked by Bell-inequality derivations.
(Such derivations were dubbed "algebraic" because most of them rely-r on descendants of
Gleason's 1957 lemma and related results. Perhaps it's a misnomer, but let me retain it.)
In section 2.4 below, I'll show why well-formulated algebraic proofs have certain
philosophical advantages over "regular” Bell-type derivations. But here, I’li present a
"case study" in the dangers of to0 many assumptions. My result is not particularly
important, especially in light of sections 2.4 and 2.5, where I present a sleek algebraic
nonlocality proof invoking the same EPR-type correlations as Heywood and Redhead

used. Rather we should view this section as a warning buoy.

§2.3.1. Setting the stage: van Fraassen contextualism
In standard quantum mechanics, physical observables (other than mass, charge, and

other quantities that are "fixed" for a given kind of particle) correspond 1:1 to Hermitian
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operators. But alternative theories could violate this "Correspondence Principle." Bas
van Fraassen (1973) suggests that multiple ontologically-distinct physical quantities may
correspond to each nonmaximal (i.e., degenerate) Hermitian operator. (A maximal
operator is one whose eigenstates span the relevant Hilbert space and whose eigenvalues
are all distinct, i.e., no degeneracies.) As an example, suppose that maximal operators A
and B don't commute, but nonmaximal C is a function of A and also a function of B:
C=f(A)=g(B), where [A,B]#0. (In a spin-1 system, for instance, "A" could be the z
component of spin S, "B" could be the spin-Hamiltonian Hg=aSx2+bSy2+cS,2, and
"C" could be the square of the z component of spin, S;2.) We could measure physical
observable in (at least) two different ways: by me;asun'ng A and applying function f to
the result, or by measuring B and applying function g to the result. But since [A,B]#0,
these two different measurement scenarios are mutually exclusive. Therefore, even in a
deterministic framework, consistency does not require that the value of C found by
measuring A would necessary equal the value of C found by measuring B. In symbols,
Ca=f(A) need not equal Cp=f(B). Consistency with QM requires only that Ca and Cp
measurement results display identical statistical distributions, not that C and Cg
"agree" in individual cases. Using this formal fact, van Fraassen poses the possibility
that Cp and Cg are ontologically distinct physical observables, every bit as "different" as
position and momentum. Which of the many different "C's" is revealed by
measurement depends on the context in which C is measured, i.e., on whether we
measure C via A or C via B. For this reason, van Fraassen's construction is called
“contextual." By contrast, a "noncontextual” theory or interpretation obeys the
correspondence principle: observables correspond 1:1 to operators, and hence the

"context of measurement"” cannot affect the outcome.
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§2.3.2. Introduction to Heywood-Redhead

Heywood and Redhead's algebraic nonlocality theorem relies on four explicit
assumptions One of those principles, called FUNC¥, is a contextualized version of
FUNC, the algebraic constraint on observables' possessed values from which Kochen
and Specker derive a contradiction. FUNC, which assumes a noncontextual setting,
demands that the values of physical observables “mirror" the algebraic relations between
the corresponding operators: if Q=f(R), then Q=f(R). Although many kinds of hidden-
variable theories violate FUNC, FUNC;k seems so trivial that it defies analysis; indeed,
in Heywood and Redhead's original prepublication draft, they didn't state FUNC*
explicitly, but simply built it into their.notation.2 Because FUNC* is so obvious,
however, we must understand its physical content. Otherwise, we risk smuggling in
unanalyzed physical assumptions. Fine (1988) criticizes the Heywood-Redhead proof
on these grounds: "The ‘innocent looking' contextualized function condition [FUNC*] is
not examined critically nor motivated physically. Indeed, it seems a purely formal
constraint whose primary virtue is to make possible the demonstration of a no-go
result.”

In this paper, I explore the properties of hidden-variables theories obeying FUNC*
and obeying the Value Rule, another of Heywood and Redhead's assumptions. Both
principles follow in part from a version of Faithful Measurement, which requires
measurement to “reveal” the value possessed by an observable. These considerations
allow us to derive a Heywood-Redhead contradiction from physical (as opposed to

‘ purely formal) conditions, thereby clarifying which theories the contradiction rules out.

We'll see that Heywood and Redhead make nontrivial “extra” assumptions not needed in

2Arthur Fine first pointed out the implicit reliance on FUNC#*, and proved FUNC* to
be both consistent with and independent of the Value Rule.
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standard Bell derivations. Therefore, this particular "algebraic” nonlocality result does

not improve upon Bell inequalities.

§2.3.3. Notation and preliminary assumptions .

Consider a system comprised of two well-separated spin-1 particles. Following
Heywood and Redhead, I restrict attention to operators and observables with discrete
spectra. An observable is locally maximal iff its associated Hermitian operator is of the
type A®I or I®B on the product Hilbert space H;®H,, where H; (H,) is the Hilbert space
associated with particle 1 (2), where I is the identity operator, and where A (B) is
maximal on H; (H,). '

To achieve as general a theorem as possible, Heywood and Redhead allow that the
Correspondence Principle may fail. Therefore, as discussed above, many different
ontologically-distinct physical quantities {Q;} corresponding to Q may exist. In
Heywood and Redhead'’s "de-Ockhamized" framework, each member of {Q;} is
assocjated with a different maximal observable. Let Q) be the member of {Q;}
ontologically associated with maximal observable R. Let [Q]r)(D,E) be the possessed
value of Q) in an environmental context where measurement of D on particle 1 and
measurement of E on particle 2 occur at time t. If X is maximal, then [Q]®y(X) denotes
the possessed value of Q), given that measurement of X occurs at t. Because
Heywood and Redhead's notation is already so baggy, I won't indicate the time
dependence of these possessed values.

If A®I and I®B are locally maximal, then <A,B> denotes a maximal operator
found by mathematically combining A®I and I®B in the appropriate manner. Strictly
speaking, many different maximal operators can be forged from A®I and I®B; but

we'll assume that all these operators correspond to (functions of) a single physical
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quantity. (Remember, even in this "contextual" framework, maximal operators and
observables remain noncontextual, i.e., remain in 1:1 correspondence.)

In a hidden-variable theory, these possessed values depend on hidden parameters.
Let A denote the ontological (hidden-variable) state at time t of the two-particle system.

Similarly, yig is the hidden-variable microstate of an apparatus set to measure Q. More
precisely, an apparatus in state Lo will "measure” one of the {Q;} corresponding to Q.
Perhaps we don't even know which Q; gets measured.

These A and |t may evolve either deterministically or stochastically in time. State A
is "consistent with" quantum state ¢ iff a system described by quantum state ¢ can in
principle occupy state A. States A, Jiq, and pip are "consistent" iff a system in state A can
simultaneously interact with measuring devices in states Mq and up. Hence, if ug and up
are mutually consistent with some A, then at least one of the {Q;} is commeasurable
with one of the {B;}.

Let p(Q=q | ¢) be the probability, as calculated by QM, that a system in quantum
state ¢ would yield value q upon measurement of Q. In QM, these probabilities are
well-defined, since only one physical quantity Q corresponds to Q. In other words, QM
isa nonc;mtextual theory. Let p(Q=q, R=r | ¢) be the QM joint probability that
simultaneous measurement of Q and R would yield q and r, respectively.

Finally, iet "Q=q" denote that measurement of Q at time t yielded result q. Of
course, when we find that Q=q, we don't know which of the Q; actually got measured.

$§2.3.4. Heywood and Redhead's assumptions
As implied above, Heywood and Redhead assume all observables possess values,
where many observables may correspond to a single nonmaximal operator. I assume

this realism of possessed value throughout.
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Next, Heywood and Redhead assume two locality principles:

Ontological locality (OLOC):  [Ql(<a,B>)D;E) = [Ql<a,c>)(D,E)
[where Q is a locally maximal observable associated with particle 1].

Environmental locality (ELOC): [Ql®)(D,C) = [Qlr)(D.E)

[where Q is associated with particle 1].

ELOC expresses the idea, motivated in part by relativity theory, that a property of a
particle (e.g., a possessed value associated with that particle) cannot depend on the
setting of an apparatus well separated from that particle. Redhead (1987) and others
show that ELOC implicitly rests on counterfactual definiteness, and therefore applies
unproblematically only to deterministic theories.

OLOC requires that observables not be "split" by the ontological context associated
with a separated system. The local ontological context may split observables; in general
[Ql(<a B>)D:BE)#[Ql(«c,p>)(D,E), because Q<4 B>) and Q(«c,p>) are different physical
quantities. OLOC requires that such splitting occur only with respect to the local
context: Q<a B>) and Q4 c>) denote the same observable when Q is associated with
particle 1. See Redhead (1987) for more discussion. Taken together, OLOC and ELOC
encode the same locality assumptions used in standard Bell derivations in a deterministic
framework.

But Heywood and Redhead also assume two auxiliary conditions:

Value Rule: For maximal R, pR=r | ¢)=0 — [RIry(R)#r.
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FUNC#*: if R is maximal and Q=f(R), D=g(R), and Q=h(D), then
[Ql®)R) = h([DlR)R)).

Value Rule requires maximal observables not to possess values "ruled out" by the
QM formalism. FUNC* requires that, with respect to a given ontological context, the
values of observables mirror the functional relationships between the corresponding
operators. In other words, FUNC* demands that within a given ontological context,
FUNC must hold. The physical significance of these two axioms, especially FUNC¥,
requires explication beyond that provided by Heywood and Redhead.

§2.3.5. Physical Significance of FUNC* and Value Rule
In this section, I derive FUNC* and VR from three physical conditions, one of
which is a contextualized version of Faithful Measurement. This helps me to explicate
the physical assumptions "hiding" in FUNC¥*,
First, I present and briefly discuss my three assumptions. According to QM,
observables associated with commuting operators are commeasurable. Iimpose a

restricted version of this requirement:

Commeasurability : If Q=f(R) for maximal R, then for any A there exist consistent
apparatus microstates fig, lLa, U, €fc., such that a system in state A, upon interacting with

apparatuses in states {l.q, la, UB...}, would yield measured values for Q and R.

Commeasurability asserts that it is possible to measure Q in conjunction with a
compatible maximal observable R. More precisely, according to Commeasurability, at

least one of the {Q;} is commeasurable with R. Commeasurability does not specify
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which of the {Q;} is measured by this arrangement. Commeasurability also requires
that such joint measurements yield joint results. This condition does not demand that all
pairs of observables associated with commuting operators be commeasurable.
Nonetheless, Commeasurability could fail for some prism model theories, in which
essential detector inefficiencies prevent certain joint measurements from always yielding
results; see Fine (1989).

My second assumption is Faithful Measurement. In the contextual theory under
consideration, measurement of Q could conceivably reveal [Qlr)R), [Qlx)(R), or the
value of some other {Q;}. My version of Faithful Measurement requires that the
member of {Q;} picked out by measurement be such that the ontological "context"

matches the environmental context:

Faithful Measurement: X Q=f(R) for maximal R, then simultaneous measurement of
Q and R at time t, or measuring R alone and then applying function f to the result, would
necessarily yield the value [Q]®)(R) for Q.

According to Faithful Measurement, measurement of Q in conjunction with
measurement of (maximal) R reveals the value of Q). Notice that Faithful
Measurement rests on Commeasurability by assuming the commeasurability of Q and
R. Only when we measure Q together with a maximal observable does Faithful
Measurement constrain which member of {Q;} is revealed.

Faithful Measurement fails for theories such as David Bohm's, in which
measurement results for some observables depend on the hidden-variable “microstate”

of the measuring apparatus. In such theories, measurement does not simply reveal a
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property of the particle, because microproperties of the apparatus affect the measurement
outcome.

Since Faithful Measurement requires that measurement necessarily reveal some
property of the particle, this condition can apply only to deterministic theories. But as
we saw earlier, the Heywood-Redhead proof applies unproblematically only to
deterministic theories, due to ELOC; so Faithful Measurement simply exploits a
determinism assumption already implicit in the theorem.

My final assumption is

Measured Value Rule: If Q=f(R) for maximal R, then
pR=r, Q=g | $)=0 — R+#r or Q=q.

Measured Value Rule, which also rests on Commeasurability, requires the
nonoccurrence of certain joint measurement results "ruled out” by QM. Which hidden-
variable theories violate Measured Value Rule? Suppose states A, Lig, and g are
consistent and ¢-consistent. Then the set of states {3, Ur, L} is "anomalous” if a
system in state A, upon interacting with apparatuses in states g and U, would yield
Q=g and R=r even though p(R=r,Q=q | $)=0. Thus, a deterministic theory violates
Measured Value Rule just in case it contains anomalous hidden-variable states. But such
a theory does not reproduce the statistical predictions of QM unless the anomalous states
are a zero-measure subset of all accessible particle and apparatus states. In brief, two
types of theories violate Measured Value Rule: (a) those violating QM, such as those
proposing small "corrections” to QM; and (b) those incorporating the seemingly ad hoc

feature of anomalous hidden-variables states in zero-measure sets.




Elby Chapter 2: Nonlocality z

Derivation of FUNC* and Value Rule. I now derive FUNC* and Value Rule from
the three conditions just presented.

According to Faithful Measurement, measurement of maximal R reveals [RIR)(R);
to prove this, let Q=R in the definition of Faithful Measurement. Before proceeding, I
must discuss how to measure maximal R. Intuitively, one method is to measure
observables associated with particles 1 and 2 separately. For instance, if R=<A,B>, then
we expect that a way to measure R is simultaneously to measure A and B. I prove in the
appendix to this section that if Q is an operator associated with particle 1 and Q=f(R) for
maximal R, then there exist an infinite number of pairs of commuting operators
{(Q',B)} such that R=<A,B>, where A=Q-+Q' and where Q and Q' commute. I
assume that for at least one of these (Q',B) pairs, a way to measure R is to measure Q,
Q/, and B simultaneously. Ido not assume that for any arbitrary (Q',B) pair in {(Q',B)},
a way to measure R is to measure Q, Q', and B. Nor do I make assumptions about how
to calculate the measurement result R from the measurement results Q, Q', and B. For
instance, I do not require that the measurement results obey A=Q+Q". I assume only
that for given Q and R, there exist Q' and B such that a simultaneous measurement of Q,
Q/, and B constitutes a measurement of R. More precisely, I assume that for some Q'
and B, there exists a member of {Q';}, a member of {B;}, and a member of {Q;} such
that simultaneous measurement of those three quantities constitutes a measurement of R.
Please regard this assumption as an extension, or perhaps a clarification, of
Commeasurability. As we have seen, a large class of prism models and Bohm-type

theories may violate this condition. Such theories escape the following proof:

Theorem: Faithful Measurement & Commeasurability & Measured Value Rule —
FUNC* & Value Rule.
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Proof. FirstIderive FUNC*. Suppose Q=f(R) for maximal R. Consider an
experimental arrangement that simultaneously measures Q, Q', and B, where that tri-

joint measurement constitutes a measurement of R. (By the extension of

Commeasurability just discussed, such a Q' and B exist.) For all real numbers r; and all
quantﬁm states ¢, p(Q=f(ry), R=r; | $)=0. By Measured Value Rule, it follows that for
all ry, R#r; or Q=f(r;). But R=r for some real number r, by Commeasurability.
Therefore, Q=f(@)=f(R). In words, the Q measurement result is the “correct” function of
the R measurement result.3

As noted above, the experiment under consideration constitutes a measurement of
R. Hence, Faithful Measurement demands that R=[R]R)(R). The arrangement also
incorporates a measurement of Q. Since Q and R undergo simultaneous measurement,
Faithful Measurement demands that the measurement result Q equal the appropriate
possessed value: Q=[Qlr)(R). Because Q=f(R), it follows that [Q]®)R)=Ef([(R]R)R)).

By equivalent reasoning, if D=g(R), then [D]®)R)=g([RIr)R)). So,if |
Q=h(D)=hog(R), then [Ql®)R)=hog([RIr)R)=h(D]®)(R)). This is just FUNC*.

Now I derive Value Rule. As before, let Q=f(R) for maximal R. Suppose p(R=r |
¢)=0. Then for all real numbers q;, p(Q=g;, R=r | $)=0. Measured Value Rule therefore
requires that for all real numbers q;, R#r or Q=q;. But Q=q for some real number q, by
Commeasurability. Therefore R#r. Since Faithful Measurement demands that
R=[R]®)(R), it follows that [R]Rr)y(R)#r. Q.E.D.

§2.3.6. Conclusion

3This argument resembles a proof given by Fine (1974).
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The fact that FUNC*, Value Rule, OLOC, and ELOC entail a Kochen-Specker

algebraic contradiction, along with theorem 2.3.5, implies

Theorem : Faithful Measurement & Commeasurability & Measured Value Rule &
OLOC & ELOC — Kochen-Specker contradiction,

where ELOC, as well as Faithful Measurement, rests on determinism. This theorem
clarifies the physical interpretation of Heywood and Redhead's result by pinning down
which classes of theories the auxiliary assumptions rule out. Specifically, at least three
classes of deterministic local (OLOC and ELOC obeying) theories incorporating
possessed values escape the Heywood-Redhead argument:

(a) Those violating Faithful Measurement. Some such theories incorporate the
Bohm-like feature of allowing measurement results to depend on measuring-device
microstates.

(b) Those violating Measured Value Rule. Such theories either violate QM's
statistical predictions or incorporate anomalous states in zero-measure sets.

(c) Those violating Commeasurability. Such theories rule out the possibility of
certain joint measurements permitted by QM, or at least allow those joint measurements
not to yield joint results. Prism models disobey Commeasurability. Neither Faithful

Measurement nor Measured Value Rule makes sense if Commeasurability fails.

Many hidden-variables theories violate Faithful Measurement. Logically, of
course, a theory could disobey Faithful Measurement while obeying FUNC* and Value
Rule, in which case the Heywood-Redhead result still applies. But if Faithful
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Measurement fails, then FUNC* loses its physical motivation, for this reason: FUNC*
requires the functional relationships between possessed values to mirror the functional
relatior;ships between the underlying operators, which in turn (according to QM)
establish functional relationships between joint measurement results. But if possessed
values do not correspond to measurement results, then we have little reason to suppose
that the functional relationships between possessed values should mirror the functional
relationships between measurement results. Hence, if Faithful Measurement fails, then
FUNC* becomes (as Fine writes) an ad hoc formal constraint instead of a physically
motivated principle.

In conclusion, it would be an improvement to derive a Heywood-Redhead type
contradiction without assuming FUNC* or any such extraneous assumptions. The rest

of this chapter will accomplish exactly that.

§2.3.7. Appendix to Section 2.3

I show that if Q=f(R) for maximal R, and if Q is associated with particle 1, then
there exist an infinite number of Hermitian operators Q' associated with particle 1 and B
associated with particle 2 such that R=<A,B>, where A=Q+Q".

As throughout, I consider observables with discrete spectra. Recall that R is
maximal on the two-particle system iff R=3;1;P;®P";, where the projection operators
P; (P';) form a complete orthonormal basis for the operator Hilbert space associated
with particle 1 (2), and where the {r;;} are all "distinct." (A set of numbers is "distinct"
iff all of them are different.) Since Q=f(R) and since Q is associated with particle 1,
Q=3;q;P;, where the {q;} are not necessarily distinct. Now consider two operators
A=>;a;P; and B=ZjbjP'-, where the {;} and {b;} are distinct. Then by definition A

and B are locally maximal on particles 1 and 2, respectively. As shown in Heywood
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and Redhead, R=<A B> iff R=ZijF(ai,bj)Pi®P'-, where function F is 1:1 over the
relevant domain, the ordered pairs (a;,b;). But such a function exists, namely
‘F(a;,bj)=t;;. To see that this function is 1:1, notice that since the {a;}, {b;}, and {r;} are
distinct; F(a;,bj)=F(ag,by) iff i=g and j=h. So Fis 1:1, and therefore R=<A,B>. Now
just let Q'=A-Q; that is, Q'=>}(a;-q)P;. Note that Q and Q' commute, because
Q'=k(Q), where k(qp)=a;-q;. Hence, I have shown that there exist Hermitian operators
Q' associated with particle 1 and B associated with particle 2 such that R=<A,B>, where
A=Q+Q'. In fact, I have demonstrated the existence of an infinity of such Q' and B,
because there are an infinite number of A=Y;a;P; and B=ZjbjP’j such that the {a;} and

{b;} are distinct.
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Section 2.4: Gleason's lemma and nonlocality

Here, I set the stage for my new proofs in section 2.5. First, I'll briefly review héw
a Gleason-Kochen-Specker algebraic contradiction arises. Then I'll present a version of
Brown and Svetlichny's (1990) algebraic nonlocality theorem, which builds upon Stairs
(1983). Like Heywood and Redhead, Brown and Svetlichny invoke the Kochen-
‘ Specker contradiction. But unlike Heywood and Redhead, Brown and Svetlichny
assume nothing more than the standard deterministic locality conditions used in Bell
derivations. That is, Brown and Svetlichny find a way to dispense with the kinds of
extraneous assumptions I criticized in the previous section. I present his nonlocality
proof because it's interesting (and remarkably simple) in its own right, because I played
a small role in helping to develop it, and because it naturally leads into my own

theorems.

§2.4.1. Gleason and descendants

Consider the unit sphere. Unit vectors correspond 1:1 to points on that sphere. So,
I can uniquely specify a point by specifying a unit vector. An orthogonal triad is a set
of three points corresponding to three mutually orthogonal unit vectors. So for instance,
{north pole, equator at 20° longitude, equator at 110° longitude} is an "orthogonal triad"
on the Earth's surface. Notice that any given point is a member of many (indeed, an
infinite number of) orthogonal triads.

Can we paint the Earth's surface red and blue such that, within any orthogonal triad,
two points are red and one point is blue?* Surprisingly, as Gleason (1957) first proved,

the answer turns out to be "no."

4] owe this formulation of the problem to Michael Redhead (1987).
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Bell (1966), and later Kochen and Specker (1967), showed that a Gleason type
result ensues even when only a finite number of points are considered. Specifically,
Kochen and Specker consider 43 orthogonal triads, and show that they can't be™ painted"
as specified above. Those 43 orthogonal triads consist of only 117 points instead of
43x3=129, because several points "belong" to more than one triad. Peres (1990)
improves on the Kochen-Specker result by showing that only 16 triads (consisting of 33
points) need be considered to reach the same conclusion.

Bell, and independently Kochen and Specker, realized that Gleason-type results can
be used to rule out certain hidden-variable theories. For instance, we can quickly
dissolve a whole class of noncontextual theories that assign definite values to all
observables associated with Hermitian operators. Il do so now.

Kochen-Specker theorem. Let [Q] denote the possessed value of observable Q.
Consider "noncontextual” theories, according to which the (possessed or measured)
value of a nonmaximal observable’ does not depend on the "context" in which the
observable is measured. More formally, in the noncontextual theories considered here,
if nonmaximal operator A=f(B)=g(C), where B and C are commuting or
noncommuting maximal observables, there exists only one physical quantity A
corresponding to A. So, there's no van Fraassen style ontological splitting. And
furthermore, we can calculate the value of A by taking the relevant function of [B] or
[C]. Formally, [A]=f({B])=g({C]). In brief, I've assumed a condition Kochen and

Specker call

FUNC: For all A and B, If A=f(B), then [A]=f([B).

5When I call an observable "maximal" or "nonmaximal,” I'm really refernng to the
operator associated with that observable.
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This condition seems innocuous. It simply says, for instance, that a particle's kinetic
energy can be calculated by squaring the value of its speed and multiplying by m/2:
[K]}=m{v]%/2. For noncontextual theories that assign values to all observables
corresponding to Hermitian operators, FUNC must hold to insure that the possessed
values obey the "right" algebraic relationships.

As Kochen and Specker show, however, FUNC implies a Kochen-Specker
("coloring") contradiction. Il present a quick versi;)n of their argument due to Redhead.
Consider a spin-1 particle. So, the quantum nurﬁber s equals 1. From QM, the particle
occupies an eigenstate of the S2, with eigenvalue s(s+1)=2. So, [S2]=2. But of course,

$2=5,2+8,2+5,2. FUNC therefore implies
2 = [$2] = [Sx2I+[Sy21+[S72] = [SxI2+[Sy]2+[S,]

For a spin-1 particle, [S,,]-——wl; 0, or 1.6 Therefore, [Sp}2=0 or 1. Consequently, of the
three values {[Sx]2, [Sy]2, [S]2}, two of them must equal 1 while the third must equal
0. Otherwise, those three values couldn't add up to 2. Furthermore, since
$2=8x2+Sy2+8,2 for any orthogonal triad {x, y, z}, this conclusion applies to the spin-
components along any orthogonal triad of directions. Formally, for any orthogonal triad
{x, y, 2}, the values {[Sx]2, [Sy]2, [S,]2} must be such that two of them equal 1 while

the third equals 0.

ST've just implicitly assumed the "Spectrum Rule," according to which the possible values
of an observable are simply the spectrum of the corresponding operator. Since QM
implies that measurement of an observable yields a value in the spectrum of the
corresponding operator, violation of the Spectrum Rule would allow observables to
possess values that don't correspond to measurement results. In other words, the
measured value wouldn't necessarily equal the pre-existing possessed value. But what's
the point of introducing "possessed values” (for all observables) if they aren't the values
“revealed"” by measurement?
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To hook this up to Gleason's lemma and its descendants, color the unit sphere

according to following scheme:

if [Spl?=1, then paint the point corresponding to n red.
if [Sp]?=0, then paint the point corresponding to n blue.

But as discussed above, this is impossible. We've reached a contradiction. So, we must
give up at least one of the assumptions. Specifically, we must abandon noncontextual
deterministic theories that assign definite values to all observables consistent with
FUNC.

Notice that locality didn't enter into this no-go theorem. On the other hand, it only
rules out theories satisfying a particularly strong (and according to Bell, implausible) set
of conditions. I won't get into this debate here.

A quick technical point: Kochen and Specker's original proof doesn't use S2.
Instead, it uses the "spin-Hamiltonian", Hg=aSx2+bSy2+cS,2, where a, b, and ¢ are all
different. The details aren't worth reproducing. As Kochen and Specker discuss, if a
spin-1 system (such as a helium atom in the "right" state) is placed in-a weak magnetic
field of thombic symmetry, then Hg corresponds to its energy (or more precisely, the
"part” of its energy due to the interaction between spin and magnetic field). So, even if
you don't think all Hermitian operators correspond to "real” physical quantities, you have
to admit that Hg does. In fact, Kochen and Specker lay out a complex scheme for
measuring Hs. The fact that this measurement is extremely difficult to carry outin

practice does not threaten the "validity” of Hg as a real physical observable.

§2.4.2. Gleason's descendants meet nonlocality
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Heywood and Redhead, and independently Stairs, were the first to realize that a
Gleason-Bell-Kochen-Specker contradiction could be used in a nonlocality proof. As
discussed above, Heywood and Redhead rely on extraneous assumptions that cloud the
physical interpretation of their theorem. And Stairs' result is more a suggestion for a
possible proof than a fully formalized theorem. But more recently, Brown and
Svetlichny (1990) formalized Stairs' outline into a rigorous proof. - Notably, Brown and
Svetlichny assume the same deterministic locality conditions invoked in standard Bell
derivations.

Assumptions. T1l now lay out those conditions. We'll consider an EPR-type
experiment in which two particles created at a common source speed in opposite
directions and get measured at spacelike separation. I'll call the two particles "1" and
"oy w

First, assume that measurement results are fully determined by the state of the
particles. So, this theorem does not address theories in which the apparatus "microstate”
plays arole. Let [Q®I] denote the value that would be obtained if Q were measured on
particle 1. [I®Q] denotes the analogous value of particle 2. Physically, [Q®]I] is
determined by the fully specified (hidden-variable) state of the particles. Although my
notation leaves out the time dependence of [Q®I], such dependence is certainly allowed.

Second assume "Bell locality": [Q®I] may not depend on which observable gets
measured on particle 2, and [I®Q] may not depend on which observable gets measured
on particle 1. Expressed counterfactually, Bell locality demands that if we measure Q on
particle 1 and R on particle 2, then we'll get the same [Q®I] as would have been obtained
had we measured R' on particle 2. The implicit counterfactual definiteness here is not
problematic because we've already assumed determinism. Clearly, this condition rules

out a direct faster-than-light causal connection between the two measurements. I've
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implicitly assumed that if an experimenter can control a measurement result on particle 1
by chanéing a setting on apparatus 2, then the nonlocal connection between those two
"wings" of the experiment is causal. For a more careful discussion of causality; see
chapter 5.

Finally, assume "Particle Locality": If the measuring apparatus "settings" are
chosen at time t, then the state of the particles at time t does not depend on that choice of
settings. Again, this condition rules out an instantaneous influence between two
spacelike separated events, in this case the manipulation of an apparatus and the state-
evolution of a particle that hasn't yet reached that apparatus.

Finally, I'll assume the Spectrum Rule, according to which a measurement result on
Q must equal one of the eigenvalues of Q. As noted above, if this condition fails (for a
nonzero-measure set of hidden-variable states), then the hidden-variable theory violates

QM even before consideration of locality are brought in.

Theorem: Determinism & Bell Locality & Particle Locality & Spectrum Rule & (no

apparatus hidden variables) ~ Contradiction with QM's perfect correlations.

Proof: 1 will now show that those assumptions contradict the perfect anticorrelations of
QM.

Consider two spin-1 particles in their singlet state,

[¥singlet> = -3"%(IS,=0>8IS,=0> - IS,;=0>®IS,=0> + IS,=0>8IS,=0>)

On particle 1, we'll measure the spin-Hamiltonian Hg=aSy2+bSy2+cS,2, while on

particle 2 we'll measure one of corresponding spin components, either Sy, Sy, or S;.
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The eigenvalues of Hg are {hyx=b+c, hy=a+¢, h;=a+b}. Quantum mechanics predicts

the following perfect anticorrelations:

@ p(H®I=h,, I®S,=*11 ¥singlep=0,
®  p(H®I=h,, I®8S,=0 | ¥singlet)=0,
(C) P(I'IS®I=h.x, I®SZ=O I \Fsingle[)=0.

In this notation, p(Q®I=q, I®R=r | ¥) is the probability according to QM that, when the
particles occupy quantum state ¥, simultaneous measurement of Q on particle 1 and R
on particle 2 would yield q and r, respectively.

Particle locality ensures that no matter which observables get measured, the same
distribution of hidden-variable states underlie the quantum state ¥singlet. If the hidden-
variable theory is to reproduce a given perfect correlation, then a measure-1 set of the
hidden-variable states underlying quantum state Wginglet must mirror that perfect
correlation. This proof will consider a finite number of perfect correlations--specifically,
12 correlations for each of the 16 orthogonal triads used in the Peres-Kochen-Specker
proof, for a total of 192 perfect correlations. Since the intersection of a finite collection
of measure-1 sets is itself a measure-1 set, there exists a measure-1 set of hidden-
variable states that mirror all the perfect correlations considered here.” From now on,
Il consider the values associated with a hidden-variable state in that "intersection" set.

Suppose that [H®I]=h,. Since the hidden-variable state under consideration

reproduces all the perfect correlations considered in this proof, we have (from above)

TThat last bit of reasoning would not have been possible if my proof considered an
infinite number of perfect anticorrelations. I'm taking advantage of the fact that the
Kochen-Specker algebraic contradiction, unlike Gleason's original lemma, relies on a
finite number of orthogonal triads. To my knowledge, this is the first proof to exploit that
fact.
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@ [HS®I];a&hx or [I®S,J#t1,
(b)  [H®IJ#h, or [I8S,]#0,
© [H s®l’]¢hx or [I®S,]+0.

By supposition, [H ®I]=h,. So,

@  [8S =l

®  [8S0,
©  [I8S,]+0.

Since [I®S,]#t1, the Spectrum Rule implies [I®S,]=0. And since, [I®Sy ,z];tO, the

Spectrum Rule implies [I®S, . ]=t1. In summary, we have [I®S,]=0, [I®Sy]=:.i-1, and

Y,Z]
[I®S,]=t1.

Now of course, that conclusion rests on the provisional assumption that (H®I]=h,.
If we had supposed instead that [HS®I]=hy, equivalent reasoning (using analogous
quantum perfect anticorrelations) would have given us [I®S,]=+1, [I®Sy]=0, and
[I®S,]=t1. And had we supposed [H®I]=h,, the same reasoning would have yielded
(eS,]=t1, [I®Sy]=:*:1, and [I®S, }J=t0. In summary, no matter what the spin-
Hamiltonian equals, the three values {[I8S, ]2, [I®Sy]2, [1®S,]2} are such that two of
those values equal 1, while the third equals 0.

Since ¥singlet is spherically symmetric, the same reasoning--and hence the same

conclusion--applies to any orthogonal triad of directions. (Remember, the hidden-

variable state under consideration reproduces all 192 relevant perfect anticorrelations.)



Elby Chapter2: Nonlocality . 1)
Formally, for any of those 192 orthogonal triads, {x', ', z'}, the values { [I®Sx-]2,
[I®Sy.]2, [I@SZ,]z} are such that two of those values equal 1, while the third equals 0.

Here's the punch line: For every unit vector n, try to "color" the corresponding

point on the unit sphere with the value [I®Sn]2. As just shown, the result is such that for
each orthogonal triad, two points are "1" (red) and the third point is "0" (blue). This is
impossible, by the Peres-Kochen-Specker theorem. We've reached a contradiction.
Therefore, any theory consistent with the above assumptions cannot reproduce the

perfect correlations of quantum theory. Q.E.D.

You may wonder where Bell Locality entered into the reasoning. Well, some of the
unit vectors involved in the Peres-Kochen-Specker theorem "belong" to more than one
orthogonal triad. Suppose x is one of them. Then the above theorem ends up invoking
not just p(H®I=h,, I®S,=t1 | ¥singler)=0, but also p(H,/'®I=h,, I®S,=+1 | ¥singled=0,
where Hg'=aS,2+bSy2+cS,2, with {X, ¥', z'} another orthogonal triad involving x. The
value assigned to I®S, by virtue of its correlation with H ®I must equal the value
assigned to I®S, by virtue of its correlation with H '®I, or else [I®S,] isn't uniquely
defined and the proof falls through. So, the value [I®S,] associated with particle 2 may
not depend on whether H or H'is measured on particle 1. This is guaranteed by Bell

Locality.

§2.4.3. Summary

In this section, I introduced Gleason's lemma and its descendants, which establish
the impossibility of mapping values to unit vectors (i.e., to points on the unit sphere)
consistent with the “coloring rule" discussed above. I then showed how this

mathematical result can be used to rule out a class of hidden-variable theories.
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Unfortunately, Kochen and Specker's hidden-variable no-go theorem rules out only
those theories satisfying a particularly strong set of assumptions. Finally, I showed how
a Gleason-type contradiction can be employed in an algebraic nonlocality theorem that
invokes the same deterministic locality conditions used in Bell derivations.

In the next section, I'll improve upon Brown and Svetlichny's resﬂt by deriving an

algebraic nonlocality theorem in an indeterministic framework.
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Section 2.5: Generalization of algebraic nonlocality proof to

indeterministic setting

The most general Bell derivations employ locality assumptions that are weaker than
those of Brown and Svetlichny in two major ways. First, as Clauser and Homne (1974)
showed, by invoking a probabilistic condition called “Factorizability" we can avoid the
assumption of determinism. Second, Bell-type derivations (cf. Jarrett 1984) can allow
measuring apparatus "microstates” to affect measurement outcomes, as happens in
Bohm's theory.

In this section, I'll show that the weakest probabilistic assumptions needed to derive
a Bell inequality can be used to derive an algebraic nonlocality proof. By "algebraic," I
mean a proof that invokes only the perfect (anti)correlations, as opposed to the more
general statistical correlations, of QM. Then I'll spell out some of the philosophical
advantages of this approach. (Later on, in section 2.7, I'll rederive my result from
weakened locality conditions, conditions from which a Bell inequality cannot be
derived.) But first, I must review in some detail the precise conditions needed in Bell-

type derivations.

§2.5.1. Notation and preliminaries

In a standard EPR-type arrangement, Let A, A', etc., denote physical quantities that
apparatus 1 can measure, while B and B’ denote quantities that apparatus 2 can measure.
In other words, A and A" are possible settings of apparatus 1. Notice that I'm
streamlining the notation by writing A instead of A®I and B instead of I®B.

Let A denote the ontological (fully specified) state of the pair of particles

immediately before the particles undergo measurement. In my terminology, the
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measurement begins when apparatus 1 (2) first starts to interact locally with particle 1

(2). Importantly, A does not denote the state of the particles at the source, for reasons

presented below.

Letu, denote the ontological state of an apparatus set to measure A. Call pi, the

"apparatus microstate." In general, many different microstates are accessible to an
apparatus macroscopically set to measure A. According to some "micro-contextual"”
theories, measurement outcomes depend not just on the apparatus settings, but also on
these microstates. The A and [ states may evolve either deterministically or stochastically
in time.

Throughout this dissertation, I use standard conditional probability notation: p(bla)
is the objective probability of b given Ia, and p(bla) is the probability density of b given a.

My one unusual bit of notation is A® (B?), which denotes that apparatus 1 (2) is absent.

For instance, p(i, | A,A,B) is the probability density that an apparatus set to measure A
on a system in state A occupies microstate |1, given that no measurement occurs on
particle 2. Similarly, p(it 5,15 | A,A,B) is the joint probability density that apparatuses
about to measure A and B on a system in state A lie in microstates jt, and Py,
respectively.

In a hidden-variable theory, the quantum state ¢ is epistemic; a system described by
¢ actually occupies a fully-specified state . By "¢," we mean ¢(t=0), the quantum state
in which the particles were prepared. So, p(A | ¢) denotes the probability density that a
pair of particles prepared in quantum state ¢ (at t=0) occupies ontological state A at later

time t, immediately before measurement.
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Depending on the theory, this probability density reflects an in-practice or in-
principle uncontrollability of the hidden variables. For instance, in David Bohm's pilot-
wave theory, a particle always Aas a definite position, encoded by A. But uncontrollable
fluctuations ensure that identically-prepared particles almost always emerge from the
source with slightly different initial trajectories. Bohm's law of motion ensures that
these different initial trajectories "fan out" so as to reproduce the spatial distribution of
the QM wavefunction.

Probability theory allows us to define

p(A=a [2,B% = Jp(A=a 4,11, . BYp(t, |A,A,BOdu,

" p(A=a,B=b12) = [lp(A=aB=b | AL, t5)p(ts 15 | 1A BYdit,duip,

where the integrals range over all "contributing” apparétus microstates, namely

microstates for which p(u, 11,A,B%>0 or p(u,,1ip | 1,A,B)>0.8 Physically, p(A=a |

A,B9) is the ‘w-averaged' probability that a system in state A would yield A=a upon
measurement.

As a convenient shorthand, define

P(A=a l )"u'AJ"l‘B) = zip(A=avB=bi ! x,va,uB)’

80f course, if the apparatus microstates are "discrete” instead of continuous, then p(iL Al
...) becomes a probability, and we sum instead of integrate over the microstates.
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where {b;} are the possible measurement outcomes for B. Physically, p(A=a I A, Alp)
is the probability that A-measurement of particle 1 (with apparatus in microstate L A

accompanied by B-measurement of particle 2 (with apparatus in microstate j15) would

yield A=a for particle 1.
According to a hidden-variable theory, the probability that a system prepared in
quantum state ¢ would yield a given measurement outcome is found by averaging over

the A states underlying ¢:

p(A=a9,B% = [p(A=a | 1,B%p(x | ¢,A,B%rda,

p(A=2,B=b | ¢) = Jp(A=a,B=b | L)p(A 1 6,A,B)-dA.

In this notation, p(A=a [ ¢,BP) is the probability according to the hidden-variable
theory that a system prepared in quantum state ¢ would yield A=a upon measurement.

If the hidden-variable theory does not reproduce QM's statistical predictions, then p(A=a
| ,B% might not equal Pom(A=a1¢), the probability according to OM that a systém

prepared in state ¢ would yield A=a.

In summary, I've defined three levels of measurement-result probabilities. The
fundamental probabilities of the form p(A=a I A,11,,B%) depend on the particles' state and
also on the measuring apparatus's microstate. By averaging over apparatus microstates,
we obtain probabilities of the form p(A=a | 2,B%), which specify the likelihood that a
system in state A would yield A=a upon measurement. Of course, if measurement
results do not depend on apparatus microstates, then p(A=a | A,B%) is a "fundamental"

probability. Finally, we can average over the A states underlying the quantum state to
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obtain p(A=a | $,B%). According to the hidden variable theory, this A-averaged
probability predicts the statistics we would "observe" by measuring A on many systems

prepared in quantum state ¢, assuming no B-measurements occur.

§2.5.2. Stochastic locality conditions

"Stochastic Bell locality" is the requirement that, if events a and b are spacelike
separated, then the occurrence of b cannot depend directly on a. Philosophers usually
formalize this locality intuition in terms of probabilities: the objective probability that b
occurs cannot depend on whether a occurs. Therefore, if b is correlated with g, some
screening-off "common cause" must account for the correlation. A correlation between
a and b does not violate stochastic Bell locality if there exists a common cause ¢ such
that p(bla,c)=p(blc), because this equality shows that a does not affect the probability of
b's occurrence. Rather, the probability that b occurs is "set" by ¢. If no such common
cause exists, however, then a correlation between a and b suggests a direct connection
between those events, in violation of stochastic Bell locality.

Stochastic Bell locality motivates the specific conditions needed to derive a Bell
inequality in a contextual, stochastic framework. Many authors consider Factorizability,
the conjunction of Jarrett's Locality and Completeness, to be the important assumption.
The locality conditions about the distributions of hidden-variable states are considered
auxiliary and discussed less fully. Since these distributional locality assumptions are
nontrivial, however, we must examine their physical content in detail. But first, I'll
review Factorizability.

"Locality” & Completeness <> Factorizability. Jarrett (1984) discusses
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Jarrett Locality:
p(A=a |, BY) = p(A=a A1, lip)

Jarrett Completeness:

PA=2,B=b | L, lip) = p(A=a | &1, itp) PB=b | Ly 1tp)

Jarrett Locality demands that a measure'ment-result probability not depend on the
setting or microstate of a distant apparatus. If Jarrett Locality fails, then either the
apparatuses "conspired” ahead of time to bring about certain correlations, or changing
the state of apparatus 2 can instantaneously affect the probabilities associated with
particle 1. T'll assume conspiracies don't happen. As Jarrett shows, if the hidden-
variable states were sufficiently controllable, then Jarrett Locality violation would allow
experimenters to communicate superluminally. For this and related reasons, Jarrett
Locality violation indicates an instantaneous causal connection between the two wings of
the experiment, under most notions of causality. (See chapter 5 for more discussion of
causation.) QM obeys Jarrett Locality, while Bohm's theory violates that condition.

Jarrett Completeness is often written
p(A=a | A1, 1p) = p(A=a | 4,11, 5, B=b),

which is equivalent to the above for nonzero p(A=a,B=b | 4,11, ,11). This condition

requires that a measurement-result probability depend only on the pre-measurement

ontological state of the particles and apparatuses, not on the result of a spacelike
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separated measurement. Put another way, the particle and apparatus states must serve as
the Reichenbachian (1956) common cause of the correlated measurement results; those
states must "screen off" measurement. results on particle 1 from measurement ;esults on
particle 2.

Why should Completeness hold? After all, we expect that measuring particle 1
might provide previously unknown information about particle 2, tﬁereby changing our
epistemic (subjective) measurement-result probabilities associated with particle 2. But
the objective probabilities considered here reflect the actual state of the particles, not our
state of knowledge. A change in the objective probabilities associated with particle 2 is a
real physical change in that particle's properties. We don't intuitively expect that
obtaining a measurement result on particle 1 can nonlocally "influence" the
characteristics of particle 2. Completeness rules out precisely this kind of influence.
According to Completeness, obtaining a measurement result on particle 1 can tell us
something we didn't know about particle 2, but cannot instantaneously alter the objective
probabilities associated with particle 2.

Given this, I can now explain my insistence that A denote the particles' state
immediately before measurement, not the particles' state at the source. Completeness is
physically unmotivated if written in terms of the source state. An example will illustrate
why. Imagine a toy theory in which particles emerging from the source in state 4
stochastically evolve into state A; 50% of the time and into state A, 50% of the time.
Suppose that particle 1 makes its "choice," and then subluminally communicates its
choice to particle 2. When the particle pair occupies A4, it always yields measurement

results A=+1 for particle 1 and B=-1 for particle 2. When the particle pair occupies 2, it
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always yields A=-1 and B=+1. In this theory, Completeness formulated in terms of A,
fails, because p(B=+1 | Ap)=.5 while p(B=+1 | &y, A=-1)=1. But this failure does not
indicate a nonlocal influence of the particle-1 measurement result on particle 2.

Obtaining A=-1 does not physically gffect particle 2, but simply reveals that the particles

evolved into A, instead of A;. For this reason, stochastic Bell locality does not motivate

"Ag-Completeness.” By contrast, stochastic Bell locality motivates Jarrett Completeness,

which is formulated in terms of A immediately before measurement:
p(B=+1 1) =pB=+1 |4y, A=-1),

etc., which the toy theory obeys.
In summary, stochastic Bell locality motivates Completeness only if formulated in
terms of A immediately before measurement, not in terms of A at the source.
Completeness violation may challenge the "spirit" of relativity, but does not allow
the possibility of superluminal signaling unless accompanied by Locality violation; see
Jones and Clifton. QM violates Completeness. The classic example is two electrons in
their singlet state. But in fact, QM violates completeness for any entangled state.
Deterministic theories are necessarily Complete, but not vice versa (cf. Elby 1990).
The logical conjunction of Jarrett Locality and Jarrett Completeness is equivalent to

Factorizabiliiy:

Factorizability:

p(A=2,B=b A1, 1ip) = p(A=a | 4,11, ,BO)-p(B=b | A,11;,A0).
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Throughout this chapter, I'll often invoke Factorizability instead of separately invoking -

Jarrett Locality and Jarrett Completeness.

Distributional Locality Assumptions: Particle Locality. To derive a Bell inequality,
we must make locality assumptions about (i) the distribution of particle hidden-variable

states, and (ii) the distribution of apparatus hidden-variable states. The first of these is

Particle Locality:

p(r19,A,B) =p(r19,A,B% =p(r14,A%B?)

where the settings are chosen after the particles have left their source, but immediately
before the particles start to interact locally with the apparatuses (i.e., immediately before
the measurements begin). This condition formalizes the assumption used above in
subsection 2.4.2.

To make Particle Locality more precise, suppose that preparation of the apparatuses
occurs during a short time ipterval At, which begins at t; and ends at t,. Suppose further
that no non-superluminal "signal" emitted from the devices during At could reach the
particles until after t,. In other words, measurement--by which I mean the local
interaction between the particles and the apparatuses--cannot begin until after t,. Particle

Locality demands that the probability density for the particles to occupy state A at time t,

be the same as if one or both apparatus preparations had never taken place.
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Stochastic Bell locality clearly motivates Particle Locality. Particle Locality requires
the particles' state not to be instantaneously disturbed by an event, specifically the
preparation of a measuring device, that occurs spacelike separated from the particles.
Therefore, failure of Particle Locality indicates either a pre-planned conspiracy or a
superluminal link between the particles and their measuring devices.

We now see that the physical content of Particle Locality neariy duplicates the
physical content of Jarrett Locality. Put another way, if some physical mechanism
mediates Jarrett Locality violation, then we intuitively expect the same mechanism to be
capable of mediating Particle Locality violation, and vice versa. For this reason, theories
in which Jarrett Locality holds while Particle Locality fails are no less plausible than
theories in which Particle Locality holds while Jarrett Locality fails. Consequently, we
shouldn't consider Jarrett Locality to be "primary" and Particle Locality to be "auxiliary."
Instead, we should place these two conditions on equal footing.

To illustrate this point, consider Bohm's theory, in which the quantum wavefunction
¢(x,t) is a "pilot wave" that guides a particle's position (as encoded by A). The particle
and its wavefunction are separately “real” physical things. The wavefunction evolves
according to Schrédinger's equation.

In this theory, Jarrett Locality fails. If the two-particle wavefunction is entangled,
then measuring particle 1 causes the two-particle wavefunction to entangle with the
wavefunction of apparatus 1. This "disturbance" of the wavefunction, the precise nature
of which depends on the setting of apparatus 1, instantaneously alters the trajectory of
particle 2, thereby altering certain measurement results on particle 2. So, by changing

the setting of apparatus 1, you can alter the trajectory (and measurement results) of
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particle 2. (As noted above, however, since the particle trajectories are unknown and
uncontroliable, you can't use this nonlocality to signal superluminally.)

Does this mechanism of nonlocal wavefunction entanglement in Bohm's theory
also lead to violation of Particle Loéaﬁty? Yes! To see why, consider a single particle
approaching Stern-Gerlach magnets. The particle has a definite trajectory, and the
statistical spatial distribution of identically-prepared particles is defermined by the

wavefunction ¢(x,t). Formally,
p(A 1 )=lo(x,),

where A is the state corresponding to particle position x at time t. If the particle's state is
entangled, replace lo(x,t)> with the relevant density matrix element. In general, a
wavefunction has long "tails" that extend in front of, and behind, the particle "carried" by
that wavefunction. Consequently, part of the particle's wavefunction impinges upon the
measuring apparatus before the particle itself reaches the apparatus. When this happens,
the particle’'s wavefunction interacts with the apparatus's wavefunction, leading to an
entangled wavefunction. This entangled wavefunction instantaneously starts to guide the
particle (and the apparatus); and the particle's "new" t.rajectory in general differs from
what it would have been had the apparatus been absent, or had the apparatus (i.c., the
magnets) been "set" differently (i.e., tilted at a different angle). At a statistical level, the
distribution of particle trajectories in the presence of a Stern-Gerlach apparatus set to
measure Sy differs from the distribution of particle trajectories in the presence of a Stern-

Gerlach apparatus set to measure S,. Crucially, the differences in trajectories kick in
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before the apparatus has time to interact locally with the particle, due to the instantaneous
entanglement between the particle's spread-out wavefunction and the apparatus's
wavefunction. So, Particle Locality fails.

Let me repeat the argument of the previous paragraph less rigorously but more
intuitively. The spatial orientation of the Stern-Gerlach magnets contributes to the
potential (or if you prefer, boundary conditions) in which the particle's wavefunction
evolves. Consequently, when the particle’s spatial wavefunction impinges upon the
apparatus, the wavefunction begins evolving differently than it otherwise would have.
This change in the wavefunction's spatial evolution instantaneously affects the whole
wavefunction, not just the "part” of the wavefunction near the apparatus. So, the
presence of the apparatus affects the particle's wavefunction even before the particle itself
reaches the apparatus. Furthermore, the alignment of the magnets (i.e., the "setting")
determines the shape of the potential in which the particle's wavefunction evolves. In
brief, the particle wavefunction's evolution is instantaneously affected by the apparatus
setting. This instantaneous change in the particle's wavefunction immediately affects the
particle's trajectory: So, Particle Locality fails. Keep in mind, though, that the "real"
reason Particle Locality fails in Bohm's theory is wavefunction entanglement between
the particle and apparatus.

Here's the point. In Bohm's theory, Jarrett Locality fails because nonlocal
entanglement between the particles and apparatuses instantaneously changes the "pilot
wave" guiding the particles, and therefore instantaneously changes the particles’
trajectories. Particle Locality fails for the same reason. The physical mechanism

mediating Jarrett Locality violation also mediates Particle Locality violation. Bohm's
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theory confirms the intuition that a physical mechanism behind Locality violation is
likely also to cause Particle Locality violation, and vice versa. Particle Locality is not a
weak auxiliary assumption that we can safely ignore.

Distributional Locality Assumptions: TAF. Now that I've shown the importance of
locality assumptions about the distribution of hidden variables, let's consider the

distributional locality assumption concerning apparatus microstates:

Total Apparatus Factorability (TAF):
p(H .l 1,AB) =p(1, | ?»,A,BO)’P(P«B 12,A%B).

According to TAF, the likelihood that an apparatus occupies a given microstate depends
only on the setting of that apparatus (and perhaps on the state of the particle it's about to .
measure), not on the setting or microstate of a distance apparatus. The settings are
chosen late enbugh so that the apparatuses could not “communicate” subluminally
before the measurements occur.

TAF encodes two physical intuitions. First, the two measuring devices are
ontologically separable, as opposed to holistically entangled, and therefore it makes
sense to specify the states of the two apparatuses separately. Second, changing the state
of apparatus 1 should not affect the state (or more precisely, the state-occupation
probabilities) of apparatus 2. Failure of TAF indicates either a pre-planned conspiracy,
or else an instantaneous nonlocal connection (perhaps holistic, perhaps causal) between
the two apparatuses. Stochastic Bell locality motivates TAF, just as it motivates

Factorizability.
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During an EPR-type experiment, Bohm's theory violates TAF. (I omit the proof.)
This should come as no surprise, because the physical mechanism behind that violation
is wavefunction entanglement--the same holistic entanglement that ultimately leads, in
Bohm's theory, to Jarrett Locality violation and Particle Locality violation.

Spectrum Rule. In this probabilistic framework, I'll use a version of the Spectrum

that a hidden-variable theory must obey in order to reproduce QM's predictions.
Spectrum Rule: p(A={one of the eigenvalues of A} i ¢,...) =0.

Recall that, in my notation, p(... | ...) is a probability according to the hidden-variable
theory. In words, the Spectrum Rule requires that no matter what quantum state the
system occupies, the probability according to the hidden-variable theory that
measurement of an observable yields a non-eigenvalue of the corresponding operator is
0. This does not mean that p(A#{one of the eigenvalues of A} | A,...)=0 forall A. It
merely means that these "anomalous” A's constitute a zero-measure subset of all the

hidden-variable states underlying the quantum state.

To keep all this straight, let me introduce some terminology. State A “mirrors the
spectmmfule with respect to observable A" if p(A#{one of the eigenvalues of A} |
MBO)=0.

Summary. Factorizability, Particle Locality, and TAF are the standard assumptions
used to derive a stochastic Bell inequality; see Clifton ef al. (1991). (In most
presentations, TAF is omitted, because apparatus microstates aren't considered.) These

conditions, motivated by stochastic Bell locality, encode similar physical content.
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Usually, Factorizability (i.e., Jarrett Locality and Completeness) is considered the
"primary" assumption, while Particle Locality and TAF are considered auxiliary. As
argued above, however, a physical mechanism responsible for Jarrett Locality violation
is likely to generate Particle Locality or TAF violation as well; and vice versa. Bohm's
theory illustrates this point. We should not think of Particle Locality or TAF as auxiliary

conditions, because they encode nontrivial physical content.

§2.5.3. Nonlocality theorem
In this section, I prove a Heywood-Redhead-Brown-Svetlichny style algebraic
(perfect correlations) nonlocality theorem from the stochastic locality conditions just

discussed. Before getting started, I need to prove a trivial lemma:

Factorizability lemma:
Factorizability & TAF — p(A=2,B=b | 1) = p(A=a | A,BO)'p(B=b | 1,A0)
Proof:
P(A=a,B=b 1) = [fp(A=a,B=b | &1, 1p) oty bty | 1.ABYdiL,dpiy
by definition
= [lp(A=a 10,1, BO)p(B=b | &5, A0 (i, 1y | 1,AB)diL, ity
) by Factorizability
= Ifp(A=a 1 3,1, BOP(B=b | 4,15,A% P11, 12.B%p(g | A% dp, iy
by TAF

= [fp(A=a 1 hp1,,BOp(ie, | 1BO)dys, I Iip@B=b | A,pip, A0 p(ug | ,A0) disg]
separating variables
=p(A=a | ,BO)-p(B=b | 1,A0)
by definition.
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In words, if the A-wing and B-wing probabilities are completely independent (as
required by Factorizability and TAF), then this probabilistic independence remains after
we average over the apparatus microstates. This "i-less"” version of Factorizability is

what I'll invoke in the proof below.

Theorem: Factorizability (i.e., Jarrett Locality and Jarrett Completeness) & Particle

Locality & TAF — Contradiction with QM's perfect correlations

Proof: As in Brown and Svetlichny's proof, consider two spin-1 particles in their

singlet state,

singlet> = -3"7(1S =0>01 =0> - IS, =0>8IS =0> + IS,=0>81S,,=0>)

On particle 1, we'll measure the spin-Hamiltonian Hg=aSx2+bSy2+cS;2, while on
particle 2 we'll measure one of corresponding spin components, either S, Sy, or S.
The eigenvalues of H; are {hx=b+c, hy=a+c, h;=a+b}.

In this proof, I'll consider 16x12=192 perfect énticorrelations of the form
PQM(HS=..., Sy=-- | ¥singlep=0. Sixteen is the number of spin-Hamiltonians I'll invoke,
corresponding to the 16 orthogonal triads used in the Peres-Kochen-Specker theorem;
and for each spin-Hamiltonian, I consider 12 perfect anticorrelations. These exact
numbers aren't important. What's important is that I consider only a finite number of

perfect anticorrelations.
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Consistency with QM demands that the hidden-variable theory reproduce these 192
perfect anticorrelations and obey the spectrum rule. In appendix 2.5.5 below, I prove

that, if Particle Locality holds, then a measure-1 subset of the A states underlying ¥singlet

(1) mirror each of these 192 perfect anticorrelations, and also

(i) mirror the spectrum rule with respect to each of the observables considered here.

Formally, a A state "mirrors” a QM perfect anticorrelation Poy(A=a, B=b | ¥)=0 if

p(A=a, B=b | 1)=0.
For the remainder of this proof, let A denote ariy member of this measure-1 subset.
Crucially, we need to consider only one such A. This fact acquires greater importance in

section 2.7.

Kochen-Specker contradiction. 1 now show that any A obeying (i) and (ii) generates
a Peres-Kochen-Specker contradictiqn. The only assumption I'll invoke is pi-less
Factorizability, which I showed above (in the Factorizability lemma) to follow from

Factorizability and TAF.
Since A obeys the Spectrum Rule with respect to H, the only three H. -

measurement outcomes that can have nonzero probability are h,, hy, and h,. Since

probabilities are normalized,

P(Hs=hx A,S% + P(Hs=hy 12,89 + P(Hs=hz 13,8% = 1.
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("S®" denotes that no measurement occurs on particle 2.) It follows that at least one of
those three spin-Hamiltonian measurement-result probabilities is greater than zero.

*  Suppose p(H=h, [1,8%>0.

From QM, we have the following four perfect anticorrelations:

@) Po(H =y, S=+1 | ¥singled) =0,
@  Poy®=h, S,=1 1 ¥singie) =0,
(b) PomHg=hy, =01 ¥singlep) = 0,
© P =hy, 5,0 | singled) = 0.

Since A reproduces these anticorrelations,

@ pH=h,, S,=+112) =0,
@  p@Hz=hy, S,=113)=0,
() p(H=h,, ,=02) =0,
© p(H=h,, S,=012) =0.

Since pi-less Factorizability holds, we get

@) pH=h, 12,8%-p(S,=+1 [L,H%) =0,
@  pHzh 1A,S)pES,=111H) =0,
®  pE=h, [1,59p(S,=012H) =0,

© p(H,=h, 11,5%-p(S,=0 | ,H% = 0.
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By supposition, p(H =h, | 2,89>0. Therefore,

@ p(S,=t1 ILH) =0
®  pS0IH) =0,
©  pS=01LHY)=0.

Since A obeys the spectrum rule with respect to S_, normalization implies
p(S,=-113,H® +p(S,=0 IALH®) + p(S,=+1 13,H%) = 1.
From this and (a), we immediately get p(S,=0 | A,H% = 1. In summary, we have

@ P(S,=0 13, H% = 1
(b) P(S,~0 1L.H%) =0,
©  p(S,=01LH)=0.

This conclusion, for the particles in state A, followed from p-less Factorizability and
the supposition that p(H _=h, 11,8% > 0. If we suppose instead that pEH=h, | 2.H% >0,

reasoning similar to the above, with x, y, and z cyclically permuted, yields p(S,=0 |
A,HO=0, p(S,=01 AH%=1, and p(S,=0 1A,H%=0. Similarly, if we suppose p(H=h, |

2,8% >0, we conclude that p(S,=0 | 3,H%)=0, p(S=01 AH%)=0, and p(S,=0 12,H)=1.
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As noted above, by the spectrum rule, at least one of those three spin-Hamiltonian
measurement-result probabilities is greater than 0. Therefore, from the previous

paragraph, we see that the three values

{p(S,20 1., p(S,=0 1L,HY), p(S,=0 11,HO))

must be such that two of the values equal 0 while the third value equals 1.

Due to the spherical symmetry of the spin singlet state ¥, the same conclusion
applies to each of the 16 orthogonal triads of directions needed to generate the Kochen-
Specker-Peres contradiction.

As noted above, each point on the unit sphere is associated with a unit vector (i.e., a
direction) n. For each of the 33 n's contained in the 16 orthogonal triads, map to n the
value p(S,=0 | A.H?). As just shown, this map is such that for any orthogonal triad, two
points take on the value 0 while the third point takes on the value 1. But such a map is
algebraically impossible, by the Kochen-Specker-Peres contradiction. This contradiction
establishes that no theory obeying the stochastic Bell locality conditions discussed above

can reproduce the perfect anticorrelations of QM. Q.E.D.

§2.5.4. Discussion

This was the first algebraic (perfect correlations) nonlocality proof that used
stochastic as opposed to deterministic locality assumptions. The "trick" was to associate
points on the unit sphere with probabilities instead of possessed values. Previously, it

had seemed that, to rule out stochastic local hidden-variable theories, it would be
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necessary to consider the statistical correlations of QM, as the Bell inedualities do. B_ut
actually, something about the algebraic structure of quantum theory--as reflected in the
perfect correlations--already rules out stochastic locality. In section 2.6, I'll argue that
these perfect correlations reflect underlying conservation principles, and are therefore in a
sense more “fundamental” than the general statistical predictions of QM.

Ciritics could point out that my theorem isn't as "stochastic” as it initially appears.
Suppes and Zanotti (1976) prove that any Factorizable theory reproducing all the perfect
correlations of QM is necessarily deterministic, in the sense that all the probabilities
"collapse” to zero or one. |

In response, I can point to sections 2.6 and 2.7 below. In section 2.6, I relax the
requirement that the hidden-variable theory exactly reproduce QM's perfect correlations.
It might turn out that the perfect correlations under discussion aré only approximations
to a true theory incorporating tiny deviations from the perfect correlations. I prove
below that such a theory cannot be Bell local. Since the hidden-variable theories
“captured" by that proof do not reproduce the perfect correlations, they escape the
Suppes-Zanotti collapse; truly stochastic theories get ruled out by the theorem.
Similarly, in section 2.7, I weaken the above stochastic Bell locality assumptions, and
prove that any thgow obeying even those weakened conditions cannot exactly reproduce
the perfect correlations. Since the proof relies on a condition weaker than Factorizability,
it escapes the Suppes-Zanotti proof.

So, the main philosophical "work" done by the above proof is to open a new avenue
of investigation into algebraic (perfect correlations) nonlocality proofs. Specifically, I

showed how to use stochastic locality assumptions directly in such proofs, without
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invoking the Suppes-Zanotti collapse. Given this new "tool," we can explore stochastic

local theories in contexts where they do and do not collapse into deterministic theories.

§2.5.5. APPENDIX: Lemma from theorem 2.5.3

Particle Locality implies that , if the hidden-variable theory reproduces QM's
predictions, then a measure-1 subset of the A states underlying ¥
(i) mirror each of the 192 perfect anticorrelations used in theorem 2.5.3; and
ii) mirror the Spectrum Rule with respect to each of the 16 spin-Hamiltonians and 33
spin components considered here.

Proof: Suppose the theory reproduces QM's perfect anticorrelations and obeys the
Spectrum Rule, as required by consistency with QM. Let PQM(A=a, B=b | ¥)=0 denote
any one of the 192 perfect anticorrelations invoked in this proof. The corresponding

hidden-variable theory probability is

p(A=a, B=b|¥) =[p(A=a,B=b I1)p(r|¥,AB)dr
=, /p(A=a,B=b 12):p(A | ¥,A%,B%)-d,

where I used Particle Locality in the second line, and where A denotes the set of A states
for which p(A | ¥,A%B%>0. Since this integral must equal zero in order to reproduce the
QM perfect anticorrelation, it follows that a measure-1 subset of A is such that each A in
the subset mirrors the perfect anticorrelation, i.e., p(A=a, B=b 11)=0 for each A in that
subset. So, corresponding to each of the 192 perfect anticorrelations is a measure-1

subset of A such that each element of the subset mirrors the perfect anticorrelation.
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These 192 subsets are not necessarily equivalent. But from measure theory, the
intersection of a finite number of measure-1 subsets of A is itself a measure-1 subset of
A. Call this "intersection” subset A'. Every A in A' mirrors each of the 192 perfect
anticorrelations.

Similar considerations apply to the Spectrum Rule. Let A denote one of the

16+33=49 observables considered in this proof. Let {a;} denote tﬁe eigenvalues of A.

For consistency with QM, the hidden variable theory must give

p(A#{a;} 1'%) =, Jp(A={a;} 12,B%p( | ¥,A%B%-dr =0,

where I again used Particle Locality. Since A'is a nonzero-measure subset of A, it

follows that

Adp(A={a;} 1B p(a | ¥,A%,BO)-dA = 0.

Therefore, a measure-1 subset of A' is such that each A in the subset mirrors the
Spectrum Rule with respect to A, i.e., p(A#{a;} 12,B%=0 for each A in the subset.
Hence, corresponding to each of the 49 observables is a measure-1 subset of A' such that
each A in the subset mirrors the Spectrum Rule with respect to that observable. The
intersection of these 49 measure-1 subsets of'A' is itself a measure-1 subset of A". Call
this intersection subset A". Each element of A" not only (i) mirrors all 192 perfect
anﬁcorrelaﬁons; but also (ii) mirrors the Spectrum Rule with respect to all 49

observables used in this proof. And A" is a measure-1 subset of A’, which is itself a
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measure-1 subset of A, the hidden-variable states underlying the quantum state. In
summary, a measure-1 subset of the A states underlying ¥ obey (i) and (ii).

To reach this conclusion, I required the hidden-variable theory to reproduce QM's
predictions, and to obey Particle Locality. Q.E.D.

Notice that the proof would have failed if we weren't considering only a finite
number of perfect correlations. That's why Bell (1966) and Kochén and Specker (1967)
are improvements upon Gleason (1957): Gleason needs an uncountable infinity of

orthogonal triads, whereas Kochen and Specker need only a finite number.
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Section 2.6: Imperfect correlations nonlocality proof

In the previous section, I showed that no Bell local theory can precisely reproduce
the EPR-type perfect anticorrelations of QM. Now I'll show that no local theory can
even approximate those perfect anticorrelations. This line of reasoning addresses a
common criticism of proofs tha'; rely on the perfect anticonelaﬁon;s: Due to detector
inefficiencies, the per.fect anticorrelations cannot be confirmed experimentally. At best,
we can confirm that they hold to excellent approxim:ation. Therefore, an empirically
adequate hidden-variable theory need not exactly reproduce those correlations. The new
kind of proof introduced in this section prevents a hidden-variable theorist from using
this escape route to try to resurrect local causality. After completing the proof, I'll

discuss in more detail the philosophical implications of this kind of proof.

§2.6.1. Near-perfect correlations
Il begin by formalizing the reqﬁiremenf that a theory nearly, but not precisely,
reproduce the QM perfect correlations.

The perfect (anti)correlations considered in algebraic nonlocality theorems
emerge from fundamental conservation principles. For instance, consider two spin-1
particles prepared in such a way that their total angular momentum is 0. Then the
probability that both particles will yield "up" when their n-component of angular

momentum gets measured is PQM(Jn®I=+1, I9J =+1 | ¥y.0)=0. This perfect

anticorrelation reflects, and in a sense directly encodes, conservation of angular
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momentum. The perfect anticorrelations considered in section 2.5, and reconsidered
here, also stem from angular momentum conservation.

We know, however, that some conservation laws are approximate instead of
absolute. A good example is charge-conjugation/parity (CP) invariance, originally
considered fundamental, but now thought to be violated by 'weak nqclear‘ interactions.
Perhaps angular momentum conservati‘or.l, like CP invariance, is only approximate. Or
perhaps some other small interaction “breaks" the perfect correlations stemming from
angular momentum conservation. In either case, the perfect anticorrelations predicted by
QM for the spin singlet state could fail. But the failure would be small enough so as to
escape easy detection. Therefore, an empirically adequate hidden-variable theory would
almost reproduce those QM anticorrelations. Formally, if angular momentum
conservation fails only minutely, we expect the following Near-Perfect Correlations

condition to hold:

Near-Perfect Correlations:

Pom(Q=q, R=r1¢)=0 — p(Q=q, R=rl¢) <3,

where PQM(Q=q, R=r | $)=0 is any QM perfect anticorrelation stemming from
conservation of angular momentum. Recall that PQM(... | $) denotes a probability
according to OM, while p(... | ¢) denotes the corresponding probability according to the
hidden-variable theory, found by averaging over the hidden-variable states underlying
the quantum state. The "nearness parameter” & encodes how closely the hidden-variable

theory reproduces the perfect correlations.



e - - R e —— e e et e —agr————e oo

Elby Chapter 2: Nonlocality &

As just noted, a hidden-variable theorist could posit such violations for many
reasons besides angular momentum non-conservation; see section 2.6.4. But in some
theories, failure of Near-Perfect Correlations indicates that angular momentum
conservation fails utterly, and cannot be considered even approximate.

Recall from above that we needed to consider 16x12=192 perfect anticorrelations to

1728 Near-Perfect Correlations is inconsistent with stochastic Bell locality. If this &

seems low, keep in mind that Clifton et al. (1991) have derived a similar result in which

§=0.2. Rob Clifton and I worked together (by FAX) to develop this style of proof.

§2.6.2. Imperfect correlations nonlocality theorem, part I
1

19229 1728

In this subsection, I'll prove that for & < the Near-Perfect

Correlations condition just introduced implies that the hidden-variable theory obeys a
mathematical condition I'll call "Fuzzy Correlations.” The proof relies only on pure
mathematics (e.g., measure theory) and on Particle Locality. In subsection 2.6.3, I'll
show that no theory obeying the usual stochastic Bell locality conditions can satisfy
Fuzzy Correlations. These two subsections, taken together, prove that no Bell local
theory can obey Near-Perfect Correlations. That is, no local theory can even
approximate the perfect correlations of QM.

Streamlined Kochen-Specker type arguments may show that we need fewer than 192

anticorrelations to reach a contradiction. To account for that possibility, let N denote the
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minimum number of anticorrelations needed to complete a Kochen-Specker style proof
in H3®Hs,

Here's the mathematical condition I'l need. Let Poy(Qi=qi, Ri=ri | ¥)=0 denote the i-
th perfect anticorrelation used in the proof of section 2.5. So, iranges from 1 to N. The
Qi's are spin-Hamiltonians, and the R;'s are spin-components. But in this section, it

doesn't matter what perfect correlations I'm talking about.

Fuzzy Correlations: For a nonzero-measure set of A states underlying ¥,

p(Qi=q;, Ri=r; 1) < 1/9 for all i from 1 to N.

In words, Fuzzy Correlations demands that at least some of the hidden-variable states

underlying ¥ approximately reproduce all of the relevant quantum anticorrelations.

Theorem: Fors< -C}IW’ Near-Perfect Correlations & Particle Locality — Fuzzy

Correlations.

Proof: By contradiction. Suppose Fuzzy Correlations fails. Then, for each A
belonging to a measure-1 subset of the hidden-variable states underlying ¥, there exists
an i such that p(Q;=qi, Ri=r; | 1) = 1/9. In other words, each A in that measure-1 subset

belongs to at least one set {4;}, where {;} denotes the set of states for which p(Q;=g;,

Ri=r; | ) 2 1/9. Therefore, measure theory trivially implies

*) m{ll} + m{kz} + m{?\3} +..+midg} 21,
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where m{};} is the measure of set {A;} with respect to p(A | '¥).9

From (*), it follows that, fo; atleast one i, m{A;}= 1/N. Consider thati. Recall that
for each member of {A;}, p(Qi=qi, Ri=1; | ) = 1/9 even though PQM(Q1=qi, Ri=r; |
¥)=0. So, for that i, the relevant "observable" probability, according to the hidden-

variable theory, is

P(Qi=g;, Ri=r1; | ¥) = [dA-p(Qi=qs, Ri=r; | 1)'p(A | ¥)
= (3, P(Qi=gs, R=r; [ 4)p(A | %)
since {A;} is a subset of the A's underlying ¥
1
> W}dea-p(x | p)

since p(Qi=q;, Ri=r; I2) = 1/9 for all A's in {2}

1
= 5 0a/Dp0 1)

= %m{xi}

by definition of this measure

9Formally, m{ Ki}s{mfp(x | ¥)-dA, where as indicated the integral ranges only over states
in {X;}. Notice that this measure is uniquely defined only because I've assumed Particle
Locality, which implies that p(A | ¥, Q;, R)=p(A | ¥, Q°, RY) for all i. Since the
distribution of A states underlying the quantum state doesn't depend on what's being

measured, we can call that distribution p(A | ¥).
By the way 3;m{2;} might be greater than 1, instead of merely equal to 1, since

some A's might belong to more than one set {A}.

e o e o bt = =
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9 ( N )

since m{A;}2 1/N for the i under consideration.

In brief, for the particular perfect anticorrelation under consideration, the hidden-variable

theory predicts that p(Q;=q;, Ri=rt; | ¥) = QLN But according to Near-Perfect

Correlations (with 8<9LN), P(Qi=q;, Ri=r1; 1 ¥) < 9LN This compietes the proof by

contradiction. Q.E.D.
I just showed that if a theory approximately reproduces the perfect anticorrelations
of QM and also obeys Particle Locality, then it necessarily violates a mathematical

condition, Fuzzy Correlations.

§2.6.3. Imperfect correlations nonlocality theorem, part Il
In this section, I'll prove that no stochastic Bell local theory can obey Fuzzy
Correlations. When combined with the theorem just proven, this result shows that no

local theory can obey Near-Perfect Correlations.

Theorem: Factorizability & TAF & Spectrum Rule & Fuzzy Correlations — Kochen-

Specker contradiction.

Proof:

Let A be a state such that the implication

Pom(Qi=gi, Ri=ri 1'¥) =0 — p(Qi=gi, Ri=r; 1 1) < 1/9
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holds for each of the N=192 anticorrelations considered in this proof. By Fuzzy
Correlaﬁéns, a nonzero-measure set of A states satisfies this condition.

We'll now focus on 12 of these 192 perfect anticorrelations, namely those involving

H_=aSx2+bSy2+cS,? for a particular orthogonal triad of directions, {x.y,z}.

*  Suppose p(H =h, [2) 2 1/3 on particle 1, when particle 2 isn't measured. From

QM, we have the following four perfect anticorrelations:

@ Pyy(H=h, S =+11¥)=0,
@) Py =h,S=11%)=0,
(®)  Poy(H=h,, S =01%) =0,

© PoyHz=h,S,=01¥)=0.

Fuzzy Correlations, applied to those four equalities, implies

(@) p(Hs=hx, S=+11%) < 1/9,
@) pHg=h,,S,=111<1/9,
(® p(Hs=h, Sy=0 1) < 1/9,

©) p(Hs=hx, S,=012) < 1/9.

Applying pi-less Factorizability (implied by Factorizability and TAF) yields

@  p(H=h, [0)pES,=+12) <1/9,
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@  p(H=h, 12)p(S,=112) < 1/9,

®  pE=h, )PS0 1) <19,

©  p(Hs=h, 12)p(S,=012) < 1/9.

By supposition, p(H_=h, 12) 2 1/3. From simple algebra, it follows that

(@ pS=+112)<1/3,
@) pS,=112)<1/3,
®  pE=012)<1/3,
© p(S,=013) <1/3.

According to the Spectrum Rule, the only three outcomes of measuring S, that have

nonzero probability are {-1,0,+1}. By normalization we then have
P(S,=-112) + p(S,=0 12) + p(S,=+1 I12) = 1.

From this and inequalities (a) and (2'), we get p(S,=012) > 1 -2/3; thatis, p(S,=0 [A) >

1/3.

In summary, we have

@ p(S,=012)>1/3,

(b) p(Sy=0 12) <1/3,
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© p(S=012)<1/3.

Now I define a mathematical step function, which has no physical interpretation or

importance:

K)=0ifx<1/3

1ifx=>1/3.
Applying the K function to inequalities (a), (b), and (c) yields

@ K@(S=012) =1,
(®)  K((S,=0 1)) =0,
© K@ES,=013)) =0.

This conclusion followed from Factorizability, TAF, Fuzzy Correlations, Spectrum
Rule, and the supposition that p(H =h, A) 2 1/3. If we suppose instead that p(I-Is=hy !

A)2 1/3, similar reasoning (cyclically permuting x, y, and z) yields K(p(S,=0 | 1)) =0,
K(p(Sy=O t4)) =1, and K(p(S,=0 1)) =0. Or, if we suppose that p(H=h, 12)=1/3, we
get K(p(S,=0 1)) =0, K(p(S,=012)) =0, and K(p(S,=0 I)) =1.

In summary, if p(H=h, 1M) = 1/3, or if p(Hs=hy [2)=1/3, orif p(H=h, 102 1/3,

then the three values
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{ K(p(S,=0 [2)), K(p(Sy=0 a), K@(S,=012)}

are such thaf two of the values equal O while the third value equals 1. Butby

normalization and the Spectrum Rule,

p(H=h, 12) + p(H=h, I12) + p(H =h, 1)) =1,

from which it follows that at least one of those three spin-Hamiltonian measurement-

result probabilities is greater than or equal to 1/3. Therefore, the three values

{ K((S5,=0 1)), K@S,=012)), K@ES,=011) }

are indeed such that two of the values equal O while the third value equals 1.

Due to the spherical symmetry of the quantum spin singlet state, the same argument
applies to all orthogonal triads of directions {x,y,z} comresponding to the spin-
Hamiltonian and spin-component operators utilized in this style of Kochen-Specker
proof. (See section 2.5 above.) So, by mapping the value K(@(S,=0 I2)) to each unit
vector n considered in the Kochen-Specker-Peres theorem, we generate an inconsistent
map. Q.E.D.

This completes the proof that Fuzzy Correlations contradicts either the stochastic
Bell locality conditions (Factorizability, TAF, and Particle Locality) or the Spectrum
Rule (a violation of which would immediately contradict the predictions of QM).

§2.6.4. "Orthodox spin" theories and conservation
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In section 2.6.2, I proved that any theory that approximately reproduces a particular
set of QM perfect anticorrelations must obey a mathematical condition called Fuzzy
Correlations. Then, in section 2.6.3, I proved that Fuzzy Correlations contradicts the
stochastic Bell locality conditions (assuming the Spectrum Rule). So, no Bell-local
theory obeying the Spectrum Rule can even approximately reproduce the EPR-type
perfect correlations of QM. In this section, I'l examine the philosophical implications of
this result by focusing on the connection between perfect correlations and conservation
principles.

As discussed in above, the quantum mechanical perfect anticorrelations invoked in
my theorems emerge from conservation of angular momentum, which in turn follows

from rotational invariance. In some hidden-variable theories, those anticorrelations also

emerge from rotational invariance. Call such constructions "orthodox spin” theories.

Orthodox spin theory: Let T denote all the first principles of a theory other than
rotational invariance. The theory is an orthodox spin theory iff (a) Spin ‘observables'
obey the Spectrum rule, and (b) T & (rotational invariance) —> (the perfect

anticorrelations used in the above theorems).

This definition does not presuppose that rotational invariance is a postulate of an
orthodox spin theory, but does suppose rotational invariance to be consistent with T..
In some theories, of course, rotational invariance doesn't appear as a separate first

principle, but instead gets "built into" other postulates. If such a theory obeys the
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Spectrum Rule (for spin observables) and reproduces the relevant perfect
anticorrelations, then it's an orthodox spin theory.

We now have

Theorem: An orthodox spin theory either violates stochastic Bell locality or violates

relativity,

which follows trivially from theorems 2.6.2 and 2.6.3, the definition of orthodox spin
thc;ories, and the fact that rotational invariance is a first principle of relativity.

Later, I'll discuss the dilemma this theorem poses for orthodox spin theorists. But
first, I explore which theories fit that description.

Any theory obeying the following three conditions is an orthodox spin theory:

(A) Some particles display a discretized intrinsic (‘'spin’) angular momentum.
Measurement of a spin component yields +1 or 0, in appropriate units.

(B) For those particles, the perfect anticorrelations invoked above follow, in part,
from conservation of angular momentum.

(O Conservation of angular momentum follows from rotational invariance.

Condition (A) receives strong, though indirect support from Stern-Gerlach type
experiments, in which a beam of spin-1 particles gets split into three beams upon
passing between the magnets. To claim that those experiments support (A), we must

assume a certain relation between a particle's spin and magnetic moment. e copious
p D gn P



Elby Chapter 2: Nonlocality B
“direct” evidence from particle accelerator experiments that spin-1 pafticles exist is
“evidence" only if we assume conservation of angular momentum--an assumption we
can't make lightly in the present discussion!)

Condition (C) holds not only for quantum mechanics and quantum field theory, but
also for classical mechanics, classical electrodynamics, and special relativity. Noether's
theorem shows that whenever equations of motion can be derived via variational
calculus from a Lagrangian, symmetries of the Lagrangian lead to conserved quantities.
I know of no present theory in which rotational invariance doesn't lead to a conserved
"angular momentum" quantity.

Condition (B) is perhaps the fishiest. In quantum mechanics, (_B) holds because
spin is quantized and particles exist in "superposition” states of indefinite n-component
of angular momentum, among other reasons. A general theory might not incorporate all
these features, and hence (B) could fail. (B) could also fail because an undetected form
of angular momentum or of spin-orbit coupling exists. Yet, (B) may hold for a large
class of theories that propose small corrections to quantum mechanics without
overhauling the whole theory.

(A), (B), and (C) are sufficient conditions for an orthodox spin theory. But they
aren't necessary. Notably, a "spinless” version of David Bohm's (1987) construction.
violates (B) and (A) but is nonetheless an "orthodox spin" theory. In this theory,
particles don't have intrinsic angular momentum. Stern-Gerlach experiments turn out
the way they do because of an elaborate inferaction, mediated by a 'quantum potential,’

between the particle and the magnet. Nonetheless, in Bohm's theory, the EPR perfect
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anticorrelations emerge from rotational invariance of the relevant quantum potential.
Indeed, all hidden-variable theories with which I'm familiar are orthodox spin theories.

In summary: Although we have limited a priori motivation for singling out
orthodox spin theories, such theories are plausible and important. Quantum mechanics
itself, along with the best-developed hidden-variable constructions, are orthodox spin
theories. Therefore, no-go results about orthodox spin theories deserve philosophical
analysis.

In the next subsection, I show that orthodox spin theorists must renounce at least

the spirit of relativity.

§2.6.5. Locality and the spirit of relativity

As theorem 2.6.4 shows, an orthodox spin theorist must abandon either rotational
invariance or Bell locality. Failure of stochastic Bell locality violates at least the spirit of
relativity theory, as I now argue.

In my view, the spirit of relativity demands that the physical characteristics of a
system (and its measuring device) be affected only by events or states-of-affairs in the
backward light cone of that system (and measuring device). Therefore, by the spirit of
relativity, neither putting the particle-2 measuring device into a certain state, nor
obtaining a measurement result on particle 2, may instantaneously affect the ontological
measurement-result probabilities associated with particle 1 and its measuring apparatus.
Sure, measuring particle 2 may change our state of knowledge about particle 1, by
revealing previously-unknown information. But measuring particle 2 may not change

the physical properties of particle 1.
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Assuming no “conspiracies," failure of Locality, Particle Locality, or TAF almost
certainly constitutes a nonlocal causal link (under most notions of causality), in violation
of the spirit of relativity. And recall from section 2.5.2 that when Completeness fails,
obtaining a measurement outcome on particle 2 actually changes the propensities of
particle 1, instantaneously at a distance. Therefore, violation of Completeness, though
consistent with the relativistic formalism, constitutes a nonlocal connection that also
violates the spirit of relativity as just defined. This conclusion holds no matter whether
you consider the nonlocality to stem from a “"causal” link or from a "holistic" connection
between the particles. (I'll address the causality vs. holism issue in‘chapter 5.)

So, theorem 2.6.4 raises a dilemma for orthodox spin theorists. Either they must
abandon stochastic Bell locality, thereby violating the spirit of relativity; or they must
abandon rotational invariance, thereby contradicting the formalism oflrelativity. The
irony is this: Even though Bell locality encodes the spirit of relativity, Bell locality is
logically inconsistent with relativity for orthodox spin theories.

Clifton et al. (1991), working along different lines, have also derived an "imperfect
correlations” algebraic proof. Their work can be used to show that Near-Perfect
Correlations conmdicﬁ stochastic Bell locality, though they do not do so explicitly. The
advantage of their proof, which does not invoke the Kochen-Specker contradiction, is its
reliance on a very small number of anticorrelations. As a result, the § Clifton et al.
would get in their Near-Perfect Correlations condition is 8=0.2, about 350 times larger
than mine.

Clifton et al. stress the experimental implications of their imperfect correlations

proof. Specifically, they believe the predictions of QM are correct, so that experimental
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deviations from the perfect correlations stem from detector inefficiencies. Only an ideal
detector could confirm QM's perfect correlations. But an imperfect detector can verify
Near-Perfect Correlations for large enough 8. Therefore, Clifton's work allowsa
practical perfect-correlations experiment to rule out stochastic Bell locality. Furthermore,
Clifton et al. note, their experiment could improve slightly on Bell-type experiments by
showing that a higher fraction (i.e. measure) of A states contradict one of the stochastic
Bell locality conditions. See Clifton et al. (1991) for details.

My focus, on the other hand, is more abstractly philosophical. Independent of
whether an experiment can in practice verify my Near-Perfect Correlations assumption
(with §<1/1728), I'm interested in the dilemma raised by the logical contradiction
between Near-Perfect Correlations and stochastic Bell locality (assuming the Spectrum
Rule). This contradiction forces a local realist to deny that certain quantum correlations
hold even approximately. And this contradiction forces an orthodox spin theorist to
renounce either the spirit of relativity theory as encoded by Bell locality, or relativity

theory itself.

§2.6.6. Summary

In this section, I took advantage of my new framework for proving algebraic
(perfect-correlations) nonlocality proofs using probabilities instead of possessed values.
Specifically, working within this probabilistic framework, I showed that a stochastic Bell
local theory cannot even approximate the perfect correlations of QM, correlations that
stem from fundamental conservation principles. This result not only demonstrates the

power of working within a stochastic framework, but also helps to quash the hopes of
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"local realist" hidden-variable theorists who hope to circumvent nonlocality no-go
theorems by proposing small "corrections" to QM or by proposing small but essential
detector inefficiencies. Furthermore, this result underscores the tension between the
spirit of relativity theory (as encoded by Bell locality) and the letter of relativity theory
(specifically, rotational invariance), in quantum ﬁ*a;nework.

4
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Section 2.7: Imperfect correlations nonlocality proof

Here, I'll modify the main theorem of section 2.5 in order to derive an algebraic
(perfect-correlations) nonlocality theorem from assumptions weaker than the usual
stochastic Bell locality conditions (Factorizability, TAF, and Particle Locality). To my
knowledge, no nonlocality result uses weaker assumptions.!® I'm working on this
project with Martin Jones.

The proof involves some tedious measure-theoretic reasoning that I've relegated to
an appendix (section 2.7.6). After deriving the relevant technical result, I'll discuss the
philosophical implications. In a nutshell, here's the scoop: The standard stochastic Bell
locality conditions encode the requirement that the occurrence of an event not affect the
probability of a spacelike separated event. By contrast, our weakened locality conditions
allow event a to affect the probability of spacelike separated event b. The weakened
locality conditions demand only that, roughly speaking, event a not affect the possibility
of event b (i.e., a may not affect whether or not  is possible). More on this later. First,

we've got some technical results to wade through.

§2.7.1. Weakened locality assumptions
First, I'll introduce the three weakened locality conditions, briefly discussing their
physical content. Then, in section 2.7.2, I'll prove that these weakened conditions

contradict the QM perfect anticorrelations invoked above.

1Remember, derivations relying on counterfactual definiteness implicitly assume
determinism, which is stronger than Completeness. Stapp (1993, 1994) proves a
nonlocality theorem involving counterfactuals without counterfactual definiteness, under
certain versions of modal logic. Stapp's locality conditions are probably neither stronger
nor weaker than mine. Explicating the precise logical and physical relationships between
Stapp's locality assumptions and "standard" locality assumptions constitutes an
interesting but difficult project which I won't undertake here.
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Each of the three standard stochastic Bell locality assumptions--Factorizability,
Particle Locality, and TAF--can be weakened. In these conditions, A (B) refers to an

observable associaied with particle 1 (2). A% (B?) denotes a lack of a measurement

performed on particle 1 (2).

Weak Factorizability:
p(A=a (a,u1,,B% >0 and p(B=b | A,j15,A% >0

- p(A=a, B=b | &1, 1) > 0.

Particle Compatibility:

o 10,AB)>0 < p(A16,AB%>0 < p(14,A%B% > 0.

Apparatus Compatibility:
@ (s 12,AB% >0 and p(uiz 11,B,A% > 0

< p(“’A,uB IA"A,B) > O'
(i) If p(U 5,15 | A,A,B) is finite, then so are p(u, 11,A,B%) and p(i; | 4,B,A9).

Let's quickly compare these conditions to the corresponding Bell locality assumptions.
Particle Compatibility. Particle Compatibility permits nonlocal connections

prohibited by Particle Locality, according to which p(A | ¢,A,B) = p(A | $,A,B% = p(A |

$,A%B%). Under the Particle Compatibility corollary, setting up an apparatus (or

changing an apparatus setting) can make the particles more or less likely to occupy a
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given state. The corollary demands only that setting up an apparatus, or changing its
setting, not make it impossible for the particles to occupy a previously-possibleA. (In
section 2.7.3, I'l explain why I equate "impossibility" with zero probability density.) So
for instance, Particle Compatibility demands that if it's possible for the particles to
occupy state A when the B-apparatus is turned on, then it's also possible for the particles
to occupy state A when the B-apparatus is switched off.

Particle Locality trivially implies Particle Compatibility, but not vice versa.

Weak Factorizability and Apparatus Compatibility. These two conditions take
roughly the following form: If some event on the A-wing of the EPR experiment has
nonzero probability (density) when apparatus 2 is turned off, and some event on the B-
wing has nonzero probability (density) when apparatus 1 is turned off, then those two
events have nonzero probability (density) of happening together when both apparatuses
are turned on. For instance, Weak Factorizability allows the A-measurement outcome to

affect the probability of obtaining B=b on particle 2, in violation of regular

Factorizability. In symbols, Weak Factorizability allows p(B=b | A=a, A, Alp)#p(B=b |
Ahip,A%). Weak Factorizability demands only that if p(B=b | A,1,A%>0, then p(B=b |
A=a, },1,,115)>0. In words, given the fully-specified state of the particle pair, obtaining
a measurement outcome on particle 1 cannot reduce to zero probability an otherwise-

possible!! measurement result for particle 2.

11Here, by “"otherwise-possible," we mean a measurement result having nonzero-
probability of occurring. Of course, a measurement outcome can be possible even when
its probability is zero. In section 2.7.3, I'll treat these subtleties more carefully.
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Similarly, Apparatus Compatibility allows the state of apparatus 2 to depend
nonlocally on the state of apparatus 1. This violates TAF, according to which p(pt,,1p |

'x,A,B) =p(, | L,A,B%p(l; 12,A%B). Apparatus Compatibility requires only that the
nonlocal connection (i) not be “strong” enough to render any (lL,tg) pair incompatible,
and (ii) not be so strong that, by turning off apparatus 1, we can make a given apparatus
2 microstate infinitely more likely to occur than would have been the case had apparatus
1 remained on.

TAF implies Apparatus Compatibility, and Factorizability trivially implies Weak
Factorizability. But both converses fail.

In summary, each of the three new locality conditions weakens the corresponding

Bell locality assumption.
§2.7.2. Nonlocality theorem using the weakened conditions
I'll now prove

Theorem: Weak Factorizability & Particle Compatibility & Apparatus Compatibility —

Contradiction with QM's predictions. T

Proof: Recall the structure of my original nonlocality theorem in section 2.5.3 above.
Invoking Particle Locality, I first proved (in appendix 2.5.5) that if the hidden-variable

theory reproduces QM's predictions, then there exists a A that
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(1) mirrors all 192 QM perfect anticorrelations needed to complete the proof, and

(i) mirrors the Spectrum Rule with respect to the 49 observables used in the proof.

I then showed that, in any stochastic Bell local theory, this A generates an inconsistent
map (by the Kochen-Specker-Peres contradiction).

My strategy here is similar. In the frightfully boring appendix at the end of this
chapter, I'll show that if the hidden-variable theory reproduces QM's predictions, then
Particle Compatibility implies the existence of a A obeying (i) and (ii). For now, let me
take this result as given. It only remains to show that, given such a A, a Kochen-Specker
contradiction follows from Weak Factorizability and Apparatus Compatibility.

To complete the proof, it will be useful for me to first prove a lemma. Specifically,
I'll show that Weak Factorizability and Apparatus Compatibility imply a certain
mathematical condition. From that condition, the Kochen-Specker contradiction will
follow relatively quickly.

Lemma: If Weak Factorizability and Apparatus Compatibility hold, then the
following implication holds:

p(A=a, B=bI11)=0 —» p(A=a!2,B%=0 or p(B=b 12,A%=0.

The proof of this lemma proceeds by contrapositive. Suppose that p(A=a | A,B%)>0

and p(B=b | 1,A%>0. That is, suppose

p(A=a 12,B% = fp(A=a | 3,1, . BYp(i, 11,A,B%dy, >0,
pB=b I1,A%) = [p(B=b | 4,11,,A%p(1, | ,B,A%-dp, > 0.
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Therefore, there exists an "anomalous” set of [, -states, call it M, for which p(tt, |
A,A,BN>0 and p(A=a | A,11,,B%>0; and M, is a nonzero-measure subset of {p, }, the
set of all microstates for which p(it, [ ,,A,B%)>0. Similarly, there exists Mp, the set of
pp-states for which p(ii; | ?L?B,A°)>O and p(B=b I A,115,A%>0; and M, is a nonzero-
measure subset of {|;}.

Let M, xM, denote the set of "anomalous” joint microstates formed by pairing each
member of M, with each member of M. Since M, is a nonzero-measure subset of
{1, } and M, is a nonzero-measure subset of {li,}, it follows that M, xM;, is a nonzero-

measure subset of {1, }x{iz} with respect to the measure p(lL, | ?»,A,Bo)p(uB {2,B,A9).

In symbols,

MA%fP(MA 12,A,B%p(, | A,B,A% dp, dp, > 0.

Does it follow that M, xM;, also has nonzero measure with respect to p(iL, 15 | 1,A,B)?
Yes, and here's why. By Apparatus Compatibility part (@), if p(it, | 1,A,B%p(u; 11,B,A%)
>0, then p(iL, 1 12,A,B) >0. And by Apparatus Compatibility part (i), if the product
p(L, 12,A,B%p (11, 12,B,A%) "blows up" to infinity at some (iL,, 1) pair, then so does
p(L, .15 | 2,A,B). More precisely, if p(, | ?»,A,B°)p(.u,B [A,B,A%du Adl; >0 (duetoa
“delta function,"), then p(,,15 1 1,A,B)dpt,dli, > 0. Roughly si)eaking, Apparatus
Compatibility guarantees that for all (jL,, 1) pairs, p(iL,.My | A,A,B) is always a finite

fraction of p(1t, | ,,A,B%p(L; 13,B,A%. Therefore, by measure theory,
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v Pty 1A BYdi, ity >0.

Since by construction p(A=a I A1 A,B°) >0 and p(B=b | x,pE,A") >0 for all (,, 1p)

pairs in M, xM, it follows that

MAxMB.fp(A=a 12,11, BY)p(B=b | &1, A%p(1L, it | L,A,B)dpt, dpiy, > 0.

By Weak Factorizability, since p(A=a | 4,1,,B%)p(B=b |A,11,,A% > 0 for all (i, 1)
pairs in M, xMy,, it follows that p(A=a, B=b | A1, ,iz) > 0 for all (1, [t,) pairs in

M, xM,. Since all these probabilities are finite, we don't have to worry about "blow

ups,” and hence it immediately follows that

v, [PCA= B=b 111, 4150t bp 1 ,A. B d, dity > .
Since M, xMj, is a subset of all possible (1 asMp) pairs, we have
Ip(A=a, B=b | Al Hp)p (i, g [ A,A,B)du  dit, > 0.
But the left-hand side of this inequality is, by definition, p(A=a, B=b |2). So, we
conclude that p(A=a, B=b 1) > 0.

Assuming Weak Factorizability and Apparatus Compatibility, I just proved that if

p(A=212,B%>0 and p(B=b | 1,A%>0, then p(A=2,B=b | ))>0. It follows that if
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p(A=a,B=b | 1)=0, then p(A=a | ,,B%)=0 or p(B=b | 1,A%)=0. That's exactly the lemma I

needed to prove. Q.E.D.

Given this lemma, and Kochen-Specker contradiction can easily be reached by
reprising the reasoning of section 2.5.3. Remember, for now we're taking as given the
result from the upcoming appendix that any theory reproducing QM's predications and
obeying Particle Compatibility must contain a particle state A that mirrors all of those
perfect anticorrelations and also mirrors the spectrum rule with respe-ct to the relevant

spin-component and spin-Hamiltonian observables. Consider this A.

Since A obeys the spectrum rule with respect to a spin-Hamiltonian H,, the only

three H -measurement outcomes that can have nonzero probability are h,, hy, and h,.

Since probabilities are normalized,

p(H=h, 11,5°) + p(H=hy 11,8% + p(H=h, 11,59 = 1.

("S®" denotes that no measurement occurs on particle 2.) It follows that at least one of
those three spin-Hamiltonian measurement-result probabilities is greater than zero.

+ Suppose p(Hg=h, 12,5%> 0.

From QM, we have the following four perfect anticorrelations:

@ P QM(Hs=hx’ S,=+1 | ¥singled) = 0,
@) PQM(Hs=hx’ S,=-11¥singlet) =0,
® Pom(Hg=h,, Sy=0 | ¥singlen) =0,

©  PoyEg=hy, S,=0 1 ¥singied) =0.
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Since the A under consideration reproduces these anticorrelations,

@ p(Hs=hx, S,=+113) =0,
@) p(H=h,, S;=-112) =0,
(b) p(Hg=h,, S;=011) =0,
© p(H=h,, S,=013) =0.

From the lemma just proven, we immediately get

@) p(H=h 12,89 =0 or p(S,=+1 12,H% =0
@) p(H=h, 12,5% =0 or p(S=1IAH% =0
(b) p(H=h, 12,89 =0 or p(S,=0 |A,H% =0,
©) p(H.=h_ 12,8% =0 or p(S,=0 12,H% =0.

(H? denotes that no measurement occurs on particle 1.) By supposition, p(Hs=h, !2,S%

>0. Therefore
@ p(S,=t11 ALH® =0
®  pS,=01L,H) =0,

© p(S,=0 1,H°) = 0.

Since A obeys the spectrum rule with respect to S_, normalization implies
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p(S,=113,H% +p(S,=0 ILHY + p(S,=+1 ILHY) = 1.
From this and (a), we immediately get p(S,=0 1A,H% = 1. In summary, we have

@ p(S,=0 ILHY) =1
®  pS~0I1LH)=0,
©  PE,=0I2H)=0.

This conclusion, for the particles in state A, followed from the above lemma (proven

by assuming Weak Factorizability and Apparatus Compatibility), and from the
supposition that p(H =h, 12,5% > 0. If we suppose instead that p(H=h, | 2,89 >0,

reasoning similar to the above, w1th X, ¥, and z cyclically permuted, yields p(S,=0 |
A,HY=0, P(S=01 ALH%=1, and p(S,=0 IA,H%=0. Similarly, if we suppose p(H=h, |
1.S8% > 0, we conclude that p(S,=0 | A,H)=0, p(S,=01 A,H%=0, and p(S,=0 1A, H%=1.
As noted above, by the spectrum rule, at least one of those three spin-Hamiltonian
measurement-result probabilities is greater than 0. Therefore, from the previous

paragraph, we see that the three values

{P(5,=0 1,H?), p(S;=0 [H), p(S,=0 |3,H)}

must be such that two of the values equal 0 while the third value equals 1.

e i
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Due to the spherical symmetry of the spin singlet state ¥, the same conclusion
applies to each of the 16 orthogonal triads of directions needed to generate the Kochen-
Specker-Peres contradiction. Now all we have to do is map the value p(S_ =0 ,H°) to
the point n on the umt sphere, for all n used in this proof. As discussed in sections 2.4
and 2.5, this map is algebraically impossible, by the Kochen-Specker-Peres
contradiction. This contradiction establishes that no theory obeying the weakened
locality conditions (Particle Compatibility, Apparatus Compatibility, and Weak

Factorizability) can reproduce the perfect anticorrelations of QM. Q.E.D.

In summary: As shown in the upcoming appendix at the end of this chapter,
Particle Compatibility implies the existence of a A that reproduces the relevant perfect
anticorrelations and mirrors the spectrum rule for the relevant observables, assuming the
hidden-variable theory reproduces QM's predictions. By the Kochen-Specker
contradiction, such a A is inconsistent with the mathematical condition introduced in the
above lemma: p(A=a, B=b [1)=0 — p(A=a 12,B%=0 or p(B=b I11,A%=0. This
condition follows from Weak Factorizability and Apparatus Compatibility. Putting all
- this to getﬁer, we see that no theory consistent with QM can obey my three weakened
locality assumptions (Particle Compatibility, Apparatus Compatibility, and Weak

Factorizability).
$2.7.3. Philosophical implications: Zero probability vs. impossibility

In the following sections, I'll explore the philosophical ramifications of theorem

2.7.2. To do so, I must first review the connections between zero-probability and
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impossibility. Then, I'll show that the three weakened locality conditions used in
theorem 2.7.2 are motivated by weakened Bell locality, a metaphysical constraint less
stringent than regular Bell locality. Because the theorem suggests that nature violates
weakened Bell locality, I'll explore the physical and metaphysical content of this
constraint.

An event can be possible even though its probability of occurring is zero. To see
why, imagine choosing a random real number between zero and one. It's possible that
you'll pick 0.6. Indeed, that number is as likely as any other. Put more technically, the
probability density of geiting 0.6 equals the probability density of getting any other
number between zero and one: p(0.6)=1. Nonetheless, the probability of choosing 0.6
is zero, because 0.6 is one of an uncountably infinite number of possible results.

By contrast, in this game, choosing the number -0.6 is impossible. Mathematically,
this corresponds to the fact that getting -0.6 not only has zero probability, but also has
zero probability density: p(-.6)=0.

This game illustrates two related points. First, in "standard” caées, a possible event
a has zero probability because it is one of an uncountably infinite number of possible
events.

Second, an event is impossible if and only if it has zero probability density of
occurring. For if an event has nonzero probability density, then it would have nonzero
probability of occurring were the relevant "game" repeated an uncountably infinite
number of times; hence the event is possible. And if an event has zero probability
density, then it would occur zero times, even if the game were repeated an infinite

number of times. As P. Suppes (personal conversation with Martin Jones) notes, most
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probability theorists agree that it's unproblematic to associate zero probability density
with impossibility

Now consider a game in which only a finite number (or at most a countable
infinity) of results are possible. As a simple example, imagine a machine that prints out
one of two numbers, either 100 or 101. No other result is possible. And furthermore,
suppose that obtaining the result 100 has zero probability. Does it follow that getting
100 is impossible? The answer depends on the inner workings of the machine. If the
laws describing those inner working are such that 100 simply cannot be obtained, then
100 is indeed impossible. But suppose the machine, as an intermediate stage, picks a
random real number between zero and one; and then the machine prints out "100" if that
random numbser is 0.6, and prints out "101" otherwise. In this weird case, obtaining 100
is indeed possible, even though that result has zero probability.

My point is this: When the relevant "game" has a finite number of possible results,
one of those results can have zero probability, but only in specially-contrived cases. In
standard cases, we expect that if a is one of a finite number of possible results, then a

will have nonzero probability.

$§2.7.4. Philosophical implications: Weakened Bell locality

In this subsection, I introduce weakened Bell locality, and show that this
requirement motivates Weak Factorizability, Particle Compatibility, and Apparatus
Compatibility, the three \;veakened locality conditions of theorem 2.7.2. Ireproduce

these conditions for easy reference:
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Weak Factorizability:
p(A=a ir,p,,B% >0 and p(B=b IA,1;,A% >0

- p(A=a, B=b I A1, 11p) > 0.

Particle Compatibility:

pA19,AB)>0 & p(A1$,A.B)>0 & p(r1¢,A%B%>0.

Apparatus Compatibility:
@ p(y IABY >0 and p(itg 11,B,A% >0

& p(Hats 1LAB) >O.

(i) If p(ia g | A,A,B) is finite, then so are p(jL, | A,A,BY) and p(up | 2,B,A%).
Suppose @ and b are spacelike separated events. Then we have

WEAKENED BELL LOCALITY: An event a cannot affect the possibility of a
spacelike separated event. Specifically, if b is possible when a does not occur, then b is
possible when a does occur. Also, if b is impossible when a does not occur, then b is

impossible when a does occur.

Put another way, a cannot render impossible a spacelike separated event that otherwise
might have occurred. Nor can a render possible a spacelike separated event that

otherwise could not have occurred.
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Because events are possible just in case they have nonzero probability density,
weakened Bell locality logically implies both Particle Compatibility and Apparatus
Compatibility part (i).!%; if a particle or apparatus state has nonzero probability density of
obtaining when an apparatus is off (on), then a spacelike separated event—the switching
off or on of a distant apparatus--cannot "rule out" that state.

Weakened Bell locality, however, does not entail Weak Fact;)rizability or Apparatus
Compatibility part (ii) . Weak Factorizability demands that obtaining an A-measurement
outcome not reduce to zero the probability of getting a certain B-measurement result. As '
discussed above, a zero-probability event can be possible. Consequently, a theory
violates Weak Factorizability without violating weakened Bell locality if, and only if, the
theory asserts that a joint measurement result A=a & B=b is possible even though it has
zero probability.

Similar considerations apply to Apparatus Compatibility part (ii). If that condition
fails, then an apparatus microstate with infinite probability density (and hence, nonzero
probability of occurring) can have its probability reduced to zero by the switching on of
a distant apparatus. Since that zero-probability microstate still has nonzero probability
density and is therefore still possible, a theory could incorporate this feature without
violating weakened Bell Locality.

In the remainder of this subsection, I argue that such a theory is highly contrived
and physically implausible.

Let's start with Weak Factorizability. The A's and B's used in the above nonlocality

theorems are spin-component and spin-Hamiltonian observables on spin-1 particles.

12I'm assuming no "conspiracies."
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These observables are discrete. According to any theory consistent with QM, the
probability is zero that measurement will yield a non-eigenvalue; and these spin
observables have a finite number of eigenvalues. Therefore, if a zero-probabilify joint
measurement result A=a & B=b is possible, it's rnot because A=a & B=b is one of an
infinite number of possible results. This experiment is nof analogous to picking a
random real number between zero and one. Rather, in order to incorporate a zero-
probability yet possible result A=a & B=b, a theory must rely on some contrivance,
analogous to the "100" machine described above.

For instance, consider particle and apparatus states such that p(A=a,B=b |
AlL,,1p)=0. A hidden-variable theorist could claim the following: When A and B
undergo measurement, nature picks out a random real number between zero and one. If
that number is .6, then the measuring devices record "A=a" and "B=b." Otherwise, the
measﬁring devices record another pair of outcomes. In this theory, the measurement
result A=a & B=b is possible, even though it has zero probability. This theory,
however, is artificial and implausible.

Alternatively, the hidden-variable theory could simply declare, as a first principle,
that A=a & B=b is possible even though its probability is zero. This move seerﬁs ad
hoc.

In less contrived theories, a perfect anticorrelation usually reflects an underlying
conservation law, as discussed in section 2.6 above. For instance, in QM, the perfect
anticorrelations invoked in theorem 2.7.2 follow ultimately from rotational symmetry,
which leads to conservation of angular momentum. Conser\;aﬁon of angular

momentum is considered to be a fundamental law. Therefore, in QM, we can assert
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with full counterfactual force that a (non-erroneous) joint measurement result directly
contradicting conservation of angular momentum would rot occur. In other words, for
the A's and B's invoked in theorem 2.7.2, correctly obtaining A=a & B=b when p(A=a,
B=b | ¥ingle)=0 is impossible, according to QM. This conclusion applies to all
theories in which the relevant perfect anticorrelations follow from fundamental
conservation laws.

In Bohm's theory, too, perfect anticorrelations are impossible to violate. Bohm's
theory is deterministic. Under determinism, events evolve inexorably. All future states
of affairs, except the one pre-determined by the initial conditions, could not occur.
Therefore, when the complete state of the universe is such that p(A=a,B=b A, Alp)=0,
obfaining A=a & B=b is physically impossible. This conclusion applies to all
deterministic theories.

So, far, I've shown that only a contrived theory would violate Weak Factorizability
without also violating weakened Bell locality. A similar though less "clean” argument
applies to Apparatus Compatibility part (if). Suppose that condition fails. Then there
exists some [La's such that p(L, 124,A,...) is infinite when apparatus 2 is turned off, but
finite when apparatus 2 is turned on. So, there must be an uncountable infinity of pi5's.
An infinite p(lL, 12,A,...) means that j14 has nonzero probability of occurring. But as just
discussed, usually when an event has nonzero probability, it's because the event is one of
a countable number that could occur. To violate Apparatus Compatibility part (ii)

without violating weakened Bell locality, a theory has to do more than simply introduce

a state space {|L,} in which a bunch of discrete delta-function “spikes" stick up out of the

background "soup” of finite-probability density p1,'s. The theory must also incorporate a
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nonlocal interaction strong enough—and contrived enough--to "shrink” those spikes back

into the soup when apparatus 2 gets turned on. Furthermore, in shrinking the “spiked"
1L, probability densities by a factor of infinity, the interaction may not also shrink by an

infinite factor the "non-spiked" {1, probability densities, because doing so would reduce
those probability densities to 0, in violation of Apparatus Compatibility part (i). So, this
p-shrinking interaction would have to be miraculously selective. Indeed, it would be
hard for interaction terms to have these properties unless they were specifically
constructed with that purpose. For this reason, only a contrived theory would violate
Apparatus Compatibility part (ii) without also violating weakened Bell locality.
Since the argument of this subsection is messy, let me summarize it. Weakened
Bell locality entails Particle Compatibility and Apparatus Cdmpaﬁbility part (i).
Therefore, any theory violating either of those conditions automatically violates
weakened Bell locality. By contrast, a theory could conceivably violate Weak
Factorizability or Apparatus Compatibility part (ii) without violating weakened Bell
locality. Such a theory must claim, for instance, that some of its perfect anticorrelations-
-i.e., some of its zero-probability joint measurement results--are possible. The perfect
anticorrelations considered here involve observables for which only a finite number of
outcomes have nonzero probability. (These experiments do not resemble choosing a
random real number.) Therefore, some contrivance would be needed to ensure that
zero-probability joint measurement results could occur. For instance, the theory could
claim that the final measurement outcome depends on an "intermediate result," where
the intermediate result corresponding to the perfect anticorrelation is one of an infinity of

possible intermediate results. In my view, such contrivances, and also the contrivances
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needed to "escape" Apparatus Compatibility without violating weakened Bell locality,
seem artificial and physically implausible. In brief, only a highly contrived theory would
violate my weakened locality assumptions without violating Weakened Bell locality. In
this sense, Weakened Bell locality is the "guiding principle" behind Weak

Factorizability, Particle Compatibility, and Apparatus Compatibility.

§2.7.5. Bell locality vs. weakened Bell locality

Throughout this subsection, I'll assume that no "contrivances" of the kind discussed
above actually obtain. In this case, assuming QM's predictions hold, theorem 2.7.2
implies that nature violates weakened Bell locality. We now briefly explore the
philosophical implications of this result.

Bell inequalities and previous algebraic nonlocality theorems suggest only that
nature violates (stochastic) Bell locality. Bell locality requires that an event a not affect
the probability of spacelike separated event b. By contrast, weakened Bell locality
makes the less stringent demand that event a not affect the possibility of spacelike
separated event b. To explore the physical difference between regular and weakened
Bell locality, suppose that Bell locality fails while weakened Bell locality holds. Then we
can picture the world as follows: Events evolve in spacetime, constrained by certain
rules. The set of events {a} that could possibly occur in spacetime region R is

determined entirely by events that occurred in the backwards light cone of R.13 The

13We mean "event" in its broadest sense. For instance, we call the state of all the objects
in region R--or if you prefer, the state of R--an event.
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probability (density) however, that a given element of {a} occurs depends also on events
spacelike separated from R. So, a nonlocal connection can “tweak" the Hicelihood that a
specific element of {a} occurs. But no nonlocal connection is "strong" enough to alter

_ {a}.

By contrast, if weakened Bell locality fails, then {a} itself is determined, in part, by
spacelike separated events. .

With this said, I'l now adnﬁt that this distinction between regular and weakened
Bell locality carries limited metaphysical significance. Local connections between events
are capable of "ruling out" some events. If Bell-nonlocal connections exist, why should
they be any less capable of ruling out events? In other words, if Bell locality fails, why
shouldn't weakened Bell locality also fail?

- Also, notice that if determinism holds, then regular and weakened Bell locality are
equivalent. Under determinism, changing an event's probability (say, from zero to one)
is tantamount to changing its possibility (in this case, from impossible to possible).
Therefore, with respect to deterministic theories, theorem 2.7.2 does not force us to
accept new philosophical consequences. |

Nonetheless, I think theorem 2.7.2 is worthwhile, not just because the physical
distinction between regular and weakened Bell locality is kind of interesting (for
stochastic theories), but also because some philosophers may try to attach more
metaphysical significance to this distinction. Also, this result shows for tl'le first time
that algebraic (perfect correlations) nonlocality proofs are better in a sense than regular
Bell-type statistical arguments, in the sense that algebraic proofs can get by with weaker

assumptions.
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Summary: Because zero-probability events can be possible, weakened Bell locality
does not imply all three of our weakened locality conditions. But in order to violate
Weak Factorizability without also violating weakened Bell locality, a theory would have
to incorporate a physically-implausible contrivance. For this reason, weakened Bell
locality strongly motivates our weakened locality assumptions. Since these assumptions
imply a contradiction with QM's predictions, we have strong reason to think that nature
violates weakened Bell locality. This violation forces us to accept that spacelike
separated events not only affect each other's probabilities, but also affect each other's

possibilities.

§2.7.6. APPENDIX: Part of theorem 2.7.2

If a hidden-variable theory reproduces QM's predictions, then Particle
Compatibility implies the existence of a A that
(i) mirrors all 192 OM perfect anticorrelations used in theorem 2.7.2; and

(ii) mirrors the spectrum rule with respect to the 49 observables used in that theorem.

Proof: Let PQM(Ai=ai, Bi=b; | ¥)=0 denote any one of the relevant perfect
anticorrelations or spectrum rule occurrences used in theorem 2.7.2. For instance,
A1=H;, aj=hy, B;=Sy, and by=+1; A,=H,, ay=h,, B,=Sy, and by=0; and so on. To
mirror the Spectrum Rule with respect to H;, set Ajgs=H;, ajo3={non-eigenvalues of
H,}, and B393=S9, where SO indicates that no measurement occurs on particle 2.

Crucially, we'll need to consider only a finite number of i's.



Elby Chapter 2: Nonlocality 104

Since the hidden variable theory reproduces those perfect anticorrelations and

spectrum rule occurrences,

*) O=p(A=a;, B=b;1¥) = mfp(AFai, Bi=b; I1A)p(x | ¥,A;,Bp-dA,

for all i, where {A} is the set of A states for which p(A | ¥,A;,B))>0. By Particle
Compatibility, p(A | '¥,A;,B)>0 iff p(A | ¥,A0,B0), and hence {A} is &e same for all i.
Remember, p(A | ¥,A0,B0) denotes the probability density when no measurement occurs
on either particle.

To complete this proof, Il consider two cases: (1) {A} contains a finite or
countably infinite number of members, and (2) {A} contains an uncquntable infinity of
members.

Case 1: {A} finite or countably infinite. Then eq. (*) becomes a finite or infinite

sum, and the nonzero probability density becomes a nonzero probability:
(%) 0 = p(A=a;, Bi=b; | ¥) = Xap(Ai=a;, Bi=b; |A)p(a | ¥,A;,By),

where the sum is only over A states for which p(A | ¥,A;,B)>0. If we assume that a
probability measure on a countable number of elements never assigns nonzero
probability density except when it assigns nonzero probability, then the sum is over the
statesin {A}. As discussed in section 2.7.3, this extra assumption is valid. When the
number of elements is uncountably infinite, then an element can have nonzero

probability density but zero probability. But here, it's vacuous to say that p(A |
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¥,A;,BP>0 even though p(A | ¥,A;,B))>0, because if p(A | ¥,A;,B)>0, then that A state
doesn't contribute to sum. Therefore, even though p(A 1 ¥,A;,B;)>0, that A state in no
sense “contributes” to the hidden-variable states underlying the quantum state.

From eq. (**), it follows that for all A states in {1}, p(As=a;, Bi=b; |1A)=0. As
noted above, by Particle Compatibility, {A} is the same for alli. So, for all i and for all
members of {1}, p(Ai=3;, Bi=b; |2)=0. In words, the elements of {1} reproduce all the
perfect anticorrelations and spectrum rule occurrences needed to complete theorem 2.7.2.
This completes the argument for the finite or countably infinite case.

Case 2: {A} uncountably infinite. By Particle Compatibility, p(A | ¥,A%,B%)>0 iff
p(A 1 ¥,A;,B)>0; and {1} denotes the set of states for which p(A | ¥,A0,B0)>0.

From eq. (*) above, p(Ai=a;, Bi=b; | A)=0 almost everywhere in {A}. It follows

from measure theory (cf. Wheedan and Zygmund 1977) that for any finite probability

density p, fp(Ai=ai, B;=b; | A)p*dA = 0. I want to reach the conclusion that

A}
{M_[p(AFai, Bi=b; | A)'p(A | ¥,A0,BO)ydx = 0. But this doesn't immiediately follow,
because p(2 | %,A0,B%) might not be finite. That is, there might exist A's such that p(A |
¥,A0,BO) is infinite, i.e., p(A | ¥,A%,B%-dA > 0. So, my strategy is to show that, “at
worst," p(A | ¥,A0,B0) blows up at a countable number of A's. Hence, we can "subtract
off" from {A} the states for which p(A | ¥,A0,B%) blows up, and we'll be left with a
nonzero-measure set of states with respect to all relevant measures. It will then be easy
to complete the argument.

Let Aplow denote the subset of {A} whose probability densities blow up. Formally,

Avlow contains the states A such that p(A | ¥,A0,BO)'d\ > 0. So, the states in Apjow have
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nonzero probability of occurring, and that probability is p(A | ¥,A0,B%) =p(A |
¥, A0 BO)-dA.

It should be intuitively clear that Apjow contains only a countable number of
members. Since { pr(?» [ ¥,A0,BO)dA = 1, it follows that Ay Jo(r 1 w,A0BO)dx < 1.

o 1 w,A0,BO)d) is really a sum over the elements of Ablow:

But
Ablow

0 ROYed) — 0RO
Ay Jp@1®A%BO A =5, p(.1¥.A%B),

where all the p(A | ¥,A0,B0) are greater than 0. From measure theory, a sum of positive
nonzero numbers is finite only if the number of terms in the sum is at most countably

infinite. In other words, the sum 2, 1 p( | ¥,A%BO0) would blow up if Apjow

contained an uncountably infinite number of members.
Since Aplow CONtains at most a countably infinite number of members, A far=0.
blo

W

Therefore, since _ Jdi >0, the "remain&er" set {A} — Aplow ObeEYS fav>o.
{x} {A'}_Ablow

(This reasoning assumes thét the hidden-variable states have a "volume measure” given
by dA, and not just a p-measure given by p(A | %,A%B0)-dA. A hidden-variable theory
whose uncountabiy infinite states “live” in a strange space that allows no volume-
measure could escape our proofs.) _

Since ( M_Ablowfdk > 0, it follows that ( M_Auowfp(x ['¥,A;,B) >0 for alli. Here's the

proof, suggested by Tim Callahan. For integer n, let A, denote the subset of {A}—Apiow

all of whose members satisfy p(A | ¥,A;,B;) > 1/n. Could it be the case that for all n,
Jar =07 In other words, could all the Ap have zero volume measure? If so, then Up—

to «Ap, the union of the A, sets for all n, also has zero volume measure, since the union
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of a countable number of zero-measure sets is itself a zero-measure set. But Up=1 t0 cofn
is {A}—Apjow, Which does not have zero volume measure. This contradiction establishes

that for some n, A, has nonzero volume measure with respect to p(A | ¥,A;,B)). In
symbols, for some n, Anfdl =¢ for some ¢ > 0. And by construction, p(A | ¥,A;,B;) >

1/n for each element of A,. Therefore, Anj'p(x [ ¥,A;,B) dA > ¢/n. In words, for some n,

Aq has nonzero measure with respect to p(A | ¥,A;,B;). Since A, i.s a subset of {A}—
Atlow, it follows that {A}-Aplow has nonzero measure with respect to p(A | '¥,A;,B;).
And this is true for all i. By the exact same reasoning, it's also true that {A}-Apjo has
nonzero measure with respect to p(A | ¥,A%,B9). Just run the argument of this
paragraph, everywhere substituting "p(A | ¥,AC,B%)" for "p(A | ¥,A;,B;)."

Now we're home free. From eq. (*) above we get

{}"}_Ablowjp(Ai=ai’ Bi=bi12) "p(a 1 ¥,A;,By)-dr =0.

Since {A}-Avlow has nonzero measure with respect to p(A | ¥,A;,By), it follows that
p(Ai=2;, Bi=b; | 2) = 0 almost everywhere in {A}-Apow. Since p(r | ¥,A0,BO) is a finite
measure on {A}—Apow -- that was the whole point of "subtracting off" Apjow -- it
immediately follows from measure theory that

.=a: R.=h: 1) 0 ROY-d3 —
(Mg DA Bi=bi 14700 | ¥,A%BO)dA = 0,

for alli. Since (as shown above) {A}-Ayjow has nonzero measure with respect to p(A |

¥,A0,BO), it follows that for each i, a measure-1 subset of {A}-Ayjow With respect to p(A
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| %,A%,B%) obeys p(A;=a;, Bi=b; 1A) = 0. In words, for any given i, a measure-1 subset
of the A states in {A}—Apjow Obey the corresponding perfect anticorrelation or spectrum
rule occurrence. Since the algebraic nonlocality proof under consideration uses a finite
number of perfect anticorrelations and spectrum rule occurrences (i.e., we're considering
a finite number of i's), we can take the intersection of those measure-1 subsets, and the

result is itself a measure-1 subset of {A}—Apjow- All the A states in that "intersection set"

obey all the relevant perfect anticorrelations and spectrum rule occurrences. Q.E.D.
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CHAPTER 3: NON-INVASIVE
MEASURABILITY AND SQUIDs

Section 3.1: Introduction

In chapter 2, 1 added my contributions to the argument that nature disobeys local
causality. But from those arguments, we can't tell whether nature violates local causality
because of "causal" action at a distance, superluminal causal mediation, or a holistic,
nonseparable connection between "different” objects. I'll press harder on this causality
vs. holism distinction in chapter 5. Here, I'll use SQUID:s to argue that holism is the
culprit. My conclusion will emerge from an extended discussion concerning the
following questions: Do macroscopic systems, like the microscopic systems considered
in chapter 2, disobey some kind of local causality? And if so, what does it tell us about
nature?

Motivating this discussion is the observation that local causality no-go theorems
apply to microscopic systems such as electron pairs and photon pairs. Perhaps all
macroscopic systems can be described by a more "classical" theory. If so, then under
certain metaphysical assumptions, macroscopic reality isn't infected by quantum

weirdness.!4 Indeed, it's well known that "decoherent" interactions between a

MIf one takes the "naive realistic" position that any such theory of macroscopic reality
must ultimately reduce to the "fundamental” theory of microscopic reality, then a
“classical” theory of macroscopic reality wouldn't be as metaphysically exciting, because
the underlying fundamental theory of all reality--including macroscopic reality--would
incorporate violation of local causality. Although macroscopic reality would hide those
violations, they'd still be lurking beneath the surface.

By contrast, some antirealists believe that theories don't really “get at" reality, but
instead give us a bastardized, veiled version of what's out there, a version filtered through
our experimental, theoretical, and perhaps cultural biases. Within this framework, two
theories describing different domains need not reduce to one another or to a
“fundamental” theory that subsumes them both. So for instance, a theory of macroscopic
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macroscopic system and its environment cause the system’s density operator to quickly
“reduce" to the classically-expected mixture. I'll discuss the interpretation of such results
ad nauseam in chapter 4. For now, I'll focus on macroscopically “"coherent"-systems
such as Superconducting Quantumn Interference Devices (SQUIDs) and superfluids,
systems that keep their weird "interference" properties for'an appreciable time before
"succumbing" to environmentally-induced decoherence. Can such systems also be
described by a "classical” (hidden-variable) theory devoid of nonlocal/holistic
connections and other examples of quantum weirdness?

As Leggett (1986a,b) shows by considering hypothetical SQUID experiments, the
answer is "no." Leggett and Garg (1985) derive a "temporal Bell inequality" that's
violated by any theory consistent with QM's statistical predictions, an inequality than can
perhaps be tested in the lab (see Tesche 1990). But Leggett and I disagree about why
macroscopic reality violates this inequality (assuming QM's predictions hold).
According to Leggett, it's because SQUIDs violate, "Macrorealism," which requires all
macroscopic objects to possesses certain macroscopic properties at all times. In this
chapter, I'll argue that Leggett's conclusion is unwarranted. I'm not claiming that
Macrorealism holds. I'm claiming only that SQUID experiments have little to tell us
about Macrorealism. But Leggett-style SQUID experiments can rule out "Non-invasive
measurability," the requirement that it be possible, at least in principle, to measure an
object without disturbing its state more than a tiny bit. After establishing this result, I'll
argue that violation of non-invasive measurability indicates the existence of holistic

connections between "different" objects.

reality need not reduce to a theory of microscopic reality. The two theories could be on
"equal footing," with neither more fundamental than the other, because neither theory is
taken to be a fundamental description of reality itself. ‘In this framework, the microscopic
and macroscopic regimes can in principle be considered separately, and hence, a
“classical" theory of all macroscopic reality would be dramatic.
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Here's the game plan. In section 3.2, I'l lay out some formal details about

SQUIDs. Then, in section 3.3, Il present Leggett's derivation of a temporal Bell
inequality, and I'l discuss the philosophical implications. In particular, I'l poke holes in
his argument that violation of the inequality implies failure of Macrorealism. Finally, in
section 3.4, I'll present my own derivation of Leggett's temporal Bell inequality, a
derivation that relies on conditions significantly weaker than those.used by Leggett.
Specifically, my derivation does not assume Macrorealism. Using the new technical
result, I'll argue that violation of the temporal Bell ineduality has nothing to say about

Macrorealism, but strongly suggests that nature violates non-invasive measurability.




Elby Chapter 3: Macrorealism and SQUIDs 112

Section 3.2: SQUID formalities

An rf SQUID consists of a superconducting ring (often several millimeteis in
diameter) containing a single Josephson junction. According to quantum mechanics, the
Cooper-paired electrons are all in the same state, forming a Bosq “gas.” So, we can treat
the SQUID's current as a single macroscopic parameter, call it 7. For the SQUIDs under
consideration, the currents are typically on the order of milliamps, which is indeed
macroscopic both in terms of the number of electrons involved and in terms of easy
detectability. In the absence of the Josephson junction, the SQUID's current eigenstates
would correspond to integral Planck-units of magnetic flux threading through the loop,
where the magnetic field is created by the current itself. This is still ttue when we insert
the Josephson junction, which, in very rough terms, inserts an energy barrier between
clockwise-current states and counterclockwise-current states. Leggett (1986b) works
through the details. For my purposes (and Leggett's purposes), the technical minutiae
aren't important. What's important is that, when the if SQUID is placed in a properly-
tuned external magnetic field, the effective potential as a function of current looks

roughly like this:

§ T ———— Y RS ettt = T iy T -
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Qualitatively, the energy eigenstates are similar to those found in a box-with-a-barrier-in-
the-middle potential or an ammonia molecule (inversion state), but with a major
difference: The SQUID's current, unlike a boxed particle's position, is quantized, since
the magnetic flux through the SQUID ring is quantized. Iy denotes the "quantum"” of
current. By tweaking the relevant parameters (size of ring, properties of J osephson
Jjunction), we can ensure that I=t, lies near the bottom of the left and right energy wells,
as drawn above.

Let 4> and I-> denote the I=+Iy and I=-I; eigenstates of the current operator, which
I'll call Q so as not confuse it with the identity operator. My goal is to find the time-
dependent state function of a SQUID prepared in state +> or I-> at time t=0. Given that
state function, I can grind out the conditional probabilities (and correlation coefficients)
invoked below. To find that state function, I'll first derive the relevant energy
eigenstates.

No other current eigenstates besides +> and |-> contribute appreciably to the two
lowest energy eigenstates. The "mixing" with higher current states is negligible, because
the energies associated with [=+2Iy>, [I=+31>, etc., are very high compared to the
energies associated with l+> and |->. So, to excellent approximation, the state space
from which I'm going to construct the lowest-energy eigenstates (IEg> and [E>) is
spanned by two states, [4+> and I->.

Given this approximation, the usual way to derive the energy eigenstates is to

invoke the symmetry of the potential to argue that the Hamiltonian takes the form

i b 1 0
H= [il E ] in the basis 4+>= (O) and l->=(1). The Hamiltonian must be symmetric
i

under transposition, since transposing the matrix corresponds to mirror-reflecting the

potential well around I=0 (i.e., re-labeling l+> as I-> and vice versa). And it must
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contain off-diagonal terms, or else 4+> and I-> would be energy eigenstates, a conclusion
we know to be wrong both phenomenologically and theoretically. Theoretically
speaking, the energy eigenstates in a symmetric potential must by symmetric and
antisymmetric. By graphing l4+> and |-> as "spikes" on the above potential diagram, you
can see that neither state is symmetric or antisymmetric. So, the "b" cross terms are
needed. o .

It's easy to find the eigenvalues and eigenvectors of H. But I'm going to use a cute
shortcut to find those eigenvectors (i.e., the energy eigenstates). As just mentioned, in a
symmetric potential, the energy eigenstates are symmetric and antisymmetric; in other
words, they're eigenstates of the parity operator P. Now obviously, Pl+>=I-> and PI-
>=H>, since one state "turns into the other" if we mirror-reflect the system. By
inspection, the only way to create normalized parity eigenstates in the state space

spanned by 4> and I-> is as follows:

L

IEg> = H> + >

0 (—2( )
1

Ei>= —0+>-1->),

>= gt

where I've chosen arbitrary phases, and where the ground state is symmetric
(PIEp>=IEp>) and the first excited state is antisymmetric (PIE;>=-IE;>). So, the

current-eigenstates are superpositions of the first two energy eigenstates:

1
H+>= ——=(E¢p> + |E
_\/5( 0> 1>)

1
->= ——=(Eg>- IE;>
_\/5( 0 1)
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Therefore, if we prepare a SQUID in one of these current eigenstates, it won't stay in that
eigenstate. Rather, it will oscillate back and forth between l+> and I->, just as the
ammonium molecule oscillates back and forth between inversion states. See Bransden
and Joachain (1989, pp. 649-653), or Cohen-Tannoudji et. al. (1977, pp. 464-466).

For instance, suppose the quantum state at time t=0 is [¥(t=0)> = 4> = %(IE(p +
IE;>). Define wo=Eo/ft and 0;=E;/fi. Then the SQUID's state at arbitrary later time t,
assuming negligible dissipation, is

[(D)> = —L [[Eg>e-iont + [Ey>erion]

V2

= %[—j?(l+> + ->)e-iont + T}‘E(l» — |->)edant]

= %[I+>(e-i°>of+ edont) 4 |->(e-ioot — g-ionty],

To express this in prettier form, multiply all the exponential terms by ei(@ + @42, and
pull a factor of e-i(@ + @)t/ out front. (So, on net, I'm multiplying the right-hand side
by 1.) This "trick" yields

p()>= %e-i(coowl)t/2[:+>(ei(col-mo)t/z + ei(oret2) .

+ |->(ei(o-0gt/2 e-i(or-wo)t/2)].
= e’il@otont2[l+>cos Dt + I->isin 211,

where I've defined m=El——&. The SQUID, just like the ammonia molecule, oscillates

back and forth between its two "classical" states.

For my purposes, the relevant information to "extract” from [¥(t)> is the
conditional probability of finding the SQUID in state +> or |-> at arbitrary time t, given
that the SQUID was prepared in state +> at t=0. The calculation is trivial. In my
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notation, "Q(t)=+" is shorthand for "measurement of the SQUID's current at time t

yields a clockwise current.”

@ Pom[Q®=+ | Q(t=0)=+] = I<+W())>I2 = cos? %)—t
PomlQ()=- | Q(t=0)=+] = I<-I¥(D)>I? = sin2 %t

Readers familiar with Bell-type experiments may recognize these cosine-squared
and sine-squared conditional probabilities. Consider the canonical Bell thought
experiment, in which two spin-1/2 particles in their singlet state rush in opposite
directions and undergo measurement of (perhaps different) components of spin.
Suppose particle 1 is measured to have S,=+, and suppose particle 2 undergoes

measurement of S, where the angle between z and n is 180°-6. Then, the quantum

proi)abﬂity that particle 2 will yield spin up vs. spin down is

PQu(Su=+ 1 8,=+) = cos? &
PQu(Su=- 1 S,=+) = sin? 3.

The spin correlations in standard Bell-type experiments are formally equivalent to the
temporal correlations predicted to occur between successive current measurements on a
SQUID. Therefore, quantum mechanics predicts a violation of a temporal Bell
inequality, provided that the inequality is formally equivalent to a standard Bell inequality
violated by spin-1/2 systems. Leggett in section 3.3, and I in section 3.4, will take

advantage of this fact.
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Section 3.3: Leggett's inequality: Derivation & interpretation

In this section, I'll present my version of Leggett and Garg's derivation of-a
temporal Bell inequality. First, I'll present their assumptions (Macrorealism and Non-
invasive measurability). Then I'll show how those assumptions lead to an inequality
violated by any theory consistent with QM's statistical predictions. I'll also briefly
discuss how these inequalities could be tested in the lab. Finally, I'll begin my critique of
Leggett's interpretation of these results, along the following lines: Leggett argues that
Non-invasive measurability is a "natural corollary" of Macrorealism, and hence, any
theory that violates Non-invasive measurability isn't really macrorealistic in some sense.
Therefore, violation of the temporal Bell inequality implies that Macrorealism fails. In
response, I'll argue that in certain kinds of theories, Macrorealism could hold even
though Non-invasive Measurability fails. Therefore, even if experiments violate the
temporal Bell inequalities, we can't jump to conclusions about the failure of
Macrorealism. Further argument is needed to pin down the philosophical implications

of such a violation. (In section 3.4, I'll pursue that project.)

§3.3.1. Leggett's conditions
Leggett and Garg's (1985) first assumption is Macrorealism:

Macrorealism: A macroscopic system with two or more macroscopically distinct

states available to it will at all times be in one of those states.

Quantum mechanics under a standard Copenhagen interpretation violates this

condition: A SQUID described by I¥(t)>= e-l(@oto)t2[l+>cos %)-t + |->isin %’-t]
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occupies a macroscopic superposition in which it doesn't actuallsl possess either a
clockwise or a counterclockwise current, just as an electron in a double-slit experiment
cannot be said to actually traverse the left slit or the right slit. But remember, Leggett is
considering whether an alternative (“hidden-variable") theory could satisfy certain natural
“classical” conditions, one of which is Macrorealism. Keep in mind that Macrorealism
allows superposed properties in the microscopic realm, It demands only that
macroscopic physical quantities belonging to macroscopic objects always possess
definite values.

Leggett's second assumption is

Non-invasive measurability: Itis possible, in principle, to determine the
(macroscopic) state of a system with arbitrarily small perturbation of its subsequent

dynamics.

When we measure the SQUID's current, we can't help exerting some “back-action."
This is true in both quantum and classical mechanics. But in "classical” theories, that
back action can (in principle) be made arbitrarily small. In that case, the SQUID's post-
measurement state evolution will (to good approximation) proceed as if the
measurement hadn't occurred. I'll formalize and discuss this condition more fully in

section 3.4 below. For now, let me show how these conditions lead to a temporal Bell

inequality.

§3.3.2. Temporal Bell inequality
In a macrorealistic framework, we can let Q(t) denote the SQUID's current direction

attime t. Let Q(t)=+1 and Q(t)=-1 denote clockwise and counterclockwise current,
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respectively. According to Non-invasive measurability, the value of Q(t3) does not

depend on whether the SQUID underwent a (sufficiently careful) earlier measurement at

time t; or t, because the SQUID's state evolution proceeds as if the earlier measurement
hadn't occurred. So, Q(t3) is uniquely defined. Therefore, if we measure the SQUID's
current at t and t3, and obtain Q(t3)=+1, then we would have obtained Q(t3)=+1 even if
the earlier measurement had occurred at t; instead of t;.

Now aciually, I've just assumed counterfactual definiteness, which is valid only if
the SQUID's state evolves deterministically. Here's why: If the SQUﬁ) evolves
stochastically, then we can't say what would have happened had the earlier measurement
occurred at t instead of t;. That's not because measuring the SQUID at t, instead of t1
"disturbs” the state evolution. It's simply because, if we "rerun” the SQUID's state
evolution in a stochastic universe, we might get a different result, even if all initial and
intervening conditions are the same. That's just what it means to be stochastic! So, my
derivation of Leggett and Garg's temporal Bell inequality implicitly assumes
determinism. But in section 3.4 below, I'l derive an equivalent Bell inequality in a
stochastic framework. For now, I'll stick to a deterministic framework in order to keep
the exposition simple.

Consider the following expression:

™ Q(tQ(ts) + Qt)Qts) + Qt2)Q(ts) - Qt2)Q(ty).

As just noted, by Non-invasive measurability and counterfactual definiteness, the
"Q(t3)" paired with Q(t;) equals the Q(t3) paired with Q(tp). Each of the four Q's can
equal £1.
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This expression has only two possible values, £2. To see this, rewrite the

expression as

QtIQ(t3) + Qta)] + Q[Q(ts) - Q)]

Clearly, if [Q(t3) + Q(tg)]1=E2, then [Q(t3) - Q(t4)]=0; and vice versa. So, the overall

expression can only equal 32,
Now suppose we consider N SQUIDs (or if you prefer, N different experimental
runs on the same SQUID). Let Q; refer to the i-th SQUID. As just shown, for each of

those N SQUIDs,
@ 1Qi(t)Qits) + Qu(t1)Qita) + Qi(t2)Qi(t3) - Qi) Qilta)l < 2.
Therefore,
1Qi(t)Quts) + Qu(t1)Qi(ta) + Qilt2)Qi(ts) - Qult2)Qilta)! < 2.

From the triangle (Schwartz) inequality, a sum of absolute values is less than or equal to
N N

the absolute value of the sum: | Y, b;l < _lebil. So, we have
1= 1=

%5 A + 5 Q@+ £ a@em - &Y awewis2

N
In the limit as N—-, %21 Qi(t1)Qs(ts) is the correlation coefficient between Q;(t;) and
1=

Qi(t3), by which I mean the expectation value of that joint measurement result. In the

= e o e e e —
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N
usual notation, in the N—o limit, Flle Qi(t)Qi(t3) = <Qji(t))Qi(t3)>. So, the above
1=

messy inequality can be abbreviated as
3 I<Q(t1)Q(t3)> + <Q(t) Q> + <Q()Q(t3)> - <Qt2)Qta)>! < 2.

This inequality involving correlation coefficients is precisely what we can test via
experiment. Notice that eq. (3) is formally equivalent to the Stapp-Eberhard-Redhead
form of a regular Bell inequality. And recall from eq. (1) in section 3.2 that the relevant
SQUID conditional probabilities (and hence the correlation coefficients) are formally
equivalent to the spin-singlet state correlations. So, since spin systems violate the Stapp-
Eberhard-Redhead inequality, SQUIDs violate Leggett's inequality (3), according to any
theory that reproduces the statistical predictions of QM.

Let me prove this explicitly. I'll start by deriving the general expression for
<Q(t2)Q(tp)> for a SQUID prepared in quantum state [+> at time t=0. It's clearly!S

<Qt)Qtv)> = +D(DPMIQt)=+ | Q(t=0)=+])(Pul[Q(tr)=+ | Q(ta)=+])
+ (+D(-D(PomlQta)=+ | Q(t=0)=+])(Pom[ Q(to)=- | Q(ta)=+1)
+ (DEFDEPMIQt)=- | Q(t=0)=+)Pom[Q(t)=+ | Q(ta)=-])
+ (DEDPoMIQt)=- | Qt=0)=+])PomlQ(ts)=- | Q(t)=-1)

SIn the calculation, it appears that I have assumed wavefunction collapse. For the
purposes of calculation, I have. But keep in mind that no-collapse QM yields the exact
same conditional probabilities, as you can confirm by writing out the overall
SQUID/measuring-device entangled wavefunction. Indeed, it's well known that, only by
measuring certain weird holistic observables can you reveal a difference between the
statistical predictions of collapse QM vs. no-collapse QM. When performing repeated
measurements of the same observable, collapse and no-collapse QM always agree about
conditional probabilities, correlation coefficients, and all other statistical predictions.
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=" (PomQ(t)=+ 1 Q(t=0)=+])(Pom[Q(to)=+ | Q(tz)=+])
— PoMm[Q(ta=+ | Q(t=0)=+DNPmlQ(tv)=- | Qt)=+])
- Pm[Qt)=- | Qt=0)=+)PumlQt)=+ | Q(t)=-1)
+ (PeMIQ(t)=- 1 Qt=0)=+)(Pm(Qtv)=-1 Q(t)=-1)

(cos? %ta)(cos2 %(tb-ta))
— (cos? -%)-ta)(sinz %(tb-ta))
— (sin2 %ta)(sin2 %(tb-ta))

+ (sin? —czgta)(cosz %(tb-ta))

= (cos? %ta)[cos2 —%l(tb-ta) — sin2 %%(tb-ta)]

+ (sin? %ta)[cosz —ng(tb-ta) — sin? %(tb'ta)]
= cos2 %—(tb-ta) — sin? %(tb-ta)
= cos &(tp-ta),

where in the last two steps I used trig identities. For a surprisingly large range of
choices of t; through ts4, inequality (3) is violated. For instance, pick t;=0, t2=%-c-7§—,

t3=%)7£, and t4=2—(7f). Then, the left-hand side of inequality (3) equals

1<Q(t)Q(tz)> + <Q(t1)Q(tg)> + <Q(t2)Q(t3)> - <Q(t2)Q(t4)>1

= |cos 2% + cos %+cos %—Ol

1 1
=1+ ==+ —=-0I
+«/§+«/_2_0

=241,
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which violates the inequality.

In brief: Any SQUID theory consistent with QM's statistical predictions violates an
inequality derived from Macrorealism and Non-invasive measurability.
§3.3.3. Philosophical implications: Is Macrorealism the culprit?

According to Leggett, Non-invasive measurability is a "natural corollary" to
Macrorealism, by the following argument: If the SQUID actually has a discrete
macroscopic current, then we expect the current not to get "knocked around" by a very
careful measurement, since only a large disturbance could "knock" a clockwise current
so hard that it becomes counterclockwise. Leggett doesn't claim that Macrorealism
logically implies Non-invasive measurability. He claims only that we physically expect
Macrorealistic theories "éutomatically" to obey Non-invasive measurability. If this
argument is true, then experimental violation of Leggett's inequality would strongly
suggest that nature in fact violates Macrorealism.

I'll dispute this conclusion by outlining a few classes of Macrorealistic theories that
could plausibly violate Non-invasive measurability. For the remainder of this
subsection, let "z" denote the parameter or parameters that control when the SQUID's
current "flips" from clockwise to counterclockwise (and vice versa).

Case 1: Chaos. Suppose that the SQUID's definite current isn't always exactly
I=tly. Instead, when the SQUID's current is clockwise, it's actually in a narrow range
centered on the expected value: Ip-Al < I<Ip+Al, where the "current spread” Al is tiny.
(Note that Al in this case represents an epistemic, not an ontological uncertainty.)
Similarly for counterclockwise current. Suppose z is a function of I and/or microscopic

degrees of freedom of the SQUID. If z follows a chaotic equation of motion, then the
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back action produced by even the most careful measurement will affect the later state-
evolution of the SQUID.

I should note that even in quantum theory, there might be some spread in k-
Remember, 1 is quantized because the magnetic flux through the SQUID ring is
quantized. If (for instance) the radius of the ring gets a little bigger, the value of I
cm_responding to one Planck-unit of magnetic flux changes slightly. Consequently, if
the ring radius fluctuates even a tiny bit during the measurerﬁent interaction--due to a
back-action magnetic field, for instance--Al will be nonzero. And if z(I) is truly chaotic,
it simply doesn't matter how small Al is; Non-invasive measurability will be violated, if
we allow the SQUID to evolve for enough time.

So, SQUID experiments cannot rule out “case 1" theories, which violate Non-
invasive measurability despite the fact that they obey Macrorealism.

Case 2: Delicate flip parameter. Suppose that, even though the SQUID's current
is macroscopic and definite, the "flip parameter” z depends sensitively on microscopic -
degrees of freedom of the SQUID. Then, even the most careful measurement could
"disturb" z, and hence, the SQUID's later state evolution.

In response, Leggett could argue that a truly "classical” theory would not
incorporate a “"delicate z."’ To formalize this claim, he could argue that in a classical
theory, the state evolution of macroscopic quantities depends only on the values of
macroscopic quantities. For instance, in Newtonian physics, the time evolution of the
center-of-mass position of a baseball depends only on the initial position, initial velocity,
and net force as a function of time. Microscopic degrees of freedom simply "don't
matter."” Similarly, Leggett could argue, in a "classical" SQUID theory, we expect z to
depend only on I (and perhaps on other macro-parameters such as the SQUID's

diameter).
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I think this discussion serves to show that not all Macrorealistic theories obey all of
our classical intuitions. But the point still remains that an experimental violation of
Leggett's inequality would not force us to renounce Macrorealism per se. It would force
us only to renounce Macrorealistic theories that obey further classical conditions,
conditions that imply (or at least strongly motivate) Non—invasive measurability.

Case 3: Bohm-type theories. In Bohm's "pilot wave" theory, particles at all times
possess definite positions. A particle's trajectory is determined, in part, by a "quantum
potential” corresponding to the particle's wavefunction. (Roughly put, the wavefunction
is taken to be a physically real "pilot wave" that guides the particle through space.) The
wavefunction obeys Schrdinger's equation. According to Schrédinger's equation, if
two objects interact, their wavefunctions become entangled. In particular, a
"measurement” interaction, no matter carefully performed, necessarily involves an
entanglement between the system's wavefunction and the measuring device's
wavefunction. (This is true even for "null-result" measurements, as I'll discuss below.)
Therefore, by measuring a system, you automatically entangle its wavefunction, thereby
altering the quanturn potential that guides the particle's motion. So, Bohm's theory, like
QM itself, violates Non-invasive measurability. (In section 3.4, I'll further discuss why
QM violates Non-invasive measurability.)

Now imagine a Bohm-type theory about SQUIDs, in which the SQUID's current is
always definite, and the value of the current is guided in part by the wavefunction. Such
theories are Macrorealistic. But, as just shown, they violate Non-invasive measurability,
due to wavefunction entanglement between the SQUID and its measuring apparatus.

These examples, and others like them, establish that physically sensible
Macrorealistic theories could violate Non-invasive measurability. Therefore, assuming

Leggett's inequality is violated by experiment, we should not jump to the conclusion that
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Macrorealism fails. Perhaps Non-invasive measurability—and Non-invasive
measurability alone--in the "culprit.” I'm not claiming here that Macrorealism holds.

I'm claiming only that Leggett's considerations do not force us to abandon
Macrorealism, even if experiments violate his inequality. Indeed, in section 3.4, I'll
present evidence that violation of Leggett's inequality forces us to renounce Non-invasive
measm:abi]ity, not Macrorealism.

Before launching into that argument, however, I'll briefly discuss the best candidate

to date for a "non-invasive" measurement scheme.

§3.3.4. Testing Leggett's inequality: Null-result measurements

Tesche (1990) proposes an experiment that uses "null-result” measurements to test
Leggett's inequalities against QM's statistical predictions. Her measuring device is
designed to register a response if the SQUID occupies one eigenstate of current, say,
clockwise. If the SQUID occupies the other current eigenstate (counterclockwise), then
her device registers no response and exerts negligible back action on the SQUID's
quantum state evolution. If we assume Macrorealism, then a null measurement result
(i.e. no response) indicates, in this example, that the SQUID has counterclockwise
current. And if that null-result measurement causes negligible back action, as we
intuitively expect, then the time evolution of the SQUID's macroscopically distinct state
is undisturbed. Consequently, null-result measurements are a good candidate for
"revealing" the non-invasive measurability of SQUIDs, if Non-invasive measurability in
fact holds.

To experimentally determine the correlation coefficients <Q(t,)Q(t,)> using
Tesche's "trick,"” prepare the SQUID in the relevant initial state, H>. Let it evolve until

time t,, and then perform a null-result measurement. If you get the null result, say

e i e — [P UR—
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counterclockwise, then take another measurement at time t,. (That second measurement
can be invasive, because no further measurements will occur.) If you don't get the null
result at time t,, then simply record that result as "clockwise," and don't bother taking
another measurement at time ty,.

After getting good statistics, do the same experiment, but "reset" the null-result
measurement device so that "clockwise" now corresponds to the null result.

At the end of all this, you'll have good statistics on what fraction of the SQUIDs
were "clockwise" vs. "counterclockwise" at time t,. So, you know p[Q(t)=+ 1
Q(t=0)=+] and p[Q(ta)=- ! Q(t=0)=+]. You've also measured the conditional probability
that a Q(t))=+ SQUID later yields Q(ty)=+ vs. Q(tv)=-, and the conditional probability
that a Q(t.)=- SQUID later yields Q(tp)=+ vs. Q(tp)=-. That is, you've measured all the
conditional probabilities of the form p[Q(ty)=% | Q(t)=t]. So, you can immediately
calculate the experimental value of <Q(t,)Q(t)> using

<Qt)Qto)>exp. = FDEDEIQI=+ 1 Qt=0)=+D(PIQ(to)=+ | Q(t)=+])
+ FDEDEIQ)=+ | Qt=0)=+D(P[Qtv)=- | Q(t)=+])
+ (DEDEIQM)=- | Q=0)=+)P[Qts)=+ | Q(t)=-1)
+ (-DEDEIQE)=- 1 Q(=0)=+)PIQ(ts)=- | Qt)=-]).

Of course, this procedure assumes that nature doesn't throw us a "biased" sample of
SQUIDs when the null-result measuring device is set to "clockwise" vs.
“counterclockwise.” For a detailed discussion of this kind of "randomness" assumption,

see chapter 4 of Redhead (1987).
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Section 3.4: Derivation of Leggett's inequality from weaker

assumptions

In this section, we derive Leggett's inequality from assumptions weaker than
Leggett's. (By "we," I mean Sara Foster and myself.) The first condition is a stochastic
version of non-invasive measurability. The second condition is a realism assumption
much weaker than Macrorealism, a condition obeyed by any Markovian theory,
including QM. Consequently, if QM's predictions hold and therefore Leggett's
inequalities fail, no Markovian theory underlying or replacing QM can allow the
possibility of non-invasive measurements, even for null-result measurements on
INAcroscopic systems.

This result clarifies the philosophical meaning of Leggett's inequality. As discussed
above, Leggett's derivation shows that we must renounce Non-invasive measurability or
Macrorealism (or both). Our new proof singles out Non-invasive measurability as the
condition we must renounce. And if you buy Leggett's argument that Non-invasive
measurability is a "natural corollary" to Macrorealism (despite my critique in section
3.3.3), then our new proof shows that you must renounce both Macrorealism and Non-

invasive measurability.

§3.4.1. Notation and preliminaries
Like Leggett, we consider possible theories in which presently-unknown parameters
supplement or replace the quantum state description of the SQUID. Let A(t) denote the

SQUID's fully specified macrostate at time t. The macrostate is the aspect of the
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SQUID’s state causally relevant to electric current measurement results. So, A(t)
contains all relevant information about the SQUID's macroscopic current characteristics
and about the SQUID's probability of evolving into a different macrostate at a later time.
According to QM, A(f) is just ¥(t), the quantum state vector. But in a general theory, A
may encode information not contained in ¥. We do not assume that A specifies a
defn:nite current for the SQUID; our A states do not necessarily coﬁespond to Leggett's
"macroscopically distinct states." For instance, as in QM, A may encode measurement-
result probabilities instead of certainties.

The macrostate 1, as defined by us, does not contain information about microscopic
degrees of freedom irrelevant to macroscopic current measurement results, if such
degrees of freedom exist.

Let 11(t) denote the state of the device used to measure the SQUID's current,
according to the general theory. In some theories, this "apparatus microstate” plays an
important role.

A SQUID in quantum state ¥ could occupy one of many underlying states A. Let

p[A(t;)] denote the probability density that a SQUID prepared to be in quantum state ¥ at

time t; occupies state A at t;. Similarly, p[l(t)] is the probability density that an

apparatus set to measure the SQUID's current at time t occupies state [L att. Assume
p-independence:

() p[A(t;)] does not depend on whether the SQUID undergoes a measurement at

time t2t,.
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(i) p[1(t)] does not depend on whether the SQUID underwent another

measurement before t.

The first part of this condition is trivial. It requires that the SQUID not "know in
advance" whether it is gbing to be measured at a later time. If this condition fails, then
either some kind of backwards-in-time causation influences the SQUID'S state
preparation, or else nature has "conspired” to bias our sample of SQUIDs. This
requirement is weaker than Particle Locality, &16 p-independence condition used in Bell
derivations. Condition (i), unlike Particle Locality, allows spacelike influences.
Condition (i) only rules out backwards timelike influences.

Condition (if) demands that, if the same device measures the SQUID at t; and t,,
then we can "zero" (reset) the device between measurements. An easy way to ensure
that this condition holds is to use different measuring devices at t, and t,, and to "zero"

the t, device after time t;. Given this scheme, p-independence condition (ii) fails only if

the first measuring device somehow sends information to the second device,
information that "survives" when the second device gets reset. Although considerations
of local causality do not rule out this possibility, it seems mighty conspiratorial and ad

hoc, especially if we don't even turn on the second device until the first one gets shut off.

Let M (f) denote the performance of a null-result measurement at time t such that a
null response is taken to indicate positive (clockwise) current. M_(t)=+1 denotes that
such a measurement indeed gave the null result, signaling positive current. Define M (t)

and M _(H)=-1 analogously for negative (counterclockwise) current.
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As in chapter 2, I'll continue to use standard conditional probability notation. For
instance, p[M,()=+1 | A(t), u(t)] is the probability, according to the general (hidden-
variable) theory, that a SQUID in state A at t, upon measurement at t with an apparatus in

state 11, would yield the null result, indicating positive current . Similarly,
PIM, (t)=+1 I M, (t)=+1, M1)), u(t,)]

is the probability that a SQUID in state A at t;, upon measurement at t, with an apparatus
in state |1, would yield positive current, given that an earlier null-result measurement at t
indicated positive current. By a "measurement at t;," we mean a measurement that
begins at t;.

PIM, (t)=+1, M (t)=+1 | A(t;)] is the joint probability that a SQUID in state A at

t;, upon sequential null-result measurements, would yield the null result both times,

indicating positive current.

§3.4.2. The main assumptions

We now discuss the two primary assumptions we'll use to derive Leggett's
inequality. (Actually, we'll be deriving the temporal equivalent of the stochastic Clauser-
Horne inequality, which turns out to be statistically equivalent to inequality (3) above.
More on this later.) Our conditions, like Leggett's, can be tested by Tesche's null-result
measurement procedure.

Non-invasive measurability for null-result measurements. In the context of general

(perhaps nonmacrorealistic, perhaps stochastic) theories, a null-result measurement is
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designed to register a response for only one of the two possible measurement results on
the SQUID. Such a measurement, even if carefully done, may disturb some
microscopic degrees of freedom of the SQUID. For instance, the back action of the
measuring device might jiggle some electrons in the SQUID ring. But suppose that the
SQUID's macroscopic current characteristics over time, as encoded by the macrostate,
do not depend too delicately on these microscopic degrees of freedom. Then the back
action only negligibly disturbs the SQUID's macrostate and its evolution. We explore

this possibility by assuming

Non-invasive measurability for null-result measurements (NIMN): The evolution
of the SQUID’s macrostate is disturbed arbitrarily weakly by a sufficiently careful null-

result measurement (when the null result occurs).

This is essentially Leggett's Non-invasive measurability, rephrased so as not to
presuppose Macrorealism. Whether Tesche's experiment is "sufficiently careful” is, of
course, an open question. NIMN demands only that such an experiment be possible in
principle, even if technology hasn't reached that level.

One could argue that non-invasive measurability is intuitively compelling only for
macrorealistic theories, and therefore NIMN is physically unmotivated in the more
general case. We disagree. Whether or not A specifies a definite current, NIMN will
hold provided that A does not depend too delicately on the SQUID's microstate and
provided that obtaining a measurement result doesn't "automatically” collapse or

"effectively collapse” the SQUID's density operator, as happens in QM. QM-style
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effective collapse is not a necessary feature of all non-macrorealistic theories. It's simply
a feature of the most familiar non-macrorealistic theory.

We now express NIMN mathematically. According to a general SQUID theory, a

freely evolving SQUID in state A at time t; has a certain probability (or probability
density) of occupying state A" at Jater time t,. Let p[A'(t,) | A(t,)] denote this state-
evolution probability density. Similarly, p[A'(t)) | A(t;), M, (t,)=+1] is the probability
that a SQUID in state A at t; would occupy state A’ at t,, given that a null-result

measurement beginning at t; indicated positive current (by null result). According to

NIMN,

NIMN PIN(E) | ACty), M, (t)=+1] = p[A'(ty) I A(t;)]

pIA (1) 1 Mty), ML(t;)=-1] = p[A'(ty) 1 Mty)]

Of course, these equations apply only when p[M_ (t;)=+1 I A(t,)]#0 and pIM_(t))=-11

Mt,)J=0, respectively. In deterministic theories, all the p[... [ A(t;)]dA are equal to zero or

one.
Quantum mechanics violates NIMN. Even during an ideal measurement, null-
result or otherwise, a SQUID formerly in quantum state ¥ becomes "entangled" with
the measuring apparatus, and therefore the density operator describing the SQUID
changes. (Certain so-called "interference terms” get smaller.) Or, if we assume

wavefunction collapse, measurement collapses the SQUID into an eigenstate of current.

Either way, a measurement entangles or collapses the SQUID's state, thereby changing‘
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the SQUID's density operator, and hence, its state evolution. This is true, according to
QM, even when the null result is obtained. So, QM violates NIMN.

SQUID Completeness. Our second major assumption is

SQUID Completeness: A SQUID measurement-result probability at time t depends

only on the SQUID's state (and on the measuring device state) at time t.

SQUID Completeness is an incredibly weak realism assumption. It demands only
that the state of the SQUID (and its ﬁeasuring apparatus) completely determine
measurement-result probabilities.}¢ SQUID Completeness does not presuppose a
definite current for the SQUID. |

QM obeys SQUID Completeness: Given the type of measurement (i.e., the
Hermitian operator corresponding to the measured observable), the quantum state at
time t completely specifies measurement-result probabilities at time t.” Since QM
disobeys many "realism" assumptions, the fact that QM obeys SQUID Completeness
suggests that our condition is very weak.

SQUID Compieteness does not prohibit an influence by earlier measurements on

later measurement results. For instance, by measuring the SQUID at t;, we may disturb

* its state evolution so as to change measurement-result probabilities at t,. This happens

18Jarrett's Completeness condition, discussed in chapter 2, encodes similar content. But
JarTett's condition rules out a nonlocal connection between a measurement result on
particle 1 and a measurement result on particle 2. SQUID Completeness, by contrast,
has nothing to do with locality, because there's only one measured system (a single
SQUID) involved. So, SQUID Completeness can hold in nonlocal theories.
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in QM: by measuring the SQUID at t;, we entangle or collapse its state and thereby

alter its state-evolution, leading to changed measurement-result probabilities at t,. What

SQUID Completeness disallows is a direct mysterious "influence" by the earlier
measurement result on the later measurement result, an influence not propagated via the
SQUID's state evolution. SQUID Completeness demands nothing more than
Markovian state evolution: A complete specification of the present state of the SQUID
(and its measuring device) must probabilistically "screen off" the SQUID's past,
rendering the past states irrelevant. All theories that can be cast in terms of "state
functions" automatically obey SQUID Completeness. Newtonian mechanics, relativistic
mechanics, classical electromagnetism, quantum mechanics, and quantum field theory
all obey SQUID Completeness. All hidden-variable theories that I know of also obey
this condition. Frankly, it's hard to imagine a non-Markovian fundamental theory.
Since by definition, all characteristics of the SQUID causally relevant to Q-

measurement results are encoded by the macrostate A, we have

SQUID Completeness
PIM, (t)=+1 1 A1), H(ty), M(t)=+1] = pIM, (t)=+1 | M(1,), 1(t)]

This condition demands that a measurement-result probability depend on the SQUID's

present macrostate, not on how the SQUID reached its present macrostate. Again,

-

SQUID Completeness is nothing more than a Markov requirement.



Elby Chapter 3: Macrorealism and SQUIDs 136

All macrorealistic theories are SQUID Complete (since the SQUID's definite
current at time t determines the result of measuring I at time t),17 but not vice versa.

SQUID Completeness is much weaker, as just discussed.

§3.4.3. Derivation of Leggett's inequality
In this section, we derive Leggett's inequality from NIMN, SQUID Completeness,
and the p-independence assumptions introduced in section 3.4.1. Specifically, we'll

show that our conditions imply

Factorizability:

pPIM, (t)=+1, M_(t))=+1 | A(t)] = pIM (t)=+1 I Mt )] PIM, (t,)=+1 [ A(t)].

Factorizability implies the 'Clauser-Home version of Bell's inequality, as I'll discuss
below.

To derive Factorizability, we first prove a crucial lemma.

Lemma: NIMN & SQUID Completeness & p-independence —
PIM, (t)=+1 1A(t)] = pIM, (t)=+1 | M, (t)=+1, M1)].

Proof of Lemma:

From probability theory and p-independence of the [ states,

17] jke Leggett, I'm assuming a "Faithful Measurement" principle, according to which the
value of the SQUID's definite current (when it exists) is the value "revealed"” by
measurement.

e — -



Elby Chapter 3: Macrorealism and SQUIDs 137

pIM, (t,)=+1 | M, (t,)=+1, Mt,)]
= [loln(e)Idwar [N (L) 1 Mty M, (t)=+1IPIM, (t,)=+1 | M, (t)=+1, X'(1,), n(t,)]
= [lpfu)Idwran"p[A' () | Aty), M, (t;)=+11"pIM, (1,)=+1 I X't,), u(t,)]

by SQUID Completeness
= folit)1dp-dr plx (&) 1 A1 PIM, (t)=+1 1X'(ty), R(tp)]

by NIMN
= pIM, (tp)=+1 I A(t,)]

by probability theory.

This proves the lemma. Q.E.D.

Armed with this Lemma, we now easily prove
Theorem: NIMN & SQUID Completeness & p-independence — Factorizability

Proof: From probability theory,

*) PIM, (t)=+1, M, (t)=+1 [ A(t;)] =

PIM, (t)=+1 1 A1 PIM, (,)=+1 | M, (t,)=+1, A(t,)].

By the Lemma, the second factor on the right-hand side equals p[M, (t,)=+1 | A(t)]. So,

eq. (*) immediately becomes
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pIM, (t)=+1, M, (t))=+1 | A(t)] = pIM, (t)=+1 1 A(tTPIM, (1,)=+1 1 Mt;)],

which is Factorizability. Q.E.D.
Now all that remains is to show that Factorizability, along with p-independence of
the A states, implies the Clauser-Horne inequalities. By reasoning equivalent to the

above, our conditions also imply

PIM.()=-1, M, (tp)=+1 | A(t;)] = pIM, (t,)=+1 I At} PIM. (5)=-1 | M(t))],
PIM. (t)=+1, M, (t))=-1 I Mt))] = p[M, (t))=-1 IMt)IPIM (t)=+1 I A(ty)],

PIM.(t)=-1, M, (tp=-1 1 A(t)] = pIM, (t))=-1 1 A(tPI"P[M.(1,)=-1 | A(t;)]-

In other words, Factorizability holds in general, not just for specific measurement
results. To get from Factorizability and p-independence to the Clauser-Horne
inequalities takes a lot of uninstructive algebra. See Redhead (1987, chapter 4) for the
boring details behind tl}iS well-known result. The outcome is a Bell inequality
statistically equivalent to Leggett's inequality (3) derived above (in section 3.3.2). In
other words, a theory s statistical predictions violate the Clauser-Horne inequalities if and
only if they v1olate inequality (3) above. So, if Leggett's inequality is violated, then so is
the Clauser-Horne inequality, proving that no theory about SQUIDs can obey NIMN,

SQUID Completeness, and p-independence.

§3.4.4. Philosophical implications: Comparison to previous results
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If Tesche's and others’ experiments violate Leggett's inequalities, as QM predicts,
then Leggett's derivation suggests that we should renounce non-invasive measurability
or macrorealism. Since both of these assumptions are "controversial," and since a
theory could obey one but not the other (as argued above in section 3.3.3), a reasonable
theory could disobey either (or both!).

Our contribution is to show which assumption is probably "at fault" if QM's
predictions turn out to be correct. SQUID Completeness, unlike Macrorealism, is so
weak that we expect an),r reasonable theory to obey it. And p-independence only rules
out conspiratorial theories, or theories that allow backwards-in-time causation. NIMN,
SQUID Completeness and p-independence lead to a Bell-type inequality violated by any
theory that reproduces QM's statistical predictions. Therefore, if QM's predictions are
correct we should renounce the possibility of performing non-invasive measurements
even in principle, even if we use ingenious null-result measuring procedures to measure
macroscopic quantities. In brief, our derivation strongly suggests that if Leggett's
inequality fails, non-invasive measurability is "to blame."

This result improves upon Ballentine (1987). Ballentine argues that non-invasive
measurability alone implies Leggett's inequality. According to him, NIMN entails that
the correlations between sequential SQUID measurement results do not depend on
whether an intervening (non-invasive) measurement occurs. But this independence
follows only if we make some assumption about the relationship between the SQUID's
sta;e and the SQUID's measurement-result probabilities. Our SQUID Completeness

assumption fills precisely this gap in Ballentine's reasoning. Without SQUID
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Completeness (or a stronger assumption such as macrorealism), non-invasive
measurability has no empirical consequences.

If you believe (following Leggett) that no reasonable Macrorealistic theory would
violate NIMN, then our result establishes that you must renounce both NIMN and

Macrorealism, instead of one or the other.

§3.4.4. Philosophical implications: Holism.

We now see that if QM's predictions hold, and if p-indepeﬁdence and the weak
form of realism encoded by SQUID Completeness hold, then failure of non-invasive
measurability is not simply a quirk of the quantum formalism. Instead, that failure
indicates nature's unwillingness to allow non-invasive measurements even in principle.
This is what SQUIDs have to tell us about metaphysics, even though they can't tell us
about Macrorealism per se.

But what does violation of non-invasive measurability tell us about nature? In other
words why does non-invasive measurability fail? One possibility is that the measuring
device "disturbs" the measured system significantly, in the usual "causal” sense of
"disturbance.” But if this were the case, then we'd expect a null-result measurement to
disturb the systefn less than a regular measurement, when the null result is obtained. In
other words, we'd expect the size of the disturbance to depend in some way on the
severity of the "intrusion." But according to QM, the disturbance doesn't scale down
Wlt;l the intrusion in this way; even a "perfect” null-result measurement effectively
collapses the SQUID's density operator, leading to a violation of Leggett's inequality.

So, if we want to retain a causal picture of the measurement as an intrusion leading to a
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disturbance, we have to abandon our classical causal intuitions about how the size of the
cause relates to the size of the effect.

The quantum formalism suggests another metaphysical interpretation of why non-
invasive measurability fails. As discussed above, any measurement, simply by virtue of
being an interaction between two quantum systems, inevitably leads to wavefunction
entanglement between the measuring device and measured system. After this
entanglement, the two systems are holistically connected, in the following senses:
Neither the SQUID nor its measuring apparatus alone Aas its own state vector. And the
two-part system as a whole has properties and/or propensities that don't supervene on
the separate properties/propensities of the individual systems. Put roughly, the
properties of the whole don't reduce to composite properties of the parts. These holistic
properties include correlations between, say, the SQUID's current and the measuring
device's pointer reading. So, non—inv.as.ive measurability fails not because of some
"causal” disturbance, but because the SQUID becomes holistically entangled with
another system, an entanglement that changes the probabilities associated with the
SQUID alone. |

This holistic view of violation of non-invasive measurability helps us explain why
making the meaé:urement less "q1§uubing" doesn't lead to a smaller violation of non-
invasive measurability (assuming QM's predictions hold). In my holistic framework,
the severity of interaction leading to holistic entanglement shouldn't matter. All that
ma:ters is whether the systems become holistically connected. Since a measurement is
an interaction designed to bring about a correlation between the measured system and the

measuring device's "pointer reading,” and since (in this framework) the correlations
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result from holistic entanglement, it follows that any measurement worth its name leads
to holistic entanglement.

This argument alone isn't strong enough to make you abandon your "causal” world
view in favor of a "holistic" one, whatever that means. But this argument isn’t alone. In
chapter 5, I'll argue in detail that the best way to explain the local causality violations
discussed ad nauseam in chapter 2 is to renounce "causality” in favor of "holism." And
in chapter 4, I'll show how an explicitly holistic interpretation of QM may be able to
account for the macroscopic world as we observe it. So, every chapter of this
dissertation adds to the argument that quantum reality is best interpreted within a holistic,

noncausal metaphysical framework.
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CHAPTER 4: DECOHERENCE AND 'MODAL'
INTERPRETATIONS OF QM

In the past five years, "decoherence" has received loads of attention. Various
decoherence-based interpretations of QM claim to recover a "classical” world at the
macroscopic level.1® In this chapter, I'l critically evaluate these claims. Decoherence, I'll
argue, does not in itself define or even a suggest an interpretation, nor does it provide us
with a new metaphysical framework. It turns out, however, that results from
"decoherence theory" can save certain interpretations from otherwise-fatal technical
problems. Specifically, the phenomenon of decoherence can help to "pick out” a special
pointer-reading basis. (But a preferred basis alone does not an interpretation make.)

To focus my analysis of what decoherence can and cannot accomplish, I'll devote
substantial discussion to a promising, comparatively new class of interpretations called
"modal” interpretations. After briefly outlining how these interpretations work (section
4.1), I'll show why, without decoherence, these interpretations are doomed to failure.
Roughly put, the modal interpretations without decoherence pick out the "wrong"
pointer-reading basis after a non-ideal measurement; and all measurements of certain
observables are in fact non-ideal. Then, in section 4.3, I'll show how decoherence can
perhaps rescue the modal interpretations (and certain other interpretations) from the
"imperfect measurement problem” just mentioned. Finally, in section 4.4, I'll explore
whether the modal interpretations, aided by decoherence, have a fighting chance of
"solving" the measurement problem, even when the observer's brain is taken into
account and treated as another quantum mechanical system. We'll see that the modal

interpretations fare surprisingly well.

18The SQUIDs discussed in chapter 3 escape these claims because they interact
minimally with their environment, and hence take a long time to "decohere."
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Section 4.1: Modal interpretations

In this section, I'll motivate and describe the modal interpretations, and I'll show

how they apparently solve the "measurement problem" in an elegant, powerful way.

§4.1.1. Historical and philosophical motivation

Instead of diving right into the formal details, let me situate and motivate the modal
interpretations. Classical intuition(s suggest that physical observables have definite
values at all times, and hence, a probabilistic descriptions of those quantities reflects our
ignorance about the actual values. But we know from Bell (1966), Kochen and Specker
(1967), and similar results that we can't consistently assign values to all observables in a
way consistent with both the QM formalism and certain intuitive rules. Only some
observables may possess (noncontextual) values at.a given time. But which ones?
Interpretations split into two broad classes based on their answer to this question. The

wedge is provided by the

Eigenvector-eigenvalue link: A physical quantity Q has a definite value if and only if

the quantum state is an eigenstate of the corresponding Hermitian operator Q.

Standard Cépenhagen.interpretations with wavefunction collapse obey this
"orthodox" value-assignment rule. In a sense, so do relative-state interpretations,
according to which Q has a definite value with respect to a given branch of the
superposition only if that branch is an eigenstate of Q. But many interpretations violate
the eigenvector-eigenvalue link. Such interpretations have two choices. They can either

(@) a priori set in stone which observables have definite values, or else (ii) let the
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guantum dynamics "pick out” which observables have definite values at a given time.
Bohm's interpretation is type (i): It assigns definite positions to all particles at all times,
whether or not the particle occupies an eigenstate of the position operator.

By contrast, other theorists who renounce the eigenvector-eigenvalue link prefer
option (ii). They prefer not to put in "by hand" which observables are definite. They
think the quantum dynamics itself should select the preferred observables (i.e., the
preferred basis). For instance, Zurek (1993a,b) bases an interpretation around the claim
that the definite-valued observables associated with a system S are those corresponding
to operators that commute with Hy,, the interaction Hamiltonian between S and its
environment. More on this later. The modal theorists, on the other hand, claim that the
quantum state picks out which observables take on definite values; and a stochastic
equation of motion describes the evolution of those definite values.1®

Why might someone prefer such a theory to Bohm's? It has to do with how far
you're willing to depart from the "pure” quantum formalism. In Bohm's theory, the
Hilbert space formalism describes nothing more than how a "quantum potential” (pilot
wave) evolves in time. The particles themselves are separately real entities that follow an
independent equation of motion. And the "privileged" status of position is put in by
hand. By contrast, in modal interpretations, the Hilbert-space state vector describes the
particles themselves, although the description it provides isn't complete. But the
quantum state piéks out which observables receive definite values, values that
"complete” the state description. For these reasons, the modal interpretations allegedly

stay "closer” to the quantum formalism than Bohm-type theories do.

§4.1.2. Modal interpretations and the measurement problem

19To date, a completely successful equation of motion for these "hidden variables" has not
been formulated. Dieks and his group at Utrecht are working on this.
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But of course, staying close to the quantum formalism is no virtue if these
interpretations can't solve the measurement problem. In this section, Il present the rule
by which the modal interpretation picks out definite-valued observables in violation of
the eigenvector-eigenvalue link. Throughout this chapter, my description of "the modal
interpretation” will refer to the common elements shared by Dieks (1989, 1994) and
Healey (1989). Those two interpretations disagree about certain subtleties that aren't
relevant here. (Most of the following discussion applies also to the original modal
interpretation of van Fraassen (1979), as well as the later interpretations of Kochen
(1985) and Clifton (1994)). Then, I'll show how this interpretation apparently solves the
measurement problem.

Modal interpretation. For simplicity, consider an isolated quantum system
composed of two entangled subsystems, 1 and 2. If we let IQ;> and IR;> denote a
complete basis for subsystems 1 and 2, respectively, then the quantumn state takes the

following form:

6> = Zizjcilei>®le>

The system as a whole possesses no properties other than the ones corresponding to the
quantum state vector. But the individual subsystems do possess definite values for
certain observables. To specify which observables, the modal interpretation takes

advantage of the

Bierthogonal decomposition theorem: For any quantum state lp> describing two
subsystems, there exists locally maximal Hermitian operators A (describing subsystem

1) and B (describing subsystem 2) such that I¢> can be "biorthogonally decomposed” as
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follows: 16> = Xic;ilA;>®IB;>, where {IA;>} and {IB;>} are eigenstates of A and B.
Furthermore, if all the nonzero Icil's are distinct (i.e., if the "contributing" 1A;>'s and

IBi>'s are nondegenerate), then the biorthogonal decomposition is unique.

This theorem provides the modal interpretation with the "preferred basis" it needs.
According to the interpretation, if ¥;c;lA;>®IB;> is the unique biorthogonal
decomposition of l¢> with respect to subsystems 1 and 2, then observables A and B
both have definite (but in general unknown) values. If the biorthogonal decomposition
of o> isn't unique, then certain degenerate observables take on definite values, but no
locally maximal observables do. Of course, as the quantum state evolves in time, the
observables picked out by the biorthogonal decomposition keep changing. So, unlike
Bohm's theory, in which position is always definite, the modal interpretation allows
different observables to be "preferred” at different times.

The modal theory, we see, gives us a prescription to figure out the definite-valued
observable associated with any object. Call that object subsystem 1, and the rest of the
universe subsystem 2. Biorthogonally decompose the quantum state of the universe
with respect to subsystems 1 and 2, and read off the observable picked out for
subsystem 1. It's easy to show that the "basis" selected in this way is the basis that
diagonalizes the reduced density operator describing subsystem 1. Specifically, when
16> = XicilAi>®IB;>, the reduced density operator describing subsystem 1 is
p=2;Icil21A;><Aj, a "mixture” of A-eigenstates. So, as van Fraassen (1991) points out,
the modal interpretation assigns definite values as if the ignorance interpretation of
mixtures were correct. According to the ignorance interpretation of mixtures, a system
described by a mixture really does occupy one of the eigenstates in that mixture. But

there's a big difference between a "true" ignorance interpretation and the modal
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interpretation. As I'll discuss later, a true ignorance interpretation applies consistently
only to collapse theories, in which the quantum state of subsystem 1 "collapses onto" an
A-eigenstate (in this example). In the modal interpretation, by contrast, no collapse of
the wavefunction happens. The quantum state of the universe continues evolving
according to Schrddinger's equation. When the density operator of subsystem 1 is
p=2;lcil2IA;><Ajl, then subsystem 1 has a definite value for A, even though the
quantum state of the universe (1¢> = ¥;c;lA;>®IB;>) is not an eigenstate of A. This
reminds us that the modal interpretation violates the eigenvector-eigenvalue link. In a
sense, the definite values picked out by the biorthogonal decomposition are "hidden
variables,"” though modal interpreters resist this term. But the interpretation assigns
definite values to the observables you'd "expect” by looking at density operators. In this
way, modal interpreters stay "close” to the quantum formalism.

The measurement problem. Let's see how this interpretation addresses the
measurement problem, which I'll now briefly review.
Consider a spin-1/2 particle initially described by a superposition of eigenstates of

S,, the z-component of spin:
lo> = ciIS;=+> + coIS,=->.

Let IR=+> and IR=-> denote the "up” and "down" pointer-reading eigenstates of an

apparatus that measures S;. According to pure QM (with no collapse), if the apparatus

ideally measures the particle, the combined system evolves into

(D) Ideal measurement 10> = ¢11S;=+>®IR=+> + C,IS;=->®IR=->.
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Common sense based on everyday experience insists that, after the measurement, the
pointer reading is definite. But according to the eigenvector-eigenvalue link, the pointer
reading is definite only if the quantum state is an eigenstate of R, the pointer-reading
operator. Since lp> is not an R-eigenstate, the pointer reading is indefinite, according to
"orthodox" interpretations with no collapse. But notice that state (1) is a biorthogonal
decomposition! Therefore, according to the modal interpretation, the particle has a
definite z-component of spin, and the pointer kas a definite reading, assuming lc;l#lc,l.
So, the modal interpretation neatly solves the measurement problem, at least for ideal
measurements. (In section 4.2 below, I'll discuss what difficulties arise for imperfect
measurements.) And it does so without proposing a modification to Schrédinger's
equation, such as wavefunction collapse.

A critic could object that assigning definite values based on biorthogonal
decompositions (or equivalently, diagonal density operators) is an arbitrary, physically
unmotivated "trick.” In response, Clifton (1995) shows that, if we want the quantum
state to "choose” which observables take on definite values, then the biorthogonal
decomposition is the only "basfs selection rule” that obeys certain natural classical
conditions. But even if the modal basis selection rule weren't a priori unique in some

sense, we'd still have to take it seriously if it solved the measurement problem.
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Section 4.2: Imperfect measurements in the modal

interpretation

In this section, I'll show that modal interpretations do not in fact solve the
measurement problem (without the "help” of decoherence). The argument runs as
follows: When the measurement interaction isn't ideal, the biorthogonal decomposition
picks out a basis that might not even be "close" to the pointer-reading basis. This is
relevant, because real-life measurements of some observables are necessarily non-ideal,

according to the QM formalism.

§4.2.1. The problem with non-ideal measurements

I'll now expand upon an argument first presented by Albert and Loewer (1990)
about why the modal interpretation fares poorly if measurements are non-ideal.

For concreteness, continue to consider a spin-1/2 particle about to be measured by
an Sz-measuring device. If the measurement interaction is non-ideal, then an initially
spin-up (IS;=+>) particle has nonzero probability of yielding a "down" pointer reading
(R=->). Similarly, an initially spin-down particle has a nonzero probability of yielding
an "up" pointer reading. Let's assume that when an initially spin-up particle yields a
"down" measurement outcome, the particle's state is not always flipped into the [S,=->
state. It follows from the linearity of Schrédinger's equation that the post-measurement

state of the particle/apparatus system is

=(2) Imperfect measurement

I6"> = €111Sz=+>®IR=+> + €12IS;=+>@IR=-> + ¢21I1S;=->QIR=+> + ¢22IS;=->®IR=->,
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where the "mistake-term” coefficients cy2 and c3 are small but nonzero. Later, I'l argue
that eq. (2) describes real-life measurement interactions. For now, let me assume this is
the case. Notice that eq. (2) is not a biorthogonal decomposition. Therefore, according
to the modal interpretation, neither the apparatus's pointer reading nor the particle's z-
component of spin has a definite value. To find out which observables do have definite
values, we must re-express state l¢"> in eq. (2) as a biorthogonal decomposition. (Such

a decomposition always exists, as noted above.) Doing so yields

2) 6> = 3:d;IS'=s;>®IR'=r;>,

where {IS'=s;>} are eigenstates of some operator S’ that doesn't commute with S,, and
{IR'=r;>} are eigenstates of some operator R’ that doesn't commute with R. Physically,
S'is a spin-component of the particle along some direction other than the z-direction; and
R’ is an observable whose eigenstates correspond to a macroscopic superposition of
different pointer-readings. According to the modal interpretation, S' and R’ have definite
values, while the pointer reading does not have a definite value.

As I'll discuss later, this wouldn't necessarily be disastrous if R’ were some
observable very "close” to the pointer reading R, i.c., if the R’ eigenstates were very
nearly R eigenstates.20 But, as Albert and Loewer point out, no matter what
measurement-interaction Hamiltonian is assumed, there exist a range of coefficients cj
and ¢ such that a particle initially in state lo> = ¢1IS;=+> + ¢2IS,=>, upon interacting
with the measuring device, results in a particle/apparatus state whose biorthogonal

decomposition picks out an apparatus observable not even close to the pointer reading.

As Dickson (1994) shows, the range over which c; and ¢ "misbehave" might be very

20Formally, R' is "close” to R if and only if, for all i, <R'=r'; | R=rj>=1.
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small. Butit's not clear that an evil scientist could not prepare a bunch of particles in a
"misbehaving” state. In brief: A non-ideal measurement does not always yield a
definite result. Therefore, if real-life measurements are indeed imperfect (as described
by eqg. (2)), the modal interpretation does not solve the measurement problem.

As mentioned above, eq. (2) fails to describe a non-ideal measurement only ifa
spin-up particle, when it mistakenly yields a "down" measurement outcomes, always
gets its spin flipped into the IS,;=-> state; and vice versa. By playing around with
measurement-interaction Hamiltonians, you can confirm that such 100%-reliable spin-
flipping is extremely unlikely to occur. Which isn't surprising, because we have no

physical reason to expect that it would occur.

§4.2.2. Why measurements are non-ideal, part 1

How important is the "imperfect measurement problem" just discussed? In the
following two subsections, I'll prove thait measurements are always non-ideal, according
to the QM formalism itself. In other words, ideal measurements are physically
impossible. It follows that no amount of technological prowess can produce an ideal
measuring device, even in principle.

Here, I present a plausibility argument that measuring devices inevitably make
mistakes, due to unavoidable "fluctuation” interactions between the particle/apparatus
system and its environment.

Consider the following experiment: Spin-1/2 particles get shot between Stern-
Gerlach magnets. A large distance behind the magnets, we place two "photographic”

plates. Plate 1 lies in the "up" path of the particles, while plate 2 lies in the "down" path.
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To be ideal, this measurement of S, must satisfy the following condition: When
the initial spin state of the particle is lp>= c{IS,=+>+cIS,=->, then the final state of the

system is

hy> = cylparticle on plate 1>®Idot on plate 1>

+ cplparticle on plate 2>®Idot on plate 2>;

or, if the system becomes entangled with environmental degrees of freedom, the reduced
density operator describing the particle/apparatus system must be a mixture of Iparticle
on plate 1>®Idot on plate 1> and Iparticle on plate 2>®!dot on plate 2>.

Suppose an IS,=+> particle passes through the magnets. A stray photon or other
stray particle hitting plate 2 might initiate reactions that produce a dot, thereby registering
an incorrect "down" reading. In addition, an environmental interaction might prevent the
"up” dot from forming on plate 1. A photon, for instance, occasionally causes a bound
electron on the surface of the plate to ionize, via the photoelectric effect. That ionized
electron might "bump into" the incoming particle, preventing it from reaching plate 1.

I must stress the physical impossibility of completely eliminating these
environmentally induced errors. We can cool down an experiment to reduce thermal
fluctuations, but we can never reach absolute zero, even in principle. Although we can
shield the experiment from electromagnetic radiation, some blackbody radiation invades
even the coldest experiments, and blackbody radiation contains all frequencies. Under
optimal conditions, environmentally induced "fluctuation” errors will occur rarely,
perhaps only 107109 percent of the time. But if such mistakes have any nonzero chance

of occurring, the pointer reading does not become perfectly correlated with the particle's
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z-component of spin, and hence, the modal interpretation does not assign a definite value .
to the pointer reading.

In this section, I have not formally proven that all measurements suffer from
environmentally induced errors. But I've made this assertion highly plausible.

A modal interpreter could respond as follows: For a particle described by state lp>=
¢11S,=+>+cy!S,=->, Ic;I2 specifies the probability that the particle, upon interacting with
an ideal measuring device, would acquire definite value "up” for S,. The physical
impossibility of performing the relevant ideal measurement in no way threatens the
- coherence or beauty of this modal interpretation. To see why, consider Newton's first
law. No real-life particle travels uniformly (i.e., at constant velocity in a straight line),
because of the gravitational forces exerted by other particles. Nonetheless, the first law
occupies a crucial place within the logical structure of Newtonian mechanics.
Furthermore, in the limit as the forces acting on the particle become arbitrarily weak, the
particle follows a trajectory that approaches a straight line. For these reasons, the
physical impossibility of uniform motion in no way threatens the coherence or beauty of
Newton's first law within the framework of Newtonian mechanics. Similarly, a modal
interpreter could argue, the fact that measurements can only approach "idealness” does
not threaten the coherence or beauty of the modal interpretation, even though such an
interpretation rests, in part, on the notion of ideal measurement.

In reply, I would emphasize that an adequate solution to the measurement problem
must explain why real-life measuring devices register (or at least seem to register)
definite results. If an interpretation cannot explain why all (or at least, almost all)
measuring devices appear to display definite readings, then the interpretation cannot
explain our experiences. And if an interpretation can't explain our experiences, then it's

inadequate, end of story. An interpretation must do more than explain the experiences of
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conscious observers in a hypothetical idealized universe; it must explain our experiences
in our universe. If an interpretation works only in idealized cases, then it is at best a
tentative first step.

In reply, a modal interpreter could say, "Fine, my interpretation is just a first step
towards a deeper understanding of quantum mechanics. Butit's a good first step.” Let
me pursue this line of thought. Imagine an alternate universe, subject to Newton's laws,
that contains only one particle. This particle would travel uniformly. The physical
impossibility of uniform motion in a many-particle Newtonian universe follows rnot
from Newtonian mechanics alone, but from the existence of many particles (along with
Newtonian mechanics). Therefore, the concept of uniform motion is coherent within a
Newtonian framework, even though such motion never occurs in our universe.

Similarly, a modal interpreter could argue, the faultiness of real-life measurements
follows not from QM alone, but from the existence of certain kinds of environmental
interactions (along with QM). We can imagine an alternate universe, subject to
nonrelativistic quantumn mechanics, that contains only two objects, a particle and a
measuring apparatus. Since this fictional universe contains no stray particles,
environmentally induced errors won't plague the measurement interaction between the
particle and the device. My arguments so far give us no reason to deny that the
measurement interaction could be ideal. Perhaps the concept of ideal measurement can
coherently occupy a central place within an interpretation of QM, in which case the
modal interpretation seems to be a useful "first step” toward a deeper understanding.

In the next subsection, however, I show that modal theorists cannot invoke the
"good first step" argument of the previous paragraph. Specifically, I demonstrate that

the quantum formalism itself rules out ideal measurements of most observables.
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Therefore, an interpretation that "works" only for ideal measurements does not work at

all.

§4.2.3. Why measurements are non-ideal, part 2

I now present a plausibility argument for the following claim: The faultiness of
most measurements follows not just from environmen_tal "fluctuation” interactions, but
from the logical structure of QM itself. .

Consider the Stern-Gerlach experiment described above. Suppose the particle
initially occupies state IS,=+>. This particle is described by a reasonably localized
spatial wavepacket that deflects upward upon passing between the Stern-Gerlach
magnets. But the spatial wavepacket has infinitely long "tails," by which I mean the
wavefunction has nonzero amplitude arbitrarily far from its peak. Schrodinger's
equation implies that these tails exist, no matter what spatial wavefunction initially
described the particle. A wavefunction localized within a bounded volume at time t=0
develops infinite tails for any time t>0, except perhaps for a finite number of later times
(out of the continuous infinity of times available). And a particle that begins with infinite
tails keeps them forever (except perhaps at a finite number of times). Therefore, an
initially IS,=+> particle has nonzero probability of "hitting" plate 2. By similar
reasoning, an initially IS,=-> particle has nonzero probability of producing a dot on plate
1. Consequently, this measurement is non-ideal, no matter how carefully we forge our
magnets and coat our plates. The measurement error results not from environmental
interactions, but from wavefunction tails. QM itself, specifically Schrédinger's equation,

implies that these tails exist.2! Therefore, QM implies that this measurement scheme

21Furthermore, these infinite wavefunction tails don't go away when we switch to a
relativistic framework. As Fleming (1965), Ruijsenaars (1981),and Hegerfeldt (1974,
1985) show, if a Klein-Gordon or Dirac particle is localized at t=0 within a bounded
volume, then the particle has nonzero probability of being found arbitrarily far away at
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cannot be made ideal, even in principle, even in an alternate universe containing no stray
particles.

From this example, you can see that all "indirect” measurements are intrinsically
non-ideal. Measurement of A is "indirect” if, during the measurement interaction, (i) A
becomes correlated with X, where X is the position of the particle (or the position of an
auxiliary system), and (ii) the "pointer reading” becomes correlated with X. I conjecture
that many physical quantities can only be measured indirectly. Any purported counter-
example will have to withstand intense scrutiny, during which we must treat all inner
workings of the measuring apparatus quantum mechanically.

Let me summarize the plausibility argument given above. For most observables,
"measurement” involves the measured observable becoming correlated with the position
of the particle or the position of an auxiliary system (e.g., something inside the
measuring device). QM implies that the spatial wavefunction describing the particle (or
the auxiliary system) has infinite tails. Consequently, when the pointer reading becomes
correlated with the position of the particle (or the position of the auxiliary system), a
huge "mistake" has a nonzero chance of occurring. Therefore, QM implies that indirect
measurements are necessarily non-ideal. Therefore, since we have no reason to believe
that all (or even most) observables can be measured directly, an interpreter of QM must
not lean too heavily on the notion of ideal measurement.

In subsections 4.2.2 and 4.2.3, I've extended and clarified Albert and Loewer's
arguments about imperfect measurements, by pinpointing two reasons why measuring
devices make mistakes. If faulty measurements resulted solely from environmental

interactions, then we could coherently ground an interpretation of QM partly on the

any time t£>0; the position probability amplitude "leaks out” of the relevant light cone. But
the problem remains even if the tails merely fill the forward light cone, because that's
enough to ensure that an up-deflected wavepacket has nonzero probability density at the
down plate. .
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notion of ideal measurement, invoked counterfactually. ‘But QM itself implies that
indirect measurements are non-ideal, due to wavefunction tails. In any universe that
obeys QM, ideal indirect measurements are physically impossible. Therefore, if the
modal interpretation works well only for ideal measurements, it is not even a "good first
step” toward a deeper understanding of QM.

Given all this, things look bad for the modal interpretation. In sections 4.3 and 4.4,

however, we'll see that decoherence comes to the rescue.
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Section 4.3: Decoherence as savior? What decoherence can

and cannot do for interpretations of QM.

In this section, Il explore to what extent.decoherence can save the modal
interpretation, and also relative-state interpretations, from objections raised against them.
Decoherence cannot help these interpretations address the general metaphysical
challenges raised against them.?? But decoherence can help pick out a "special” basis
that determines which observables receive definite values. I'll explore to what extent
decoherence rescues the modal (biorthogonal) basis-selection rule, and Zurek's
(environmental interaction) basis-selection rule, from the basis degeneracy problem and
the imperfect measurement problem. "Basis degeneracy” occurs when a selection rule
does not pick out a unique basis. The "imperfect measurement” problem, discussed in
detail in section 4.2, occurs when a selection rule, designed to choose the pointer-reading
basis after an ideal measurement, chooses a basis not even close to the pointer-reading
basis after a non-ideal measurement. Decoherence, we'll see, gives the modal

interpretation a fighting chance of escaping these technical difficulties.

§4.3.1. The formalism of decoherence, and what it means physically

2As Arntzenius (1988) discusses, some versions of the modal interpretation--notably
Kochen’s and Dieks’--do not in general allow "property composition.” (Healey’s
int€rpretation avoids this problem.) For instance, imagine a rock floating through space.
According to the modal interpretation, it's possible that the left side of the rock has a
definite position, as does the right side, even though the rock as a whole does not have a
definite position. We'll see later the decoherence can't eliminate this metaphysical
weirdness, though decoherence can assure that this weirdness almost never applies to the
position of parts vs. wholes.
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In this section, I clarify the meaning of "decoherence.” This is necessary, because
many claims circulating around the physicg community seem to be based on a
misunderstanding of what decoherence is.

First, let me clarify what decoherence is not. I'll draw an analogy with a2 more
familiar phenomenon, friction in Newtonian mechanics. By friction, I mean regular
sliding friction as well as air resistance and all "dissipative” interactions of that sort,
interactions that tend to slow down and heat up macroscopic objects. Frictioﬁ is notan
interpretation of classical physics. Nor is it a physical phenomenon implied by the
logical structure of classical physics. You can imagine a Newtonian universe consisting
of just a few particles. In that universe, "friction” doesn't exist.

Instead, friction is a physical phenomenon whose existence in our universe is
implied by classical physics. Because our universe is filled with stray particles, a
macroscopic object moving through the atmosphere--or even through outer space--
inevitably slows down due to Newtonian interactions with those stray particles. So, we
can't "turn off" friction, at least, not completely. In some cases, it acts quickly and
thoroughly, while in other cases, it can be neglected. Crucially, friction must be taken
into account in order to explain certain phenomenon.

Decoherence plays a similar role within the realm of quantum physics.
Decoherence is not an interpretation. Rather, it's a physical phenomenon that results
from the interaction of a (usually but not necessarily) macroscopic object with many
"stray particles” in its environment.2? Decoherence is not implied by the logical structure
of QM; in a quantum universe containing only one or two particles, decoherence
wouldn't exist. But since our particular universe is filled with stray particles that interact

with objects according to certain interaction Hamiltonians, decoherence in our universe is

2 An object's own internal degrees of freedom interacting with each otherin a
"dissipative” manner can also constitute decoherence.
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implied by the quantum formalism. Macroscopic objects inevitably undergo a
"dissipative" interaction with their environment, i.e., an interaction that tends to wipe out
the phase coherence between macroscopically distinct states. This is decoherence.

Let illustrate decoherence with an example. Consider a standard double-slit
experiment, in which a bunch of "coherent" small particles pass through a double slit
with a "photographic” plate behind it. After passing through the slits, a given particle is
described by a macroscopic superposition, such as hy>= 2-1/2{Ipassed through slit 1> +
Ipassed through slit 2>}. Because this "combination” of states is a superposition
(instead of a "mixture"), those two states "interfere," producing the characteristic pattern
on the photographic plate. But if the particle, soon after traversing the slits, interacts
strongly with stray particles, it becomes entangled with those particles. Depending on
the "severity"” of this environmental interaction, the interference effects get more and
more "washed out.”

To see how this decoherence works formally, let me streamline my notation for the
particle states by letting l¢;> and l¢>> denote Ipassed through slit 1> and lpassed through
slit 2>. If the particle doesn't interact with its environment, then it is described by the

quantum state hy>= 2-12{l¢;> + I¢,>}, corresponding to density operator

- ps = hy><yl = ley 1 Rlo><aql + Iconllor><nl + ciColpy><dol + cocy lpo><dyl,

with ¢;=c=2-12 in this case. (The subscript "s" stands for "superposition.”) The

"interference terms” c;c,*lo;><dy,l and cocy*lop><d1| encode the size of the interference

effects.
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But if the particle interacts with its environment, it becomes entangled with

environmental degrees of freedom. Let [E;> and |E>> denote the state of the
environment after interacting with a particle in state lp;> and l¢,>, respectively. Then,

the particle/environment state right before the particle reaches the photographic plate is

hy>= 2‘1/2{|¢1>®]E1> + lp>®IEx>}.

We can find the new density operator describing the particle by tracing over the
environmental degrees of freedom. To do so, let I~E;> denote an environmental state
that's orthogonal to |E;> and that lies in the "plane" of Hilbert space picked out by the

rays |[E;> and |Ep>:

I~E;
Ey>

The "reduced"” density operator describing the particle is

p =<Ejly><ylE> +<~E; ly><y | ~E;>

= 2-1<E; l;>®IE1><011®<E; | E1> + 2-1<E; lp1>QIE1><rl®<E; IE;>

+ 2-1<E; lgp>®IEp><110<E; | E;> + 2-1<E; I¢p>®IE;><0l®<Ep | Er>
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+ 2-1<~E; 191>8IE;><¢11®8<E; | ~E;> +2-1<~E; lp;>®IE;><¢pl®0<E, I~E;>

+ 2-1<~E) lgp>®IEr><911®<E; | ~E;> + 2-1<~E; l97>®IEs><tol®<E; | ~E;>

=271 p><¢1l + <Bp [E>lo1><dpl + <Ep [Ep>lep><yl + I<Ep
[E1>2lgo><dol

+0 +0 +0 +I<Ej | ~E;>Rloo><nl }

=21 Ip;><¢1l + <Ej [E;>lo1><¢nl + <Bj [Ep>loo><dy!l + lop><onl 3,

since I<Ej [Ej>12 + I<Ep | ~E;>I2 = 1, as the above diagram shows. (To see this, note
that I<E; I[E;>I= cos 6 and I<E; | ~E;>l=sin 6.) In summary, the particle's density

operator takes the form

p =C11l91><d1l + Caloa><dol + cpaldpi><dal + coyldpp><orl,

with cjol and lcp;! proportional to I<E; |E;>l. In other words, the interference terms

(and the resulting interference effects) get more and more "washed out"” as the
environmental states approach orthogonality. In the "decoherence” limit as I<Ep

IE;>1-0, the interference terms disappear entirely, leaving us with the "mixture”

Pm = C11l91><01] + Cazlpp><dol.

In that limit, the particles don't produce an interference pattern on the photographic plate.

Instead, they produce a "classical” statistical mixture, exactly as if each individual particle




Elby Chapter 4: Decoherence & modal interpretations 164
had passed through slit 1 or slit 2. The photograph plate would display two dark
clumps, one behind slit 1, the other behind slit 2.

But this classical statistical mixture does not automatically imply that each
individual particle really does pass th'rough one slit or the other, in the classical sense. In
fact, we have reasons for denying that classical interpretation. Imagine a double slit
experiment in which the experimenter can turn on or turn off the "environment”
(perhaps a bunch of air molecules, perhaps a photon bath) between the slits and the
photographic plate. Of course, she can't turn off the environment completely; but she
can control its "strength." Crucially, let's say the environment is initially "off," and
experimenter doesn't decide whether to switch it on until after the particle has traversed
the slits. If the experimenter leaves the environment "off," then she gets an interference
pattern. By the usual interference arguments, this suggests that the particle doesn't pass
through slit 1 or slit 2, in the classical sense. But now suppose the experiment is
repeated; and for each particle, the environment is switched on (after it has traversed the
slits). Since this new experiment is exactly the same as the previous one until after each
particle has already passed through the slits, then either (i) it's still the case that the
particle doesn't pass through slit 1 or slit 2, in the classical sense; or (ii) each particle
somehow "knows" ahead of time whether the experimenter will turn on the
environment, and when it knows the environment will be turned on, it decides to pass
through slit 1 or slit 2 in the classical sense.

Option (ii) implies something far worse than Bell locality violation; it implies
backwards in time causation, or else a pre-planned "conspiracy.” For this reason; anon-
hidden-variable explanation of this experiment should assert that the washing out of the
interference pattern results from the particles' interactions with the environment, not

from the particles' really passing through slit 1 or slit 2 in the classical sense.
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Of course, in some hidden-variable theories such as Bohm's, the particle does in
fact pass through one slit or the other, in the classical sense. The point of my argument
is that, if the particle behaves classically at the slits when the environment is turned on, it
should also behave classically at the slits when the environment is turned off (assuming
the environment isn't "switched on" until after the particle traverses the slits).

I'm dwelling on this experiment in order to make the following interpretive point:
Although "decoherence” results in classical statistics (i.., essentially no interference), we
cannot automatically conclude that the underlying individual objects behave classically.
Classical behavior implies classical statistics, but the converse fails. The double slit
experiment illustrates this point perfectly. Unfortunately, you can find many
misunderstandings in the literature that boil down to an unwarranted assumption that
classical statistics imply classical behavior (in some sense).

Now that I've explicated decoherence with an example, let me show how it applies
to measurement interactions.

Zurek (1993a,b), Joos and Zeh (1985), Bacciagaluppi and Hemmo (1995), and
others use general plausibility arguments and worked examples to argue the following:
The measuring apparatus undergoes a "dissipative" interaction with its environment.
This interaction quickly destroys the coherence between the two branches of the

superposition in eq. (1).
¢3) Ideal measurement 10> = ¢11S;=+>@IR=+> + C5lS,=->®IR=->.
In this way, the environment picks out the pointer-reading basis.

To see what this means formally, let IE,> denote the state of the environment (i.e.,

the rest of the universe) after it interacts with a particle/apparatus system in state
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IS;=+>@IR=+>. Similarly for [E.>. When a particle/apparatus system described by eq.

(1) interacts with its environment, the universe evolves into
3) > = C11S;=+>QIR=+>QIE;> + ¢2IS;=->8IR=->QIE>.

As time passes, the environmental states corresponding to different pointer readings
quickly approach orthogonality. Formally, as t—e, <E,IE_>—0. For all practical
purposes, this "decoherence” takes less than a billionth of a second. In this limit, the
reduced density operator describing the particle/apparatus system, found by tracing over

the environmental degrees of freedom, is the mixture
pm = Ic121S,=4+><S,=HIR=+><R=+ + lco2IS,=-><S,=-lIR=-><R=-1.

Put roughly, the environment "damps out" the interference terms in the density operator
lp><ol.

I must stress that according to pure QM, pny describes the particle/apparatus system
only because eq. (3) describes the universe, with <E4/E_>=0 in the infinite-time limit. In
other words, pm is a "reduced” ("improper") mixture, found by tracing out another
subsystem (the environment) with which the system of interest is entangled. As the
double slit experiment illustrates, we can't automatically apply a "classical” interpretation
to this classical statistical mixture. Il have more to say about that in the next subsection.

Eg. (1), however, does not describe most real-life (non-ideal) measurements. The

more realistic state contains "mistake terms":

) Imperfect measurement
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1¢"> = ¢11IS=+>®IR=+> + ¢12IS;=+>@IR=-> + ¢311S,=>®R=+> + c22I1S,;=->®R=->,

Remember, even if our equipment is flawless, imperfect measurements follow
inevitably from wavefunction tails and from environmental fluctuations whose existence
is implied by QM. For this reason, a Stern-Gerlach experiment cannot be made ideal,
even in principle. Although cj2 and c2; can be made small, they cannot be eliminated.
Why is this important? Because, after the particle/apparatus system interacts with

its environment, the final state is given not by eq. (3), but by

@) "> = ¢1118;=+>IRIR=4+>QIE ;> + ¢12/S,=+>®R=->QIE, >

+ €2118;=>8IR=+>QIE_;> + 9IS ,;=->®R=->QIE__>.

As t—eo, the environmental states corresponding to different pointer readings approach
orthogonality: <E,4 [E;+.>—0, <E_; [E;>-0, <E.y IE_>—0, and <E_, [E_>—0. But
at any finite time, these states are not strictly orthogonal.

Instead of narrowly focusing on how these considerations affect the modal
interpretation, let me branch out and explore which other classes of interpretations are
helped by decoherence. For now, I'll examine how "decoherence-helped" interpretations
interpret eq. (3). Later, we'll see whether these interpretations successfully carry over to

non-ideal measurements.
§4.3.2. Decoherence-hkelped interpretations

" Decoherence-helped interpretations--and we'll see that more than one exists--agree

on the following:
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When the state of the universe takes the form of eq. (3) with the environmental states
(nearly) orthogonal, then the pointer reading, or some observable "close" to the pointer

- reading, is "definite.”

Several interpretations fit into this framework, due partly to the different senses in which
an observable can be "definite." I'll carve up decoherence-helped interpretations into

different classes based upon their answers to two crucial questions:

A) Does "definite" mean "definite in the absolute, classical sense"?

®B) Does the eigenvector-eigenvalue link hold?

Decoherence interpretation #1: "Definite” = "classically definite,” but the eigenvector-
eigenvalue link fails.

According to decoherence interpretation #1, an observable (e.g., the pointer reading)
can possess a definite value even when the quantum state isn't an eigenstate of the
corresponding operator. To pick out which observables become definite, we can rely on
the form of the quantum state, as modal interpreters do; or we can invoke formal
properties of the relevant interaction Hamiltonian. Although these approaches differ in
formal detail, they're both part of the same program of letting the interactions between
subsystems determine which observables acquire definite values.

Therefore, decoherence interpretation #1 is just a "modal" interpretation, perhaps

with a different basis-selection rule.

Decoherence interpretation #2: "Definite” = “classically definite,” and the

eigenvector-eigenvalue rule holds.
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According to this interpretation, which is prima facie appealing to many physicists
I've spoken with, we can assign an ignorance interpretation to the mixture describing the
particle/apparatus system. That is, we can say that the particle/apparatus system really
does occupy a quantum state corresponding to one of the "legs" of the mixture. But
despite its intuitive appeal, decoherence interpretation #2, is inconsistent. Here's why:

By assumption, the eigenvector-eigenvalue rule holds. Therefore, the apparatus has
a definite pointer reading only if the quantum state is an eigenstate of R. But the
quantum state, given by eq. (3) or by eq. (4), is not an eigenstate of R.

The inconsistency of decoherence interpretation #2 illustrates D'Espagnat's (1976)
point that within pure QM, we cannot assign an ignorance interpretation to an
"improper" mixture. It also underscores my conclusion from the double slit experiment,

that classical statistics do not imply classical behavior.

Decoherence interpretation #3: Relative-state.

According to this view, the pointer reading becomes definite not in some absolute
sense, but relative to its branch of the superposition. Within each branch, the
eigenvector-eigenvalue rule holds.

Before discussing whether decoherence solves the bntological problems associated
with relative-state and many-world interpretations, I'll briefly discuss what these
interpretations ate supposed to mean. Both Zurek (1993b) and Zeb (1993), two of the
most respected decoherence theorists, stress that their interpretations flesh out Everett's
"relative-state" interpretation, not deWitt's many-world interpretation. (See deWitt and
Graham's 1973 anthology.) Although Zurek and Zeh (and Everett) never
unambiguously spell out the precise ontology of their interpretations, I'l try to

reconstruct an argument that captures (or at least supports) their views.
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According to deWitt, after a measurement, each branch of the relevant superposition
lives in its own world. If these separate worlds are physically inaccessible to each other,
then no interactions can occur between inhabitants of the diffefent worlds, even in
principle. Therefore, no "interference" can occur between different branches of the
superposition, even in principle. But Zurek and Zeh espouse "pure” QM, according to
which Schrodinger's equation governs all state evolution, and hence all interference
effects permitted by Schrodinger's equation are possible in principle. For this reason,
Zurek and Zeh want the different branches of eq. (3) to inhabit different "realities” that
could in principle (though not in practice) interfere. This, along with the radical
metaphysics of the many-world view, could partially explain why Zurek and Zeh ally
themselves more with Everett than with deWitt.

Unfortunately, the ontology of the Everett-Zurek-Zeh view is unclear. To see why,

consider a system in state

> = ¢11S;=+>@IR=+>R®IE ;> + c2IS;=->8IR=->QIE>.

We can "see” interference between the two branches of the superposition by measuring
Q=S'®R'®E', where S' doesn't commute with S,, R’ doesn't commute with R, and E'
doesn't commute with E= alE,><E,l + blE:><E_l. Although we cannot in practice
measure Q, the quantum formalism does not rule out such measurements in principle.
Because the "up"” and "down" branches can interfere, those branches cannot be said to
inhabit "separate” physical realities. Therefore, what it means for an observable to
become definite "relative to its branch” is ambiguous. See Albert and Loewer (1988) for

a detailed discussion of this objection.
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Some physicists downplay the severity of this metaphysical problem. They argue
as follows: Sure, when the two branches interfere, it becomes meaningless to assert that
the pointer reading is definite relative to its branch. But most of the time, the up and
down branches don't interfere. During these times, it's unproblematic to claim that the
pointer reading is definite, relative to its branch.

This counterargument fails to resolve the ontological ambiguities raised above.
When the two branches aren't interfering, do two "copies” everything exist? If not, then
in what sense are both measurement results actualized? If so, and if the two branches
don't inhabit separate worlds (in deWitt's sense), then how do they co-exist in space and
time? In some recent talks, Zurek has taken a more subjectivist stance; minds "live" in
one branch or the other, although the world itself doesn't split. But since I have nothing
to add to the general arguments for and against relative-state and many-world
interpretations, I won't press these questions any further. My point is this: First, the
ontology of the relative-state (as opposed to many-world) framework adopted by some
decoherence theorists is, at best, ambiguous. Second, decoherence cannot help us to
address the metaphysical difficulties facing relative-state and many-world interpretations.
If you think these interpretations make no sense, decoherence cannot change your mind.

Summary. In this subsection, I sketched the three most popular decoherence-helped
interpretations. (Other such interpretations, though logically possible, have not been
developed to my knowledge.) Decoherence cannot help the modal, relative-state, and
many-world interpretations fend off general metaphysical criticisms. What decoherence
can do is belp these interpretations pick out a "special” basis. In the modal view, this
special basis determines which observables acquire definite values. In the relative-state
and many-world view, this special basis determines how physical reality "branches” (in

some sense).
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I'll now explore to what extent decoherence can help these interpretations select the

pointer-reading basis.

§4.3.2. Decoherence: Selecting the ""right" basis

Any interpretation relying on a "special” basis must specify formal rules that pick
out the basis. Since we're trying to explain why measurements result in definite pointer
readings, a successful basis-selection rule must choose the pointer-reading basis, or
something very "close" to the pointer reading basis, in almost all situations we want to
call "measurements.” With respect to basis selection, the decoherence-helped
interpretations discussed above potentially suffer from two major obstacles: The
imperfect measurement problem, and-the basis degeneracy problem.

Basis degeneracy problem. This difficulty arises when a basis-selection rule
doesn't always choose a unique basis. As an example, consider the usual "modal" rule,
also advocated by deWitt for many-world interpretations, of letting the biorthogonal
decomposition pick out a special basis. If any two Icjl's are equal, then the quantum state
has multiple biorthogonal decompositions. For instance, consider the particle/apparatus

system in state
lo> = ¢11S,;=+>8IR=4> + ¢3IS,=->®R=->.
If c1=cp=2-1/2, then lp> can be rewritten as
lo> = 2-12[IS,=+>@IR'=+> + [S,=->®IR'=->],

where
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ISx=t> = 2-12[IS,=+> + IS,=->]

R'=t> = 2-12[[R=+> + [R=->].

Because of this degeneracy, nothing is "special” about the pointer-reading basis, at least,
not if we retain the modal basis-selection rule. According to the modal interpretation, if
the biorthogonal decomposition isn't unique, then none of the relevant nondegenerate
observables acquires a definite value. This is troublesome, at least in principle, because
we want S;-measurement of a particle initially in state ISx=+> to yield a definite pointer
reading.

Decoherence cannot rescue an interpretation from the basis degenerécy problem.
There will always exist coefficients ¢; and c; such that a particle initially in state l¢> =
Cc1ISz=+> + ¢2IS;=->, after interacting (ideally or non-ideally) with a measuring
apparatus that then interacts with the environment, results in a degenerate biorthogonal
decomposition with respect to the apparatus. But arguably, the basis degeneracy
problem isn't really a problem at all. Of the infinite number of possible initial states of
the particle, only a finite number are such that the pointer basis ends up degenerate. And
each of those "anomalies" will be "surrounded"” in Hilbert space by a continuum of well-
behaved initial states. So, no matter how precisely you can prepare your initial states
(provided you can't do so with infinite precision), we expect such occurrences to happen
with zero probability.

Nonetheless, such an occurrence is possible. Should this bother us, i.e., should it
count as a "strike" against the modal interpretation (or any interpretation that suffers
from basis degeneracy)? David Albert (personal communication) gives us insight into

this metaphysical dilemma by raising an analogous example from classical statistical
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mechanics. It's possible (though extremely unlikely) for a cold bucket of water to
spontaneously boil. This highly counterintuitive--and never experienced--behavior is
predicted by the theory. But we don't count it as a strike against the theory, because the
theory explains our more commonplace experiences so accurately. Similarly, if
quantum mechanics interpreted modally explains our everyday experiences of definite
pointer readings, we can't discredit such an interpretation simply because it predicts the
possibility of a counterintuitive, never-experienced occurrence, provided it assigns
sufficiently low probability to such an occurrence.

A purist could respond that the pointer shouldn't be "allowed" to have an indefinite
reading, even in principle. ButI tend to side with Albert. The "job" of a physical theory
and its interpretation is to explain our experiences. If a theory and interpretation
accomplish that goal with simplicity, elegance, breadth, etc., then it's at most a minor
aesthetic annoyance if the theory/interpretation predicts the occasional oddball
occurrence. If you can forgive classical statistical mechanics that sin, then you should
also forgive the modal interpretation of quantum mechanics.

. So, the basis degeneracy problem isn't really a problem,; or, if it is a problem,
decoherence can't do anything about it.

Now let's return to the imperfect measurement problem. I'll save until section4.4 a
full discussion of how well the modal interpretation fares. (The suspense builds!) For
now, let me take a close at Zurek's basis-selection rule. Instead of relying on the form of
the quantum state, he lets the apparatus/environment interaction Hamiltonian, Hjy, pick
out a basis. Here's how:

Let R' denote an arbitrary apparatus observable that doesn't commute with the
pointer reading, R. Using "toy" examples, along with general considerations, Zurek

argues that Hjp, commutes with R, but does not commute with any R'. In rough terms,
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the interaction between the apparatus and its environment uniquely picks out the pointer-
reading basis. Formally R is a "special" pointer-reading observable iff [Hjp, R]=0.

To see the physical motivation behind this selection rule, pretend that the dpparatus's
time evolution depends only on its interaction with the environment. In other words,
"turn off" the apparatus's internal Hamiltonian, Hy. In this pretend universe, if the
apparatus begins in a pointer-reading eigenstate at time t=0, it remains in that eigenstate,
because [Hin,R]1=0. In words, the apparatus/environment interaction leaves the pointer
reading undisturbed. By contrast, the environment would knock the apparatus out of an
R'-cigenstate.

(Because Hjy is tremendously complicated in all but the simplest examples, we
don't yet know whether Zurek's basis-selection rule avoids the basis degeneracy
problem. But based on the examples worked out so far, the prospects look promising.)

Zurek's basis-selection rule cannot suffer from the imperfect measurement
problem, because the basis picked out by the apparatus/environment interaction in no
way depends on the measurement interaction between the apparatus and the “particle."
Formally, the special basis depends only on the apparatus/environment interaction
Hamiltonian Hig, not on the particle/apparatus interaction Hamiltonian Hyyeasurement-
Therefore, it doesn't matter how imperfect Hyeasurement iS-

But don't get the idea that Zurek's basis selection rule suffers from no problems.
Zurek does not specify when the relative-state "branching" occurs, i.e., at what time the
pointer reading acquires a definite value (relative to its branch). Since the gnvironment
interacts with the apparatus before, during, and after the measurement, it's not clear when
the measurement ends, so to speak. To address this difficulty, Zurek and colleagues
must look beyond Hjpt.



Elby Chapter 4: Decoherence & modal interpretations 176

Before continuing, it's worth pointing out that, at least in certain crucial idealized
cases of decoherence, the pointer basis picked out by Zurek's rule is precisely the basis
asymptotically approached by the modal (biorthogonal) rule. For instance, in the
standard “particle in a harmonic-oscillator heat bath” example, the interaction
Hamiltonian is a function of (and therefore commutes with) the particle’s position
operator. Hence, Zurek’s rule selects position as the preferred basis. What about the
modal basis-selection rule? The biorthogonal decomposition of the particle-plus-heat-
bath picks out a particle operator that asymptotically approaches the position operator.
Roughly put, modal interpreters assign a definite value to a physical quantity “very
close” to particle position.

At least in some cases, Zurek and the modal interpreters agree about what basis gets
selected.?* The only difference is that Zurek's interpretation picks out the expected
pointer-reading basis at all times, whereas the modal interpretation at finite times picks
out a basis very close to the pointer-reading basis. So, as mentioned above, Zurek's
basis-selection rule solves the imperfect measurement problem. But the modal
interpretation still suffers from the problem, unless you think that “close is good
enough.” Again, I'll discuss the "closeness" question more carefully in section 4.4
below.

When the system of interest is macroscopic, the pointer basis picked out by both
interpretations usually corresponds to states of highly-localized position. Or at least,
that’s the hope.

(Of course, the modal interpretation also picks out a basis before decoherence kicks

in, and also picks out a basis in situations where decoherence doesn't happen or happens

N\

24n Elby (1994), I suggested that modal interpreters consider adopting Zurek's basis
selection rule.
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very slowly. Zurek's has nothing to say about those cases, opening his interpretation up
to a charge of "incompleteness.")

We now see that, in many crucial cases, the major difference between Zurek's
(relative-state) interpretation and the modal interpretation is metaphysical, not technical.
Remember, in the modal interpretation, the "selected" observables take on definite values
that are controlled by an independent equation of motion. There'sjust one “branch" of
the universe, and a given definite-valued observable possesses just one of its many
possible values. By contrast, in relative state interpretations, all the different possible
values of an observable are actualized, in some sense, due to "branching"” of the

universe.

§4.3.3. Summary

Decoherence cannot help modal, relative-state, or many-world interpretations fend
off general metaphysical criticisms. The value of decoherence lies in its ability to pick
out a special basis. In the infinite-time limit, modal interpreters and Zurek agree about
what "pointer-reading” basis gets picks out. But as I'll discuss below, at finite times, the
biorthogonal decomposition picks out a basis close to pointer-reading basis.
Furthermore, there exist a nonzero-measure set of initial states such that the
biorthogonally-selected basis doesn't get very close to the pointer-reading basis until a
noticeable length of time has passed. So, in deciding whether the modal interpretation
solves the measurement problem, we must decide whether (i) "Close is good enough,"
and (ii) It's acceptable that in some cases, nothing even close to the pointer reading takes

on a definite value. In the next section, I'll press on exactly these questions.
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Section 4.4: Does the modal interpretation, with the help of

decoherence, solve the measurement problem?

NOTE TO READERS: A better version of the following argument can
be found in a paper by Bacciagaluppi, Elby, and Hemmo, (probably) in
the British Journal for the Philosophy of Science, 1996 or 1997.

44.1. INTRODUCTION

Taking into account decoherence between systems and their environments, we'll
explore how well “modal” interpretations address the measurement problem.

Our argument relies on teasing apart two strands of the measurement problem: the
objectification of pointer readings versus the objectification of observers’ beliefs about
pointer readings. An adequate solution to the measurement problem must explain why a
person, after looking at a pointer, perceives its reading as definite. Usually, interpreters
of quantum mechanics (QM) assume that if the pointer reading becomes definite, then

an observer “automatically” acquires the corresponding definite belief. In modal
interpretations, however, the definite values of observables at time t, play no role in

"choosing" which observables possess definite values at later time t;. The quantum state

alone selects which physical quantities receive definite values. Therefore, the
definiteness of a pointer reading does not guarantee that an observer acquires a definite
belief about its reading. Whether the person acquires a definite belief depends enfirely
on the biorthogonal decomposition of the overall quantum state in terms of her brain.
For this reason, the debate about whether modal interpretations pick out an

observable sufficiently “close" to the pointer reading partially misses the point. Even if
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the pointer reading is definite, a person might not acquire a definite belief about the
pointer reading, in which case the measurement problem remains unsolved.

We show that whether an observer acquires a definite "pointer-reading” belief
depends on matters of fact about brain neurophysics. Specifically, we pinpoint
necessary conditions that must be satisfied by the physical brain states underlying our
definite-belief states, in order for the modal interpretation to assign the observer a
definite belief. We then establish the plausibility of these conditions. Finally, we outline
what philosophical moves a modal interpreter must make to conclude that the pointer
possesses a definite position.

This paper advances two kinds of arguments: Direct arguments about the modal
interpretation, and methodological meta-arguments about the kinds of “tests” to which
we should subject interpretations of QM. Our direct arguments attempt to show that

«Definite pointer readings do not imply definite beliefs about pointer readings.

*Whether the modal interpretation solves the measurement problem depends on
how brains interact with their environment.

Human brains (and other conceivable conscious beings’ brains) probably satisfy
two necessary conditions needed for the modal interpretation to work.

*To assign ‘definite’ pointer positions, modal interpreters must make some
nontrivial yet palatable philosophical maneuvers.

Our controversial methodology insists on dragging mental states and physical brain
states into the discussion. Despite our lack of knowledge about the relationship between
the mental and the physical, a critical evaluation of an interpretation cannot ignore the
observer, even when the observer supposedly is not an integral part of the interpretation.
We hope to demonstrate the possibility of invoking brain and mental states to make

coherent arguments for and against an interpretation.



Elby Chapter 4: Decoherence & modal interpretations 180

44.2. NOTATION AND PRELIMINARY ASSUMPTIONS

Consider a spin-1/2 particle prepared in a superposition of eigenstates of S, the z-
component of spin. Denote these eigenstates IS,=+> and IS,=->, respectively. The
particle interacts with an apparatus designed to measure S,. Let.R denote the pointer-
reading observable, with eigenstates IR=+> and IR=->, respectively. After the
measurement, Diana looks at the pointer. More technically, Diana's brain interacts with
the apparatus, largely via the environment of photons. According to QM, the physical
state of her brain becomes entangled with the apparatus.

If we want QM to help explain why Diana acquires a definite pointer-reading belief,
then we must assume a connection between the mental and the physical. In particular,
we assume “‘supervenience’”: mental states supervene on physical states.

Some would say our reasoning shouldn’t get off the ground, precisely because the
relationship between mental and physical is obscure. But many compelling theories of
mind assume supervenience. If an interpretation of QM combined with those theories
of mind can help to explain our definite beliefs, then the QM interpretation and those
theories of mind receive new support. But if a QM interpretation along with
supervenience demonstrably cannot explain our post-observation beliefs, then adopting
that interpretation practically forces us to renounce supervenience. Unless we’re
convinced that supervenience fails, not merely skeptical about whether it holds, we
shouldn’t let an interpretation of QM make us renounce supervenience. For these
reasons, it’s worthwhile to explore whether an interpretation of QM, along with

supervenience, can explain why we acquire definite beliefs about pointer readings.
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Let ["up",n> denote a brain state corresponding to a “pointer-reading-is-up" belief
state. Since many different brain states may fit this description, the index n is needed.
Most likely, an uncountable infinity of brain states are "up" states. Our notation won't
try to capture this fact, because nothing rides on it. |

To define these brain states more carefully, we must consider the "eigenvector-
eigenvalue" link, according to which an observable Q possesses.a definite value if and
only if the system occupies an eigenstate of the corresponding operator Q. If the
eigenvector-eigenvalue link holds, and if Diana believes the pointer registered up, then
by definition her brain occupies state I"up”,n> for some n.25 Similarly for ["down",n>.
We do not assume a 1:1 correspondence between physical brain states and belief states.
For brevity, we'll often call I"up”,n> an "up" belief state, though it's really a physical state
underlying the an "up” belief.

Let [Ey4n> denote the state of the environment (ie., the rest of the universe)
corresponding to a particle/apparatus/brain in state IS,=+>®IR=+>®["up",n>. To see
what this means, suppose the particle initially occupies state Id>= ¢;IS,=+> + c,lS,=->.
Suppose the apparatus ideally measures the particle, but Diana "non-ideally" perceives
the pointer reading. In other words, when Diana looks at an apparatus in state IR=+>,
she has nonzero probability of perceiving the reading as down; and vice versa. Then the

universe ends up in state

€1118;=+>®R=+>®I"up", 1>®IE ;1> + 12IS,=+>8IR=+>8I"down",1>®IE ., ;>

ZStrictly speaking, I"up",n> might not refer solely to Diana's brain, which constantly
exchanges particles with the rest of Diana's body and with its immediate environment.
Rather, |"up”,n> refers to the state of Diana's brain, body, and perhaps the environment
with which she has recently interacted (other than the particle and the apparatus), when
Diana believes the pointer registered up.




Elby Chapter 4: Decoherence & modal interpretations 182

+ €911S,=>8IR=->®!"up",2>8IE_,2> + ¢23!S,=->®IR=->®I"down",2>®IE._»>

D

State (1) does not represent real life. We use it merely to illustrate notation, and to

bolster an argument presented in section 4 below.
44.3. TWO MEASUREMENT PROBLEMS

In this section, we tease apart two strands of the measurement problem: The
objectification of pointer readings, versus the objectification of belief states.

On most occasions, when Diana looks at the pointer, she perceives its reading as
definite, either up or down. But according to the eigenvector-eigenvalue link, a system
described by state (1) or any similarly-entangled state does not possess a definite
apparatus pointer reading. Similarly, if the eigenvector-eigenvalue link holds, we can't
say Diana has a definite "up" belief, because (1) isn't an eigenstate of any operator of the
form ¥ napml"up” ,n><"up",ml.

Some interpretations of QM, such as David Bohm's (see Bohm et al. 1987),
address the pointer-objectification problem; they explain why the pointer reading is
indeed definite. For example, according to Bohm, particles always have definite
positions, and hence pointers have definite centers of mass. Notice that Bohm
renounces the eigenvector-eigenvalue link.

Other interpretations attack the measurement problem by showing why our beliefs
about pointer readings become definite. According to such interpretations, the pointer
reading may be indefinite; but that's acceptable, provided we can explain why people

perceive pointers as having definite readings. Some versions of Everett's relative-state
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interpretation may fit under this umbrella; Albert and Loewer's (1988) many-minds
interpretation certainly does. Such interpretations attempt to solve only the belief-
objectification problem, not the pointer-objectification problem.

Critics of this approach argue as follows: If pointer readings aren't definite, but we
nonetheless perceive them to be definite, then nature is fooling us into believing
something untrue. In response, the belief-objectificationists argue that we can demand
only that an interpretation "save the phenomena" by showing why our beliefs behave as
they do.

We need not take a stand on whether explaining belief objectification is sufficient
for solving the measurement problem. But it's certainly necessary. To see why,
imagine an interpretation according to which a pointer possesses a definite reading, but
Diana’s brain--incapable of directly "perceiving" the pointer reading—ends up in an
"effective” physical state corresponding to a superposition of "up" and "down" belief.
Such an interpretation fails, because it cannot explain why Diana believes, with all her
heart, that she perceived an up pointer reading. (The fact that Diana sometimes isn't sure
does not affect the above argument, because on occasions when Diana is sure the pointer
registered up, the interpretation must account for her definite belief.)

This point sometimes gets forgotten. Interpreters of QM tend to take it for granted
that once the pointer-objectification problem is solved, the belief-objectification problem
takes care of itself. As the previous I;aragraph shows, however, definite pointer readings
alone do not entail definite pointer-reading beliefs, and hence do not constitute a full
solution to the measurement problem.

In sections 4.4.6 through 4.4.8, we show that modal interpretations teeter near the

edge of this trap, but probably don’t fall in.
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44.4 MODAL INTERPRETATION

To the set the stage for section 6, we now briefly review modal interpretations.
Whether these interpretations solve the belief-objectification problem depends on matters
of fact about brain neurophysics.

Although the modal interpretations of van Fraassen (1979, 1991), Kochen (1985),
Dieks (1989, 1994), and Healey (1989, 1995), differ in significant ways, they share
enough common elements for us to discuss them as a group. By "modal interpretation,”
we mean the common elements shared by Kochen, Dieks and Healey.26

Modal interpretations retain the linear dynamics of QM, but break the eigenvector-
eigenvalue link; an observable can possess a definite value even when the quantum state
isn't an eigenstate of the corresponding operator. To pick out which observables teceive
definite values, the modal interpretation relies on the biorthogonal decomposition

theorem. This theorem proves that any state vector describing two subsystems can, for

a certain choice of bases, be expanded in the simple "biorthogonal” form .c.|A>®IB.>,

where the {IA;>} and {IB;>} vectors are orthonormal, and are therefore eigenstates of

Hermitian operators A and B associated with subsystems 1 and 2, respectively.
Kochen, Healey, and Dieks assert that when X.c;|A.>®IB,> is the unique biorthogonal

decomposition of the quantum state with respect to subsystem 1 and 2, then A and B

both have definite values.?’ (Subsystem 2 can be the “rest of the universe.”) So, which

26yan Fraassen’s interpretation is developed along somewhat different metaphysical
lines.

27Some recent formulations of the modal interpretation let the unique spectral resolution
of the density operator describing a subsystem pick out the definite observables
associated with that subsystem. If the universe occupies a pure state, this basis
selection rule is equivalent to the biorthogonal basis selection rule.
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observables possess definite values is determined entirely by the quantum state.
According to Dieks and Healey, a separate set of dynamical laws control the stochastic
evolution of the definite values.

Let's apply this "basis-selection” rule to state (1). The pointer reading is definite if
that state can be written in the form IR=+>QI(;>+ IR=->8I(;>, where <{;I5;>=0. By
inspection, state (1) already takes that form: I{;>=IS,=+>®(c,,"up",1>8IE, ;1>
+cp,l"down”,1>®IE,,.;>) is orthogonal to Ig2>=1S;=->8(c,,I"up",2>®IE_;>
+C,,l"down",2>8IE_ 5>), because <S,=+S,=->=0. So, if measurements are ideal, then
the modal interpretation solves the pointer-objectification problem.

Does this mean the belief-objectification problem is also solved? Not necessarily.
Intuitively, we want to say that when Diana looks at the pointer, she directly perceives
the pointer's reading (when it’s definite). But according to modal interpretations, that
doesn't necessarily happen. When subsystems 1 and 2 interact, the definite values
associated with subsystem 1 do not determine which observables associated with
subsystem 2 become definite, or vice versa. The definite value associated with the
pointer does not directly "cause" Diana to acquire a definite belief about the pointer.
Whether Diana acquires a definite belief depends entirely on the biorthogonal
decomposition of the resulting quantum state with respect to her brain. Of course, if
Diana forms a definite belief, then the dynamics of the definite values can ensure with
high probébility that her belief mirrors the pointer's actual reading.

In state (1), the observer possesses a definite “up” or “down” belief if the four
environmental states are precisely orthogonal. But those states won’t be precisely
orthogonal. Indeed, if I"up”,1> and I"down",1> are not macroscopically distinct—for

instance, if memories are stored in atomic spins--then |E,,,;> and IE,, ;> won’t be




Elby Chapter 4: Decoherence & modal interpretations 186
even nearly orthogonal. In that case, the biorthogonal decomposition of state (1) with
Tespect to brain states almost certainly picks out states not even close to “up” and
“down” states, unless ¢y and cy; are tiny. We’re not claiming that memoriesare stored
in spins and that perceptions are highly imperfect. In fact, we argue below that because
brains satisfy certain (contingent) conditions, “up” and “down™ states do get selected in
almost all real-life observations. Nonetheless, our current point is this: In the modal
interpretation, the definiteness of the pointer reading does not entail the definiteness of
Diana’s belief about the pointer reading.28

Let us summarize the main points of this section.

Point 1: Whether the modal interpretation explains belief objectification depends on
matters of fact about brain neurophysics, i.e., on how brains interact with pointers and
with the environment. This conclusion continues to hold when we consider a realistic
pMcle/appMs/brain/environment state.

Point 2: Point 1 holds even though state (1) assigns the pointer a definite reading.
Therefore, it's possible for the modal interpretation to solve the pointer-objectification
problem without solving the belief-objectification problem. The modal interpretation
illustrates our general point that definite pointer readings alone do not entail definite
pointer-reading beliefs, and hence do not constitute a full solution to the measurement
problem. (Notably, this conclusion applies also to Bub's (1992) modal theory, which
ascribes a priori definite readings to pointers.) '

For this reason, the ongoing debate about whether modal interpretations assign a

definite value to an observable "sufficiently close" to the pointer reading misses a crucial

28This conclusion, you can quickly convince yourself, applies equally well to essentially
all interpretations that attempt to solve both the belief-objectification and the pointer-
objectification problems.
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point By parrying the "imperfect measurement” challenge posed by Albert and Loewer
(1990) and by Elby (1993), modal interpreters can establish orly that the modal
interpretation adequately addresses the pointer-objectification problem. - And-that's not

good enough.

4.4.5. IMPERFECT MEASUREMENTS AND PERCEPTIONS

So far, we've established that the modal interpretation might explain pointer
objectification without also explaining belief objectification. To pursue these issues, we
must write down the actual (non-idealized) post-measurement, post-perception quantum
state of the particle/apparatus/person/environment.

First, we’ll briefly reiterate Elby’s (1993) argument that wavefunction tails and
inevitable environmental "fluctuations” prevent the pointer-reading from becoming
perfectly correlated with the particle's z-component of spin. Then, we’ll argue that
Diana's perceptions are imperfect, for the same reasons. As a result, her "up" and
"down" belief states do not become perfectly correlated with up and down pointer
readings. Finally, taking into account these imperfections, we’ll write down the overall
quantum state. It's ugly.

Imperfect measurements. QM implies that measurements of some observables are
non-ideal, no matter how well we design our equipment. To see why, imagine a
standard Stern-Gerlach experiment; a spin-1/2 particle passing between two magnets
gets deflected up or down (roughly speaking). Two separate "photographic" plates, one
in the up path, the other in the down path, await the particle. The particle hits one of the

two plates and produces a dot.
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According to Schrodinger's equation, even if the particle was initially localized
within a bounded volume, its wavefunction immediately “spreads out" so as to cover all
space. (Even in relativistic QM, the wav.efunction spreads over the whole forward light
cone.) Therefore, an initially spin-up particle has non-zero probability of hitting the
"down" plate, because the tail of the up-deflected wavefunction reaches the down plate.
Imperfect measurements also result from environmental fluctuations, according to
QM. Suppose the particle “reaches" the up plate. It might produce no dot, because it
has a nonzero probability of tunneling through the plate or embedding itself without
producing a dot. Also, stray particles hitting the down plate have nonzero probability of
producing a dot. Of course, these "fluctuation" probabilities are ridiculousiy small.
Nonetheless, environmental fluctuations guarantee that upon measuring a spin-up
particle, we may end up with a dot only on the down plate.
In brief, due to wavefunction tails and environmental fluctuations, the post-

measurement state of the particle/apparatus/environment system is

C11/S;=+>®R=4+>QIE ;> + ¢11iS,=+>®IR=->QIE, >

+ C211S;=->®IR=4+>®IE_,> + ¢3IS,=->80IR=->®IE_>, )

where c33 and ¢y; are small but nonzero. Actually, c¢j5 and cp; can be large for poorly
designed or broken measuring devices. The environmental states corresponding to
different pointer readings are very nearly, but not exactly, orthogonal.

Imperfect perceptions. What happens when Diana looks at the pointer? Her eyes
interact with photons, some of which previously interacted with the apparatus.
According to QM, this (mediated) interaction yields imperfect correlations between the

pointer reading and Diana's perception thereof, for the reasons just discussed.
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For instance, suppose Diana observes a pointer in state IR=+>. The photons
streaming into her eyes from the pointer have small but nonzero probability of failing to
"activate" the appropriate receptors on her retina. Similarly, thermal fluctuations could
cause certain nerve cells to fire so as to "simulate" seeing a down pointer. Again, QM
assigns an infinitesimal but nonzero probability to this eventuality. So, Diana has
nonzero probability of acquiring a "down" belief state after observing an up pointer. Her
perceptions are imperfect.

Now actually, when Diana "misperceives" an up pointer, she might not acquire a
“"down" belief. She might acquire no belief at all, or might end up in a superposition of
these possibilities. To capture these options, let I~"up",n> denote a brain state that isn't
an "up" state. Keep in mind that I~"up”,n> does not always correspond to believing the
pointer is "not up.” It corresponds to not believing the pointer is "up." So, the "down"
states are only a subset of the I~"up",n> states.

Of course, so-called "psychological" factors may contribute far more to Diana's
imperfect perceptions. A critic could say that, if such psychological factors exist, then
Diana’s brain does not occupy a proper "ready state" to "measure” the pointer reading.
We've just shown that according to QM, no matter how "ready" Diana is to perceive
accurately, she will sometimes err. Nonetheless, our everyday experiences strongly
suggest that perceptions work well over a broad range of “initial” brain states. Diana’s
brain need not occupy one particular ready state to perceive the pointer with high
accuracy. Almost ahy of the brain states corresponding to “paying close attention to the
pointer” will do.

Because of perceptual imperfection, when Diana looks at the

particle/apparatus/environment described by state (2), the system evolves into
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C1111S:=+>8R=+>8!"up", 1>®IE 11> + €112IS;=+>8R=+>®|~"up", 1>®IE ., ;>

+ €121 1S,=+>®IR=->8|~"down",2>®IE.._;2> + ¢12IS,=+>@IR=->0!"down",2>8|E, . ,>
+ €2111S=->8IR=+>8!"up",3>8IE_ 3> + c319IS,=->@IR=+>®I~"up",3>QIE_, 3>

+ €2211S,=->@R=->®I~"down" ,4>RIE_.4> + C223IS,=->®IR=->Q!"down",4>®IE__4>.

©))

The coefficients corresponding to "rrﬁspercebtions," such as ¢332 and c;7;, are extremely
small. The coefficients corresponding to "mismeasurements" but not misperceptions,
such as ¢j22 and c¢3;1, could be small or large, depending on the sloppiness of the
measurement. See Elby (1994) and especially Bacciagaluppi and Hemmo (1994, 1995)
for some of the technical details leading to state (3). Crucially, two “different” brain
states are very close if they correspond to particle/apparatus states that differ only in the
spin of the particle. For instance, consider the ¢y11 and c»1; terms. Because some of the
photons that interact with the spin-1/2 particle eventually reach the observer, the
observer’s brain state "depends" on the particle’s spin. But this dependence is
negligible. Formally, <"up",11"up",3>=1.
At this point; we’ve written the non-idealized, post-measurement, post-perception .

state of the whole system. Now we can use this state to explore whether the modal
interpretation solves the belief-objectification problem and the pointer-objectification

problem.

44.6. ARE BELIEF STATES DEFINITE?

In this section, we'll argue as strongly as possible that state (3) does not assign

Diana a definite "up" or "down" belief state, according to the modal interpretation. (In
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sections 7 and 8. well argue the other side.) Before advancing these arguments,
however, we must explore some characteristics of belief states in the context of the
orthodox interpretation. -

Assume the eigenvector-eigenvalue rule holds. We’ve defined the I"up",i> states as
follows: If Diana believes that the pointer reading is up, then the quantum mechanical
state of her brain is "up",n> for some n.

Suppose Diana's brain occupies a superposition of "up" states, ;g;l"up”,i>. Does
she believe the pointer registered up? Not necessarily. A superposition of "up" states
necessarily equals another "up” state just in case a Hermitian operator corresponds to
"up" belief, ie., just in case a projection operator P, exists with the property

P "up",i>=I"up",i> forall i.

o
Now suppose Diana’s brain occupies state g;l"up”,1>+h;l~"up",1>, where h, is
tiny. In words, Diana's brain occupies a state very close to a definite "up” étate. Does
Diana believe the pointer registered up? If she does, then her brain occupies state
I"up”,n> for some n#1, because by definition, if she believes the pointer reading was up,
then she occupies an “up” brain state. That is, Diana perceives the pointer as "up" only
if g1l"up",1>+h;l"down",1>=I"up",n> for some n. In other words, when we say
gil"up”,1>+h;"down",1> is sufficiently close to a definite "up" belief state, we're really
saying that g;"up",1>+h;["down",1> is a definite "up" belief state. Put another way, if
Diana can't distinguish between her beliefs when her brain occupies ["up",1> versus
when her brain occupies gjl"up”,1>+h;l"down",1>, then g;l"up"”,1>+h;|"down",1> is
just as definitt an “"wp" belief state as ["up",1> is, and hence
g1l"up”,1>+h;1"down",1>=I"up",n> for some n=1.
Now for the punch line. Suppose Diana’'s brain occupies state

2igil"up",i>+X;h;l~"up”,i>, where all the h; and most of the g; coefficients are tiny
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(though not strictly 0). Does Diana believe the pointer registered up? By the argument
of last paragraph, only if 3;g;l"up",i>+X;h;l~"up",i>= ["up",n> for some n. To explore
whether this equality holds, we must consider two cases.

Case 1: No Py, operator exists. Therefore, the superposition X;g;i"up”,i> is not
necessarily an "up" state. Therefore, 3;g;l"up",i>+2:h;l~"up”,i> is not necessarily an
"up" state, even if the h;'s vanish entirely.

Case 2: A Py operator exists, and hence the "up” states live in a closed subspace.
But then, 3;g;1"up",i>+>;h;l~""up”,i> does not inhabit the "up" subspace, no matter how
small 3;Ih;12 is, provided it's nonzero. Therefore, X;g;l"up",i>+2h;l~"up”,i> does not
equal |"up”,n> for any n; Diana does not believe the pointer registered up.

We've just shown that whether or not a Hermitian operator corresponds to "up"
belief, Y;g;|"up"”,i>+;h;l~"up”,i> is not necessarily a definite "up" belief state, no
matter how small X;Ih;l2 is.

Why is this .relevant to the modal interpretation? ‘When we biorthogonally
decompose state (3) with respect to Diana’s brain, the "selected" obser\;ables have
eigenstates of the form Yigil"up",i>+2h;l~"up”,i> and
sgil"down",i>+2;h;l~"down”,i>, where lg;l=1 for one i, and all the other coefficients
are small (though nonzero).?® As just shown, this state of affairs does not necessarily
correspond to Diana's having a definite "up" belief or "down" belief (or "unsure" belief).

Therefore, the modal interpretation might not solve the belief-objectification problem.

4.4.7. RESCUING DEFINITE BELIEFS: CLOSENESS

298 tates of the form Xgjl"?",i>+Xhjl~"?",i> also get picked out, where 1"?",i>
corresponds to a mental state of being unsure. This doesn't affect our argument.

o e g
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But all is not lost. Section 6 focuses us on some characteristics that brains must

possess in order for the biorthogonal decomposition to pick out "up" and "down" (and

"unsure") beliefs. In this section, we discuss why the biorthogonally selected brain

states are extremely close to definite “up” and “down” belief states. Then, in section 8,
we show why “close” is probably good enough to explain our definite beliefs.

As just noted, when state (3) is decomposed, "effective” brain states of the form

Zigil"up",i>+zihil~"up",i> (*)

or the analogous “quasi-down” states get picked out, where (say) lg;! is close to one, and
all other coefficients are close to zero. By "effective” state, we mean the state that
corresponds to a definite possessed property, according to the interpretation under

consideration. The modal interpretation uses biorthogonal decompositions to choose

effective states. The more closely Ig;l approaches one, the “closer” state (*) is to a

definite “up” state, namely "up”,1>. How closely Ig;! approaches one depends on two

factors:

(@) How well brain states become correlated with the corresponding pointer-reading
states; and

(b) To what extent the brain’s “environment,” such as thermal degrees of freedom,
brings about decoherence between the various “up” and “down” belief states

superposed in state (3).30

30The “very close” brain states, such as I’up”,1> and I"up”,3>, need not decohere for
factor (b) to “work.” Which is good, because “close” states can’t decohere.
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At first glance, factor (a) might seem to downplay the role of the environment. For
suppose that (nearly) orthogonal brain states become extremely well correlated with
* orthogonal pointer-reading states. In other words, suppose our perceptions are-excellent.
Then, even if the environmental states in (35 were highly non-orthogonal, the relevant
biorthogonal decompositions would pick out apparatus states extremely close to pointer-
reading eigenstates, and brain states of the form (*) with Igyl extremely close to one. So,
if observers have excellent perceptions, then environmental decoherence seems to play
no role in ensuring that the apparatus and brain effective states are extremely close to the
ones we want. This conclusion violates an emerging orthodoxy about the importance of
the environment.
A closer examination, however, reveals the orthodoxy not to be threatened by factor
(a). Recall that the environment mediates the interaction between the pointer and Diana’s
brain. To see why that mediated interaction “needs™ decoherence, let lup photons> and
idown photons>’denote the state of the photons reaching Diana's eyes from an up pointer
and down pointer, respectively. Suppose that lup photons> becomes extremely well
correlated with "up” belief. Then, since the relevant interaction Hamiltonians are linear,

it follows that the "misperception” terms
l..>®R=->®!"up",i>qL...>
have total "probability"

I<up photons | down photons>[2.

e ——— et Sp—toiern =
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In other words, the squares of the coefficients of the l..>®R=->®["up",i>®l...> terms
add up to this "probability” value.3! Therefore, if the up and down photon states aren't
nearly orthogonal, then Diana's beliefs become poorly correlated with the pointer
reading.

This argument proves that beliefs become well correlated with pointer readings only
to the extent that the corresponding environmental states are neatly orthogonal--that is,
only to the extent that the environment decoheres the pointer-reading eigenstates.
Indeed, decoherence must "work" so well that near-orthogonality applies even to small
spatial regions of the environment. So, decoherence plays a key role in guaranteeing
closeness.

Of course, lup photons> doesn't always lead to "up" beliefs, for the quantum
mechanical reasons discussed above. But because our eyes receive billions of photons
from pointers, not all of those photons need to be “perceived” properly in order for our
eyes to form the right image. Neurons are “well-designed” and macroscopic. The odds
are infinitesimal that enough neurons will misfire so as to misread the pointer. In brief,
environmental decoherence, when combined with the macroscopic, redundant nature of
our visual systems, ensures that perception states (and presumably, the corresponding
belief states®2) become extremely well correlated with pointer-reading states.

For this reason, factor (a) is all that’s needed to ensure that Diana acquires a definite
belief. Factor (b), by contrast, is needed to ensure that definite belief states are “stable.”
For suppose that brain/environment decoherence picked out a new basis not close to

“up” and “down” states. Then, soon after Diana observes the pointer, the biorthogonal

31In state (3), the I..>®IR=->@I"up",i>®\...> terms are "built into" the
l...>®R=->QI~"down",i>®|...> terms.

#We must assume that when the visual cortex forms a representation of an up pointer,
and Diana is "paying attention” to this image, then she almost always acquires an "up"
belief.
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decomposition of the particle/apparatus/brain/environment with respect to Diana’s brain
would select those new states, not the definite belief states. In other words, decoherence
would "knock" her brain from an "up" or "down" effective belief state into a new
effective state. But empirically, we know that beliefs persist far longer than the
“decoherence time.” For this reason, the modal interpretation can solve the belief-

objeé:tiﬁcation problem only if the Belief Stability Condition holds:

Belief Stability Condition: Brain/environment decoherence picks out (states very close

to) definite belief states.

This condition, we must emphasize, does not follow from the modal interpretation.
Rather, it’s an empirical hypothesis about brains, the falsehood of which would doom
the modal interpretation. We’ll briefly discuss two reasons for affirming this condition.
First, even though neuroscientists don’t understand the details of memory
formation and storage, they strongly suspect that the spatial distribution of chemical
compounds plays a key role. Roughly put, memories are probably “stored” not in the
spins or energy states of molecules, but in their positions. If “up” versus “down”
memories indeed correspond to billions of molecules occupying even slightly different
positions, then thermal-bath decoherence alone would probably ensure the stability of
those memories. Of course, no has proven that thermal-bath decoherence in a
complicated potential picks out a basis close to the position basis; but this assumption
seems reasonable, given the decoherence results to date. In brief, preliminary data from
neuroscience and from decoherence theory suggest (but do not prove) that the Belief

Stability Condition holds.
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Second, if this condition fails, then it’s hard to see how any interpretation of QM--
except explicitly dualistic ones--can account for the stability of our beliefs. You can
confirm that if the Belief Stability Condition fails, then Bohm’s theory, relative-state
interpretations, and collapse models run into trouble. If this condition fails, then
brain/environment decoherence would not prevent quantum interference between
different belief states, precisely the kind of interference we never seem to “experience.”
In this section, we argued that except in rare pathological cases of near-degeneracy,
the modal interpretation picks out brain states of the form (¥) that are extremely close to
definite “up” and “down” states.33 Pointer/environment decoherence ensures that the
photons reaching Diana’s eyes from an up pointer are sufficiently “orthogonal” to
photons reaching her eyes from a down pointer that her perception becomes well
correlated with the pointer reading. But brain/environment decoherence entails that those
beliefs persist only if the Belief Stability Condition holds. As just discussed, we have
independent reasons for thinking it does.

4.4.8. IS ‘CLOSE’ GOOD ENOUGH FOR BELIEFS?

For easy reference, we'll rewrite the effective state (*¥) picked out by the modal

interpretation:

Zigll "up",i> +Eihil~"up"’i>, (*)

33If we consider measurements of continuous variables, then things get more
complicated. Then the g's become a probability density, g(i), with i a continuous
parameter. This probability density is sharply peaked. In other words, the only "up"
states appearing with non-negligible probability density in (*) are all very close to each
other. (Recall that two states are close if their inner product is nearly 1.)




Elby Chapter 4: Decoherence & modal interpretations - 198
where (say) Ig;l=1, and all other coefficients are close to zero. As emphasized in section
6, this state corresponds to a definite “up” belief only if (*)= ["up”,n> for some n=l.

Now, we want Diana to acquire a definite belief no matter what pre-measurement state

the particle occupies. Therefore, since the particle’s initial state partly “controls” the g;'s
and h;'s in (*), that state had better be a definite "up" state over a broad range of g;'s and

h;'s such that one Ig;l is close to one. That is, the modal interpretation can solve the

belief-objectification problem only if the Belief Imperturbability Condition holds:

Belief Imperturbability Condition: "Many" of the states very close to |"up",i> must

themselves be "up" states.

Like the Belief Stability Condition, the Belief Imperturbability Condition does not
follow from general formal considerations or from the modal interpretation. It’s another
empirical hypothesis‘ that must be satisfied, or else the modal interpretation cannot
explain belief objectification.

Some philosophers would argue that the adequacy of a solution to the measurement -
‘problem should not depend so crucially on contingent facts about brain architecture. We
agree that if an interpretation depends on delicate and peculiar facts about human
neurophysiology, then we have grounds for complaint. But if the Imperturbability
Condition holds for any conscious being likely to evolve (or get builf), then smart
lizards, artificially-intelligent computers, and Martians could all agree that the modal
interpretation fares well.

Our everyday experiences give us ample reason to affirm this condition. For
suppose Diana looks at the pointer reading and then accidentally bumps her head. If she

bumps it hard enough, she will forget what she observed. So, a head-bump disturbs the
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“aspect” of Diana’s effective brain state on which definite pointer-reading beliefs
supervene. (Although cognitive science has no idea what “aspect” means, our argument
applies to most conceivable senses of “aspect,” including “degrees of freedom™) Now
suppose Diana bumps her head softly. Presumably, she thereby disturbs the relevant
“aspect” of her effective brain state, though less severely. More formally, the effective
brain state picked out by the biorthogonal decomposition presumably gets knocked into
a nearby state. But after soft head-bumps, Diana almost always retains (remembers)
her old pointer-reading belief. Similar arguments apply to most other conscious beings,
because they too could not avoid occasional bumps. These considerations strongly
suggest that the Belief Imperturbability Condition holds. By the way, many other
interpretations of QM may rest on this condition, too.

At first glance, the Belief Imperturbability Condition seems dispensable for modal
interpreters, provided the Belief Stability Condition holds. Here’s the reasoning, put
roughly: Even if a head-bump knocks Diana out of an "up" effective brain state,
decoherence quickly knocks her back into a definite-belief effective brain state, before
she notices the disturbance. And the dynamics of the possessed values can ensure that,
with high probability, she ends up with the same belief she held initially. To see the flaw
in this argument, let Ipre> and Ipost> denote the effective brain state picked out by the
biorthogonal decomposition and by the dynamics of the possessed values immediately
before and immediately after the head-bump. The above argument implicitly assumes
that only Ipre>, but not Ipost>, is part of the basis picked out by decoherence. We have
no reason to assume this. Perhaps Ipre> and Ipost> are degenerate basis vectors selected
by decoherence.

To summarize: We’ve now spelled out the Belief Stability and Belief
Imperturbability Conditions. Although they seem similar or redundant, these conditions
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are logically independent. If either of them fails, the modal interpretation can’t solve the
belief objectification ﬁroblem.34 But we have independent reasons to affirm both these
conditions. In this sense, the modal interpretation passes a crucial “test” regarding its

ability to solve the measurement problem.
44.9. CONCLUSION

This paper teased apart two strands of the measuren';ent problem, the pointer-
objectification problem and the belief-objectification problem. Many interpreters of QM
take it for granted that a solution to the pointer-objectification problem automatically
addresses the belief-objectification problem as well. But this isn't true in the modal
interpretation, because a brain does not directly perceive the actual value of the pointer
reading. Whether the observer acquires a definite belief depends entirely on the
biorthogonal decomposition of the state resulting from the quantum mechanical
interaction between the brain, pointer, and environment. If the quantum state “gives” the
observer a definite belief, then the dynamics of the possessed values can ensure that she
almost certainly acquires the “correct” belief.

Because measuring devices don't ideally measure particles, and brains don't ideally
"measure" pointer readings, the final quantum state of the
particle/apparatus/brain/environment system is a mess, state (3). The modal
interpretation, applied to state (3), assigns a definite value to an observable whose
eigenstates take the form X;g;l"up",i>+>;h;l~"up",i> (or the “down” analog), where

Igil=1 for one i and all other coefficients are nearly zero. This state of affairs corresponds

34 Actually, as just implied, Belief Imperturbability could fail provided most accessible
Ipost> states are not part of the decoherence basis.




Elby Chapter 4: Decoherence & modal interpretations 201
to a definite "up"” or "down" belief state only if most brain states very close to an “up”
state are themselves “up” states. But the persistence of our beliefs in the face of brain-
jostling strongly suggests that this imperturbability condition holds. Furthermore, by
arguing that an object’s macroscopic “position” supervenes on an object’s physical state
but does not correspond 1:1 to the quantum mechanical position operator, we can make
sense of the claim that the pointer has a definite position when an observable “close” to
the pointer reading is definite. Overall, the modal interpretation appears to fare well with

respect to both pointer and belief objectification.
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Section 4.5: Holism in the modal interpretation

In my previous chapters, I've used no-go results to argue that nature incorporates a
kind of holism. But I've been sketchy about what "holism" is and what philosophical
work it does. In this section, I'll show in exactly what sense "holism" gets incorporated
into the modal interpretation. Since the modal interpretation is viable, and since other
viable interpretations (such as Bohm's) also incorporate a kind of holism, this discussion
could shed some (perhaps veiled) light on how holism is a feature of the world.

My philosophical points will closely follow those of Healey (1994). But my
discussion will clear up some technical oversimplifications that plague Healey's

presentation.

§4.5.1. Singlet-state: Before measurement

Continue to consider two spin-1/2 particles in their singlet state. Particle 1 passes
through a z-aligned Stern-Gerlach magnet and gets deflected up or down. It eventually
hits a "photographic" plate in the “up" or "down" path. All of this happens before
particle 2 gets measured.

_If particle 1 is measured to have spin up, particle 2 now has (conditional) probability
unity of yielding spin down. Therefore, according to EPR's necessary condition for an
"element of reality," there exists an element of reality corresponding to the definite z-spin
of particle 2. If quantum mechanics is "complete,"” that element of reality didn't exist
until particle 1 was measured. Therefore, according to EPR, an element of reality
associated with particle 2 was nonlocally created by measuring particle 1. And this

nonlocality is metaphysically unacceptable.
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The modal interpretation addresses this "paradox™ as follows. As we'll see, an
element of reality corresponding to the z-spin of particle 2 is indeed created when particle
1 gets measured. But that element of reality is not a property of particle 2. Rather, it's a
holistic property of the two-particle system. Measuring particle 1 doesn't create an
element of reality associated with a separate, aistant system. Rather, it creates an
element of reality associated with an "extended” system of which particle 1 is a "part.”
The nonlocal connection between particles 1 and 2 is a holistic nonseparability, not a
superluminal signal or other classically “causal" agent.35

To see how this holistic interpretation of Bell-nonlocality follows from the modal
interpretation, first consider the particles before particle 1 reaches the magnet. Their state
is Isinglet>=2-112{|S ,=+>®IS,=->; - 1S,=->1®IS,=+>;}. Since this biorthogonal
decomposition isn't unique, no nondegenerate observable associated with either particle
takes on a definite value. In other words, neither particle kas a definite spin component
in any direction. But the two-particle system as a whole possesses a definite "spin-
correlation” property Pisingler> corresponding to the Hermitian operator Pisingler>=
Isinglet><singletl. This property encodes the perfect spin anticorrelations between the
two particles. And crucially, this spin-anticorrelation property Pisingler- doesn't “pick
out" any direction. The particles' spins are anticorrelated not only in the z-direction, but
also in the x-direction, y-direction, and so on.

I can't overemphasize the fact that Pisinglet> s a holistic property, by which I mean it
can't be reduced to (or "built up from") the properties of the individual particles. In
philosopher’s lingo, the property of the whole does not supervene on the properties of its
parts. This departs radically from the reductionistic metaphysics of classical physics. In

a Newtonian universe, a two-particle system has zero net angular momentum because

35Tl address causation more carefully in chapter 5.
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the two individual particles have no angular momentum, or because the particles have
equal and opposite angular momenta.

Now consider the particles after particle 1 has passed through the Stern-Gerlach
magnet, but before it reaches a photographic plate. This is the "intermediate" stage of the
measurement process. Let lgyp> and l¢gown> denote the spatial wavefunction of particle
1 when it gets deflected up and down, respectively. The “intermediate” state of the

system is
lintermediate> = 2-1/2{lSz=+>1®lSz=->2®I¢up> - IS;=->18IS,;=+>2®dpgown>}-

To find the definite properties associated with each subsystem, we must look at the
relevant biorthogonal decompositions. Well, with respect to the spin of particle 1,
lintermediate> is biorthogonally decomposed. (That's because IS;=->5®lp> is
orthogonal to ISZ=+>2®I¢d°Qn>, since opposite spin states are orthogonal.) But the
decomposition isn't unique, because the expansion coefficients are degenerate: ¢j=cp=2-
12, So, particle 1 still doesn't have a definite spin component in any direction. By
similar reasoning, the same goes for particle 2.

But things get more interesting when we take as our "subsystem of interest" the
spin characteristics of the two-particle system as a whole. lintermediafe> is not
biorthogonally decomposed with respect to that subsystem. Here's why: A
biorthogonal decomposition takes the form Y;c;lA;>®IB;>, where IA;> are orthogonal
states describing the subsystem of interest, and [B;> are orthogonal states describing
everything else. Since the subsystem of interest is the spin-characteristics of the two-
particle system, the |A;> states are IS,;=+>;®IS,=->; and IS,=->®IS,=+>, which are

indeed orthogonal. But the [B;> states, lgy,> and lggown>, are not orthogonal, because of
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their overlapping wavefunction tails, as discussed in section 4.2 above. So,
lintermediate> is not biorthogonally decomposed with respect to the subsystem of
interest. To find the definite-valued observable associated with this subsystem; we must
re-write lintermediate> in terms of a new, biorthogonal basis. (By the biorthogonal
decomposition theorem, such a basis exists.) Since loup> and gown> are nearly

orthogonal, the biorthogonal decomposition takes this form:

lintermediate> = dilA1>®l0'yp> +  dalAg>®l down>.26

Since we're "close to a degeneracy"--i.e., since Id;| and Id,| are almost equal, or perhaps
exactly equal--IA;> will not in general be close to IS,=+>18IS,=>,. However, IA;>

and |A,>will always take the form

IA;> = cos 8 IS,=+>1®IS,=->, + sin 6 IS;=->1®IS,;=+>

[A2> = sin 0 IS,=+>1®IS,=->, + cos 6 1S;=+>1®IS,=->,

for some angle 6. Mathematically speaking, the two-particle spin states picked out by
the biorthogonal decomposition lie in the subspace of Hilbert space spanned by
IS;=+>1®IS,=->3 and IS,=->1®IS,=+>,. Physically speaking, we know this has to be
the case, or else the particles would have nonzero probability of yielding the same
outcomes (i.e., two ups or two downs) upon measurement of their z-spins.

If Id;! 5 Idyl, the biorthogonal decomposition of lintermediate> is unique. Where
does this leave us? Formally, there exists a Hermitian operator A of which 1A;> and

IAo> are eigenstates. According to the modal interpretation, the observable A

36This does not mean that IA;>= IS;=+>;®IS,=->, for some direction n that's very close
to z. In general, A;> and 1A2> will be entangled states.
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corresponding to A has a definite value. As just noted, the property of A-definiteness
encodes, among other things, a perfect anticorrelation between the particles’ z-
components of spin. .And A-definiteness is a holistic property, in the sense diseussed
above. The particles "have" a z-spin anticorrelation even though neither individual
particle has a definite z-component of spin.

If ldl = dy), then lintermediate> is a non-unique biorthogonal decomposition with
respect to the subsystem under consideration, the spin characteristics of the two-particle
system. Healey’s modal interpretation would pick out as definite a degenerate
observable A, where A is a projector onto the subspace spanned by I$z=+>1®ISz=>2
and [S,=>1®IS,=+>,. So, that degenerate A would encode the same holistic property of
z-spin-anticorrelation just discussed.

Let me summarize the results so far. Initially, and also in the intermediate stage,
neither particle has a definite z-component of spin. Before particle 1 passes through the
magnet, the two-particle system has a definite value for Pisipgler>, Which corresponds to
perfect spin anticorrelations in all directions. By contrast, after particle 1 traverses the
magnet, the two-particle system no longer has a definite value of Pigngler. Instead, it
has a definite value of A, which corresponds to a perfect spin anticorrelation in the z-
direction only. This modal value assignment reflects the fact that, if we measure the n-
spins of both particles after particle 1 passes the z-aligned magnet, we won't always get

opposite outcomes, unless n=z.

§4.5.2. Singlet-state: After measurement
Now I'll explore what properties become definite after particle 1 strikes one of the
photographic plates. To do so, I must first write the updated quantum state. The

particle's spin gets "disturbed” when it interacts with the electrons and other particles
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comprising the plate. In quantum mechanical terms, this means that the spin of particle
1 becomes entangled with the spin (and orbital) angular momentum of the particles in
the plate. To capture this fact, I'll write the final state of the photographic plates-and their
environment as IR=up,ij>, where "i" denotes the z-spin of particle 1 before striking the
plate, and "j* denotes the z-spin of particle 1 affer interacting with the plate. So for
instance, IR=up,+> denotes the final state of the plates (and their environment) when
particle 1, initially in state IS,=+>, leaves a dot on the "up" plate and has its spin
“flipped" to IS;=->. Similarly, IR=down,++> denotes the case where particle 1, despite
having initial z-spin up, nonetheless strikes the down plate (due to the spatial
wavefunction tail of l¢,;>) and does not have its spin flipped. Notice that I'm "building
the environment" into these states, instead of writing the environmental states separately.

Let's think about the difference between IR=up,++> and [R=up,+>. In both cases,
particle 1 leaves a dot on the "correct” plate, by which I mean the plate corresponding to
the pre-measurement spin of particle 1. The only difference between these two states is
whether the plate "flips" the spin of particle 1. This depends on microscc;pic interactions
between particle 1 and the plate particles. So, we expect that [R=up,++> and [R=up,+>
differ microscopically but not macroscopically. Nonetheless, [R=up,++> and R=up,+->
are orthogonal, because they correspond to states of different angular momentum. To
see why, suppose a z-spin-up particle hits the upper plate. (In this mini-experiment,
there's no particle 2.) Then the final state of the universe is a superposition of
[R=up,++>®IS,=+> and IR=up,+>®IS,=->. Because angular momentum is conserved
during the interaction, these two branches of the superposition must have the same
angular momentum. Since IS,;=+> and IS,=-> differ in angular momentum by X, so

must [IR=up,++> and [R=up,+>. For instance, if the plate before the interaction had total
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angular momentum O, then IR=up,++> must have angular momentum 0, while
[R=up,+> must have angular momentum +.

By contrast, [R=up,++> and [R=up,~> are not necessarily orthogonal. Remember,
[R=up,—> is the plates’ state when an initially down particle "mistakenly" hits the up
plate, and doesn't have its spin flipped. And IR=up,++> is the plates' state when an
initially up particle “correctly” hits the up plate, and doesn't have its spin flipped. So, for
both IR=up,++> and IR=up,-->, the plate's total angular momentum is unchanged during
the interaction.

Il now return to the two-particle EPR-type experiment discussed above, and write
the state of the universe after particle 1 hits one of the plates, but before particle 2
interacts with anything. I'll use boldface coefficients to indicate "big" terms. The other
terms are tiny, because they stem from wavefunction tails (e.g., an initially up particle

hitting the down plate):

ifinal>=  IS;=->3{c31]R=up,++>8®|S;=+>1 + ¢12|R=up,+->8|S,=->1
+ djj!R=down,++>®IS,=+>; + dj2lR=down,+->®IS,=->;}
+ ISz=+>2{c21IR=up,-+>B8IS,=+>; + c2R=up,->&IS,=->;

+ d21|[R=down,-+>Q|S,=+>1 + d3]R=down,-->®|S,=->1}.

Before looking at the possessed properties of the particles, let's first confirm that the
pointer-reading is definite, i.e., that a dot really is on the upper plate or on the lower
plate. We can't answer this question simply by looking at Ifinal>, because I've built the
environment into the pointer-reading states, instead of teasing them apart. But we kno§v
from earlier considerations that the IR=up,ij> states decohere with the IR=down,ij>

states. Therefore, when we biorthogonally decompose Ifinal> with respect to the pointer
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reading states (i.e., the state of the photographic plates), a degenerate observable gets
picked out that's very close to the observable corresponding to R=up and R=down states.
In other words, the plates 4ave a dot either on the up or on the down plate. This
conclusion fails only if the relevant biorthogonal decomposition is degenerate, which
will be the case if and only if R=up and R=down are exactly equally likely. If the
measurement were ideal, this degeneracy would kick in, since particle 1 is "up" half the
time and "down" half the time. But due to the wavefunction tails, obtaining a dot on the
up vs. the down plate is exactly equally likely only if, for instance, the plates are exactly
the same size and are placed in a precisely symmetric configuration with respect to the
initial state of the particles. If the up plate is (say) an angstrom closer to the magnets
than the down plate is, then it has a slightly higher chance of getting hit. The probability
is actually O that the two plates have exactly the same probability of getting a dot. ‘
Tronically, the impossibility of performing a perfectly ideal measurement saves the
modal interpretation from a basis-degeneracy disaster.

But because the "up" and "down" probabilities are so close, the relevant
biorthogonal decomposition will be nearly degenerate. Normally, this would imply that
the biorthogonally-selected basis is not even close to the desired pointer-reading basis.
But here's where decoherence saves the day. As time passes, the environmental states
corresponding to R=up and R=down become closer and closer to orthogonal. This
ensures that, no matter how close to a degeneracy we're "standing," decoherence will
eventually ensure that the biorthogonal decomposition picks out states close to IR=up>
and IR=down>. Roughly put, unless there's an exact degeneracy, decoherence eventually
"knocks" the photographic plates into a state close to IR=up> or IR=down>.

But this isn't good enough, if the pointer reading stays indefinite for a noticeable

length of time. Intuitively, the dot had better appear as soon as we develop the
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photographic plates! Fortunately, decoherence acts sufficiently quickly. See
Bacciagaluppi and Hemmo (1995) for lots of formal details. For instance, suppose the
R=up and R=down outcomes have probabilities that differ by only 1 partin 1030. Since
the dots are macroscopic, decoherence ensures that states very close to IR=up> and
[R=down> get picked out in under a thousandth of a second. Decoherence can
"overcome" even the most severe near-degeneracy. '

So, if you accept the "closgness" arguments from section 4.4, the modal
interpretation ensures that a system in state lfinal> has a definite pointer-reading, by
which I mean a definite dot on one of the plates.

Given all that, let's return to questions of nonlocality and holism. In the modal
interpretation, does this definite measurement result on particle 1 cause particle 2 to
(nonlocally) acquire a definite z-component of spin, as would be the case in
"wavefunction collapse” models? No. To see why not, notice that the quantum
mechanical density operator describing particle 2 does not change when particle 1 gets
measured. In state Isinglet>, lintermediate>, or lfinal>, the reduced density operator of

particle 2 is
p2 = 2 IS, =4+><S,=+ +IS,=-><S,=-1},

which can be rewritten as p, = 2-1{IS,=+><S, =+ + IS =-><S,;=-1} for any direction n.
This is just to say that the biorthogonal decomposition of Ifinal> with respect to particle 2

is non-unique.3? So, according to the modal interpretation, particle 2 does not have a

definite value of S, for any n. Measuring particle 1 does not bring into existence a

37A reduced density operator is diagonalized in terms of a unique basis if and only if the
biorthogonal decomposition of the total quantumn state uniquely picks out that same basis.
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physical property associated with particle 2. In this sense, the modal interpretation does
not violate EPR's locality requirement.38

Nonetheless, if we get a dot on the upper plate, we know that subsequent z~spin
measurement of particle 2 will almost certainly yield "down.” The modal interpretation

must encode this fact, or else it's "incomplete” in some sense.3¥ To see how the modal

interpretation "completes" itself, it helps to regroup the terms in ifinal>:

ifinal> = ISz=+>1{c11|R=up,++>®|Sz=->2 + dj/R=down,++>®IS,=->5 +
+ C21IR=up,-+>8IS ;=+>3 + d31[R=down,-+>®|S,=+>,}
+ ISZ=—>1 { 012IR=11]),+->®ISZ=->2 + d121R=down,+->®ISz=->2+

+ C22|R=up,-->®IS,=+>, + d22|R=d0Wﬂ,-->®lSz=+>2}.

Since the four boldfaced terms are either precisely or almost precisely mutually
orthogonal,®’ and the other terms contribute negligibly, this expansion of [final> is
almost biorthogonal with respect to particle 1. Unless the coefficients happen to add up
in exactly the right way, the biorthogonal decomposition of Ifinal> with respect to particle

1 will be unique. Here's why. The density operator describing particle 1 is non-uniquely

3EPR-locality demands, roughly speaking, that nothing we do to particle 1 can
instantaneously bring into existence an "element of reality" associated with particle 2. .
3See Elby, Brown, and Foster (1993) for a detailed discussion of what "incomplete"
means. We contrast "EPR-completeness” with "statistical completeness." In the present
context, these fine distinctions aren't important.

Digression for EPR fans: Even when particle 1 yields "up," particle 2 does not
have probability 1 of yielding "down," due to wavefunction tails. So, the physical
property that encodes particle 2's near-certainty of yielding z-spin down does not meet
EPR's sufficient condition for being an "element of reality." As just noted, according to
the modal interpretation, this physical property--whatever it turns out to be--is not a
physical property of particle 2 per se.

“0Recall from above that [R=up,++> and [R=up,+-> are strictly orthogonal, due to angular
momentum conservation. And IR=up,ij> is almost orthogonal to IR=down,ij>, due to
decoherence.




Elpy Chapter 4: Decoherence & modal interpretations 212
diagonalizable only if p; = 2-1{IS,=+><S,=+| + IS,=-><S,=-1}, which is the case
(roughly speaking) only if particle 1 has an exactly 50% chance of finishing the
measurement interaction with spin "up." This will be the case if, for instance, both
i)lates have exactly the same probability of flipping the particle's spin during the
measurement interaction. Epistemically, of course, these "spin flip" probabilities for the
upper and lower plate are equal. But the objective quantum probabilities depend on the
microstates of the photographic plates. For instance, suppose the upper plate is exactly
the same as the lower plate, except that the upper plate contains one extra atom of
impurity. That one-atom difference changes the interaction Hamiltonian between the
plate and particle 1, and thereby changes the odds that particle 1's spin gets flipped. Of
course, this difference in odds is unbelievably small. But as long as it's nonzero, the
biorthogonal decomposition (and equivalently, the density matrix written as a "mixture")
avoids degeneracy.

Because we're so close to a degeneracy, the definite value associated with particle 1
corresponds to an operator that might not even be close to S,. But that's 0.k. Because
the measurement interaction "disturbs" the particle, we don't physically expect particle 1
to end up with a definite value of S,. The key fact is that there's a definite value
associated with particle 1, because Ifinal> can be uniquely biorthogonally expanded in the
form X;cilA;>®IB;>, where |A;> are orthogonal states of particle 1 and IB;> are
orthogonal states of plates/environment/particle 2. According to the modal
interpretation, there exists an operator A associated with particle 1, of which |A;> are
eigenstates. The corresponding observable A has a definite value, which is just to say
that particle 1 has the definite property corresponding to 1A;> for some i. (Here, i ranges
from 1 t0 2.) Similarly, there exists an operator B of which IB;> are eigenstates; and the

corresponding observable B has a definite value. As just hinted, this B-definiteness is a
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holistic property of the plates, particle 2, and the environment. Let's explore the nature of
this property.

Crucially, the IB;> states will be superpositions of the four boldfaced terms, with
only small contributions from the other terms. And all four of those boldfaced terms
correspond to a perfect anticorrelation between the measurement outcome on particle 1
and the z-spin of particle 2. So, the [B;> states are extremely "close" to states that encode
this same anticorrelation. In other words, plates/environment/particle 2 possesses a
definite holistic property corresponding to an almost perfect anticorrelation between R
and S, (for particle 2).

Let me summarize and clarify these results. Due to decoherence, an observable
very close to the "pointer-reading” R has a definite value; there really is a dot on one
plate or on the other plate. Furthermore, the plates/environment/particle 2 possesses a
property corresponding to a nearly perfect anticorrelation between R and the z-spin of
particle 2. Nonetheless, particle 2 considered as an individual system does not have a
definite z-spin. However, since something close to R is definite, and since R is
anticorrelated with the z-spin of particle 2, the equation of motion ‘goveming these
modally-possessed values ensures that, if the z-spin of particle 2 (or something
correlated with that spin) ever acquires a definite value, that value will with high
probability be anticorrelated with R. In other words, if we ever measure particle 2, it will
almost certainly produce a dot on the "correct” plate.

In brief: After particle 1 gets measured but before particle 2 gets measured, particle
2 doesn't have a definite z-component of spin. But the modal interpretation still encodes
the fact that subsequent z-spin measurement of particle 2 will almost certainly yield the
opposite result to that obtained on particle 1. The modal interpretation does so by (i)

assigning a definite value to the particle 1 measurement outcome, (ii) assigning a definite
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holistic property corresponding to n anticorrelation between the particle 1 measurement
outcome and the z-spin of particle 2, and (iii) having an equation of motion ensure that
this anticorrelation becomes actualized when particle 2's z-spin (or some observable
correlated with it) becomes definite.

In this scheme, the Bell-nonlocal connection between the two wings of the
experiment takes the form of a holistic property, not a classically ,causal" connection.
It's not that particle 1 or its measuring apparatus sends a "signal” to particle 2 or
otherwise affects a property of particle 2. Rather, measuring particle 1 causes a holistic
property of apparatus/particle 2 to evolve in such a way that the spin-@ticorrelation will
almost certainly be manifested if particle 2 undergoes measurement.

_ The spirit of this discussion agrees with Healey (1994). But Healey's discussion
doesn't treat the near-degeneracy problem, nor does it allow the spin of particle 1 to be
disturbed during measurement. As a result, he and I disagree about what observables
have definite values at what times. Nonetheless, we agree about the central role played
by holistic properties in mediating--indeed, constituting--the nonlocal connection.
Precisely because the modal interpretation is one of the few viable interpretations of
nonrelativistic QM, these insights about holism might apply in some veiled form to

nature itself, even if QM itself or the modal interpretation turns out to be wrong.
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CHAPTER 5: CAUSATION VS. HOLISM

5.1. INTRODUCTION

This chapter explores whether we can causally explain the quantum mechanical
EPR correlations, under the assumption that relativistic quantum theory is fundamental.

Other papers addressing this topic, including Redhead (1992) and Elby (1992),
typically set necessary conditions on causation, and then show these conditions to rule
out a "causal" explanation of EPR. As Healey (1992) emphasizes, however, different
philosophers deploy different conceptions of causation in different contexts. Even the
most popular conditions on causation, such as Reichenbach's principle of the common
cause, may fail for certain notions of causation. Therefore, causation no-go theorems in
the style of Redhead or Elby fail to establish that no variety of causal explanation can
account for the EPR correlations within a quantum framework.

In this paper, I tease apart three often-combined yet distinct notions of causation.
According to "minimalist" causation, a causal relation is nothing more than a suitably-
formulated lawlike dependence between events. "Generative" causation demands that
causes generate (bring about) their effects. And "continuity" causation requires that
causal connections be mediated by continuous processes.

To disentangle these notions of causation, I evaluate their commitment to two
necessary conditions: (1) A Reichenbachian screening off requirement called Reich; and
(2) "Causal Unidirectionality,"” which (roughly) requires effects not to cause their causes.
I'll argue that only generative causation is committed to both Reich and Causal
Unidirectionality. By contrast, a causal minimalist can sensibly renounce Causal

Unidirectionality in the case of spacelike causation. Minimalist causation can also



Elby Chapter 5: Causationvs. holism 216
abandon Reich, but only by renouncing a compelling intuition I'll discuss below.
Continuity cau_sation can renounce Causal Unidirectionality, by dropping the “standard"
though often tacit assumption that causal processes correspond to physical processes
involving transport of energy density, current density, or some other conserved quantity.
(Continuity causation can also renounce Reich, but only by allowing non-Markovian
processes.) The bulk of this paper explores the philosophical ramifications of
renouncing Reich or Causal Unidirectionality, for generative, minimalist, and continuity
causation.

Then, I prove that within the framework of relativistic quantum theory, we cannot
causally explain the EPR correlations consistent with Reich, Causal Unidirectionality,
and a symmetry requirement that applies to all explanations, both causal and noncausal.
Therefore, generative causation cannot account for EPR. But certain flavors of
minimalist or continuity causation can account for these nonlocal quantum correlations.
Il explore what these "causal" explanations of EPR could look like.

In summary, this paper attempts to pinpoint which notions of causality provide a
framework in which we can explain the EPR correlations within the context of
relativistic quantum theory. Armed with these results, philosophers can debate whether
we should explain EPR causally, or abandon causality in favor of a new, perhaps holistic

explanatory framework.

2. THE EPR CORRELATIONS

Before discussing different notions of causation, I briefly review Bohm's version of

the Einstein-Podolsky-Rosen (EPR) correlations.
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In a typical EPR thought-experiment, two electrons, prepared in the spin singlet
state, leave their source and travel in opposite directions towards measuring apparatuses.
Both apparatuses measure the same component of "spin," which is a particle's intrinsic
angular momentum. The "A-wing" of the experiment refers to one of the apparatuses
along with the electron it measures, while the "B-wing" refers to the other apparatus and
the electron it measures.4!

According to relativistic quantum theory, when the two electrons occupy a spatially

symmetric spin singlet state, they display the following characteristics:

* In the rest frame of the source, the probability density of finding an electron at
spacetime point (X,t) equals the probability density of finding an electron at
spacetime point (-,t). The probability distributions for velocity are also symmetric.

*  The spin properties of the two electrons are equivalent. Formally, the same spin

density operator describes both electrons.

Furthermore, if the two measurements occur at spacelike separation, they cannot be
objectively time ordered; neither measurernent happens "before" the other. So, in
relativistic quantum theory, the spatially symmetric spin singlet state ¥ corresponds to a
physically symmetric state of affairs. Therefore, if the measuring apparatuses occupy
the same quantum state, then relativistic quantum theory describes the A-wing and B-
wing of the experiment equivalently (before either measurement occurs). According to
relativistic quantum theory, interchanging the A-wing with the B-wing would result in
the same physical state of affairs. Succinctly, the pre-measurement physical state of

dffairs is symmetric with respect to A-wing <> B-wing exchange.

“IDon't take this wording to suggest that we can talk sensibly about "this electron” versus
“that electron.” For now, I'm just describing the experiment in rough terms.
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Of course, other theories describe this experiment asymmetrically. For instance, in
nonrelativistic quantum mechanics and in Bohm's hidden-variable theory (see Bohm and
Hiley 1987), the existence of "absolute time" allows a time-ordering of the two-
measurements. This time ordering breaks the symmetry between the two wings.42
Here, however, I will focus on causal explanations within the framework of relativistic
quantum theory. That is, I'll assume relativistic quantum theory gives a true account.
This is, of course, highly unlikely; but the "true" theory might resemble relativistic

quantum theory in the relevant ways, so that my philosophical analysis still applies.
Letg, (g,) denote the event of the A-wing (B-wing) apparatus measuring an

electron and yielding result o. (8). For electrons in state ¥, whenever o=1/2, p=-1/2;
and whenever o=-1y2, B=+1/2. Importantly, ¥ does not screen off these
experimentally-confirmed correlations, as we'll see below.

Later on, I'll discuss whether, within the context of relativistic quantum theory, we
can “causally" explain the EPR correlations. But first, I must outline some different

notions of causation.

3. THREE NOTIONS OF CAUSATION

In this section, I review three intuitive, widely-held conceptions of causation.
"Minimalist causation” asserts that a causal relation is nothing more than a lawlike
dependence between cause and effect. "Generative causation” insists that causes bring
about their effects. And "continuity causation" asserts that continuous processes

mediate causal connections.

42Except when the two measurements occur sunultaneously, which happens in a zero-
measure subset of cases.
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Of course, most theories of causation lean on intuitions drawn from more than one
of the above. But to explore which notions of causality provide a framework in which
we can explain EPR, I must disentangle these three notions. Given this goal, L. will not
discuss all of the objections raised against these three notions. For my arguments to get
off the ground, I need to assume only that the three conceptions of causation, when
properly fleshed out, could be rendered reasonably coherent.

These notions of causation agree that causal relations are relations between events. I

will not address alternatives.

3.1. Minimalist causation. This viewpoint carries less ontological baggage than other
varieties of causation do. According to causal minimalists, if a suitably formalized
lawlike dependence holds between two events, then the events are causally related (or
else jointly caused by a common cause), simply by virtue of the lawlike dependence. If a
causes b, it's not because a physical process connects a to b, and it's not because a
“brings about" b in some independent sense. Rather, it's because @ and b satisfy formal
relations encoding their lawlike dependence. Proponents of causal minimalism need not
rely on potentially murky metaphysical constructions such as "continuous processes” or
other causal mechanisms.

As an example, consider a standard "regularity" view of causation, according to
which if p(bla)>p(b) is lawlike® then either a and b are directly causally connected, or
else a common cause ¢ is connected to both @ and b. (Here, p(x) denotes the objective

probability that event x occurs, while p(ylx) is the probability of y given x.) In this

“3Delineating which correlations are lawlike and which are coincidental turns out to be
notoriously difficult. In this paper, however, I can sidestep the issue, because I'm
exploring the possibility of causal explanation within the framework of relativistic
quantum theory. Therefore, for my purposes, a correlation is lawlike if predicted by
relativistic quantum theory. These are the only correlations I address.
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framework, the causal connections between events exist by virtue of these lawlike
correlations, not by virtue of some independent metaphysical connection between the
events. -
| Although Lewis's (1986) theory of causation differs markedly from regularity
causation, Lewis-causation is also a variety of causal minimalism. According to Lewis,
two events are causally connected if the propositions corresponding to the occurrence of
those events, and the propositions corresponding to the non-occurrence of those events,
satisfy a certain set of counterfactual relations. For my purposes, the details of Lewis's
program aren't important. What's irnpoftant is that, in Lewis's scheme, events are
causally related because certain counterfactual statements are true, not because an
independent physical or metaphysical connection links the events. Indeed, Lewis rejects
talk of causal mechanisms as superfluous. ‘

Despite the differences between competing versions of minimalist causation, all of
them flesh out the same intuition: A causal relation is nothing more than a properly-
formalized assertion that the events non-coincidentally, and perhaps even necessarily,

tend to occur "together.”

3.2. Generative causation. According to generative causation, a is a partial cause of b
justin case a helps to bring about b..

The "generation" relation is stronger than a mere affirmation that @ and b are
correlated, even if the correlation supports counterfactuals. I can't (and therefore won't)
formalize or explicate "generation.” Rather, I'll treat it as a pre-systematic relation rooted
in our causal intuitions.

Generative causation does not rule out superluminally-mediated causal connections,

action at a distance, or even backwards-in-time causation. Generative causation
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demands only that causes bring about their effects in some strong sense. Indeed, the
central intuition underlying generative causation demands that all events, except the Big
Bang, be brought about by other events. (I mean "event" in its broadest sense,.as
including the physical state of affairs in a spacetime region.) Presumably, several
different formulations of causation fit wholly or partly into a generative-causal
framework.

Before continuing, I must acknowledge a criticism that threatens the very notion of
generative causation. One could claim that, upon closer examination, the distinction
between generation and lawlike dependence breaks down, especially when the
dependence supports counterfactuals. Here's the argument: Suppose that b necessarily
occurs after @, and necessarily does not happen at any other time. Suppose also that no
common cause of @ and b exists. Then a "brings about" b in the sense that, when a
happens, b must follow. What else could we possibly mean when we say a brings
aboutb? Put another way, how can we coherently claim that a does not bring about b,
given that b necessarily follows a and never happens at any other time (and given that no
common cause exists)? According to this argument, we can ascribe no meaning to the
"generation" relation that goes beyond the lawlike dependence between the events.
Therefore, generative causation reduces to a version of minimalist causation.

In section 4.3, I'll show how we can tease apart generative causation from
minimalist causation. Before tackling this issue, however, I'll introduce the third notion

of causation addressed in this paper.

3.3. Continuity causation. Some philosophers, including Salmon (1984), argue that
events are causally connected just in case they are connected by the right kind of

continuous process. What counts as a “continuous process" varies by philosopher.
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Indeed, the fuzzy concept of "process," notoriously difficult to define, threatens the
coherence of continuity causation. But let's assume continuity causation can be rendered
coherent.

As an example of continuity causation, consider a television set. Pressing the
remote control button causes my TV to switch on, because continuous processes
corresponding to propagation of electromagnetic radiation, flow of electrons, and so on,
connect the button-pressing to the switching-on. Usually in this framework, the
continuous causal process corresponds to a physical process involving energy-
momentum transfer. This is true even in quantum mechanics, because a propagating
wavefunction usually "carries” energy-momentum density. As Healey (personal
communication) points out, calling wavefunction propagation a "process" makes sense
only if we interpret the wavefunction non-instrumentally, as somehow coding real
physical properties of the system.

According to continpity causation, an unmediated nonlocal correlation either doesn't
exist or doesn't correspond to a causal connection. For instance, if a and b are correlated
even though no continuous processes connect the events to each other or to common
causes, then the correlation is noncausal.

In section 4.3, looking at Healey's explanation of EPR, we'll examine a continuous
process that some philosophers might hesitate to call causal, and we'll explore the

intuitions underlying this hesitation.

34. Wrap-up. A typical classical causal explanation invokes intuitions drawn from both
generative causation and continuity causation. We often say that a cause brings about its
effect via a continuous causal process. Indeed, causal intuitions might tempt us to assert

that @ generates b just in case the right kind of continuous process connects a to b. The
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resulting hybrid notion of causation functions well in a “classical" nonrelativistic or
relativistic universe. That's because classical correlations almost always result from
direct contact action or from propagation of energy-momentum, both of which.seem
intuitively "generative." By contrast, nonlocal quantum correlations force us to choose
which of our causal intuitions to retain and which to abandon. For this reason, we must
further disentangle minimalist causation from generative causation from continuity

causation. I'll now try to accomplish precisely that.

4. NECESSARY CONDITIONS ON CAUSATION

This section discusses two popular necessary conditions on causation: a
Reichenbach-inspired screening-off requirement called Reich; and Causal
Unidirectionality, the requirement that effects not cause their causes. Specifically, we'll
explore which of the three notions of causation introduced above must obey these
necessary conditions. Doing so will drive wedges between the different conceptions of
causation. I'll also introduce Explanatory Symmetry, which requires a causal
explanation to mirror any symmetries inherent in the underlying physical description of
the phenomena.

As proven in section 5, any formulation of causation obeying Reich, Causal
Unidirectionality, and Explanatory Symmetry cannot provide a causal explanation of the
EPR experiment, within the framework of relativistic quantum theory. This result
increases the importance of deciding which notions of causation must obey those

conditions.
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4.1. Reich. Reich demands that causes, when taken together, probabilistically screen off
their effects from each other and from other events. If C is the set of all partial causes of
some event ¢, then Reich insists .that given C, no other event is probabilistically. relevant

to e, except effects of e:

Reich: Cis all the partial causes of e only if p(el C,w) =p(el C) for all w (besides e and

its effects).

To explore whether minimalist causation must endorse Reich, let's jump right to the
EPR correlations. Consider a standard EPR experiment in which the A-wing

measurement occurs absolutely before the B-wing measurement. As mentioned above,

pEy 1 g, ;¥)#p(g, | ¥). Furthermore, since we're assuming that relativistic quantum
theory holds, the correlation between £, and g, is sufficiently lawlike and necessary to
satisfy the formal "lawlike dependence" relations posed by any reasonable version of
minimalist causation. Therefore, according to minimalist causation, simply by virtue of

that lawlike dependence, either

() &, and g, are directly causally connected; or else

(i) &, and g, are not causally connected, but there exists a common cause,

presumably ¥ (or ¥ in conjunction with other events).

Under choice (i), Reich holds. Under choice (ii), Reich fails, because the common cause
doesn't screen off its effects from each other. This is true even if we build into ¥ the

pre-measurement state of the entire universe.
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Strictly speaking, minimalist causation is compatible with choice (ii), failure of
Reich. But the spirit behind minimalist causation strongly motivates us to choose (i).
Before discussing this motivation in general, let me illustrate it with a specific case, _
namely Lewis's minimalist-causal framework. According to Lewis's rules, ¥ is not the
cause of ., because g, isn't necessitated by ¥. But given P, g, is the cause of £ ; given
the state preparation ¥, a down outcome occurs on the B-wing just in case an up
outcome happens on the A-wing. See Butterfield's (1992) article, "David Lewis meets
John Be‘ S

The following argument helps to motivate Lewis's (and other causal minimalists'")
choice of (i), and more generally, their endorsement of Reich. The state preparation
alone does not determine which B-wing outcome will occur, or even which B-wing
outcome is most probable. The B-wing result depends also on the A-wing outcome.

Since &, irreducibly depends on g,, even when all other factors are taken into account,

and since causal relations are nothing more than appropriately-formulated lawlike
dependencies, g, is a (partial) cause of g,, exactly as Reich demands. This same
intuitive argument, modified and augmented, applies to regularity causation. Put another
way: Since causal connections are lawlike dependencies (or at least, correspond very
closely to lawlike dependencies), each "independent” lawlike dependency should
correspond to a separate causal connection. This is exactly what Reich demands.

For suppose Reich fails: C is the whole cause of e even though p(el C,w) # p(el C).
Then, even though w is lawlike correlated with e, and even though this correlation isn't
screened off by other correlations, w is not causally connected to e. Nonetheless, C is
causally connected to e. In other words, if we consider two correlations, both of which
(I'll assume) satisfy the same formal rules of lawlike dependency and both of which are

"independent” in the same sense, one of them might not correspond to a "causal"
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connection even though the other one does. This seems unacceptable, given the causal
minimalist's insistence that any lawlike dependency satisfying certain forral conditions
automatically corresponds to causation (either a direct causal connection or else mutual
dependence on a common cause).

In brief, a compelling minimalist-causal intuition motivates Reich: Each
independent lawlike dependence in nature corresponds to a separate causal relation, so
that no lawlike dependence is left "unexplained." A causal minimalist can reject Reich
only at the expense of renouncing this intuition.

Crucially, the above arguments, and the conclusion just stated, apply equally well

when g, and g, are spacelike separated. In that case, other considerations may push us

to deny a causal connection between g, and g,, and hence, to renounce Reich. But as

we'll see below, those other considerations stem from continuity-causal intuitions, not
from the minimalist-causal intuitions. For this reason, abandoning Reich in a purely

minimalist-causal framework weakens the appeal of the resulting causal explanations.

4.2. Reich, generative causation, and continuity causation. So far, I've examined to
- what extent minimalist causation is committed to Reich. Now I'll discuss whether
generative causation must endorse Reich.

Since generation is a stronger relation than lawlike correlation, it is logically possible
for a lawlike correlation to result neither from direct causation nor from common causes.
Such a correlation would violate Reich. But generative causation rules out Reich
violation as physically (though not logically) impossible. Here's why:

According to the central generative-causal intuition, all lawlike correlations in the
world stermn from an intricate web of generative-causal connections. This intuition

implies Reich. To see why, visualize each generative-causal connection (i.e., each
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“bringing about") as a strand connecting two events. Since in generative causation all
lawlike dependencies must be "explained" by this web, it follows that if w and e are
. lawlike correlated, then either a strand runs directly from w to e, or else there exists some
common cause that sends strands to both w and e . But suppose Reich fails: p(el
C.w)>p(el C), where w is not an effect of e, and where C is supposedly the whole cause
of e. Since C is the whole cause of e, no strand runs from w to e, either directly or viaa
common cause. In other words, the lawlike dependence of e on w isn't explained by the
generative web. As just noted, this contradicts the central intuition behind generative
causation. Rejecting this intuition is tantamount to rejecting generative causation. For
this reason, generative causation is committed to Reich as a necessary condition.

Notice how this argument resembles the minimalist-causal justification of Reich
discussed above. A causal minimalist can (at great cost) reject the intuition that
independent correlations warrant separate causal relations. But a generative causation
advocate cannot reject this intuition, because each independent correlation must be
“brought about," i.e., must correspond to a separate strand (or set of strands) in the
generative web.

How does continuity causation fare with respect to Reich? Many advocates of

continuity causation, including Salmon (1984), endorse a screening-off requirement.

For concreteness, suppose a continuous process connects ¢ (in spacetime region R ) to e

in spacetime region R ); and suppose no other events or processes are causall relevant
e P y

to e. Under most formulations of continuity causation, the "state” d of the causal

process in spacetime region R ;, where R, is spatiotemporally between R.andR,,

screens off e from c. In other words, given d, the probability of ¢ does not depend on

whether ¢ occurred:
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Pleld,c) = p(eld,~c),

where ~c denotes the non-occurrence of ¢. More generally, each stage of the continuous
causal process screens off the effect from preceding stages.

Despite the traditional incorporation of screening off into continuity causation, I
now argue (following Cartwright and Jones 1992) that continuity causation need not
obey Reich.

Suppose the c—d—e process described above is non-Markovian, so that p(eld) =
pleld,c). This inequality holds not because an independent continuous process links ¢ to
e (without passing through d), and not because the "process" under consideration is
really the result of multiple intertwining processes, but simply because later stages in the
continuous causal process do not screen off earlier stages. In this non-Markovian case,
Reich suggests that we call ¢ and d Separate causes of e. But continuity-causal intuitions
lead us to assert that ¢ and d are not Scparate causes of e; instead, ¢ and d are merely
different stages of the same continuous causal process leading to e. Here's my point:
Given non-Markovian processes, a continuity causation advocate can sensibly renounce
Reich as a necessary condition.

Continuity causatmn advocates such as Salmon could defend Reich by denying the
possibility of non-Markowan processes. To do so, they could emphasize that modern
- physical theories, including relativistic quantum theory, rule out non-Markovian
fundamental processes. More precisely, according to all physical theories (that I know
of) formulated in the past 300 years, the evolution of a system's fully-specified physical
state S is strictly Markovian: S(t) screens off S(t+dt) from all previous states of the
system. In words, a system does not "remember" its past state, except insofar as those

memories are stored in the current state. Physical intuitions suggest that future physical
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theories will also be Markovian; see Elby and Foster (1992). For this reason, a
continuity causation advocate can deny the existence of non-Markovian "processes," and
thereby defend Reich, by claiming that a "continuous causal process" correspords to a
physical processes, which by definition supervenes on the evolution of the fully-
specified physical state. It's unclear, however, whether a priori philosophical
coﬁsiderations, other than Markovian physical intuitions, give us reason to rule out non-
Markovian processes.

In summary: Minimalist causation can give up Reich, but only by renouncing the
intuition that each independent lawlike dependence between events correspond to a
separate causal relation. Generative causation cannot renounce this intuition, because
each independent lawlike correlation must be "brought about." In continuity causation,
Reich pops out as a compelling necessary condition only if we insist that "continuous
causal processes" correspond to physical processes. Within the framework of
relativistic quantum theory, this correspondence ensures that causal processes will be

Markovian, because physical processes are Markovian.

4.3. Causal Unidirectionality. My next allegedly necessary condition on causation is
Causal Unidirectionality: If two events are causally connected, then one "causes" the
other, but not vice versa. Therefore, if a is a cause of b, then b cannot be a cause of @

(unless a and b are part of a closed timelike loop).

This condition asserts that causal connections consist of "cause" and "effect"; and that

effects cannot cause their causes. Within a causal explanation of events, if a somewhere
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functions as a cause of b, then nowhere in the explanation may b function as a cause of
a, unless a and b are part of a closed timelike loop.

Causal Unidirectionality as formulated here is absolute, not observer-relative. To
see what this means, suppose a and b are spacelike separated. Observer A (B) inhabits a
reference frame in which a (b) occurs first. In some cases, we might be tempted to
claim that a causes b for observer A, while b causes a for observer B. But Causal
Unidirectionality rules out such an explanation. Roughly speaking, Causal
Unidirectionality requires that the direction of causation be an unambiguous fact about
the world, not an observer-relative vestige of our causal explanations.

Generative causation must endorse; Causal Unidjrectionality. Intuitively, the
generation relation is intrinsically asymmetric, even when the events can't be time
ordered: If a generates b, then it makes no sense to say that b generates a .** Because a
symmetric "bringing about" relation would violate our deepest intuitions about
generation, any resulting "explanation” would fall outside the framework of generative
causation. For this reason, Causal Unidirecﬁonaﬁfy is a reasonable necessary condition
to place on generative causation.

I'll now show that minimalist causation need not obey Causal Unidirectionality. To
do so, I'll first argue that minimalist causation need not rule out spacelike causation. For
spacelike causation, Il then argue, minimalist-causal intuitions do not promote Causal

Unidirectionality.

4“At first glance, this conclusion seems fishy in the context of a closed timelike loop.
You might want to say that "a causes b causes a causes b..." But how did the loop itself
come to be? This question illustrates the difficulty of retaining a generative causal
framework when there's closed timelike loops. Fortunately, I can sidestep this tricky
issue by confining my attention to relativistic quantum theory in our universe, where
closed timelike loops are impossible. In thé absence of such loops, the "generation”
relation is intrinsically asymmetric.
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Almost all versions of minimalist causation either postulate or imply that, if two
causally connected events are timelike separated, then the earlier event is the cause, while
the later event is the effect. But suppose a and b are spacelike separated. A causal
minimalist could simply rule out nonlocal causation. But this move violates the spirit of
minimalist causation. In a minimalist framework, a causal connection does not
correspond to a fancy metaphysical construction. Rather, it expresses a properly-
formulated lawlike dependence between two events. If ¢ and b are lawlike correlated,
and this correlation is "independent” from the correlations between those events and their
other causes, then minimalist-causal intuition strongly suggests that a separate causal
connection links @ and b. In subsection 4.1, I argued this point more fully, to show that
causal minimalists have good reason to endorse Reich. As we'll see below, our
intuitions against spacelike causation come from continuity causation. So, "pure"
minimalist causation has no reason to rule out nonlocal (spacelike) causal connections.

And given a causal connection between spacelike separated @ and b, a "pure" causal
minimalist has no incentive to deny that the events mutually cause each other. Or better
yet, the causal minimalist can dispense with asymmetry-connoting talk of "cause and
effect” in favor of a symmetry-connoting talk of a "directionless causal link." For if
neither event precedes the other, then what motivation remains for calling one event the
"cause” and the other event the "effect"? By accurately mirroring the directionless
(symmetrical) lawlike dependence between the events, the directionless causal link
avoids introducing excess ontological baggage. And this avoidance of superfluous
metaphysics is a comerstone of minimalist causation. So, minimalist causation is not
committed to Causal Unidirectionality.

In response, a causal minimalist who likes Caunsal Unidirectionality could argue that

it's nonsensical to say two events mutually cause each other in any sense. But as we saw



Elby Chapter 5: Causation vs. holism 32
above, this argument rests on a generative-causal intuition about the asymmetry of the
generation relation. Here's my point: If we really view causal relations as corresponding
to nothing more than lawlike dependency, then we have no a priori incentive to-deny a
symmetric causal link between a and b. Nor do we have reason to deny that a causes b
and b causes a.

Of course, a causal minimalist may adhere to Causal Unidirectionality, even for
spacélike causation. This fact does not threaten ﬁiy argument that a causal minimalist
can choose whether to adopt Causal Unidirectionality as a necessary condition. Raw
minimalist causation is not committed to Causal Unidirectionality.

For this reason, Causal Unidirectionality functions as a wedge we can drive between
generative causation and minimalist causation. Recall from subsection 3.2 that
according to some philosophers, the generation relation, when stripped of its rhetorical
gloss, amounts to nothing more than a necessary lawlike dependence between two
events; and hence generative causation reduces to minimalist causation. But generative
causation, unlike minimalist causation, is committed to Causal Unidirectionality. For
example, suppose that for spacelike separated a and b, the (non)occurrence of a
necessitates the (non)occurrence of b, and vice versa. Here, the "necessitation" relations
are symmetric. The generation relation, by contrast, is intrinsically asymmetric. For this
reason, "genemﬁoﬁ" does not reduce to a lawlike dependence (such as necessitation). In
brief, Causal Unidirectionality teases out a distinction between minimalist causation and
generative causation, showing that distinction to be more than merely semantic.

In reply, as Paul Teller (personal communication) points out, a detractor of
generative causation could argue as follows: Let m'-causation denote a variant of
minimalist causation that adopts Causal Unidirectionality as a necessary condition. Then

generative causation, when stripped of metaphysical fluff, reduces to m'-causation.
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I'have two responses to this. First, as argued above, Causal Unidirectionality is
motivated by generative-causal intuitions, not by purely minimalist-causal intuitions.
Therefore, m'-causation is two-faced: It relies on generative-causal intuitions to-motivate
Causal Unidirectionality, and then dismisses as nonsensical the metaphysics underlying
those intuitions. Or, if the m'-causation advocate denies relying upon generative-causal
intuitions, but fails to provide a purely minimalist-causal motivation for Causal
Unidirectionality, then m'-causation is ad hoc, in that it contains an unmotivated rule.
For these reasons, m'-causation isn't a palatable alternative to generative causation.

But even if generative causation ultimately reduces to a less metaphysically-loaded
version of causation, this paper still makes a worthwhile argument. In section 5, I prove
that any theory of causation cornmitted to Causal Unidirectionality, Reich, and
Explanatory Symmetry cannot account for the EPR correlations within the framework
of relativistic quantum theory. In my view, a popular and intuitive conception called
generative causation satisfies these conditions. If generative causation reduces to
something else, then my proof applies to that "sor_nething else,” whatever it is.

So much for generative causation vs. minimalist causation. Let's now explore
whether continuity causation must obey Causal Unidirectionality.

In standard continuity-causal explanations, a continuous causal process corresponds
closely to a physical process involving transfer of some conserved quantity, such as
energy, angular momentum, and baryon number. This is true even in relativistic
quantum mechanics, because a propagating wavefunction carries energy density, current
density, etc. According to relativistic theories, both classical and quantum, transfer of a

conserved quantity cannot exceed the speed of light.45 Therefore, such processes

“5Specifically, the "center” of a system's energy density, or angular-momentum density,
or baryon-number density, etc., cannot exceed the speed of light, and hence cannot
connect two spacelike separated events.
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propagate forward in time. For this reason, if two events are causally connected by such
a process, the earlier (later) one can unproblematically be called the cause (effect).
Therefore, Causal Unidirectionality automatically holds in standard continuity-causal
explanations.

But the nonseparability of entangled wavefunctions in quantum mechanics may
open the door to “nonstandard" continuous processes, ones that don't correspond to
transport of a conserved quantity. Some such processes may violate Causal
Unidirectionality.

As a detailed example of a purported Unidirectionality-violating "continuous
process," consider a crucial component of Richard Healey's (1992) explanation of the
EPR experiment. His explanation is embedded within relativistic quantumn theory
without wavefunction collapse. Consider the case where g, and g, occur at spacelike
separation; neither measurement happens (absolutely) before the other. Suppose Ms. A
observes the experiment from a reference frame in which g, happens before g,
According to Ms. A, g, happens at time t, and g, happens at t;, where t;>t;. Att, the

two-electron wavefunction becomes éntangled with the A-wing apparatus. Att,, this

entangled wavefunction becomes further entangled with the B-wing apparatus.
Relativistic quantum theory describes how, from Ms. A's perspective, the wavefunction
evolves between t; and t;. Crucially, this entangled wavefunction is nonseparable; the
A-wing and B-wing of the experiment are holistically connected. The wavefunction
evolution between tjand t, is continuous, in that the wavefunction at time t+dt differs
only infinitesimally from the wévefunction at time t, for all t between tyand t;. And this
continuous wavefunction evolution connects g, to g, in the following sense: Att,,

"part” of the nonseparable wavefunction is localized at the A-wing measuring device.

The wavefunction evolves between t; and t; such that at t;, "part” of the wavefunction is
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localized at the B-wing apparatus.* So, the wavefunction evolution connects g,(attyto
g, (att)).

Similarly, Mr. B, who observes the experiment from a reference frame in which &
precedes €, can give a description of how the nonseparable wavefunction continuously
evolves so as to connect €, (at Mr. B's tp) to g, (at Mr. B's t,).

According to Healey, the continuous process linking £, and g, corresponds to the

conjunction of the wavefunction-evolution descriptions given by Ms. A and Mr. B. This
process is "continuous" and "connecting" in that, according to any observer,47 the
nonseparable wavefunction evolves continuously between when the "first” and "second"
measurements occur; and the wavefunction evolution connects those two measurements
in the sense described above.

This continuity-causal partial explanation of EPR violates Causal Unidirectionality.
Ms. A would say that g, is a partial cause of g,, while Mr. B would claim g, is a partial

cause of £,. In Healey's explanatory framework, neither observer is "absolutely" right; -

the explanation deploys £, as both a cause of g, and an effect of &,. (Alternatively, a

continuity causation advocate could claim that talk of causes and effects makes no sense;
we can speak only of the continuous process that mediates the causal connection
between events.) Either way, Healey's explanation violates Causal Unidirectionality,
which requires £, to function in the explanation as either the cause or the effect of g, but
not both. Interestingly, however, Healey's explanation obeys an observer-relative

version of Causal Unidirectionality:

46If you consider talk of "parts” to be out of place for entangled wavefunctions, then
here's what I mean: At tg, the electron probability density at the A-wing apparatus is
significant; and at t;, the electron probability density at the B-wing apparatus is
significant.

47It's not clear how Healey's scheme treats an observer for whom the two measurements
occur exactly simultaneously. But this might not be too important; see footnote 2 above.
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Observer-relative Causal Unidirectionality: If two events are causally connected,
then any particular observer will describe exactly one event as the "cause.” Therefore, if
a particular observer claims that a is a cause of b, then she cannot also claim that b is a

cause of a (unless a and b are part of a closed timelike loop).

A "particular observer" differs from the "detached explainer," whose overall explanation
of the events must subsume the descriptions given by different observers.

A continuity causation advocate who éndorses Causal Unidirectionality will deny
that evolution of the nonseparable wavefunction counts as a continuous causal process

linking the two measurement outcomes. This advocate could argue that unless a single
identifiable part of the wavefunction actually propagates from g, to g, (or vice versa),

we cannot say the wavefunction evolution causally connects g, to g,. Healey could reply

that since the I'lonseparable wavefunction is holistic, we cannot sensibly talk about
individuated parts of the wavefunction. The Causal Unidirectionality advocate's best
response, I think, is to fall back on the "standard" continuity-causal requirement that a
causal process correspond to a physical process involving transfer of some conserved
quantity. By this argument, since no probability current density (and hence no energy
density) flows from g, to &,, the continuous process does not connect €, 1o g,.

The above paragraph raises a crucial issue: To deny that unusual Unidirectionality-
violating processes (such as Healey's) are "causal,” a continuity causation advocate has
little choice but to fall back on the requirement that a continuous causal process
correspond to a physical process involving transfer of a conserved quantity from cause
to effect. Therefore, we must exhume the intuitions underlying this standard

requirement.
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Intuitively, quantities such as energy and angular momentum are “active”: When
transferred to an object, they change the object's properties. In a causal process, if the
relevant "effect” follows physically from these changed properties, then the transfer of
energy or angular momentum "brings about" the effect, in some strong intuitive sense.

By contrast, Healey's nonseparable wavefunction evolution does not seem to carry a

generative agent from g, to g,. Instead, the nonseparable wavefunction mediates a

holistic, non-generative connection between €, and £,. To deny that seemingly

"passive" connections between events (such as Healey's nonseparable wavefunction
evolution) count as "causal,” a continuity causation advocate must insist that a causal
process carry something "active” (generative) from cause to effect. So, to escape
Healey's conclusion that certain continuous processes violate Causal Unidirectionality, a
continuity causation advocate must smuggle in generative-causal intuitions.

Healey's explanation of EPR is unusual in that it employs continuity causation
almost completely disentangled from the generative-causal intuitions usually present in
continuity-causal explanations. The resulting "99% pure"4® continuity causation violates
Causal Unidirectionality. Of course, some philosophers will argue that "pure” continuity
causation fails to provide intuitively pleasing explanations. Il address this point in
section 6. For now, let me reiterate my goal of disentangling generative causation from
continuity causation from minimalist causation, to see how each notion of causation
fares with respect to EPR. Healey proves that we can causally explain EPR, if we
employ continuity causation stripped of essentially all generative-causal intuition.

In summary, although most theories of causation assume or imply Causal

Unidirectionality, only generative causation is committed to this necessary condition.

48Healey (personal communication) notes that his explanation may harbor the
consequence of a residual g-causal intuition: Within a given reference frame, we can still
talk of the “cause” and the “effect”; and cause precedes effect. That is, Observer-relative
Causal Unidirectionality holds.
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When we strip continuity causation of all generative-causal intuitions, thereby allowing
Healey-style "passive" processes to count as causal, Causal Unidirectionality can fail.
To defend Causal Unidirectionality, a continuity causation advocate can impose-the
standard requirement that causal processes correspond to physical processes involving
transfer of conserved quantities. As just shown, however, generative-causal intuitions
motivate this standard requirement. Furthermore, for spacelike separated events,
minimalist-causal intuitions alone do not rule out a symmetric, directionless causal link.
According to minimalist causation, a causal relation corresponds closely to a lawlike
dependence between events, with no superfluous metaphysics. Therefore, a completely

symmetric lawlike dependence could correspond to a symmetric causal connection.

4.3. Explanatory symmetry. My third necessary condition on causation requires causal

explanations to mesh with physical descriptions:

Explanatory Symmetry: Suppose that a physical description D of some phenomena
incorporates a fundamental symmetry. Let E be an explanation of the phenomena. If E
takes D to be a "complete” physical description of the phenomena in question, then E

must reflect the symmetry of D.

A physical description is "complete" only if the theory on which it is based is
fundamental, and only if the description is as fine-grained as the theory allows.
Because Explanatory Symmetry.is technically ambiguous (e.g., I don't supply a
sufficient condition for the “"completeness” of a physical description, or a definition of
"fundamental” symmetry), it must serve more as a guiding principle than as a formal

necessary condition. The "version" of this principle I'll invoke later applies to EPR:
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EPR Explanatory Symmetry: If our physical description of the EPR experiment,
assumed to be complete, is physically symmetric under A-wing <> B-wing exchange,
then our corresponding explanation must not introduce an asymmetry between the two

wings.

Relativistic quantum theory provides a description of the EPR experiment that is
symmetric under A-wing <> B-wing exchange. Therefore, if we explain EPR within
the context of relativistic quantum theory, EPR Explanatory Symmetry implies the

following:

If g, is a partial cause of &, then g, is a partial cause of g .

Explanatory Symmetry, I now argue, is a reasonable constraint on all varieties of
causal and noncausal explanation. An explanation should do more than reiterate our
bare-bones physical description of the events. The explanation should complement or
flesh out those physical details, thereby helping us to "understand" the phenomena more
deeply. Put another way, our metaphysical description of events, which may include
causal connections, should combine with our physical description to provide a unified,
coherent "picture” of the phenomena.

These considerations immediately motivate Explanatory Symmetry. When
Explanatory Symmetry fails, our physical and metaphysical descriptions "disagree"
about whether the phenomena are symmetric. Therefore, we cannot unify those physical

and metaphysical components into a pleasing, coherent picture of what's going on.
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Let's specialize these considerations to the EPR correlations. According to
relativistic quantum theory, the A-wing and B-wing are physically equivalent;
exchanging the two wings would make no physical difference.#? This physical
description strongl& suggests that neither wing is "special.” But if our explanation
violates EPR Explanatory Symmetry, then one wing of the experiment gets singled out.
For instance, if we claim that g, causes g, but not vice versa, then we've picked out the
A-wing as causally "special." Such an explanation, by clashing with our symmetric
physical description, fails to help us find a unified way of viewing the EPR correlations.

(Of course, if we explain EPR within the framework of a theory that introduces a
physical asymmetry between the two wings, then Explanatory Symmetry allows causal
asymmetry. For instance, "absolute-time" theories, in which one measurement precedes
the other, may incorporate causal asymmetry without violating Explanatory Symmetry.)

In summary: Explanatory Symmetry is not motivated by specifically minimalist,
generative, or continuity-causal intuitions. This constraint follows from the more
general requirement that an explanation combine metaphysical constructs (such as causal
connections) with physical description to provide a coherent way of looking at the events

in question.

“Strictly speaking, an A-wing«>B-wing interchange “switches" an g,=up, £,=down joint
measurement outcome into g, =down, £, =up, which is a different physical state of affairs.
We can easily escape this difficulty, in two ways. One, we could consider two identical
bosons in their triplet state. Those particles always yield £ =up and g,=up, or £ =down
and g,.=down. Alternatively, we could stick with our spin-1/2 particles in their singlet
state, but build into our wing-interchange a spatial rotation that changes up into down and
vice versa. Since rotational symmetry is fundamental in relativistic quantum theory,
Explanatory Symmetry still holds.
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status of Reich, Causal Unidirectionality, and Explanatory Symmetry with respect to the

three notions of causation addressed in this paper.

Minimalist
causation

Generative
causation

Continuity
causation

5. CAUSAL NO-GO THEOREM

. Causal .. Explanatory
Reich Unidirectionality Symmetry
Holds, unless we Can fail, especially in .
renounce the intuition  § spacelike case, since a Hgllds, Stlince alllclz;lugal
that each independent | symmetric lawlike explanation s l:c:'i
lawlike dependence dependence can corres- {n;lrror sty_mrtrllle es lete
correspond to a separate | pond to a symmetric “;1 er_ecr;llg e.cgmp e
causal relation causal connection physicai description
Holds, since a causal
ggleds’f;:::lf:wel?ﬁg Holds, because the explanation should
corré)IZtion must be “generation” relation is | mirror symmetries
"brought about" intrinsically asymmetric | inherent in the complete
physical description
Holds, except for non- | Fails, unless we require .
Markovian processes, (for instance) that a Hollisl; st1ince ica;l;al
which cannot causal process oxp rasy(r)lrnfe I(I)IPes
correspond to correspond to physical TIITOL Sy’
fundamental physical transfer of a conserved mher.ent n the. cqmplete
processes quantity physical description

I now prove that any causal explanation of the EPR correlations consistent with

Reich, Causal Unidirectionality, and Explanatory Symmetry is incompatible with the

symmetric physical description provided by relativistic quantum theory. Then, I'l use

the conclusions of section 4 (summarized in the table) to explore the philosophical

implications.

Causal No-go Theorem:
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Within the framework of relativistic quantum theory, we cannot causally explain the

EPR correlations consistent with Reich, Causal Unidirectionality, and Explanatory

Symmetry.

Proof:
Suppose that g, and g, are directly causally connected. Then Causal

Unidirectionality requires that exactly one of those two events be a (partial) cause of the
other. For concreteness, let's say g, is a partial cause of g,. Then Causal
Unidirectionality requires us not to call g, a partial cause of g ; but EPR Explanatory
Symmetry requires us to call g, a paﬁd cause of ¢ ,. This contradiction prevents us
from claixﬁing that the two measurement outcomes are directly causally connected.

Therefore, we must claim that ¥, or perhaps ¥ supplemented by other events, is

the common cause of g, and g,. But according to relativistic quantum theory,
pE, 1Y, g,) #pg, I'Y).

Specifically, p(g, | ') equals 1/2, while p(g, | ¥, g,) equals O or 1. This is true even if

we build into ¥ the complete pre-measurement state of the universe. (According to

quantum theory, the probability of g, depends on nothing other than g, and the pre-

measurement quantum state of the particles.) Therefore, within the framework of

relativistic quantum theory, Reich rules out any causal explanation of g, that doesn't
include g, as a partial cause. But, as shown above, Causal Unidirectionality and EPR

Explanatory Symmetry imply that a causal explanation of g, must not include g,a52

partial cause. So, within the framework of relativistic quantum theory, one cannot
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causally explain the EPR correlations consistent with Reich, EPR Explanatory

Symmetry, and Causal Unidirectionality. Q.E.D.

6. IMPLICATIONS FOR EXPLAINING EPR CAUSALLY

Il now spell out the philosophical implications of this no-go theorem.

6.1. Should we explain the EPR correlations generative-causally or minimalist-
causally? A generative causation advocate cannot renounce Causal Unidirectionality or
Reich (or Explanatory Symmetry). Therefore, if she accepts relativistic quantum theory
as fundamental, she must admit that some correlations in nature cannot be causally
explained.

Many previous articles, including Elby (1992), reach the italicized conclusion.
Section 4 clarifies this conclusion by showing that it applies only to a specific notion of
causation, namely generative causation. We can explain EPR within the context of
minimalist causation or continuity causation.

Since minimalist causation is not committed to Causal Unidirectionality (for
spacelike causal connections), a causal minimalist can explain the EPR correlations as
follows: ¥’ and &, are partial causes of €, while ¥ and €, are partial causes of €, end
of story.5% This causal story, however, seems not to have explained anything. Rather,
this "explanation” merely calls "causal" the lawlike correlations encoded by relativistic
quantum theory, without providing a deeper understanding of what's happening. A

minimalist causation advocate could respond that we shouldn't expect anything more

S0Alternatively, at great intuitive cost (see section 4.1), a causal minimalist can renounce
Reich, and explain the measurement results in terms of a "non-screening-off common
cause." Cartwright (1989) makes essentially this move.
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from an explanation, because all talk of "bringing about" or continuous processes is
nonsense, a pleasant way of helping us organize our thoughts. If you accept this
response, however, then all lawlike dependencies in nature simply don't have a deeper -
explanation, and therefore you have little reason to assign causal relations to events. You
might as well just catalog the lawlike dependencies and call it quits. Indeed, critics of
minimalist causation often focus on its apparent explanatory emptiness.

Let me raise a brief sociological point: After examining the metaphysical pitfalls of
generative causation and continuity causation, a philosopher might be tempted to
embrace minimalist causation. I contend, however, that if an minimalist-causal
explanation sounds appealing, it's only because the listener secretly fleshes out the
explanation with generative-causal or continuity-causal intuitions. For example, an
minimalist-causal explanation of why my TV turns on when I hit the remote control
button would list the chain of lawlike dependencies between button pushings, cathode-
ray tubes becoming warm, and so on. This catalog of dependencies appeals to our
intuitions because we're secretly picturing infrared rays racing from the remote control to
the TV, etc. These illicit continuity-causal images spice up the bare-bones minimalist-
causal explanation to make it palatable. The minimalist—causal explanation, when
stripped of these continuity-causal intuitions, seems just as non-explanatory as the
minimalist-causal explanation of EPR. Nonlocal quantum correlations help us to
entertain this criticism of minimalist causation, by providing a scenario-in which we're
less inclined to flesh out our minimalisf-causal explanation with illicit continuity-causal

or generative-causal intuitions.

6.2. Should we explain the EPR correlations continuity-causally?
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A continuity causation advocate can explain EPR by renouncing Reich or Causal
Unidirectionality. As long as "causal processes" mirror physical processes, Reich holds,
because fundamental physical processes are Markovian. But we can renounce €ausal
Unidirectionality by allowing "passive" processes (i.e., those not corresponding to
transfer of a conserved quantity) to count as causal. Healey's explanation of EPR
violates Causal Unidirectionality, but obeys Reich. As discussed in section 4.3, such
continuity-causal explanations are stripped of almost all generative-causal intuition.

These "eviscerated" continuity-causal explanations clarify issues both in philosophy
of quantum theory and in philosophy of causation. The quantum philosopher, if he
wants to explain the EPR correlations causally within the context of relativistic quantum
theory, and if he considers minimalist causation to be explanatorily empty, must adopt a
continuity-causal explanation in which the continuous causal process does not
correspond to the flow of current density, energy, momentum, or any such quantity.

Should we label such a process "causal"? As discussed in subsection 3.4, in a
classical framework, most continuity-causal explanations incorporate generative-causal
intuitions, and vice versa. The intuitions urging you to call Healey's explanation
"noncausal” are precisely those generative-causal notions normally present in continuity
causation. On the other hand, any sympathies you feel for calling Healey's explanation
"causal" stem from pure continuity-causal intuitions. So, EPR helps us to see what bare
continuity causation looks like.

These considerations do not tell us what causation really is, or whether that question

even makes sense. They merely help to clarify our options.

7. CONCLUSION
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Redhead (1992), Elby (1992), and others attempt to show that we cannot causally
explain the EPR correlations within a quantum framework. These arguments involve
setting necessary conditions on causation. As Healey (1992) points out, however,
causation is not a sufficiently univocal concept to invite universal necessary conditions.
Therefore, the philosophical implications of causation no-go theorems are unclear.

In this paper, I tried to sharpen these no-go theorems by teasing apart three
overlapping yet distinct notions of causation, namely minimalist causation, generative
causation, and continuity causation. By exploring which necessary conditions each
conception must adopt, we (at least partially) disentangled these causal notions. My no-
go theorem showed that within a relativistic quantum framework, we cannot causally
explain the EPR correlations consistent with Reich, Causal Unidirectionality, and
Explanatory Symmetry. Therefore, a "causal" explanation of the EPR experiment
within a relativistic quantum framework must be minimalist-causal or continuity-causal,
stripped of almost all generative-causal intuition.

So, if you think all lawlike correlations warrant a causal explanation, you must
severely water down your causal intuitions. Arguably, instead of watering down
causation, we should search for a new, perhaps holistic framework in which to explain

quantum correlations.
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CHAPTER 6: CONCLUSION

Each chapter of this thesis was about a different topic. Chapter 2 explored
nonlocality, and presented some new algebraic nonlocality proofs utilizing assumptions
of unprecedented weakness. Chapter 3 argued that SQUID experiments say little about
Macrorealism per se, but can rule out non-invasively measurability. In chapter 4, I
showed how decoherence rescues modal interpretations from otherwise-fatal objections.
And chapter 5 argued that any “causal” explanation of the EPR correlations will be
severely watered down. In each chapter, I argued that the piece of “quantum weirdness”
under discussion could be explained well by holism, the idea that composite systems
possess properties that cannot even in principle be reduced to the properties of the parts.
No one of my chapiers presents a drop-dead argument that we should adopt a holistic

explanatory framework. But taken together, my chapters point us in that direction.
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