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ABSTRACT

Synthetic Aperture Radar (SAR) imaging is a class of coherent range and Doppler signal
processing techniques applied to remote sensing. The aperture is synthesized by
recording and processing coherent signals at known positions along the flight path.
Demands for greater image resolution put an extreme burden on requirements for inertial
measurement units that are used to maintain accurate pulse-to-pulse position information.
The recently developed Phase Gradient Autofocus algorithm relieves this burden by
taking a data-driven digital signal processing approach to estimating the range-invariant
phase aberrations due to either uncompensated motions of the SAR platform or to
atmospheric turbulence. Although the performance of this four-step algorithm has been
demonstrated, its convergence has not been modeled mathematically. A new sensitivity
study of algorithm performance is a necessary step towards this model. Insights that are
significant to the application of this algorithm to both SAR and to other coherent imaging
applications are developed. New details on algorithm implementation identify an easily

avoided biased phase estimate. A new algorithm for defining support of the point spread
~ function is proposed, which promises to reduce the number of iterations required even for
rural scenes with low signal-to-clutter ratios.
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Chapter 1

Introduction

This introductory chapter is divided into five sections. The first section presents an
overview of the area of research and a summary of the original contributions made here.
The second section provides a very general overview of the principles of Synthetic
Aperture Radar (SAR) imaging sufficient to motivate the need for autofocus. The third
section introduces the contribution made by the Phase Gradient Autofocus (PGA)
algorithm to the problem of high-resolution SAR imaging. The fourth section reviews
five areas of investigation into the functioning of the PGA algorithm. These
investigations are a necessary step in the development of a convergence model for this
very significant algorithm, and they constitute the original research documented here.

The fifth and final section provides a chapter outline.

1.1 Research Summary

The Phase Gradient Autofocus (PGA) algorithm for Synthetic Aperture Radar (SAR)
imaging takes a non-parametric approach to estimating and correcting for phase errors in

the SAR data. These phase errors arise from uncompensated changes in signal path

length, which are, in turn, due either to uncompensated SAR platform motion or changes




in signal path length due to random propagation delays introduced by atmospheric

turbulence. The data-driven PGA algorithm was first introduced in the literature in 1989,
by Eichel, Ghiglia and Jakowatz [18]. Its gradient estimation kernel is based on optimal
estimation theory. The PGA algorithm has been regarded as an enabling technology for
SAR image formation. However, the convergence behavior of this algorithm has not
been modeled mathematically. Such a model could be used to further optimize algorithm
implementation in SAR imaging and would facilitate the application of PGA to other

coherent imaging processes.

This research presents analyses critical to the development of a convergence model. The
problem is partitioned into five areas of investigation. Both theoretical and numerical
analyses are used to probe these five areas. The principles of Fast Fourier Transforms
(FFTs) (used in SAR image processing to map received signals to the image plane), and
random angle modulation (the manifestation of uncompensated changes in signal path

length) are fundamental to this research.

Both theoretical and numerical methods of analyses are used here to address issues not
found in the literature. The tools of theoretical analyses applied here are derivations of
Cramér-Rao lower bounds and Taylor series expansion of the phase gradient estimator.
The numerical analyses presented here are the resulté of a systematic study of the
sensitivity of PGA algorithm performance to both synthesized and real SAR data for three
classes of aberrating phase errors. The detail and depth of these numerical analyses

exceed published methods and results.




This research has identified an inherent gradient-dependent bias in the gradient estimator.
Another larger estimator bias is also identified. However, it is shown that this larger bias
can be easily eliminated by not using zero-padded FFTs to interpolate data in the alternate
domain, a commonly used digital signal processing practice. This research also identifies
the limited representation of real SAR data by the current data model. Finally, a more
robust alternative to a current heuristically defined subprocess of the PGA algorithm is
proposed. This alternative offers better performance for images with lower signal-to-
clutter ratios, such as rural scenes, and promises to require fewer iterations of the PGA

algorithm to achieve near diffraction-limited image focus.

This introductory chapter provides an overview of the principles of SAR, briefly
introduces autofocus and in particular the Phase Gradient Autofocus algorithm, identifies
the five areas of investigation pertaining to that algorithm that are the subject of this
research, and closes with a chapter outline. Greater detail on the problem statement

follows in Chapters 2 and 3.

1.2 Principles of SAR

A very general review of the principles of Synthetic Aperture Radar (SAR) imaging is

presented here to support the review of the objectives of this research which follows.

The power of the received radar echo, Pg, is a function of the power of the transmitted

pulse, Pr, the gain of the transmitting and receiving antennas, Gr and Gg, the range to the




reflector or target, R, transmitted wavelength, A, and the radar reflectivity or radar cross
section, o, of that target. This relationship is defined by the well known radar equation,

_ PG,GNo
R (471_)3 R4

(1-1
The relationship between received power and transmitted power, antenna gains and range
losses is not critical to understanding the aspects of radar imaging addressed by this
research. What is critical to understanding this discussion of radar imaging is the concept
that different materials (both natural and man-made) have different radar cross sections
and that radar cross section for any single material can vary as a function of both radar
frequency and angle of illumination. Thus, received power is determined by radar cross
section. Radar imaging displays these differences in received power as a function of echo

position in two-dimensional space to the extent that the return signals can be resolved

within that space.l

Range is estimated from the measured round-trip delay between the transmitted signal
and the received echo. Range resolution, the ability to distinguish between the relative

delay between adjacent echo sources, is a function of the effective width of the

! Echo sources are interchangeably referred to as targets or scatters. Clutter is just a
collection of scatters that are considered indistinguishable because their radar cross

sections are statistically identical but independent.




transmitted pulse; the narrower the pulse the greater the resolution;

velocity of propagation [m/s] x effective pulse width [s]

range resolution [m] = :

(1-2)

Using the inverse relationship between effective signal pulse width and signal frequency

or bandwidth, the principle of radar range resolution can be alternately stated as

velocity of propagation [m/s]

range resolution Im] = ; 1-3
g L] 2 bandwidth [1/5] (-3

that is, the greater the bandwidth the greater the resolution. While range resolution is
achieved with a wide-bandwidth signal, azimuth or cross-range resolution is achieved

with a narrow-beam antenna. If the wavelength, A, is much less than the antenna or
aperture dimension, D, beamwidth, 85, is defined by the ratio of wavelength to antenna

dimension,

6, =A/D [rads]. (1-4)

SAR — Synthetic Aperture Radar — is a method of using a single, physically small
antenna with a wide beam to synthesize a long, linear antenna array. The synthesized
linear array has a narrow beam in the dimension of the array and the beamwidth is
inversely proportional to the length of the synthesized array. A distinguishing feature of
synthesized arrays is that resolution is independent of range to target and is proportional
to the physical length of the antenna. SAR geometry is illustrated in Figure 1-1. The
diagram in the upper portion of Figure 1-1 illustrates range resolution in the plane normal
to the flight path. Range resolution is proportional to the effective pulse width. The

diagram in the lower portion of Figure 1-1 illustrates the synthesis of the array by the

platform flight path. The patch of terrain to be imaged must be within the wide beam of




the single, physically small antenna at each point along the aperture. Points along the

aperture are illustrated in the figure by the dots along the flight path.

While SAR range resolution is proportional to pulsewidth, SAR cross range or azimuth
resolution requires accurate knowledge of the pulse-to-pulse position of the SAR
platform to within a fraction of a wavelength. One approach to correcting for deviations
in antenna phase center across the aperture is to use information from an inertial
measurement unit to estimate and compensate for platform motion. However, increasing

standoff ranges and aperture lengths place an extreme burden on the motion
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Figure 1-1. SAR geometry illustrated in plane normal to flight path
and projected onto horizontal plane. Grid indicates patch imaged. Dots along the
flight path indicate points at which pulses are transmitted to synthesize an array.




compensation system. Uncorrected deviations of the antenna phase center appear in the
data as phase modulations which blur the detected image. Atmospheric turbulence can
induce random propagation delays, which alter the pulse-to-pulse path length. These
errors produce a similar effect on image quality as does uncompensated platform motion.
Clearly, platform motion compensation techniques are of no use in correcting for the
effects of atmospheric turbulence. The effect of phase modulation is illustrated in Figure
1-2 where a focused and defocused image are displayed along with the associated point
spread functions and image peak responses. The point spread function is a measure of
aperture response. While the theoretical point response is a delta function, the realized
point response exhibits multiple sidelobes due to the finite size of the aperture. The
image peak response shows the detected squared magnitude in the azimuth dimension of
a bright pixel” in the scene and the adjacent pixels. The plots in Figure 1-2 show the

adjacent 128 pixels.

1.3 Autofocus — An Alternative to Motion Compensation

In the early 1970’s researchers began looking for data-driven digital alternatives to

motion compensation systems.®> Work in focusing of stellar optical images was motivated

by phase aberrations introduced by atmospheric turbulence. Work in radar image

2 A target is a pixel with large radar cross section.
A summary of the literature chronicling the development of autofocus algorithms is

provided in Appendix A.
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Figure 1-2 Illustration of focused and defocused images
and associated point spread functions and image responses at a bright point.




formation was motivated by aberrations introduced by platform motion. Early SAR
autofocus algorithms took a parametric or order-based approach to phase estimation.
Early optical autofocus algorithms approached the problem as one of deconvolving the
phase modulation transfer function from the aberrated diffraction-limited point response
of the optical system. Both approaches require an isolated bright object in the scene that

is equivalent to a point source.

In 1989, a four step approach to SAR autofocus, later to be called the Phase Gradient
Autofocus (PGA) algorithm, appeared in the literature [18]. Unlike previous approaches,
this non-parametric algorithm works well in the absence of isolated bright objects in the
scene. A block diagram of the PGA algorithm is shown in Figure 1-3. This algorithm,
considered an enabling technology, is relevant not only to SAR but to all coherent array
imaging processes. The PGA is a four step algorithm:

1) circularly shift brightest points;

2) window (limit support of the point spread function);

3) estimate and remove phase; and

4) iterate.
What sets the PGA algorithm apart from similar algorithms employing some but not all of
the four steps, is the demonstrated necessity of all four steps [65]. In 1993 a maximum
likelihood (ML) phase-gradient estimation kernel replaced the original linear unbiased

minimum variance (LUMYV) estimation kernel and performance of the ML estimator was

compared to the theoretical Cramér-Rao lower bound [33].
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Figure 1-3. Data flow diagram for Phase Gradient Autofocus algorithm.

1.4 The Five Objectives of this Research

While much has been demonstrated about the PGA algorithm, there are still a number of
open issues. Five areas bf investigation are identified here and are the object of this
research. These five areas include: significant details of algorithm implementation not
addressed in the literature, the accuracy with which real SAR data are represented by the
current data model (the data model from which the Cramér-Rao lower bound has been

derived), and the heuristically defined threshold for estimating the required support of the




point spread function. The new work presented here compares results of numerical
sensitivity analyses using both synthesized and real SAR data to each other and to
theoretical Cramér-Rao lower bounds. The five areas of investigation, the methods of

analyses and the results are summarized in the following paragraphs.

1.4.1 Method of Interpolating and Integrating Phase-Gradient Estimates

The first area of consideration is not at Step 1 of the algorithm but is the process
immediately following Step 5 of the PGA algorithm, (see Figure 1-3) the optimal
estimation kernel. At this point, prior to applying the phase correction, estimates of phase
error across the full aperture must be computed from bandlimited estimates of phase
gradients. This subprocess is at the core of the algorithm but it is not explicitly indicated
in Figure 1-3 nor has it been addressed in the literature. Four candidate algorithms to
accomplish this subprocess are considered here. Interpolation of phase gradients prior to
integration is shown to be optimal. The commonly used technique of zero padding of
FFTs to interpolate data in the phase-history domain is shown to actually correlate the
noise, resulting in biased estimates of phase gradients. This conclusion is supported by a

Taylor series expansion of the gradient estimator.

1.4.2 Improvement with Iteration

The next steps in the PGA algorithm are phase correction then iteration. Improvement
with iteration for real SAR data has been demonstrated by Wahl, Eichel, Ghiglia and

Jakowatz in [65]. In [51] Snarski suggests that the elimination of errors in the shifting of
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the brightest points accounts for improvement with iteration. Here, it is shown that there
is improvement with iteration using synthesized data even with no shifting errors. This
result is also supported by the Taylor series expansion of the gradient estimator discussed
in the previous step. That expansion indicates a small estimation bias even when the

noise is uncorrelated.

1.4.3 Differences Between Synthesized and Real SAR Data

Iteration returns the process back to Step 1, the beginning of the PGA algorithm. The
CRLB derived in [33] is predicated on the model for SAR phase-history data. While the
robustness of algorithm performance has been demonstrated [65], a systematic sensitivity
analysis has not been conducted, nor has the validity of the data model in [33] been
verified. A systematic sensitivity analysis is presented here. This analysis begins with a
comparison of expected PGA performance calculated using the CRLB from [33] to
numerical results using synthesized and real SAR data (without any errors in the shifting
of the brightest points). There are notable differences between the results using
synthesized and real SAR data, particularly for low signal-to-noise ratios. These results
indicate a need to expand the data model to explicitly represent the modulation of clutter

by the aberrating phase.

1.4.4 Effect of Shift Errors on Estimator Performance

The next step in the sensitivity study considers the effect of errors in center shifting of the

brightest points at Step 2 of the PGA algorithm. This issue is explored both theoretically




and numerically. If shift errors are appended to the current data model as multiplicative
noise, then the resulting Cramér-Rao lower bound indicates that shift errors effect a loss
in signal-to-noise ratio. Numerical results, however, do not support this theoretical result.
Numerical results indicate that shifting errors increase the required width of the support
of the point spread function. These findings indicate that the data model should be
further expanded to include the transfer function of the support of the point spread

function.

1.4.5 Definition of the Support of the Point Spread Function

The final area investigated is Step 3 of the PGA algorithm, windowing, which requires
estimation of the width of the support for the point spread function. Current practice for
scenes with high SNR is to use 1.5 times the -10 dB width of the computed point spread
function. Current practice for scenes with low SNR is to set the window to the maximum
expected width for the first iteration and to successively narrow the window by 20% with
each iteration [65]. A robust alternative to the current thresholding scheme is presented
here. This new method is compared to current practice. The advantage of the new

method is that it performs equally well for scenes with both high and low SNR.

Investigation into area 1 identifies best practices and potential pitfalls in the mechanics of
algorithm implementation. Investigation into Area 5 identifies a “hands-off” alternative
to estimation of the support of the point spread function that is demonstrated to be robust

even for rural scenes with low signal-to-clutter ratios.
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Investigation into Areas 2, 3, and 4 provide significant insights necessary to

understanding algorithm performance within the construct of SAR image formation.

These insights are significant to the understanding of the modeling necessary to apply the

PGA algorithm to other image formation processes using coherent detection.

In summary, results presented here fall into two categories: process controls that improve
algorithm performance and process responses that provide insights but may be beyond the

control of the current implementation.

1.5 Chapter Outline

Whenever full discussion or derivation of process or full inclusion of data would interrupt
the flow of the main thought, those discussions, derivations or data will be presented in
summary in the main body with the details relegated to the appendices. Considerable

emphasis is placed on data visualization.

The problem statement outlined in this introduction is fully developed in Chapters 2

and 3.

Chapter 2 provides an overview of the SAR image formation process. The level of
detail is sufficient to understand the need for autofocus and the implementation of the

PGA algorithm.




Chapter 3 reviews the implementation of the PGA algorithm in greater detail. This
review is supported by examples and the five areas of investigation are reiterated as

questions.

In Chapters 2 and 3, the necessary background in the area of application (SAR image
formation) and the area of investigation (convergence behavior of the Phase Gradient
Autofocus algorithm) is developed. In Chapter 4, the phase and image data are presented
and in Chapter 5 the theoretical and numerical methods that applied to this research are

developed.

The two parts of Chapter 4 review the phase and image data used for this research. The
first section on aberrating phases begins with a review of the principles of deterministic
angle modulation. This review provides a basis for the discussion of the applicable
theory of random angle modulation which follows. The aberrating phase error functions
and associated metrics used in this research are then presented. In the second section of
Chapter 4 the SAR image data used here are presented and the method used to synthesize
image data is discussed. Results of exploratory analysis of the real and synthesized SAR
image data are summarized. The most interesting finding is a significant difference in the
distribution of clutter between real and synthesized SAR data. (The full results of this

exploratory analysis are contained in Appendix B.)

The two parts of Chapter 5 present the theoretical and numerical methods of analysis

employed. Some preliminary results are presented to provide the background and

~15 ~




constraints for the results developed in chapter 6.

In part one of Chapter 5, the principal tool for the theoretical analyses used here, the
Cramér-Rao lower bound, is discussed. The equations for the Cramér-Rao lower bound
for unbiased and biased estimators are presented. Some details, significant to the
computation of Cramér-Rao lower bounds for the non-linear problem of phase-gradient
estimation, are explored. Computation of Cramér-Rao lower bounds can be algebraically
tedious. Therefore, to avoid excursions from the significant facts, all derivations of
Cramér-Rao lower bounds will be given in the appendices. Only results will be presented

in the body of this work.

In part two of Chapter 5 the two numerical methods of analyses used here are developed.
Synthesized SAR data with near infinite signal-to-clutter ratio is used to develop
numerical lower bounds on estimation error for the phases of interest. These bounds are
expressed as a function of the width of the support of the point spread function.
Theoretical Cramér-Rao lower bounds are mapped from a function of signal-to-noise
ratio to functions of scene signal-to-clutter ratio and width of support of the point spread
function. This provides an opportunity to introduce a format for data-display that will be
used extensively throughout Chapter 6. Chapter 5 concludes with discussion of a menu
of eleven metrics of residual phase error and image quality used in the sensitivity studies

upon which the results in Chapter 6 are based.




In Chapter 6, the five identified areas of investigation are addressed in detail. Results
are supported by numerous examples. Chapter 6 contains the original contributions of

this research. Those results have already been summarized in Section 4.1 of this chapter.

Conclusions and recommendations are summarized in Chapter 7.

Appendix A offers an historical summary of the literature on non-parametric SAR

autofocus algorithms.

Appendix B contains all plots used for exploratory analysis of real SAR data and

comparisons of synthesized to real SAR data.

Appendix C contains the derivation of Cramér-Rao lower bound for the data model used

by Jakowatz and Wahl in [33].

In Appendix D Taylor series expansions are used to evaluate the expected value of the
gradient estimator. The data model is expanded to include correlated noise and the
Cramér-Rao lower bound for unbiased estimates using data with correlated noise is

derived.

In Appendix E the data model is expanded to include shift errors as multiplicative noise

and the associated Cramér-Rao lower bound is derived.
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Chapter 2

Background

Principles of SAR Image Formation

This research investigates two areas pertaining to the implementation of the Phase
Gradient Autofocus (PGA) algorithm to SAR imaging and three areas pertaining to the
modeling of the performance of that algorithm. In order to understand the context of the
problem and the assumptions inherent in the PGA algorithm, it is useful to understand the
principles of SAR image formation. There are a number of references that cover this
topic in detail. In this chapter the topic is covered at a level of detail sufficient to support
the subsequent investigation into the implementation and modeling of the PGA
algorithm. References include Eaves and Reedy [17], Elachi [20], Fitch [22],
Hovanessian [30], Mensa [40] and [41], Stimpson [53], and Jakowatz, Wahl, Eichel,
Ghiglia and Thompson [32]. Here, the discussion is divided into three major topics: 1)
Antennas, Arrays and Synthesized Arrays; 2) SAR Data Collection and Image
Formation; and 3) Approaches to Autofocus. The first section addresses the relative
resolution attained with antennas, real arrays and synthesized arrays. The resolution of
synthesized arrays is shown to be twice that of real arrays. In the second section, the

principles of SAR data collection and image formation are presented at a level of detail




sufficient to understand the problem addressed by the PGA algorithm. The key concepts
presented in this second section are: 1) resolution attained by compression of a chirped
pulse; 2) a replica of the transmitted chirp is all that is required for range pulse
compression; but, 3) precise information on the relative position of the antenna phase
center (to within a fraction of a wavelength) along the entire platform trajectory (or SAR
aperture) is required for accurate azimuth data compression. Errors in the azimuth
reference result in image blur in the azimuth dimension. A final topic, that of aperture
taper, is covered in this second section. The principal point is that a Taylor window with
-40 dB sidelobes and 7 = 6 was used to taper the aperture for all results reported here.
The third and final section of this chapter provides a brief overview of approaches to

SAR autofocus.

2.1 Antennas, Arrays and Synthetic Arrays

2.1.1 Real Antennas

The beamwidth, g, of a real antenna is proportional to the transmitter wavelength, A, and

inversely proportional to the antenna diameter, D. This relationship is illustrated in

Figure 2-1(a) and is expressed mathematically as 8, = A /D [rads].

As illustrated for a parabolic antenna, the angle from the center or boresight of the

antenna at which the change in round trip delay (2AR) at the edges of the antenna equals

half a wavelength, A/2, is the angle at which the signals received at opposite edges of the




antenna are 7z radians out of phase. Resolution is then a function of antenna beamwidth,
0, and range to target, R; that is, resolution = R€3. To achieve 3m resolution at a range
of 1000 m at a frequency of 30 GHz (wavelength A = 1 cm) requires R6, =RA /D=3m

or D=33m.

2.1.2 Array Antennas

As illustrated in Figure 2-1(b), the function of a single real antenna can be realized by an
array of small-aperture, wide-beam antennas with overall array dimension equal to that of
the real antenna. The narrow beam is achieved by adjusting the phase relationships
between the array elements such that the signals received at all elements are in phase for a

plane wave normal to the array, hence the name “phased array” antenna. Assuming that
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Figure 2-1. Illustration of relationships between real antenna, real array and
synthetic array.




all elements transmit and receive simultaneously, then the beamwidth of the phased array
is the same as that of the single narrow-beam antenna of the same size and the resolution
is, likewise, range dependent. The beam can be steered by adjusting the relative phases of
the elements. Beam focusing and steering can be achieved using either analog or digital
signal processing. The bounds on the maximum steering angle are a function of the array

geometry, a topic beyond the scope of this dissertation.

2.1.3 Synthetic Arrays

The functionality of a real array can be approximated by a synthetic array as illustrated in
Figure 2-1(c). An array is synthesized in time and space by sequentially positioning a
single small array element at the positions that would be occupied by real array elements.
In concept, at each element position, a single pulse is transmitted and received before
repositioning the element. In order to process the sequentially received data, the sequence
of element positions must be known precisely. In practice, the array is synthesized by a
platform moving along a known path at a known velocity. Synthesized array lengths can
be orders of magnitude greater than real array lengths. There are two significant
differences between real and synthetic arrays. The theoretical resolution achievable with
a synthetic array, dy, is one half the diameter, d,, of the single array element and secondly,

resolution is independent of range!

The following development of the azimuth resolution of synthetic arrays is based on that

of Hovanessian [30], Mensa [41] and Stimpson [53]. First, consider the beamwidth of a

~21 ~




real array, which has both a one-way and a two-way antenna pattern. Consider the one-
way pattern. All elements of the array receive a plane wave from an emitter at some point
along the boresight of the antenna. Now rotate the emitter about the center of the array.
The angle at which the phase at the far element is 7 radians greater than the phase of the
near element is the half beam angle. This change in signal path length is illustrated in
Figure 2-1(a). The one-way pattern has the form sin Nx /sin x, where N is the number of

array elements and x is proportional to the product of sine of the angle, 0, off the

boresight and the ratio of array separation, d, to signal wavelength, A; that is;
x= Zn%sin 6. The two-way pattern is then (sin Nx / sin x)z. However, a synthetic array

has no one-way pattern. Since each element of a synthesized array receives only its own
transmitted signal, there is no cross-coupling between array elements. The two-way
pattern is determined by the round-trip phase delays to the synthesized array elements
relative to the center of the synthesized array. Thus, the two-way antenna pattern of
synthesized array is equivalent to the one-way antenna pattern of a real array of twice the

length. That is; the two-way pattern of a synthetic array is sin2Nx /sin2x. For a

uniformly illuminated real array of length L, the one-way 3-dB beamwidth is 0.88%, thus
the two-way 3-dB beamwidth of a synthetic array is 0.44%. The commonly used 4-dB

beamwidth of the two-way antenna pattern for synthetic arrays is conveniently 8,, =—

radians. The azimuth resolution, d; at range, R, is then R$ 6, ,; thus




A
d.=—R. -
* =07 2-1)

The object of interest must be in the beam of the real antenna of the synthetic array for the
full length of the array. Thus the synthetic array length is limited by the beamwidth of the

real antenna,
(2-2)

where d, is the length of the real antenna. Substituting Ly, from (2-1) for L in (2-2)
produces the stated azimuth resolution d, =+d,. Even this limitation on resolution can

be removed by using “spotlight” mode SAR, where the beam on the real antenna is kept

continuously pointed on the area being mapped rather than sweeping over that area.

2.2 SAR Data Collection and Image Formation

Having established the fundamentals of synthetic array formation, the discussion now
proceeds to the fundamentals of SAR data collection and image formation. The geometry
of a SAR platform represented by an aircraft (flying into the page) with a side-looking
antenna was illustrated in Chapter 1 in Figure 1-1. At each position along the synthesized
array a pulse is transmitted. Range resolution is inversely proportional to the bandwidth
of the transmitted signal. Typically a chirped pulse is used to achieve a wide bandwidth
and hence fine range resolution (after pulse compression). The duration of the chirped
pulse is on the order of 10 to 100 microseconds, while the duration of the aperture

formation is on the order of 1 to 10 seconds!




2.2.1 Range Compression

Range compression is illustrated in Figure 2-2. Although the slope of the chirp is
arbitrary, a negative chirp is illustrated. For each pulse transmitted, an ensemble of
replicas of that pulse are received with time delays proportional to the ranges of the
reflectors. The received signal for a single pulse is the sum of these delayed and
attenuated echoes. While echo delay is proportional to the round-trip delay from the
transmitter to the source of the echo, the echo power of interest here is proportional to the
radar cross section of the echo source'. This sum is dechirped or deramped by mixing it
with a copy of the transmitted pulse. The result is the sum of signals with frequencies
proportional to range and amplitude proportional to the reflectivity (radar cross section)
of the ensemble of reflectors at the associated range. The received, deramped signals are
then passed through a bank of bandpass filters, thus sorting the data by range. If the
deramped data are digitized, then the filter bank can be realized using Fourier transforms.
The duration of the chirped pulse is on the order of tens of microseconds. The round trip

delay varies from 70 ps for airborne SAR platforms at ranges on the order of 10 km to 3

! The term target is often used to refer to an echo source. The terms: point source, point
scatterer, specular source or point target all refer to distinguishable features in the scene
being imaged that have a radar cross section that is significantly larger than that of

adjacent echo sources.
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Figure 2-2. Illustration of SAR range resolution achieved through pulse
compression.
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ms for spaceborne platforms at ranges on the order of 500 km. For each pulse transmitted

the ensemble of received pulses is processed on a pulse-by-pulse basis. This process is

called pulse compression.

Pulse compression is expressed mathematically as follows: Let the transmitted pulse be

expressed as

B T
s.() =sin| 27 t+—t2) <=
(0 =sin{ 27 £+ <

=sin(2x ft+7 f 1) (2-3)
where

Jo 1s the carrier frequency,
B is the chirp bandwidth,
t is the time index within the pulse,

T is the pulse duration, and

—? = f, the chirp rate [Hz/s].

Although the actual received signal is the continuous-time integration of echoes, for

simplicity we will represent it by the discrete-time summation of delayed versions of the

transmitted signal.

N range

s®=Y, sin27 f,(t-7,)+ 7 f(1-7,)) (2-4)

k=1




where 7 is the round-trip delay to the k™ resolvable range and Niayge is the number of

resolvable ranges in the summation.

The received signal is coherently detected. That is, both the in-phase and quadrature
components are detected, thus preserving the received magnitude, frequency and phase.

This process is illustrated in Figure 2-3.

Frequency
1
N Frequency, f= B/T 2R/c
s proportional to delay
Bandwidth, B
Delay, 7=2R/c \‘\ /_ Received chirp
Transmitted chirp _ 7 N

! >, Time

< Chirp duration, T —_—

Figure 2-3. Detail of transmitted and received chirps.

~27 ~




The output of the mixer (which is synonymous with demodulator or deramper) for a
single term of the discrete summation in equation (2-4) is

x (1) =cos(2x frp+2m f1, - f 7,7). (2-5)
Substituting 2R/c for time delay, 7, in (2-5), where 2R is the round-trip range and c is the

velocity of light, results in
x,(t)= a, cos(2n f 2R, I ct+4n f, R,/ c—m f(2R, / c)’) (2-6)
where the first term, 47 f R, / ¢, 1s the range-dependent frequency term, the second term,

47 £, R,/ c, is the range-dependent phase term, and the third term, 7 (2R, / ¢)’, is
approximately zero if the maximum round-trip delay, 2R_, /¢ ,is much greater than T,

where T is the chirp duration.

The first term, the range-dependent frequency term, is the mathematical expression for
the data that are passed through the bank of narrowband filters that are realized with a
discrete Fourier transform. The signal power at each Fourier frequency is proportional to

the coherent signal returns from all scatters within the associated range resolution cell.

The data are now in what is called range-compressed phase-history (Doppler) domain.
The second term, the range-dependent phase term, is used to achieve cross-range or
azimuth resolution. Note that the reference used to deramp the received chirped pulses is
just a replica of the transmitter chirp. The stability of the reference is predicated on the

stability of the radar electronics.




2.2.2 Azimuth Compression

The mathematics of azimuth compression are similar to the mathématics of range
compression. However, unlike the range compression reference signal, which is just a
replica of the transmitted pulse, generation of the reference for azimuth compression
requires accurate knowledge of the SAR platform trajectory. This information is typically
acquired by inertial measurement units. The principles of SAR azimuth compression are

developed and illustrated in this subsection.

The relationship between position in the aperture and slant ranges to a pair of reflectors
(targets) over the length of the synthetic aperture are illustrated in Figure 2-4. As the

platform approaches the target, range decreases; as it moves away from the target, range
increases. This change in range causes a pulse-to-pulse shift in phase. The time rate of

change of this phase is called Doppler frequency.

The signal processing of Doppler histories across the aperture is illustrated in Figure 2-5.
As can be seen from the figure, each range-compressed pulse contains the sum of Doppler
shifted returns from the ensemble of reflectors (targets) within the specified range bin.
While the Doppler histories are illustrated as continuous-time data, they are actually
discrete-time data with sample intervals equal to the pulse repetition period. In a manner
similar to range pulse compression, the Doppler phase histories are deramped by mixing

them with a digital Doppler reference. This deramping is called focusing, and is not to be
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confused with autofocusing. If the Doppler histories are not deramped they are

unfocused, and clearly the image resolution is severely limited.

The slope of the Doppler reference is determined by the measured velocity of the SAR
platform over the length of the synthetic aperture. In a manner similar to range
compression, the deramped Doppler phase histories are passed through a bank of

bandpass filters that are realized with a discrete Fourier transform.

Figure 2-4. Illustration of change in range to a point target.
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Figure 2-5. Illustration of SAR azimuth resolution achieved through compression
of Doppler phase histories.




The process of azimuth deramping is expressed mathematically as follows. Recall that
the range-dependent phase term in (2-6) is the expression of interest; that is,

¢p=4rnf R /c. 2-7)
For slant range from the trajectory to the scene center, R, that is much greater than the

aperture length, the instantaneous slant range can be approximated by

R(tm )=R, + _[x(t’"z_) I;xn ]2

) (2-8)
where x(1,,) is the platform position along the aperture at the m™ pulse and x, the platform
position at the center of the aperture. Substituting (2-8) into (2-7) and replacing x(Z,,)

with V(1) t,, where V(1) is the instantaneous along-track platform velocity and noting that

A=c/ f, produces

00 == (VO ~ %, 2-9)

a

with the time dependence of the phase shown explicitly in the notation. The

instantaneous frequency is the time derivative of the instantaneous phase; that is,

2V(t)
R A

Q

av(t)

w,(t)=27 Vo, - x,) [rads /s]. (2-10)

Equation (2-10) is the expression for the Doppler reference signal.

The difference between the references for range and azimuth (Doppler) compression
merits emphasis. The reference for range compression is the transmitted signal and is
internal to the radar. The reference for azimuth compression is the estimated rate of
change of range (or path length) to a nominal point in the patch illuminated by the

antenna.




A simple example serves to illustrate the effect of using an incorrect reference to deramp
the azimuth data. Consider the case of underestimated platform velocity as illustrated in
Figure 2-6(a). The frequency error in Figure 2-6(a) is linear, thus the phase error is

quadratic.

In Figure 2-6(b) the ideal single target spectrum called the diffraction limited point

response is compared to the spectrum due to demodulation using our erroneous reference.

A note about phase errors. A constant phase error has no effect on image quality. A
linear phase error shifts the image but does not spread or split the point spread function.

Quadratic phase error blurs the point spread function as illustrated.

Two types of perturbations can cause the rate of change of phase (and the associated
phase slope) to deviate from the nominal: 1) perturbations in the radial velocity of the
platform with respect to the nominal reference point, and 2) perturbations in the radial
path length due to changes in the refraction index of the air caused by atmospheric
turbulence. While the former may be corrected with a high resolution inertial
measurement unit on the SAR platform, the latter must be estimated and corrected using
data-dependent methods. Data dependent algorithms for estimating and correcting for

errors in the Doppler reference are called autofocus algorithms.
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Figure 2-6. Illustration of phase rate error and resultant image blur.
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Although there is a third possible cause of change in path length, target motion, it is not
considered here. What is considered here is that the function of autofocus is to estimate

and correct for path length changés common to all ranges.

2.2.3 Resolution & Aperture Taper

A brief discussion of image resolution, aperture taper and image sidelobe levels is
appropriate. Consider the point response to a single isolated bright scatterer. In the
range-compressed phase-history domain this single scatterer would be represented by
discrete samples with a constant phase slope over the duration of the aperture. In the
image domain the point response would be represented not by a delta function but by a
sinc function due to the finite length of the aperture centered at the constant frequency.
This is also true for range resolution. It is well known that the peak sidelobe level of a
sinc function is 13 dB below the mainlobe. Generally accepted criteria for high quality
imagery are peak sidelobe levels of at least 25 dB below the main lobe [30]. This lower
sidelobe level is achieved at the cost of slightly increased mainlobe width by applying an
amplitude tapering function to the data in the range-compressed phase-history domain.
Harris [28] provides a thorough discussion of windowing functions and their application.
For the examples in Figure 2-6(b), a Taylor window with a peak sidelobe level of -40 dB
and parameter 77 = 6 was used. The defining equation, as stated by Cook and Bernfeld in
[15]is

< 27 mt
W(t)=1+2) F, cos(—%"—)

m=1

(2-11)
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.5(_1)m+1 -1 O.—2m2
F,=— ; - £ 7l (2-12)

m n—1
p=l,pzm p

—

o = , and 2-13
! (A2+(ﬁ—i)2)% N =
A= %cosh‘l (107%). (2-14)

PSLR is the peak-to-sidelobe ratio in dB. The parameter 7 governs the extent over which
sidelobe levels are constant in the vicinity of the mainlobe. The Taylor window is an
approximation to the Dolph-Chebyshev window discussed by Harris in [28]. The Taylor

window is the aperture taper of choice for this dissertation.

2.3 Approaches to Autofocus

Approaches to autofocus fall into two main categories: parametric and non-parametric.

Parametric approaches assume some maximum order for a polynomial fit to the phase
error of interest. The full aperture is divided into adjacent subapertures with the number
of subapertures equal to the order of the polynomial. The map drift (linear shift in scene
content between subaperture pairs) is used to estimate piecewise linear phase error (phase
slope) between subaperture pairs. Various curve fitting techniques are then used to
estimate the phase function. These parametric approaches are widely referred to as map
drift, mean frequency or subaperture autofocusing. They only work for up to about

fourth-order polynomial-type phase errors [21].
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Prior to PGA, prominent-point autofocus was the non-parametric approach to autofocus.

This approach estimates the phase by deconvolving the complex point spread function of
the system from the measured complex point spread function of an identifiable strong
point-like reflector in the scene. While this approach does not require any a priori
assumptions about the structure of the phase, the disadvantage is obvious. It requires a
strong point-like reflector in the scene, a condition not always met in practical

applications of SAR imaging.

The PGA algorithm takes a signal processing approach to the problem of autofocus. It
recognizes that the phase errors due to SAR platform motion or atmospheric turbulence
have nearly the same affect at every pixel and at every range. It takes advantage of this
redundancy of information. The process can be likened to coherently summing phase-
gradient vectors across ranges. The coherent gain in signal-to-noise ratio is then

approximately equal to the number of ranges in the sum.




Chapter 3

Background

The Phase Gradient Autofocus Algorithm

In Chapter 1, five areas of investigation regarding the PGA algorithm were identified as
the object of this research. That chapter identified the issues and the current state of
knowledge, then summarized the original results that are presented in Chapter 6. In
Chapter 2, the principles of SAR image formation were reviewed and the need for data-
driven autofocus was developed. In this chapter the functions of the PGA algorithm are
reviewed in detail. This review begins with Step 1, Input the Complex Image. Areas of
investigation are restated as questions as the steps of the algorithm are reviewed. The
block diagram of the PGA algorithm was shown in Chapter 1 in Figure 1-3 on page 10.
Here, the questions raised are summarized in the expanded data flow diagram in

Figure 3-4 on page 50 at the end of this chapter.

3.1 Review of the Phase Gradient Autofocus Algorithm

Step 1. Input the Complex Image
We begin with the data model assumed by Jakowatz, Eichel and Ghiglia in [34] and [18]

and by Jakowatz and Wahl in [33]. Although this data model is defined in the phase-




history domain, it defines related assumptions in the image domain. It is, therefore,
appropriate to introduce the data model at the first step of our review of the PGA
algorithm. In [33], the m™ phase-history data sample at the k™ range is defined as
O

xk‘m =aq.e +nk,m

a, =|a,|e’® is the complex envelope of the signal at the k™ range. The expected
% 3 P g g p
value of the magnitude squared of q,, E{Iaklz} =02 and lakl are assumed

to be independent and identically distributed across ranges, but invariant
across azimuth at any single range. Similarly 6,, a target-dependent phase
at the k™ range, is assumed to be independent and identically and
uniformly distributed across ranges, but invariant across azimuth at any
single range.

¢, is the aberrating phase of interest at the m™ azimuth sample and is assumed to
be invariant across ranges for any given azimuth index.

n, ,, 1s complex circularly Gaussian noise, assumed to be independent and

identically distributed for all range samples indexed by & and all azimuth

n

samples indexed by m. Noise power is defined as E{ink,mlz} =02,

This data model is predicated on the assumption that clutter in the image domain is also
complex circularly Gaussian, independent and identically distributed for all range

samples indexed by k and all azimuth samples indexed by m. It is further predicated on




the assumption that signal is also complex circularly Gaussian and independent and
identically distributed for all ranges with only one signal per range. These assumptions
are stated explicitly by Jakowatz and Wahl in [33]. The relationship between the
assumptions in the phase-history domain and those made in the complex image domain is
a consequence of the fact that the discrete Fourier transform is a unitary linear transform.

The adequacy of this data model to represent real SAR data is identified as Area 3 .

Step 2. Circularly Shift the Brightest Points
Recall from Chapter 2, that for both map drift and prominent point autofocus algorithms,
the brightest point at each range is regarded as signal. The mathematical model for the

unaberrated brightest point at the K" range is
Wen =™ 4y, (32
where
a,and n, ,, are as defined above for equation (3-1),
@, is the radian Doppler frequency associated with the brightest point at the K

range, and

At is the sample interval in the azimuth dimension.

The mathematical model for the aberrated brightest point at the k™ range is

. P A
PLLP I S + 1y, (3-3)

Wem = O

S




Shifting the brightest points in the complex image domain to the index corresponding to
the center of the scene is equivalent to demodulating the data in the phase-history
domain; that is,

- —j@ , mAt
Xpm = W m€ .

3-4)

The shifting process is illustrated in Figure 3-1(a), (b) and (c). Figure 3-1(a) shows a
gray-scale plot of the magnitude squared of a synthesized SAR image. There is a single
bright scatterer at each range with signal-to-clutter ratio of 26 dB. Since there is no
structure to this synthesized SAR scene, it appears noise-like. To clarify the display, only
one quarter of the 512 by 512 pixel scene is shown. Figure 3-1(b) shows the same SAR
scene defocused in azimuth by a quadratic phase error with full extent of the point spread
equal to 1/8 of the azimuth aperture. Figure 3-1(c) shows the center portion of the shifted
version of Figure 3-1(b). For this example there were no shift errors present. The loci of
the brightest points were determined and center shifted prior to defocusing. In practice,

however, the radial Doppler frequencies, @ 4> AT€ unknown and must, therefore, be
estimated. The effect of errors in estimation of @ 4 referred to here as shift errors and
expressed in the notation as @, =, -® 4,» Where @ 4, 18 the estimated value and @, is

the estimation error, will appear as Area 4 in the list of areas to be investigated.
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Unaberrated synthesized SAR image with a
single bright point at each range.
Amplitudes and azimuth positions of the
bright points are random and independent.
Mean signal-to-clutter ratio = 26 dB.

Synthesized SAR image defocused by
quadratic phase error with a 50 radian
deviation at the edge of the aperture. Full
extent of the point spread = 1/8 of the
aperture.

Full extent of the point spread = 1/8 of the
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Taylor window with -40 dB peak sideilobes
and n = 6 was used to taper the range-
compressed phase-history aperture.

Circularly shifted defocused SAR image.

Non-coherent sum, across ranges, of
magnitude squared of defocused, shifted
SAR image.

Vertical lines mark 1.5 X's the minus 10 dB
width.

Figure 3-1. Shifting, summing and windowing processes illustrated.
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Step 3. Apply Window to Limit the Support of the Point Spread Function

The purpose of limiting the support of the point spread function is to minimize the noise
power in the alternate domain, the phase-history domain. This maximizes the SNR into
the ML phase-gradient estimator. In order to develop the data from which to estimate the
required support (or window) of the point spread function, the shifted, squared-magnitude
data are summed across ranges. The sum at the m™ azimuth sample is defined in the
image domain as [65]

N, ranges

$,= 2 (@)

k=1

X, (,,)is the Fourier transform of the range-compressed phase history, x,, and

because of the shifting process, the maximum of S, is at @, =0.

If the data are as modeled in equation (3-1) then the windowed or bandlimited noise

power in the phase-history domain =—;—$fﬂ O'i, where N,ind0w 18 the size of the window

az

and N, is the total number of azimuth samples across the aperture. Current practice with
the PGA algorithm is to use a rectangular window of width = 1.5 X (-10 dB width). The
sum and point-spread support are illustrated in Figure 3-1(d).y Current practice has been
shown to be effective for scenes with high contrast (high signal-to-clutter ratios) such as

urban scenes. For scenes with low contrast, as is the case for many rural scenes, current




practice is to start with the width of the support equal to the maximum expected width

and to then decrease the width of the window by 20% with each iteration.

An alternative algorithm for estimating the required point spread support will be offered
in Chapter 6. The method of defining the required support for the point spread function is

identified as Area 5.

Step 4. FFT
At this point the windowed complex image data are transformed back to the phase-history

domain. How this is done is part of Area 1, which is discussed as part of Step 6.

Step 5. Phase Gradient Estimation

Two phase-gradient estimator kernels have been proposed for the PGA algorithm. The
more recent, maximum likelihood (ML) estimator, which replaced the earlier linear
unbiased minimum variance (LUMYV) estimator is the only estimator that will be

considered here.

The model of the data into the estimator has already been given in equation (3-1). The
ML estimator itself is an eigenfilter, which is the stochastic equivalent to matched filters
for deterministic signals [29]. In [33] Jakowatz and Wahl developed the theory for the

general eigenfilter for phase gradients of length M and derived the Cramér-Rao lower




bound! (CRLB) for the general case. They demonstrated estimator performance for M =
64 and for M = 2. Within the context of the PGA algorithm, M is the number of azimuth
data samples simultaneously processed to estimate M-1 phase gradients. Thus, M is also

the dimension of the covariance matrix of the data into the estimator.

Here, we will consider only the case for the minimum dimension of M = 2; that is, pair-
wise estimates of phase gradients. The relative mathematical intractability for the case of
M > 2 as opposed to the case of M =2 argues strongly for using the simplest possible
form to gain insights. Results for M = 2 are expected to extrapolate to the mathematically

more complex implementation with M > 2.

The phase gradient estimator for M = 2 is defined as
N ranges
‘i’n,m =£ Zxk,nxz,m . (3_6)
k=1

This estimator can be visualized as the angle defined by the coherent sum of vector

products. This concept is illustrated in Figure 3-2. Figure 3-2(a) shows a vector pair for

I The Cramér-Rao lower bound (CRLB) provides a measure of the variance of an
efficientrestimator without requiring the specification or even the existence of that
estimator [B12.21]. It provides a figure of merit against which to measure performance
of candidate estimator algorithms. Details of the CRLB will be covered in Chapter 5,

Appendix C, and applied in Chapter 6.
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a single range. The angle, y, between the two vectors is the only parameter that is

constant over range. It is considered to be non-random but unknown. Figure 3-2(b)

illustrates the coherent sum of vector products.

In [33] Jakowatz and Wahl have shown that, for the assumption of the data model stated
in equation (3-1), the Cramér-Rao lower bound for estimates of gradients between M
pairs of angles is

2 1+MpB
oL =—-""t_ (3-7)
NrangesMﬁ

For the problems addressed here, for M = 2; thus, equation (3-7) reduces to

»  1+2B i
NN B (3-8)

ranges

2

o, . : . . . .
where 8 = —% is the signal-to-noise ratio in the phase-history domain.
O.It

(a) (b)

Figure 3-2. Phasor diagrams illustrating the ML phase-gradient estimator.
(a) Only the difference angle, v, is constant across ranges.
(b) The vector products sum coherently across ranges.




Equation (3-8) is shown in the plot in Figure 3-3 along with the output from Monte-Carlo
trials. The data used from these trials were simulated in the phase-history domain using
the data model of equation (3-1). Note that the theoretical CRLB and the results of
Monte-Carlo trials show only the mean square of the principal value of phase-gradient
errors for in-band data. Neither the model nor the simulations consider the effects of a

too-narrow support of the point spread.

(0] 5
SNR [dB]

Figure 3-3. Theoretical Cramér-Rao lower bound for M = 2 (solid line) and
scattergram of MSE across the aperture of principal values of estimated phase
gradient. Estimates are shown for 121 Monte-Carlo trials using simulated phase
histories. Data from Monte-Carlo trials are so tightly clustered that the
scattergrams appear as vertical lines.




Step 6. Apply Phase Correction

There is a critical step in the implementation of PGA that is neither illustrated explicitly
in the data flow-diagram nor addressed in the literature. Between Step 4 (the FFT back to
the phase-history domain) and Step 6 (application of the phase correction), bandlimited
data must be up-sampled to estimate the phase error for each aperture sample. This
implied step requires digital integration of phase gradients and interpolation of
bandlimited data, though not necessarily in that order. Implementation of this data

transformation subprocess between Step 4 and Step 6 is identified as Area 1.

Step 7. IFFT and Iteration

Experience shows that residual phase error can be further reduced by repeating the entire
process [65] and [51]. One explanation offered for this phenonenon is that as the point
spread support is narrowed with each iteration, the bandwidth of the residual phase
gradient is reduced and thus the signal-to-noise ratio improves. Improvement in phase-
gradient estimation is attributed to this improvement in signal-to-noise ratio. An
alternative hypothesis is posed in Snarski in [51]. Snarski, who implements three of the
four critical steps of PGA, omitting Step 2, the windowing of the point spread function,
has hypothesized that the need for iteration is driven by shift errors. The root cause of the

demonstrated improvement with iteration is identified as Area 2.




3.2 Summary of the Five Areas of Investigation

The five areas of investigation are reiterated here in the order in which they will be
addressed. The positions of these areas within the context of the PGA algorithm are
illustrated in Figure 3-4.
1. What is the best method to transition from bandlimited estimates of phase
gradients to phase estimates interpolated across the full aperture?
2. If the PGA ML kernel is an optimal estimator, then what drives the observed
improvement with iteration?
3. Is the current data model adequate to describe PGA performance for real SAR
data in the absence of shift errors?
4. How do shift errors affect PGA performance?
5. Isthere an alternative to the current approach of estimating the support of the

point spread function?

In order to address these questions, SAR and aberrating phase data need to be selected
and theoretical and numerical methods of analyses need to be identified. In the next
chapter, Chapter 4, the theory of deterministic and random angle modulation are
reviewed, three classes of phase errors used for this research are identified, and associated
metrics are reviewed. Five sets of SAR image data are analyzed and data with similar
signal-to-clutter ratios are synthesized. Then in Chapter 5, the theoretical and numerical

methods of analyses that will be used are reviewed. Finally, in Chapter 6 the five areas

are addressed in the order just identified.
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Figure 3-4. Data flow diagram of Phase Gradient Autofocus algorithm with five
areas of investigation identified.




Chapter 4

Background

Phase and Scene Statistics

In this chapter, the phase error functions and the real SAR image data used for this
research are presented. Phase error statistics and SAR image data statistics are
independent, thus, these two topics are treated independently in the two main sections of
this chapter. Significant findings are summarized at the end of each of the two main
sections. The first section on angle modulation and phase statistics begins with a general
discussion of the theory of deterministic angle modulation. This is followed by a
discussion of metrics of random angle modulation. The first section concludes with the
presentation of the sample realizations of the three classes of aberrating phase function
used in this research. Metrics of random phase modulation (rms frequency deviation, the
rms bandwidth and the modulation index, which is a function of the first two) provide
general guidance to the properties of the aberrating phase but are not specific enough to
provide detailed information on the resultant image quality. In the second section on
SAR image data, five sets of SAR image data are introduced, the method of synthesizing
SAR data is reviewed, and the results of exploratory and comparative analysis of the real

and synthesized data are summarized. By design, the clutter of the synthesized SAR data




are independent but identically distributed with circularly Gaussian statistics. This is
consistent with the assumptions of the data model given in equation (3-1) in Chapter 3.
An analysis comparing real to synthesized SAR data indicates that the clutter distribution
for real SAR data does not meet these same criteria of homogeneity. This is explored in

greater detail in Chapter 6 where recommendations are made.

4.1 Angle Modulation and Phase Statistics

Although the SAR autofocus problem addressed here is one of estimating and correcting
for stochastic wideband angle modulation, an understanding of wideband and narrowband
single-frequency angle modulation is useful. References for this development are, Brown

[12], Gardner [23]‘, Papoulis [47], Schwartz [50], Stremler [55], and Tzannes [60],

4.1.1 Properties of Deterministic Angle Modulation

Phase and frequency modulation are more generally referred to as angle modulation. The
complex carrier, aexp(j®,t), is phase modulated by the function ¢ (¢) to produce the
signal

x(t) = aexpjo t+ jo(1)], 4-1)

where a is the real valued signal amplitude and x(#) has an instantaneous frequency

o, +y(t)= ;ld;[a)at +¢(#)]. The distinction between phase and frequency modulation is

in the definition of the modulating signal. If ¢(z) is the modulating signal then the

process is phase modulated. If y(¢) is the signal of interest then




x(t)=a exp[ jo,t+j _[(:1// (t)dt] is said to be frequency modulated. By omitting the carrier

frequency and considering only the modulating portion of x(#) and by substituting a single

frequency for the modulating signal, JZI// (¢t)dt = B, sinw, ¢, (4-1) simplifies to

x(t) = aexp| B, sinw, t]= i J(By)exp(na, z).

For a single modulating frequency, @, the parameter By = A® /@y, is called the
modulation index where A® is the maximum excursion of instantaneous frequency about
the carrier frequency, @,. Equation (4-2), which is often called the Bessel-Jacobi
equation (see Tzannes [60], p. 151), shows us that single-tone angle modulation produces

a signal that is the weighted sum of the fundamental frequency and its harmonics. The

coefficients of the fundamental and its harmonics,

1 % j(Bsinx—nx
1(Bu )= L

are Bessel functions of the first kind. These functions cannot be evaluated in closed form

but have been extensively calculated and tabulated for various arguments, By, and orders,
n. Bessel functions have the property that for n > By+1, the magnitude J,(By) is small.
A rule commonly used is that if lJn (B M)I <0.01, the harmonic is insignificant [55]. This

corresponds to a harmonic 40 dB down from peak power.

If 3 is small, the modulation is narrowband and the higher order coefficients, J,(fy); that
is, for In] > 0, are insignificant. The power spectrum of narrowband FM is not

distinguishable from that of AM (amplitude modulation), appearing as a pair of spectral




lines centered about the carrier and with amplitude determined by the carrier amplitude.
The power spectra for narrowband and wideband FM are illustrated in Figure 4-1. The

data shown in the figures were generated using 512 samples with @,, = n/8 [rads] and

Bur = 0.01 (narrowband modulation), 0.1 and 1.0 (wideband modulation).

The purpose of this discussion of single-tone angle modulation has been to gain insight
into the spectral properties of angle modulated signals and to develop definitions of
wideband and narrowband angle modulation. Although, the case of autofocusing a SAR
image aberrated by single frequency angle modulation is not considered in this research,
this discussion has demonstrated the impact to wideband angle modulation of the point

spread function and has exposed the non-linearity of the problem of autofocus.
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Figure 4-1. Illustration of single-tone narrowband and wideband modulation.

Plots in the left column show the frequency modulating signal (phase rate). Plots
in the right column show the power spectra for the associated angle modulation.
Note how the sidelobe levels increase as the amplitude of the frequency
modulating signal increases.




4.1.2 Metrics of Random Angle Modulation

Closed form expressions for the spectra of multi-tone wideband modulation are not easily
obtained [47]. There are, however, some useful metrics and relationships to describe

wideband random angle modulation.

For random angle modulation, Gardner [23] defines the modulation index as

By= A(u/ B, , the ratio of the rms frequency deviation, Aw, to bandwidth, Bw’ of the

phase rate. The rms frequency deviation

- 1/2
Aw=JR,(0)= [j S, (a))dw] 4-3)
where, R, (0) is the autocorrelation of the phase rate, y(1), at zero lag and S, (@) is the

power sprectrum of y(¢). Bandwidth

B, = U: ©’S, (@ )dco]u2 / [J: S, (o )da)]”2 : (4-4)

Using the well known relationship for function differentiation in the Fourier domain
S,(@)=’S, (@), 4-5)
and by substituting (4-5) into (4-3) and (4-4) it can be shown that
2
B = R,(0)B,/B,) .

Finally using the Schwarz inequality it can be shown that

(B,/B,) <1 (4-6)

and consequently




B < Ry(0). @7
Thus modulation index, f3,,, provides a coarse discriminate between zero-mean
narrowband and wideband angle modulation. If R,(0) <<1 then ,, <1, and the
modulation is narrowband. Similarly, if R, (0) >>1 then B,, >>1, and the modulation is

wideband.

Mean squared frequency deviation or mean squared error of the phase gradient (MSE),
rms frequency and modulation index are reported here as metrics of residual phase-

gradient error at the output of the ML estimator. They were computed as follows.

The rms frequency deviation,

2 _ _ 1 al 2 _
(Ae) =R, (0)= g 2% (4-8)

where the error £, =, —,, is the difference between the estimated phase gradient and
truth, and the true gradient, ¥, = ¢, —¢,_, , is the first difference of the phase.

Computation of the rms bandwidth as defined in (4-4) used the following well known

identity R, (0)=[_ (0)”S, (@ )dw where

1 & 2 g
R,(0) —m;(wm -v,) (4-9)
Using, (4-9), (4-8) and (4-3) in (4-4) results in

ﬁ=-f%, (4-10)

the equation used to compute modulation index for results reported here.
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Unlike the case of single-tone modulation, where I]n (B M)| < 0.01 provides a useful

measure of bandwidth, the problem of determining the spectra due to random angle
modulation is, in general, difficult. In [47] Papoulis addresses three special cases thaf
lead to reasonable results. One of those results is Woodward’s theorem. As summarized
on page 255 of Gardner [23], Woodward’s theorem shows that, for wideband modulation,
the shape of the spectrum of the modulated signal, ¢/, is determined not by the

spectrum of the modulating signal, y(¢), but rather by the probability density of the
modulating signal, p, (l,z/(t)) The usefulness of this theorem and the three metrics of

angle modulation; that is, rms frequency deviation, bandwidth and modulation index are
considered in the next section where the phase functions used in this research are

discussed.

4.1.3 Analysis of Quadratic, Low Order and Power Law Phase Functions

The three aberrating phase functions considered were quadratic, low order and power law.
The last two are the phase functions in the data set offered by Wahl et. al. in [65]. While
the quadratic function is non-random, it provides a useful baseline. The low order and
power law phase functions are sample realizations of random processes with spectral
content dominated by low frequency and broadband components, respectively. The
quadratic error is a single low frequency focus error. The low order phase error is
representative of the type of phase error expected after motion compensation, although
the maximum frequency deviation of the sample function used here is somewhat severe.

The power law phase error is representative of phase errors induced by propagation




through a turbulent ionosphere or troposphere; see, for example, Brown [13]. The

functions and their first differences, or phase rate functions, are shown in Figure 4-2.

The sample distributions of phase rate and the energy spectra of the modulated signal,

e*"or the point spread functions are shown in Figure 4-3. The point spread function is

, 2
defined as l F T(W(t) X e’ ¢(’))’ where FT is the Fourier transform and W() is an aperture

taper or windowing function. For this figure, W(z) = I for all ¢, and spectra are displayed
in units of normalized power. In SAR imaging, the spectrum of ¢’*®, referred to as the
point spread function, shows the spread of energy, due to aberrating phase, from a single
pixel into adjacent pixels. Metrics of point spread are introduced in Chapter 5. Note that
the rms values of the three phases shown in Figure 4-2 differ considerably while the rms
values of the three phase rates shown in Figure 4-3 are nearly equal. Note also the
general similarities between the sample distributions of phase rate and the sample spectra
as suggested by Woodward’s theorem. In Figure 4-4, the point spread functions are
shown in units of dB across the full bandwidth or extent of the image. The -40 dB Taylor
window was used here. The figure in the first row shows the diffraction limited point
spread function for the Taylor windowed aperture, the point spread function due to the
quadratic phase error with the Taylor window, and the wide, flat point spread function
due to the quadratic phase error without the Taylor window. Note that without the Taylor
windowing, there would be considerable opportunity for error in locating the peak of the
point spread function due to quadratic phase error. Finally, in Figure 4-5, the frequency

distributions of the phase rates are shown and the bandwidths of the phase rate functions
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Figure 4-2. Phases and phase rates.

These are the three phase functions in this research used to aberrate SAR images.
The quadratic phase provides a useful reference. The low order phase is
representative of the type of phase error residual after motion compensation. The
power law phase error is representative of phase errors due to propagation

through turbulent ionosphere or troposphere.
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Figure 4-3. Distributions of 1st differences of phase (or phase rate) and point
spread functions.

According to Woodward’s theorem, note the gross similarity between the
distributions of phase rates in the plots in the left column and the associated
power spectra (point spread functions) shown in the plots in the right column.
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Figure 4-4. Full extent of point spread functions.

The point spread due to the quadratic phase error is shown with and without
Taylor windowing and is compared to the diffraction limit. The point spread for
the low order phase error requires only limited support. However, the support
required for the power law phase will depend on the maximum allowable residual
sidelobe level.
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Figure 4-5. Distributions of 2nd differences of phase or frequencies of phase.

These distributions of phase rate frequencies are consistent with the spectral
spread of the point spread functions shown in Figure 4-4.




and the modulation indices are listed. The notable difference in the spectral spreads
between the low order phase rate and the power law phase rate is evident in these

distributions.

4.1.4 Summary of Discussion on Angle Modulation

This discussion on angle modulation has shown the non-linearity of the relationship
between the aberrating phase to be estimated and removed and the manifestation of that
phase in the point spread function. Three measures of phase error: 1) root mean squared
(rms) or mean squared (ms) phase rate (or gradient), 2) bandwidth of phase rate and 3)
associated modulation index, provide some relative but no absolute guidance. In Chapter
6, Woodward’s theorem will provide some guidance to understanding the relationship

between observed PGA performance and properties of the residual phase rate.
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4.2 SAR Image Data

The five complex SAR imagery data sets used here are the three rural and two urban
scenes offered to researchers by Wahl et. al. in [65]. A sixth data set of Rayleigh noise
was also used as a benchmark. These six images are shown in Figure 4-6. The Rayleigh
noise, of course, appears as a random pattern of dots. The two urban scenes have at least
one bright point at a number of ranges. In contrast there are no visibly dominant bright
points in the three rural scenes. These scenes are assumed to represent the upper (urban)
and lower (rural) bounds of scene signal-to-clutter ratios for SAR image formation
problems. The mean signal-to-clutter ratios are approximately 27 dB and 15 dB

respectively.

Measures and models of radar cross section for a variety of targets and conditions of
illumination are readily available in the many works of F. T. Ulaby and his colleagues.
This application required establishing the range of scene signal-to-clutter ratios and
identifying any suggested dependence of signal and clutter statistics on scene structure. A
series of data distributions were generated to meet the following two objectives.
1. Development of a basis for synthesizing SAR data with SNR comparable to
the real SAR data, and

. Identification of those properties of the real SAR data that deviate from the

assumptions used by Jakowatz and Wahl [33] for the data model expressed

here in equation (3-1) and used to derive the current CRLB.




(a) synthesized Rayleigh image (b) Rural-1

(c) Rural-2 (d) Rural-3

(e) Urban-1 (f) Urban-2

Figure 4-6. Six SAR scenes.




4.2.1 Synthesized SAR Data

All SAR data sets used here, both real and synthesized, were 512 by 512 pixels. Signal-
to-mean clutter ratios for synthesized SAR data were determined by random draws from
the sample distributions of signal-to-mean clutter ratios for the real SAR data. The data
in the sample distributions were the ratios of signal-to-mean clutter for the 512 ranges.
Signal was defined as the sum of the power in the seven pixels centered on the brightest
point at each range. The argument for choosing seven rather than one pixel to compute
signal is presented later in this chapter in Section 4.2.2 and in greater detail in Appendix
B. Mean clutter was defined as the arithmetic average of the power in the 128 pixels
surrounding the seven signal points. To synthesize the SAR data, mean complex noise
power was normalized to one and complex signal power at a given range was set to the
signal-to-clutter ratio (SCR) determined by the random draw. The phase of complex data
at each pixel was drawn from a uniform random distribution between tz . The result is a
scene with a single bright point at each range surrounded by homogeneous clutter; that is,
clutter that is independent and identically distributed. The azimuth positions of the bright
points were determined by a draw from a uniform distribution. The sample distributions
of signal-to-mean clutter ratios for the scene called Urban-1, the associated cumulative
distribution from which data were synthesized and the sample distribution of signal-to-

mean clutter ratios for the synthesized SAR data set are shown in Figure 4-7.
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Figure 4-7. Sample distributions of signal-to-mean clutter ratios.

(a) sample distribution from Urban-1;
(b) cumulative sample distribution from Urban-1 used to synthesize data; and
(c) sample distribution of synthesized data.

4.2.2 Exploratory Analyses of Real SAR Data

Before proceeding to the catalogue of exploratory data analyses, let us consider some of
the problems of dealing with real SAR data where truth is not known but is assumed to be
closely approximated by the data. Although the complex image data sets were 512 by
512 pixels, examination of the range-compressed phase histories reveal stop bands, or
bands of data with very low total power, at the beginning and end of the phase histories.
Among the five images, these stop bands vary in width from 30 to 50 pixels on each side.
These stop bands suggest that the original phase histories were either zero padded to
achieve 512 azimuth pixels in the image, or were severely attenuated at the edges of the

aperture. There is also an obvious but unknown taper across the aperture. The stop band




and the aperture taper indicate that azimuth resolution is somewhat greater than a single
FFT bin or pixel. Examination of isolated bright points in the data (see Appendix B for
details) and later experience with the data indicate that the total power in the seven pixels
centered at the brightest point renders a reasonable estimation of signal power. It can be
argued that if seven points are too many, then the contribution to total power from the

outer pixels is insignificant.

Consider next a comparison of the non-coherent sum of brightest points across ranges;
that is, the process used in Step 3 of the PGA algorithm to determine the width of the
support for the point spread function. This process is illustrated in Figure 4-8 using the
unaberrated Urban-1 data and its synthesized counterpart with similar signal-to-clutter
ratio. The horizontal line marks the average value of the non-coherent sum; that is, the
average taken over the azimuth dimension of the data. For the synthesized data, the
clutter sum is flat beyond the extent of the point spread function. For the real SAR data,
the clutter sum beyond the extent of the point spread function shows a modest decrease
from the knees of the curve to the outer edges. This suggests that the signal-to-mean
clutter ratio for real SAR data may depend on the width of the support of the point spread

function.
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Figure 4-8. Comparison of non-coherent sums of brightest points.

The horizontal lines indicate the arithmetic mean of the non-coherent sum.
Synthesized SAR data have only one signal at each range; therefore, shift errors
were not considered for these data. Note the difference between the level clutter

sum of the synthesized data and the slope of the clutter sum of the real SAR data.
This suggests that clutter in the real SAR data may not be identically distributed
as assumed in the data model.
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We turn now to the catalogue of exploratory data analyses of the SAR data. The purpose
of these analyses was to identify potentially significant differences between the real and
synthesized SAR data, differences that might have an impact on the validity of the current

data model.

Because the comparison of non-coherent sums shown in Figure 4-8 suggest differences in
clutter statistics that may be a function of the support of the point spread function, all of
the remaining analyses were repeated using the clutter data in the 1/4, 1/8, 1/16 of the
remaining image pixels surrounding the signal. The following were considered:
Distributions of:

1. Signal-to-mean, -median, and -maximum clutter ratios.

2. Position of maximum clutter pixel relative to signal pixel.
Correlation between:

1. Position of maximum clutter and signal-to-clutter ratios.

2. Position of maximum clutter and maximum-clutter-to-mean-clutter ratios.

3. Signal-to-maximum clutter ratio and signal-to-mean clutter ratio.

4. Maximum-to-mean clutter ratio and signal-to-mean clutter ratio.

The data were visually inspected and the findings are summarized in Table 4-1. These
findings are illustrated in Figure 4-9 through Figure 4-12 where distributions and
scattergrams for Rural-3 and Urban-1, respectively, are compared to distributions and
scattergrams for the data synthesized from their respective SCR distributions. The full

ensemble of data are included in Appendix B.
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Table 4-1. Summary of exploratory analyses of real and synthesized SAR data.

Distributions

Real SAR data

Synthesized SAR data

Signal-to-mean
-median and
-maximum

clutter ratios.

The range of values is
consistent with measured
RCS reported in the literature.
Monotonic increase in SCR
with increase in width of
support. Calculation of SNR
for a given width of support of
the point spread function may
require special numerical
handling.

No change in SCR as a
function of width of the
support.

SNR = SCR/Nqyppor

Maximum clutter position
relative to signal.

Slightly less than uniform.
May be significant to data
model.

Uniformly distributed.

Correlations

Maximum clutter position
and signal-to-clutter
ratios.

Uncorrelated.

Uncorrelated.

Maximum clutter position
and maximum-clutter-to-
mean-clutter ratios.

Uncorrelated.

Uncorrelated.

Signal-to-maximum
clutter ratio and signal-to-
mean-clutter ratio.

Linearly correlated.
Y-intercept is significantly less
than for synthesized data than
for real SAR data.

Linearly correlated.

Maximum-to-mean clutter
ratio and signal-to-mean
clutter ratio.

May be correlated and
significant to data model.

Uncorrelated.
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Figure 4-9. Comparison of metrics of Rural-3 and synthesized SAR data.
The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure 4-10. Comparison of metrics of Rural-1 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Figure 4-11. Comparison of metrics of Urban-1 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure 4-12. Comparison of metrics of Urban-1 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Let us review the data shown in Figure 4-9 through Figure 4-12. These figures only show
data computed over 1/4 of the SAR image surrounding the brightest point. The first
column of plots in each of the figures show the data for the real SAR images, the second
column show the same distributions or scattergrams for the synthesized SAR data. The
first rows of Figure 4-9 and Figure 4-11 show the sample distributions of signal-to-
clutter ratios. These should agree because the synthesized data were generated using the
SCR distributions of the real SAR data. The second row shows the sample distributions
of signal-to-median-clutter ratios and the third row shows the sample distributions of
signal-to-maximum-clutter ratios. For both Rural-3 and Urban-1 we note some
differences between the real and synthesized SAR data in shape, extent and central
tendency of the distributions. The fourth row shows the distribution of the position of the
maximum clutter pixel relative to the signal pixel. As expected, these positions are
uniformly distributed for the synthesized SAR data but show a slightly less than uniform
distribution for the real SAR data. Figure 4-10 and Figure 4-12 show four pairs of
scattergrams for Rural-1 and Urban-1 data respectively. The first row shows the position
of maximum clutter versus the ratio of signal to mean clutter, the second row shows
position of maximum clutter versus the ratio of maximum to mean clutter. There is no
indication of correlation in either of these two figure pairs. The third row shows the ratio
of signal to maximum clutter versus the ratio of signal to mean clutter. The strong linear
trend is expected. What is notably different are the y-axis intercepts of the linear trends.
In the real SAR data the ratio of signal to maximum clutter often approaches 0 dB, while

the same ratio for synthesized data does not appear to go below about 7 dB. The fourth
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row shows the ratio of maximum to mean clutter to the ratio of signal to mean clutter.
Again there are notable differences between the real and synthesized SAR data. The plots
in the fourth row are just an alternative view of the data shown in the third row. While
the synthesized data show no correlation, the scattergram (and metrics of correlation)

indicate that the real SAR data are correlated, particularly for Rural-3.

4.2.3 Summary of Differences Between Synthesized and Real SAR Data

The differences noted between the real and the synthesized SAR data indicate that the
distribution of clutter, which is not part of the data model used by Jakowatz in [33], may
play a significant role in the performance of the optimal ML phase-gradient estimator.
This will be explored further in Chapter 6 where performance of the PGA algorithm for
controlled input conditions is compared using the real and synthesized SAR data. The
differences in synthesized data among the three rural scenes were negligible, as were the

differences in synthesized data between the two urban scenes.




Chapter 5
Background
Methods of Analysis and Metrics of

Performance

This chapter is divided into three major sections covering 1) methods of theoretical
analysis, 2) methods of numerical analysis and 3) metrics of residual phase error and
associated image quality. This chapter concludes the review of background information
and the development of methods required to support the original results presented in the

next chapter, Chapter 6.

The first section on theoretical analysis covers six major topics:
1. the general form of the Cramér-Rao lower bound (CRLB) for unbiased
estimates;
2. the general form of the CRLB for biased estimates;
3. the equivalent expressions for the Fisher information matrix;

4. the general form for computing the CRLB of functions of the basic

parameters;




5. the influence of the formulation of the probability model on the range of
signal-to-noise ratios (SNRs) for which the computed CRLB is valid; and

6. the numerical computation of CRLBs for the synthesized and real SAR data.
While the general expression for the Cramér-Rao lower bound is straightforward,
computation for this non-linear estimation problem is non-trivial. In the discussion, the
importance of the probability model is illustrated. In Chapter 6, shift errors are modeled
as multiplicative noise. The non-linearity of the data model limits the range of signal-to-
noise ratios over which the probability model is valid. The equivalent expressions of the
Fisher information matrix are used to identify the range of signal-to-noise ratios over
which the derived Cramér-Rao lower bound is valid. This is an important procedure for

this non-linear estimation problem.

The second section covers two methods of numerical analyses.
1. modeling entirely in the phase-history domain;
2. processing of synthesized and real SAR data through single iterations of the
full PGA process.
The discussion points out the assumptions made for the phase-history domain model that

are not necessarily supported by the full PGA process or by the statistics of the real SAR

data.

In the third section, five metrics of residual phase error and six metrics of associated
image quality are defined and illustrated. The graphical presentation of these metrics

represent the output of a new study of the sensitivity of the PGA autofocus algorithm to
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three control variables: 1) SAR scene signal-to-clutter ratio, 2) class of aberrating phase

error, and 3) width of the support of the point spread function.

5.1 Theoretical Analysis

In Chapter 3 the Cramér-Rao lower bound (CRLB) was identified as a tool for
determining the best possible estimate of a parameter for a given data model without
actually defining the estimator. Here the CRLB is considered in greater detail. Details
significant to the application of this tool to the non-linear problem of phase-gradient
estimation are considered. As stated in Chapter 1, derivations of CRLBs are provided in
the appendices. Only results are presented in this section. References used for this
discussion of the CRLB are Theil [58] p. 386, Nahi [45] p. 249-250, Van Trees [61] p.52-

86, and Melsa & Cohen [40] p. 231-237.

5.1.1 CRLB for Unbiased Estimators

The bound generally attributed to Cramér and Rao was first stated by Fisher and proved
by Duqué [40]. First, consider the most general of the Fisher information matrix. The

elements of the Fisher information matrix are defined as

d* In p(xI'P)
J, ., =—Ey—————=1, 5-1
12¥) { all/‘al/f] ( )

where J is a square matrix with dimension determined by the dimension of the parameter

vector, ¥, x is the matrix of observations, and E{+} denotes expected value. For an
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unbiased estimator, the diagonal elements of the conditional covariance matrix of the

~

estimates ‘¥, Var{‘i’lx} , are greater than or equal to the corresponding elements of J” the

inverse of the Fisher information matrix. For the problem of pair-wise estimation of
phase gradients, y, where y is a non-random but unknown scalar, J reduces to a scalar

and the observation vector

X m-—n X m-n o X m-n
x=[ T o ] (5-2)

Xim  Xop
where £ is the range index and m-n and m are the indices to the azimuth interval and
position, respectively, over which the gradient is estimated. Thus, the Cramér-Rao lower
bound for the conditional variance of a regular unbiased estimate of the phase gradient is
defined as
) -1
E{(-w)1x}> [—E{?—ma—’;/(ji‘@ﬂ (5-3)

| 0* p(x!
Bp(ax v) and S(XZW) exist and are absolutely integrable. This inequality
14 14

assuming that

establishes the lower bound on the expected square estimation error in terms of the
statistics of the observations as defined by the joint probability density function p(xly).

If an estimator is unbiased and satisfies (5-3) with equality, then that estimator is said to

be efficient.
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5.1.2 CRLB for Biased Estimators

For a defined scalar estimator, ¥ = f(x), the conditional expected value of the estimate

E{yIx} =y +9(y), where 3(y) is the estimator bias. If the estimator is biased, then

3 ERp} ., 20w)
oy oy

and the Cramér-Rao inequality as stated by Nahi in [45] is

3%

E{(y —w)zlx}z_E{ W } (5-4)

d* In p(xly)
oy’®

Calculation of the denominator of this expression does not require definition of the
estimator. However, calculation of the numerator does require that the estimator be
defined and it is not easily determined for non-linear estimators such as the phase-

gradient estimator.

5.1.3 Equivalent Forms of the Unbiased Bound on the Conditional Variance

The In p(xly) is called the log-likelihood function. It can be shown that the elements of

the Fisher information matrix can be computed in either of two ways:

e I’ Inp(xiy)| _ E d1n p(xly) d1n p(xly)
0y, W, d, |

(5-5)

While the left-hand side of (5-5) is typically easy to compute, the right-hand side can be
algebraically tedious. Because our parameter of interest, V, is represented non-linearly in

 the observations, we will find it necessary to compare the results from both the left- and

right-hand sides of (5-5) to establish the region over which results are valid. We will
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refer to the left hand side of (5-5) as Method 1, the second derivative method, and the

right-hand side as Method 2, the derivative squared method.

5.1.4 CRLB for Functions of Basic Parameters

On page 83 in [61] Van Trees provides the following general form for determining the

CRLB for an unbiased estimator of functions, g(A) , of the basic parameters, A .

E{(2(A)- g(A))1x} 2 [V(g"(A))] I [V(e"(W))] (5-6)
where x is the observation vector,
A is the vector of basic parameters,
g(A) is a column vector of the functions of A that are of interest,
V is the gradient operator,
the superscript H is the Hermitian or complex conjugate transpose, and
J is the Fisher information matrix.

This method is used in the next subsection where the importance of the probability model

is illustrated.

5.1.5 Importance of the Probability Model

Formulation of the data model as a function of the parameters of interest affects the form
of the probability model, p(xly). Swerling [56] has emphasized the importance of the

data model and has illustrated how model formulation affects the range of SNR over

which the results of (5-1) are valid.




As an example, consider the significance of the probability model as it applies to the
estimation of phase gradients. The data model, as stated in equation (3-1), is

Xy =age’® +n,
where x,,, are assumed to be complex, zero mean, circularly Gaussian and independently

and identically distributed across ranges indexed by k. The log-likelihood function for
zero mean, complex circularly Gaussian data pairs is

N runges

S In p(x, 1y) = (2 In[7*|C,|]+x¥C,” xk) [33] 5-7)

k=1
where, for our problem, x, = [xk’m_1 x,cym]T, and C, is the covariance matrix, which, for
the assumptions made by Jakowatz and Wahl [33], is the same for all k. The associated

CRLB, as stated in equation (3-8) is

1+2ﬁ
ranges ﬁ

0p 2 (5-8)

where f3 = SNR.

If the data are not zero mean, complex circularly Gaussian but the noise is zero mean,

complex circularly Gaussian, then the log-likelihood function is

ranges

iwlnpxw a,)= LZIH[ C ]+ (x —ws, )C (xk—uxk)) (5-9)

where i, = a,e’. Using (5-6) to calculate the CRLB for {/ =9, — §,,_,, Where the

parameter of interest, ¥, is a function of the basic parameters, ¢, and @, the CRLB is

expressed as
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1
o>
14 N B

ranges

(5-10)

which is equal to equation (5-8) for large signal-to-noise ratios, f, but which
underestimates the MSE of phase gradients for small 8. Derivations of (5-8) and (5-10)
are provided in Appendix C. Numerical values are compared in Figure 5-1. Note that the
CRLBs for the two probability models diverge for § < 0 dB, illustrating the importance of

the probability model.

20 . . — , :

1+28
2NRangesﬂ2 .

MSE [dB]

-30

-60 i A L ) 1 1 [l 1 ]
-25 -20 -15 -10 -5 0 5 10 15 20 25

SNR [dB]

Figure 5-1. Illustration of the influence of data model on computed CRLB.

The solid line is the CRLB computed using the zero-mean data model used by
Jakowatz and Wahl in [33]. The dashed line is the CRLB computed using the
non-zero mean data model expressed here in the log-likelihood function in
equation (5-9). Data from numerical simulations agree with the CRLB for the
zero-mean data model (see Chapter 3, Figure 3-4).




5.1.6 Numerical Computation of CRLBs for Synthesized and Real SAR Data

In the previous section the CRLB was expressed as a function of SNR. In order to
determine the CRLB for SAR image data it is necessary to map the scene signal-to-clutter
ratio (SCR) to SNR. For the synthesized SAR data where mean clutter level is constant
(see Chapter 4, Figure 4-8), the SNR was computed as

B=SCRIN,,.. (5-11)

where Ngppor 18 the width of the support of the point spread function. The CRLB was

then computed using equation (5-8).

Figure 4-8 in Chapter 4, however, indicates that the mean clutter level for real SAR data
is not constant, but may decrease as the width of the support of the point spread function

increases. For this reason, the CRLB for the real SAR data was computed using

Nrane
25 N 1428,

2 > , (5-12)
v a2

where, for a given value of N = Ngypport, B, the signal-to-noise ratio at the K" range was

determined numerically using the following equation

Ni2-1
2 Sk,n

B, =5t (5-13)
2 Ck,n

n=-N/2

where S, , is the squared magnitude of the defocused signal at the n™ pixel of the K

range and C,, is the squared magnitude of defocused clutter at the n'™ pixel of the K"
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range. At each range, the sums in (5-13) were centered about the brightest pixel

determined from the unaberrated image. The squared magnitude of the seven pixels

centered about the brightest pixel are removed from the image (see Chapter 4, Section

4.2.2 and Appendix B for details). Both the separated signal and the remaining complex

clutter were defocused separately. The CRLBs computed for synthesized SAR data with

15 dB and 27 dB SCR are shown in Figure 5-2.

10

CRLB for scene with 15 dB SCR
CRLB for scene with 27 dB SCR -~

1 1 Y L 1

32 64 128 256 512
Width of support [pixels]

1024

Figure 5-2. Illustration of CRLBs for synthesized SAR scenes with 15 and 27 dB
SCR mapped to functions of the width of the support of the point spread function.

The units along the x axis are image pixels and the scale is log base 2.

15 dB and 27 dB represent the lower and upper bounds of mean SCR computed
from the rural and urban SAR data respectively. The region between these two
curves represents a mapping of real SAR data to the CRLB. Note that
calculations for these curves account only for the noise due to scene clutter
included in the width of the support of the point spread function. They do not
account for bandlimiting effects due to the limited width of that support.




5.2 Numerical Modeling and Processing

Two approaches to numerical modeling and data processing have been used here.
1. Modeling and processing entirely in the phase-history domain using
synthesized data.
2. Processing of synthesized and real SAR image data through the full PGA
process as illustrated in Figure 1-1 in Chapter 1.
Modeling in the phase-history domain establishes theoretical bounds on pérformance due
to signal-to-noise ratio. Processing of synthesized SAR data through the full PGA
algorithm is used to establish performance bounds determined by the properties of the

phase-error function.

5.2.1 Data Modeling and Processing in the Phase-History Domain

As previously noted, assumptions in the data model initially expressed here in Chapter 3,
equation (3-1), are not necessarily supported by the full PGA process or by the statistics

of the real SAR data. Modeling entirely in the phase-history domain does produce some
useful results. The limitations of the assumptions and the model results are discussed in

this subsection.
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5.2.1.1 Data Models in the Phase-History Domain

Both signal and noise were each modeled in the phase-history domain as independent,
identically distributed and complex circularly Gaussian. The normalized complex noise

power 0> =1, and the normalized complex signal power 6> = SNR. Sample phase

histories of signal plus noise were synthesized for 512 ranges and 64 samples across

azimuth. The 512 phase histories were then defocused by e~ where ¢, was one of the

three aberrating phases, quadratic, low order or power law, introduced in Chapter 4. The
phase index m ranged from 1 to 512 in increments of 8, making a total of 64 samples of
phase. Note that this resampling of the phase data without filtering can introduce
aliasing; that is, the bandlimiting of the data implemented in the full PGA algorithm was
not incorporated into this model. Thus, results from this model must be interpreted with
caution. This model is, nonetheless, very useful for identifying limits and for verifying

derived CRLBs.

5.2.1.2 Processing of Data in the Phase-History Domain

Phase gradients were estimated using equation (3-6) from Chapter 3. The constant term
was estimated and then removed from the estimated gradients. (This is equivalent to
removing the linear term from the estimated phase. Linear phase errors shift the image
but do not blur it. We are interested here only in the MSE of phase gradients that degrade
image quality.) The resultant error was computed as estimated gradients minus the first

differences of the resampled input phase. Truthis ¥, =¢, —¢,,_,, where n = 8 in this




case. Erroris £, =¥, —y,,. The MSE for a given trial was computed as the arithmetic

average of the squared error of the 63 estimates across the aperture; that is,

63

1 - . . . .
MSE = —6_3 (1/18,,+1 — Y, +1)- Thus, each trial using 512 ranges with 64 azimuth samples
n=1

at each range produced a single estimate of MSE. A total of 121 Monte-Carlo trials were

conducted for each condition of interest.

This numerical model is used to identify the point where the variation of estimated MSE
begins to diverge from the theoretical CRLB. The results are shown in Figure 5-3, which
shows data for unwrapped phase-gradient estimation errors. This is similar to Figure 3-4
in Chapter 3. However, in Figure 3-4 only the principal values for this same data set were
shown. The solid line in Figure 5-3 is the theoretical Cramér-Rao lower bound from
equation (5-8). The data from the Monte Carlo trials are indicated by dots. From the
figure we see that the unwrapped error begins to diverge when the single-range SNR is
-11 dB for 512 range samples. The associated theoretical MSE is -7.5 dB. Note that this

measure is relative to the bandwidth of the data, not to the aperture. To normalize this

measure to the bandwidth of the aperture we must scale it by (N /N, )2 , where

support
Nauppore is the number of samples in the support of the point spread function, 64 in this
case, and N, is the total number of azimuth data samples across the full aperture, which

is 512 for the data used throughout this research.

At times it will be useful to show this -11 dB SNR point on plots displaying the results of

numerical analysis. This is illustrated in Figure 5-4, where the bold line shows the MSE
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Figure 5-3. Illustration of dispersion of estimator variance using data from
Monte-Carlo trails in the phase-history domain.

The estimator begins to break down at -11 dB SNR and has become completely
unreliable by -15 dB SNR. These values of SNR correspond to MSE of phase
gradients determined by the CRLB of -7.5 and 0 dB respectively.

Ly T

CRLB for phase history with —11 dB SNR

— — =~ CRLB for scene with 15 dB SCR

CRLB for scene with 27 dB SCR

64 128

256
Width of support [pixels]

512

1024

Figure 5-4. Illustration of -11 dB SNR threshold and the CRLBs for 15 and 27 dB
SCR scenes versus width of the support of the point spread function.




for -11 dB single-range SNR scaled to the full aperture versus width of the support of the
point spread function. Also shown on the plot are the CRLBs for scenes with
homogeneous clutter and mean SCR of 15 dB and 26 dB. These bounds were calculated
using equation (5-8) and (5-11). A 15 dB SCR is a good approximation for the three rural
scenes introduced in Chapter 4. A 26 dB SCR is a good approximation for the two urban
scenes. This plot introduces a format that will be used frequently in Chapter 6, showing
MSE [dB] or other metrics versus the width of the support of the point spread function.
The units of the abscissa (width of the support of the point spread function) are pixels; the
scale is log base 2. Note that CRLBs show MSE as a function of SNR only, with no

inclusion of the effects of bandlimiting on MSE.

5.2.2 Processing of Real and Synthesized SAR Data Through the PGA Algorithm.

Both real and synthesized SAR data were systematically processed through the PGA
algorithm in order to study the sensitivity of algorithm performance to the following three
control variables: 1) scene, 2) aberrating phase, and 3) width of the support of the point
spread function. The width of the support of the point spread function was changed in
increments of four pixels. The initial and final values for the first iteration of PGA were

32 and 512. The initial and final values for second and third iterations of PGA were 8
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and 256." This processor allowed shifting of the brightest points to be implemented in one
of two ways: 1) circularly shift the brightest points prior to defocusing, thus eliminating
shift errors; and 2) full PGA implementation with the brightest points located in the
defocused image data, then circularly shifted. This processor, used to study the
sensitivity of the PGA algorithms to variations in inputs and process, is illustrated in
Figure 5-5. The output metrics shown in the figure are defined and illustrated in Section
5.3 of this chapter. The areas of new investigation were first identified in Chapter 1 and

were reiterated as questions in Chapter 3. Original results are presented in Chapter 6.

For each image-phase combination and each iteration, the performance metrics listed
below were plotted versus the width of the support of the point spread function. These
metrics fall into two categories:
e Metrics of residual phase error:
1. MSE of the residual phase gradients averaged across the aperture;
2. rms bandwidth of the residual phase gradients;
3. modulation index, which is a function of the first two;
e Metrics of image quality:
4, Streh] ratio;

5. ISLR (integrated sidelobe ratio);

! These simulations required a significant amount of computer time. Initial and final

values were selected to minimize the computation of meaningless data.
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6. PSLR (peak sidelobe ratio);

7. relative position of the peak sidelobe;

8. PSLR outside the support of the point spread function; and,

9. -3,-6,-18 dB width of the point spread function.
The first three metrics were introduced in Chapter 4 as part of the discussion of the
properties of random angle modulation. The remainder of the metrics will be defined in

the third section of this chapter where examples are introduced.

Process Controls

Inputs width of shift Output Metrics
support errors
3 classes of aberrating ‘ * Residual Phase
phases: — MSE
quadratic R o e bandwidth
low order = modulation index
o law
powet mfm oAl Image Quality
- PSLR
complex SAR data: e PSL position
3 rural scenes PSLR outside support
2 urban scenes Areas of New Investigation ~ Strehl ratio
2 syn. data sets _ . ] ' ISLR
15 dB SCR interpolation & integration .3, -6, -18 dB width of
27 dB SCR iteration mainlobe

syn vs. real data
shift errors
width of support (window)

kL=

Figure 5-5. Illustration of PGA processor used to study sensitivity of the
algorithm to inputs and process controls. The block diagram of the PGA
algorithm was introduced in Chapter 1, Figure 1-3.




There is an important difference between the way MSE was computed for these
sensitivity studies and the way MSE was computed for the phase-history domain data
processing. Here, truth was defined as the first differences between adjacent pairs of the

aberrating phase error across the full aperture; thatis, y,=¢,—¢,_ ,withn=1

resulting in 511 data points. Recall that n = 8 for the phase-history domain modeling,
resulting in 63 data points. Gradient estimates were computed as the first differences

between adjacent pairs of the estimated phase error across the full aperture

~

v, = &)m —¢,_,. Estimated phase error is defined as the output of the processing where
estimates of phase gradients are integrated and interpolated (but not necessarily in that
order). This is the phase correction applied to the aberrated image. Gradient error was

computed as the difference between truth and estimates, €, =, — v, . MSE was

computed as the arithmetic average of the square of those differences; that is

512

MSE = 5—1—1— Z(ﬂlm -V, )2 . Thus, unlike the MSE measured for phase-history domain
m=2

simulation, here the error due to too-narrow support of the point spread function is

reflected in the MSE.

A few final remarks on the computation of MSE. As noted in Chapter 4, the phase-
history data of the five sets of real SAR data each had a stop band at the beginning and at
the end of the data in the azimuth dimension. The width of these stop bands varied from

scene to scene. The maximum width was 50 samples at each end of the data. To avoid




surreptitious errors due to the very low SNR in the stop bands, only the phase-gradient

estimation error between the first 50 and last 50 samples was used to compute MSE.

5.2.3 MSE Due to Bandlimiting, Combined Lower Bounds and Associated Point

Spread Functions

In this subsection the PGA processor is used to compute bounds MSE due to

bandlimiting of ¢/

. These computed bounds are dependent on the aberrating phase
error but are independent of SNR. By virtue of this independence, these bounds can be
added to the bounds due to SNR to produce a set of combined lower bounds. Finally the
point spread functions associated with the combined lower bounds for the three phase
errors considered here are compared. The point spread functions reveal a great deal about

resultant image quality. This comparison of point spread functions illustrates the limited

information available from the residual mean squared phase-gradient error (MSE).

5.2.3.1 MSE Due to Bandlimiting

Synthesized SAR data with nearly infinite SNR (300 dB), and aberrated in turn by each of
the three phases considered here, were processed through one iteration of this PGA
processor. Results are shown in Figure 5-6. These data are the numerically-determined
best estimates for specified pairs of phase error and width of support of the point spread

function. As the width of the support decreases below the extent of the point spread
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function, mean squared error of phase-gradient estimates increases because the phase

gradients cannot be correctly estimated!

5.2.3.2 Combined Lower Bounds

It is reasonable to assume that the MSE due to phase-window pairs is independent of the

MSE due to SNR and that the computed MSE due to windowing or bandlimiting can
therefore be added to the MSE from the CRLB to produce a combined lower bound for
image-phase pairs as a function of width of the window; that is, the width of the support
of the point spread function. These combined lower bounds (bandlimiting and SNR), are

displayed in Figure 5-7 along with the -11 dB SNR upper threshold.

——— quadratic phase error
-—o— |ow order phase error
—>— power law phase error

1 i)

64 1 256
Width of support [pixels]

Figure 5-6. Numerically determined lower bounds due to the bandlimiting effect
of the support of the point spread function.
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16 32 64 128 256 512
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Figure 5-7. Illustration of -11 dB SNR threshold and
combined lower bounds for three phases and scene with 17 dB SCR.

To the left of the knee of each curve, the MSE is governed by the bandlimiting of the

phase modulated signal, ¢ This portion of the curve was determined numerically
using ~ infinite SCR. To the right of the knee of each curve, the MSE is governed by

SNR. This portion of the curve was determined theoretically using the CRLB.

In Figure 5-8 the combined bounds from Figure 5-7 are repeated (solid lines) and
numerical results from processed synthesized data are added. This example shows very

close agreement between the combined lower bound and the data. The agreement




~11dB SNR .
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Figure 5-8. Comparison of -11 dB threshold and lower bounds from Figure 5-7
with output of PGA processor using synthesized SAR data with 17 dB SCR and
homogeneous clutter.

between the numerical results using synthesized data and the model indicate that the data

are well represented by the model.

While these data give a good indication of agreement with the model, they give us no
information about the spectral distribution of these phase errors and consequently no
information about resultant image quality. We will close this chapter with a discussion of
appropriate interpretations of plots of MSE versus support width such as shown in Figure

5-8. This is done by first considering the point spread functions for Ny,ppe= 64, and then




by reviewing an ensemble of plots that provide a compressed display of residual phase

error and associated image quality for the full range of Nypporr.

For Nyuporr= 64, Figure 5-8 shows MSEs of -41 dB, -34 dB and -18 dB for the quadratic,
low order and power law phase errors respectively. We have already noted that the
numerical data agree with the theoretical lower bound but that these data give us no
information about the spectral distribution of these phase errors and consequently no
information about resultant image quality. However, we should expect that deviations of

the data from the model should be reflected in deviations in the data from the CRLB.

5.2.3.3 Associated Point Spread Functions

. 2
The point spread function is defined as ’ F T( W(t) xe’ W)) l where the operator FT(+) is

the Fourier transform and the function W(¢) is an apertu?e tapering or window function.
Here the -40 dB Taylor window is used for the aperture taper. Although the data are only
512 points in length, the point spread function is always displayed here using a 4096
point FFT (Fast Fourier Transform) to interpolate the data by a factor of eight. Let us
consider plots of the point spread functions for the three residual phase errors at

Niuppor = 64 shown in Figure 5-9. Clearly the spectral distributions of the residual phase
error differ significantly for the three initial aberrating phases. The synthesized data
under consideration has a mean signal-to-clutter ratio of 17 dB, and a maximum signal-

to-clutter ratio of 23 dB, which is indicated by the fine horizontal line on the plots.
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Figure 5-9. Comparison of point spread functions due to residual phase errors for

64 pixel-wide support of the point spread function.




5.3 Metrics of Residual Phase Error and Image Quality

A menu of three metrics of residual phase-gradient error and eight metrics of associated
image quality was listed in Section 5.2.2. In this section, those metrics are defined and

illustrated as a function of the width of the support of the point spread function.

5.3.1 Compressed Displays of Metrics

Figure 5-10, Figure 5-11, and Figure 5-12 display the menu of the metrics listed on page
94 for the data shown in Figure 5-8; that is, for the synthesized SAR data with 17 dB
SCR and aberrated by the quadratic, low order and power law phase errors, respectively.
Almost the same information shown in plots of point spread functions can be gathered
from these plots. Unlike a point spread function which show data for single value of
Nuppors» these plots show data compressed over the full range of values of Ny,pporr. The
vertical lines and cross hairs mark the data for the single case of Ny,ppor: = 64.
Unfortunately, ease of interpretability is sacrificed when the data are condensed;
therefore, final confidence in algorithm performance is best displayed with the resultant
point spread function. Nonetheless, this ensemble of plots prove useful in revealing
trends and range of support widths over which some measure of image quality remains
relatively constant. They will be used in Chapter 6 when the alternative algorithms for
determining the width of the support of the point spread function are presented and,
therefore, merit explanation. Two pages are required to display the full ensemble of

metrics for one image-phase combination. They are defined in order of appearance.
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5.3.1.1 Metrics of Residual Phase Gradients

(The letter identifiers below correspond to the letter identifiers of the graph in the

figures.)

(a) MSE. These plots of residual mean squared phase-gradient error (MSE) have already

been introduced in Figure 5-8.

(b) RMS Bandwidth, B, These plots show the rms bandwidth of the residual phase

gradient as defined by equation (4-4). It is a measure of the distribution of the MSE
shown in the figure in position 1. Consistent with the point spread functions shown in
Figure 5-9, comparison of the rms bandwidth for the three phase errors are approximately
0.25, 0.2 and 1 radian for the quadratic, low order and power law phase errors

respectively.

(¢) Modulation Index, 3. These plots show the modulation index as defined by

equation (4-10). It is not clear whether this metric will provide any additional

information for this application.

5.3.1.2 Metrics of Image Quality

(d) Strehl ratio. Strehl ratio is a measure borrowed from optical imaging terminology.

In optics, it is the ratio of aberrated object intensity to unaberrated object intensity.




Optical object intensity is equivalent to the square of detected magnitude in the SAR

image domain. A widely used empirical approximation for Strehl ratio is of the form

S =exp(~0?) (5-14)
where 0';‘; is the variance of the phase aberration across the aperture (e.g., see ten
Brummelaar and Bagnuolo [57]). A similar measure appears in the radar imaging
literature as loss in processing gain (LPG), which is described in [17] as the loss in

signal-to-noise performance due to the use of a mismatched filter in the receiver, and

pulse compression ratio

defined as 10xlog,, . Computed Strehl ratios reported here

peak response (unaberrated)
are calculated according to Equation (5-14). The peak response is assumed to be that of

the Taylor window previously discussed.

While the relative value of Strehl ratios for the aberrating phase is consistent with the

relative value of MSE, this is another metric of questionable value for this application.

(e) Integrated Sidelobe Ratio (ISLR). Integrated sidelobe ratio (ISLR) is defined as the
integral over the synthetic aperture of the mean squared residual phase error after the
linear and quadratic components have been removed. It corresponds approximately to the
ratio of the energy in the sidelobes to the area under the mainlobe of the point-spread
function, see Brown and Cable[12] p. 91. For numerical results reported here ISLR is

calculated using the approximation based on energy ratios and is reported in units of dB.

The integrated sidelobe ratio is also a metric of questionable value. The three measures




of mainlobe width coupled with rms bandwidth provide clearer insight into the

distribution of residual phase error.

(), (g), (h) PSLR, PSL position and outside PSLR. Peak-to-sidelobe ratio (PSLR) and
the position of the peak sidelobe relative to the mainlobe are measures of image contrast.
In a highly cultural scene with areas of strong contrast, such as Urban-1 and Urban-2, a
peak sidelobe, adjacent to and 20 dB down from the mainlobe, may appear in the image
as a slight blurring of the mainlobe. If that same peak sidelobe due to aberrating phase is
well removed frofn the mainlobe, it will cause a ghost image to appear shifted by the
separation between the peak sidelobe and the mainlobe. This ghost will be noticeable in
areas of low clutter. Finally, when examining the effect of window width, it may be
useful to record the peak sidelobe level outside the window due to residual phase error

after applying the optimal ML estimator of PGA.

(D), (§), (k) Mainlobe widths. The -3 dB, -6 dB, and -18 dB widths of the mainlobe are
indicators of the amount of residual quadratic phase error. These measures are reported
in numbers of image pixels or FFT resolution bins. Here, a resolution bin refers to a
single discrete Fourier transform bin, which is proportional to the inverse of the
observation time of the data stream transformed. For normalized data, a single resolution
bin in the Fourier domain has a width of 2n/L., where L is the length of the transformed
data stream or, equivalently, the length of the synthesized array. The practice of reporting
mainlobe width in units of resolution bins follows that of Harris [28]. For the real SAR

data, the stop bands with very low SNR are equivalent to zero padded data in the phase-




history domain, which results in data interpolation in the image domain. Consequently,
an image pixel is narrower than an FFT resolution bin. No adjustments were made here

to account for this.

The -3 dB width is the classical criterion for resolution at the half-power point. However,
for two reflectors of equal amplitude to be resolvable, the total power at the crossover
points must be 3 dB less than the power of either one. Thus the crossover point must
occur at a separation greater than the -6 dB width. The -18 dB width is a commonly used

additional measure of image resolution.

For numerical results reported here, these three measures of mainlobe width are reported
only if they occur before the first nulls. The software search for nulls starts at the peak of
the mainlobe and moves outward in both directions. First nulls are at the first occurrence
of change in the sign of the slope of the point spread function. A chirp-z algorithm was

used to interpolate the loci of the first nulls to 1% of an FFT pixel.

5.2.4 Comments on the Data Shown in Figure 5-10, Figure 5-11, and Figure 5-12.

These figures provide a methodology for visually comparing large amounts of data over a
matrix of control parameters. Consider the data in plot (a) of the three figures. We have
already seen this data in Figure 5-8 and remarked on the considerable difference in MSE
of phase gradients for the three aberrating phase errors. We have also seen the resultant

point spread functions for the 64 pixel-wide support in Figure 5-9. Plot (b) in the three
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figures shows the bandwidth of the residual phase gradients. Note the difference in
residual bandwidth for the 64 pixel-wide support. Bandwidth is about 0.25
radians/sample for the quadratic and low order phase error, but is nearly 1 radian/sample
for the power law phase error. The lower Strehl ratio for the power law phase error
shown in plot (d) reflects the associated higher MSE. The higher integrated sidelobe ratio
(ISLR) for the power law phase error shown in plot (e) reflects the spectral spread of the
residual phase gradients, consistent with the wider bandwidth. Peak-sidelobe ratio,
(PSLR), peak-sidelobe position and PSLR outside the window also reflect the relative
spectral spreads of the residual phase errors. The plots of -3, -6 and -18 dB widths of the
mainlobe are indicators of the range of widths of the support of the point spread function

over which the resulting mainlobe widths approach the diffraction limit.

5.4 Chapter Summary

This chapter covers the theoretical and numerical methods of analysis applied to the five

areas of investigation into the performance of the PGA algorithm that are addressed in

this dissertation.

The calculation of the Cramér-Rao lower bound (CRLB)was discussed Section 5.1. The
CRLB is a measure of best performance against which performance of specific algorithms
can be compared. However, if a particular estimator does not meet the CRLB with
equality, the shortcoming is not necessarily rooted in the estimator. Swerling [56] has

cited the importance of deriving the CRLB from a properly formulated data model, and
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the effect of the data model on the derived CRLB has been illustrated here. The
equivalent formulas for the elements of the Fisher information matrix have been
emphasized here. Comparison of results using these two formulas identifies the region of
validity of the derived CRLB. Specific application of these two formulas is cited in

Chapter 6, Section 6.4 and detailed in Appendix E.

Numerical models were discussed in Section 5.2. Limited modeling was conducted
entirely in the phase-history domain using synthesized data. The value of this model is
constrained by: 1) the use of synthesized data only, and 2) the omission of the transfer
function of the support of the point spread function from the data model. A sensitivity
study of the full PGA algorithm was conducted using both synthesized and real SAR data.
Control parameters for this study were: 1) SAR data type (synthesized or real); 2) the
signal-to-clutter ratio (SCR) of the SAR data (15 dB or 27 dB); 3) the type of aberrating
phase error (quadratic, low order or power law); 4) shift errors or no shift error; and, 5)

the width of the support of the point spread function.

Definition and graphical presentation of a menu of performance metrics were covered in

Section 5.3. This form of graphical presentation of data provides a methodology to

visually inspect large amounts of data over the matrix of control parameters.




C'hapter 6

Results

In Chapter 4, we introduced the aberrating phase data and the synthesized and real SAR

data used for this research.

In Chapter 5, we reviewed theoretical and numerical methods of analyses. That chapter
concluded with the examples and definitions of a menu of performance metrics used for
exploratory analysis of PGA sensitivity to three control variables: scene, aberrating phase

and width of support.

We now proceed to use that data and those methods of analyses in various combinations
to address our five areas of investigation:

1. method of interpolating and integrating phase-gradient estimates;

2. improvement with iteration;

3. differences between synthesized and real SAR data;

4. effect of shift errors on estimator performance; and

5. definition of the support of the point spread function.




6.1 Method of Interpolating and Integrating Phase-Gradient

Estimates

The first issue addressed is the method of interpolating and integrating phase-gradient
estimates. This process is not identified in detail in the block diagram of the PGA
algorithm. In Figure 6-1, those PGA algorithm steps involved in this discussion are

enclosed by a dashed line.

Range-compressed Complex image domain
phase-history
domain

Step 1
Input complex image data
-

Step 2
Center shift brightest pixels

Estimate phase-error Apply window

RMS
phase erfror <
threshold?

Step 6
Apply phase cotrection

Figure 6-1. Data flow diagram for Phase Gradient Autofocus algorithm.The
dashed line encloses those algorithm steps involved in making the transition from
support limited data to estimates of phase error interpolated across the full
aperture.




6.1.1 Four Methods Considered

Four methods of making the transition from support-limited data in the complex image
domain through the ML phase-gradient estimator, to estimates of phase error across the
full aperture were tested. Those methods, as shown in Figure 6-2, are
1. Zero pad to full FFT, with implicit interpolation of complex phase history;
2. Zero pad to power of 2 (partial interpolation of complex phase history), with
phase interpolation to full aperture;
3. DFT with phase interpolation; and

4. DFT with interpolation of the phase gradient.

6.1.2 Experimental Results

Figure 6-3 shows the mean squared phase-gradient errors after one iteration of the PGA
algorithm using these four methods. These data were produced using synthesized data
with a large (27 dB) SCR and were aberrated by the low order phase error function. With
the exception of Method 4 (DFT with interpolation of the phase gradient), performance
on both sides of the knee of the combined bound is degraded. Degradations in
performance due to changes in SNR would affect only the performance to the right of the
knee. Degradation in performance due to changes in width of the support of the point
spread function would only affect performance to the left of the knee. Clearly, results
using Method 4, DFT with interpolation of the phase gradient, are superior to those of the

other three methods. Method 4 produces results that agree with the combined lower

bound.




— Wwindow |+—Shifted complex image data

Zero pad to fult aperture (1 )
then FFT || . Sum
(implicit interpolation of Estimate y/ -
complex phase history)
(2)
Zero pad,
if necessary, |__, i Sum Interpolate
to power of 2 Estimate Y/ — P -
then FFT
(3)
DFT ——J Estimate ¥ |~ Sum Interpolate |—
(4)
DFT —1 Estimate ¥ [ Interpolate —» Sum —

Figure 6-2. Block diagram of four methods studied to interpolate/sum
bandlimited estimates of phase gradients in order to compute phase estimates
across the full aperture.
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(4) DFT set by window; phase rate interpolation.
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Figure 6-3. Comparison of estimation errors for four methods of
interpolating/summing phase gradients to compute and remove estimated phase
error across the aperture. Also shown is combined lower bound due to

bandlimiting and estimation errors for SCR = 27 dB.




6.1.3 Theoretical Explanation for Performance of Methods 1 and 2

We will show that zero padding the windowed data prior to Fourier transforming back to
the phase-history domain (Methods 1 and 2) correlates the sampled noise and results in a

biased estimate of the phase gradient.

The maximum likelihood phase-gradient estimator, which is the phase-gradient

estimation kernel of the PGA algorithm for pairwise estimates (M = 2), is defined as

N
li’m,n = AZ xk,mx*kvm‘" > (6-1)

k=1

where x, ,, = a,e’*" +n, , is an element of a two dimensional array of data with k as the
range index and m as the azimuth index. The index » indicates relative separation
between the two data samples with respect to the full aperture. gy is a complex
amplitude with real-valued variance, o.. ¢, is the modulating phase of interest at the m™
sample point, which is assumed to be non-random but unknown. n, , is complex
Gaussian noise with zero mean, uncorrelated real and imaginary parts, and real-valued
variance, 6>. @y and n,,, are assumed to be uncorrelated. The asterisk superscript

denotes complex conjugation. Consider the expected value of the summation in (6-1).

By expanding the terms of (6-1) the argument of the summation becomes
XX mon = (@@ e + &’ 0 kmen + @k 1y ). (6-2)

if the noise, n, ,,, is uncorrelated for n # 0, then the expected value of (6-2) reduces to

Ella,|? /%% = 62¢/¥  a complex number. The phase gradient, =¢ —¢ . is
k a p p g lrl/m,n m m—n




the angle of that complex number. If the noise n, ,, is correlated for n # 0, then

E{nk,mn*k,m_n} =p,0> with ~1< p, <1, and the expected value of (6-2) becomes

o'iej Yma 4+ p,o2. Using a Taylor series expansion (see Appendix D for details) it can be

shown that for large N, the number of ranges used in the estimate,

- _ . _ O'i siny,,
E{‘Vm,n} = LE{xk,mx k,m-n} = arctan( 5 0% 107 cos v } (6-3)

Thus, if the noise is correlated, the gradient, which is estimated in the phase-history

domain, is biased.

In the application of PGA to SAR image processing, noise in the phase-history domain is
attributed to clutter in the scene imaged. We have thus far assumed that clutter is
uncorrelated and will continue to do so. The noise correlation coefficient becomes non-
zero if the length of the FFT, Ngpr, from the image to the phase-history domain is greater
than the length of the support of the point spread function, Mg,ppor, and the remaining

values are zero padded. This is shown as follows.

The autocorrelation function of the sampled phase history, R..(%,), is the discrete Fourier
transform of the sampled spectrum, S.(@,). Because the signal and clutter in the image
domain are considered to be uncorrelated and the clutter is considered to be independent
and identically distributed, we can consider the noise autocorrelation function
independently. The normalized noise spectrum S;.( @) = 1 for Iml < Mg,;p0/2 and = 0

otherwise. Therefore, the associated autocorrelation function, R,.(%.,), is a sinc function




with first zero crossing at m = 1/Mjuppor and first sample at 1/Ngpr. Thus, it is easily

shown that the noise correlation coefficient p, = sinc(7 nx) where X is the ratio of the

support for the point spread, Mpons to the length of the zero padded FFT, Nggy; that is

X= MsupporﬂVFFT-

Unless the data are undersampled, p, 2 0. o is always positive and real; therefore, the
magnitude of the estimated phase gradient, ¥, , is biased downward. This bias is a
function of the value of the true phase gradient, ¥, and the noise correlation

coefficient, p,, as indicated by equation (6-3).

6.1.4 Examples Illustrating Theoretical Explanation

Examples of biased and unbiased estimates are shown in Figure 6-4. In Figure 6-3, a
vertical line intercepts the plots of mean squared estimation error for a 100 pixel-wide

support of the point spread function.

The plots in Figure 6-4 show estimation error across the aperture for Methods 2 and 4
with the 100 pixel-wide support of the point spread function. Using Method 2, data were
zero padded out to 128 points then FFTed to the phase history domain, producing the

biased estimate (p, = 0.26). Using Method 4, the 100 point DFT to the phase-history

domain produces a nearly unbiased estimate. The heavy, smooth dashed line shows the
theoretical deviation of the biased estimate from truth. The light line shows the actual

deviation of a biased estimate from truth. The heavy, rough solid line shows the actual
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Figure 6-4. Residual phase gradients for biased and unbiased estimators using
27 dB SCR synthesized data.




deviation of an unbiased estimate from truth. Results are similar with the real SAR data.

In SAR autofocus applications of the ML phase-gradient estimator, it is easy to avoid the

biased estimate by avoiding zero padding. Zero padding can be avoided by either using a
DFT of length Mgyppon O by using all the data out to Nggr. From Figure 6-3 it is clear that
the increase in MSE error due to increasing the width of the support is minimal when

compared to the significant loss in performance introduced by zero padding. Itis,

nonetheless, very important to recognize the possibility of a biased estimate and its affect

on autofocus performance.

6.1.5 Explanation of Inferior Performance of Method 3 to Method 4

Next we consider the effect of phase interpolation (Method 3) versus phase-rate
interpolation (Method 4). In Chapter 4 we cited Woodward’s theorem which states that
the power spectrum associated with phase modulation is approximately proportional to
the probability density function of the phase rate. Linear interpolation of phase produces
constant phase rate between the estimated data points. The resulting error in phase
gradients will have a saw-tooth component due to the difference between continuous truth
and the zero-order hold estimates. The frequency of this sawtooth waveform is
determined by the width of the support of the point spread function. Residual phase rates
from Method 3 (phase interpolation) and Method 4 (phase-rate interpolation), are
compared in Figure 6-5 using the data from the same 100 pixel-wide support of the point

spread function. The associated distributions of phase rates and phase-rate frequencies




for the two interpolation methods are shown in Figure 6-6. A spectral spread associated

with Method 3 (phase interpolation) is evident.

Finally, the point spread functions associated with the residual phase-rate errors just
discussed are shown in Figure 6-7. Residual phase error is the difference between

integrated/interpolated phase-gradient estimates and truth. Recall that the point spread

. 2
function is defined as I F T(W(t)e"“”) \ where FT is the Fourier transform, W(z) is an

aperture taper and ¢¥t) is the aberrating phase function. The initial point spread function
is illustrated in Chapter 4 in the second row of Figure 4-2(c). Rows (1) through (4) in
Figure 6-7 show the point spread functions due to the residual phase associated with the
four interpolation methods. Row (S) shows the point spread function that results if the
window is increased to the next higher power of 2, that is, to 128 pixels. A -40 dB Taylor
window with n=6was applied to these data. The mainlobes in row (1) and row (2) are
significantly wider than those of the other three rows. Comparison of row (2), 100 pixel-
window zero padded out to 128 point for the FFT, to row (5) clearly illustrates the loss in
performance due to zero padding compared to a small, unnoticeable loss in performance
due to the increase in SNR associated with a wider support. Note that the phase
interpolation used in Methods 2 and 3 introduces pairs of sidelobes at plus and minus the

width of the support of the point spread function.
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Figure 6-5. Comparison of residual phase gradients for Methods 3 and 4; phase
and phase-rate interpolation respectively using 27 dB SCR synthesized data.
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Figure 6-6. Comparison of sample distributions of residual phase rate and phase-
rate bandwidth for two interpolation methods: phase interpolation and

phase-rate interpolation.

Experiment used synthesized SAR data with 27 dB SCR aberrated by the low
order phase. Support of the point spread function was 100 pixels for these

residuals.
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Figure 6-7. Point spread functions due to residual phase for 27 dB SCR
synthesized SAR scene aberrated by the low order phase and support of the point
spread function set at 100 pixels.
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Figure 6-3 through Figure 6-7 showed results for synthesized data with 27 dB SCR.

Figure 6-8 through Figure 6-12 show the same types of data for synthesized data with 15

dB SCR.

Having examined the point spread functions, let us return to Figure 6-6 and Figure 6-11,
the distributions of phase rate and phase rate frequencies and reconsider the usefulness of
Woodward’s theorem for our application. While these distributions, or mean squared
values of these distributions’, provide relative measures of performance, they do not

provide the clear measures of resultant image quality available from the point spread

functions.

6.1.6 Summary, Conclusions and Recommendations

A subprocess of the PGA algorithm not addressed in the literature has been examined
here in detail. Four implementations of this subprocess were considered. Only one of the
four implementations, Method 4 (DFT with phase-rate interpolation), produces results
that equal the combined lower bound. For applications where the increased
computational burden of DFTs is unacceptable and FFT's must be used, we have shown
that increasing the width of the support to the next highest power of two is preferable to

zero padding. Only Method 4 is used for the remainder of the analyses presented here.

! bandwidth = rms value of phase rate frequencies
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Figure 6-9. Residual phase gradients for biased and unbiased estimators using
15 dB SCR synthesized data.
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Figure 6-11. Comparison of sample distributions of residual phase rate and
phase-rate bandwidth for two interpolation methods: phase interpolation and
phase-rate interpolation. Experiment used synthesized SAR data with 15 dB SCR
aberrated by the low order phase. Support of the point spread function was 100
pixels for these residuals.
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Figure 6-12. Point spread functions due to residual phase for 15 dB SCR

synthesized SAR scene aberrated by the low order phase and support of the point

spread function set at 100 pixels.
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6.2 Improvement with Iteration

The derivation of the ML phase-gradient estimator is based on optimal estimation theory.
Yet application of the PGA algorithm has demonstrated improvement with iteration.
Snarski [51] has suggested that the improved focus after the first iteration reduces shift
errors, and reductions in shifting errors improve gradient estimations. During discussions
with the authors of [18] it was suggested that, as the support of the point spread function
decreases with each iteration, the SNR into the ML estimator increases. Thus the

estimation error is reduced with iteration.

6.2.1 Theoretical Analysis

We note that, while the ML estimator for the complex covariance is an unbiased optimal
estimator, (see discussion following equation (6-2) on page 121), the estimate of the
argument (angle) of that complex covariance is only asymtotically unbiased. This was
mentioned in the previous section and is shown in the development of the Taylor series in

Appendix D. Equation (D-23) in Appendix D shows

E{I/Af}=\//+£

8_sin21// 3+_;_
2N \B B

N,

. 1 ranges . .
where X and Y are the real and imaginary parts of zxk,mxk,m_n . This angle-

ranges k=1




dependent bias suggests that residual phase error is not random, but rather that it has

some structure proportional to the initial phase error.

6.2.2 Simulation Results

We consider two cases for simulation. Case 1: the residual phase error at the start of the
second iteration is that associated with the minimum MSE as illustrated in Figure 6-13
for the 15 dB SCR data and in Figure 6-14 for the 27 dB SCR data. Case 2: the residual
phase error at the start of the second iteration is that associated with 1.4 times the width
of the support of the point spread function at the minimum MSE, as illustrated in Figure
6-15 for the 15 dB SCR data and in Figure 6-16 for the 27 dB SCR data. The four plots
in each of these four figures show the following: the first column of plots shows results
after one iteration; the second column shows results after two iterations. The first row
shows residual MSE of the estimated phase gradient versus the width of the support of
the point spread function. The solid line indicates the combined lower bound. Recall that
the units of the support are pixels while the scale is log base 2. For synthesized data with
homogeneous clutter, the SNR into the ML estimator decreases by 3 dB with each factor
of 2 increase in support along the horizontal axis. The vertical line marks the selected
width of support of the point spread function. The resultant point spread functions and
diffraction-limited point spread functions are shown in the second row. The two
horizontal lines mark the mean and maximum values of single-range single-signal ratios
of (CSR) average clutter to signal. These are measures of mean and maximum scene

contrast. Sidelobes near the mean CSR line will appear in a good part of the image.
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Figure 6-13. Residual mean squared phase gradients and point spread functions
associated with minimum MSE.

Data are shown for two iterations of PGA using synthesized SAR data with 15 dB
SCR aberrated by the low order phase function.
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Figure 6-14. Residual mean squared phase gradients and point spread functions
associated with minimum MSE.

Data are shown for two iterations of PGA using synthesized SAR data with 27 dB
SCR aberrated by the low order phase function.
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Figure 6-15. Residual mean squared phase gradients and point spread functions
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Data are shown for two iterations of PGA using synthesized SAR data with 15 dB

SCR aberrated by the low order phase function.
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Figure 6-16. Residual mean squared phase gradients and point spread functions
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Sidelobes well below the mean CSR but above the maximum CSR will appear in at least

one range of the image. The improvement for the 15 dB SCR data is about 3 dB while
the improvement for the 27 dB SCR data is about 1 dB. We note that the maximum SCR
for the 27 dB SCR data is 42 dB. This is 2 dB greater than the peak-sidelobe ratio of the

40 dB Taylor window.

6.2.3 Summary, Conclusions and Recommendations

The Taylor series expansion shows an angle-dependent bias inherent in the phase-
gradient estimator. The magnitude of this bias is shown in Appendix D to be inversely
proportional to the number of data samples used in the estimate. The experimental results
show that there is improvement with iteration. There are no indications that this
improvement can be realized without decreasing the width of the support of the point
spread function. For improvement to occur, the residual phase gradient after the first
iteration must have some detectable low pass structure with bandwidth less than the
bandwidth associated with the support used on the first iteration. In order to use the
expression for estimator bias to develop a full convergence model, we require a well-

defined relationship between scene SCR, point spread, and selected support of the point

spread.




6.3 Differences Between Synthesized and Real SAR Data

In Chapter 4 we introduced the real SAR image data used here and explored a number of
metrics to establish distinctions between the synthesized data and the real SAR data. We
now compare algorithm performance between the real and synthesized SAR data. We
will consider SAR scenes Rural-3 and Urban-1 and their synthesized counterparts with 15
dB and 27 dB SCR respectively. We will consider all three aberrating phase errors.
These comparisons are between data with no shifting errors. That is, the brightest points
at each range in the scene were determined prior to defocusing, then circularly shifted to

the center of the scene after defocusing.

6.3.1 Comparison of Actual and Theoretical MSE

MSE versus width of the support of the 'point spread function are shown for the 15 dB
and 27 dB synthesized data in Figure 6-17. The combined lower bound, indicated by a
dashed line was computed using equations (5-8) and (5-11). That is, the mean clutter
level was assumed to be constant across the scene and SNR = SCR/Ng,ppor. The vertical
line marks the MSE for the 128 pixel-wide support of the point spread function. The
straight line sloping upward from left to right is the -11 dB SNR threshold discussed in
Chapter 5. Note the close agreement between theoretical bounds and PGA performance
using synthesized SAR data. Recall that to the right of the knee of the combined bound,
performance is determined by SNR. To the left of the knee, performance is determined

by width of support.
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These same measures are shown for the real SAR data in Figure 6-18. In addition to the
CRLB computed using equations (5-8) and (5-10), the CRLB computed using equations
(5-12) and (5-13) is also shown. Recall that equation (5-12) uses the signal and clutter
values computed from the SAR data. Performance of PGA using real SAR data does not
agree with the model as well as performance using synthesized data. This suggests that
the real SAR data are not fully represented by the model. Note that the data with low
SNR (Rural-3) deviate from the bound to the left of the knee. This deviation is consistent
with results generated from data with correlated noise. We will not, however, draw that

conclusion at this point.

6.3.2 Plots of Estimates and Truth, and Distributions of Estimation Error Relative

to Truth

In the next four figures (Figure 6-19 through Figure 6-22) we compare plots of truth to
plots of estimated and interpolated phase gradients. We also examine scattergrams of
estimation errors relative to truth for correlation. The selected data are for the 128
pixel-wide support of the point spread function. Plots of estimates and truth in the first
column of these figures show interpolated data. Scattergrams in the second column show
the errors in gradient estimates prior to interpolation. Truth in the scattergrams was
determined from the first differences of truth down-sampled to 128 data points. Theory
indicates that, for the quadratic and low order phase errors, the bound is determined by
SNR. This is not the case for the power law phase error but we will, nonetheless, display

those results for the same 128 pixel-wide support. Data for the 15 dB and 27 dB SCR

~ 145 ~




quadratic
phase error

low order
phase error

power law
phase error

fdB]

[dB]

(aB]

Rural-3

128 pixel support

16 64 256 1024
Support [pixels]

128 pixel support

16 64 256 1024
Support [pixels]

‘ 128 pixel support

16 64 256 1024
Support [pixels]

Urban-1

[dB]

128 pixel support

16 64 256 1024
Support [pixels]

10 v —

(dB]

128 pixel supponrt

16 64 256 1024
Support [pixels]

._,\/’\

[aB]

128 pixel support

16 64 256 1024
Support [pixels)

-11 dB SNR threshold

combined lower bound using egns (5-12, 5-13)
combined lower bound using egns ( 5-8, 5-11)
MSE - no shift errors

Figure 6-18. Theoretical and actual MSE for scenes Rural-3 and Urban-1 and
three aberrating phase errors -- no shift errors.




synthesized SAR data are shown in Figure 6-19 and Figure 6-20 respectively. Data for

Rural-3 and Urban-1 are shown in Figure 6-21 and Figure 6-22 respectively.

Any trend of zero slope indicates a constant error in phase-gradient estimation. This
represents a linear phase error which shifts, but does not blur, the image. Such trends are
of no interest here. Any trend with non-zero slope represents a gradient-dependent

estimation error or estimation bias and is of interest here.

The distributions of phase-gradient errors versus truth are most interesting. For the
quadratic and low order phase errors these distributions are similar for the 15 dB SCR
data and Rural-3 and indicate a non-zero trend. This suggests gradient-dependent
estimation bias (refer to the first two plots in the second column of Figure 6-19 and
Figure 6-21). Likewise, for these two phase errors, the distributions are similar for the 27
dB SCR data and the Urban-1 data (refer to the first two plots in the second column of
Figure 6-20 and Figure 6-22), but no deductions can be made about estimator bias from
these data. The distributions for the power law phase error are the same for all four data
sets. However, since the 128 pixel-wide support is to the left of the knee of the combined
lower bound, these estimation errors may be due to bandlimiting and no conclusions

should be drawn.
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6.3.3 Summary, Conclusions and Recommendations

We have compared measures of PGA performance for real and synthesized data aberrated
by three phase errors. Performance using synthesized data agrees closely with theoretical
bounds. Performance using real SAR data does ﬁot agree as closely with theoretical
bounds. We have considered the data to the left of the knee of the combined lower
bound. In this region, for data with uncorrelated noise, performance is determined by
support width. We note from Figure 6-3 that correlated noise results in degraded

performance. We hypothesize that the noise in real SAR data is correlated.
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6.4 Effect of Shift Errors on Estimator Performance

Three approaches were used to examine the effect of shift errors on estimator
performance. The first approach was to expand the data model to include shift errors as
multiplicative noise, calculate the CRLB and then verify that calculation with simulations
in the phase-history domain. The second approach was to process simulated data with
three known distributions of shift errors through PGA. The third approach was to process
the real SAR data with unknown shift distributions; that is, the loci of the brightest points
were determined from the aberrated image. Presentation of results for simulations with

synthesized and real SAR data are the same as the presentations for the previous section.

6.4.1 Modeling of Shift Errors

Consider modifying the original data model from equation (3-1) where
— Jm
Xem =€ "+,
to include shift errors as multiplicative noise. Then
Xy = ae’'ne’" +1 (6-6)
where @, is the radian frequency associated with the shift error at the k™ range,

m is the azimuth index with the time step normalized to unity, and

all other parameters are as defined in Chapter 3.
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Using the data model for zero-mean data; that is, equation (5-6), the CRLB for data with

shift errors and SNR < 0 dB is

52 2ﬂ2(1—§2)+1+2[3
YNB

(6-7)

where {=E{e/*}. E{e’*}=E{e7’*}=E{cosw,}if the probability density of ay is

symmetric and zero mean. We will assume this to be the case. Details of this derivation
are provided in Appendix E. Note that this model is valid only for SNR < 0 dB. The
simulation using phase-history data aberrated by the low order phase was used to verify
equation (6-7). Recall that for the phase history simulations, the equivalent support of the
point spread function was 64 pixels. Three distributions of shift errors were considered,
and two scale factors — 0.5 and 1.0 — were used to adjust the amplitude of the low
order phase. The shift errors for this experiment were determined using the following
distribution attributed to Viterbi (see Appendix E for greater detail):

__exp(A cosm)

Po(@ 18)=—2 (A)

(6-8)

where I, (A) is a modified Bessel function of the first kind and A controls the spread of

the distribution.

The values of A, the associated standard deviations (determined numerically) and the

width of uniform distributions (relative to 64 pixels) with equivalent variances are given

in Table 6-1.




Table 6-1. Parameters of shift error distributions

A Standard Relative width of
Deviation[rads] uniform dstn
20.0 0.2 0.125
6.0 0.4 0.25
1.9 0.9 0.50
0.8 1.4 0.75
0.1 1.8 0.97

Five distributions are shown in Figure 6-23(a). The point spread functions for 0.5 and 1
times the low order phase error are shown in Figure 6-23(b) and (c) relative to the
distributions of shift errors. The vertical lines on either side of the point spread functions
indicate the width of the 64 pixel-wide support. Simulation outputs are compared to
theoretical bounds in Figure 6-24. The heavy, solid line is the CRLB for data without
shift errors. In the plots, the distribution of the simulation outputs are shown by box
plots. Box plots are a condensed form of data histograms. The line in the middle of the
box marks the median of the data. The box itself extends over the two center quartiles of
the data. The whiskers extend to the lesser of the outermost data point or to 1.5 times the
inter-quartile range. Data outliers are shown as individual points. Simulation output and

CRLBs are shown only for the three widest shift error distributions; that is for A = 1.9,

0.8 and 0.1. The worst performance is due, of course, to the widest distribution with
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Figure 6-23. Conditions of experiment with phase-history domain data to study
the effect of shift errors on ML phase-gradient estimator performance.

(a) Distributions of shift errors used for experiment.
(b) Point spread function due to low order phase error scaled by 0.5 shown

relative to distibution of shift error.

(c) Point spread function due to low order phase error scaled by 1.0 shown

relative to distibution of shift error.

Vertical lines indicate width of support of point spread function used for this

experiment.
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Figure 6-24. Results of experiment with phase-history domain data to study the
effect of shift errors on ML phase-gradient estimator performance.

(a) Unwrapped phase-gradient errors for low order phase scaled by 0.5.

(b) Unwrapped phase-gradient errors for low order phase scaled by 1.0.
The heavy solid line indicates the CRLB without shift errors. Moving upward,
light lines indicate CRLBs for oy = 0.9, 1.4 and 1.8 rads respectively. Boxes
indicate distributions of data from Monte-Carlo simulations.
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A =0.1. Simulations using the two narrowest shift error distributions showed changes of

less than 3 dB in MSE and are not shown on the plots in Figure 6-24. For SNR < 0 dB,
the simulations agree with the theory. The trends of the MSE for shifted data follow
nearly the same shape as the CRLB curve for unshifted data. This suggests that shift
errors effectively reduce the SNR. This concept is illustrated by the phasor diagram in
Figure 6-25. As illustrated on the left, the signal difference angle is no longer constant

with range but varies with @ . As illustrated on the right, in the absence of shift errors,

the signal is the coherent sum of vectors, but in the presence of shift errors, the signal is
the sum of partially coherent vectors. The shifted component normal to the signal vector

contributes to noise.

no shift error

single range ‘

shiterror

sum of vector products
loss in SNR

Figure 6-25. Phasor diagram illustrating the loss in SNR due to shift errors.

Solid vectors indicate signal, dotted line vectors indicate noise. The dotted line arc
indicates the variation in gradient angle across ranges due to shift errors.
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If the model in (6-7) is accurate, then, using the synthesized data with 15 dB SCR (- 3 dB
SNR for a 64 pixel-wide support), we would expect shift errors to raise the level of the

lower bound to the right of the knee of the combined bound by a constant amount. That

is, we believe that performance to the right of the knee is driven by SNR and our theory

indicates that shift errors effect a decrease in SNR.

6.4.2 Simulations with Shift Errors

We proceed now to examine the output of our simulations using synthesized data with
known distributions of shift errors. We considered a slightly different set of shift
distributions. We used the narrowest, the middle and the widest distribution with A = 20,
1.9 and 0.1 respectively. Results are shown in Figure 6-26 through Figure 6-28. (Data
for no shift errors were shown in Figure 6-17). The narrow distribution with A = 20 has
no noticeable affect on MSE. The two larger distributions do have a noticeable affect.
The results, however, conflict with our expectations. We were expecting an increase in
MSE to the right of the knee of the combined bound. But we see no significant change
here. Instead, we see a definite shift of the bound to the left of the knee. In fact, for the
data from the quadratic and low order phases, the knee is shifted to the right by an
amount approximated by the width of an equivalent uniform distribution, that is, for A =
1.9, the equivalent uniform distribution is 0.5 X 64 pixels or 32 pixels wide. This is
indicative of a bandlimiting effect associated with the width of the window, not an

increase in signal-to-noise ratio. The model used to derive the CRLB clearly does not

represent reality! The data for the power law phase error provides little insight.
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Figure 6-26. MSE for synthesized data with shift errors. A =20.0
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Figure 6-27. MSE for synthesized data with shift errors. A=1.90
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Figure 6-28. MSE for synthesized data with shift errors. A=0.10.




For that phase error the shift errors do not extend beyond the region where limited

support width dominates estimation error.

Figure 6-29 shows simulation results using the real SAR data. Data with and without
shift errors are shown. The trends for the real SAR data with shift errors are the same as
for the synthesized data. There is no noticeable effect to the far right where our CRLB

tells us to expect an increase in MSE. The knee of the data is shifted to the right.

We will complete the study of the effects of shift errors with an examination of plots
comparing truth to estimates and distributions of estimation error relative to truth. These
are the same types of data we saw in the previous section where we compared output

from unshifted synthesized and real data.

Referring to Figure 6-26 through Figure 6-28 we see that the 128 pixel-wide support is
very close to the right of the knee for the synthesized SAR data aberrated by the quadratic
and low order phase functions. There is little value in examining further data for that

128 pixel-wide support; we have already seen these data in Figure 6-19 and Figure 6-20.
However, for the real SAR data, there is some notable difference in MSE between the
unshifted and shifted data, particularly for the Urban-1 scene. Plots of true and estimated
gradients and scattergrams of true and error gradients for the shifted real SAR data are

shown in Figure 6-30 and Figure 6-31. Shifting errors magnify the trends seen in the

scattergrams of gradient errors versus true gradient for the quadratic and low order phase

CITOor1S.
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Figure 6-29. MSE for data with shift errors compared to MSE for data without
shift errors as shown in Figure 6-18 for scenes Rural-3 and Urban-1 and three
aberrating phase errors.
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Figure 6-30. Measures of residual phase errors for
Nsupport = 128 pixels.
Scene = Rural 3
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6.4.3 Summary, Conclusions and Recommendations

We have used synthesized SAR data to show that our data model and derived CRLB do
not represent the performance of the PGA algorithm for shifted data. To make further
progress in this area of mathematically modeling PGA performance, it appears necessary
to expand the data model to explicitly include 1) the transfer function of the support of
the point spread function, and 2) the amplitude and spatial frequency of clutter. The
second recommendation is based both on the analysis of the SAR data in Chapter 4 and
the PGA performance analysis in this and the previous section. In Chapter 4 we saw that
signal-to-maximum clutter statistics for real SAR data are lower than for synthesized
SAR data with the same signal-to-clutter statistics. In this and the previous section we

have seen indications that correlated noise may be influencing PGA performance.

We propose the following data model be considered. This model uses spatial frequency,

@, normalized over = ® and SAR pulse repetition period normalized to unity.

X, x =h, ®|:ej'z”" _Tak (a))ej'"“’da):| (6-9)
-
where £, is the discrete-time transfer function of the support of the point spread
function,
® is used here to denote discrete-time convolution,

¢, is the familiar aberrating phase function at the m™ sample, and

a, (o) is the spatially continuous complex envelope of both signal and clutter

echoes as a function of spatial frequency.




The modulation of both signal and clutter by the aberrating phase is expressed explicitly
in this model. Any inhomogeneous distribution of clutter will likely result in a small but
certainly non-zero correlation of clutter noise. Evaluation of the CRLB using this data

model may well produce the explanation for observed behavior.
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6.5 Definition of the Support for the Point Spread Function

The current practice with the PGA algorithm is to set the width of the support for the
point spread function to 1.5 times the -10 dB width of the mainlobe of the non-coherent
sum of the circularly shifted data. The -10 dB width is determined by searching inward
from the outer edges. This procedure is used only for scenes with high signal-to-clutter
ratios such as the two urban scenes used here. For rural scenes with low signal-to-clutter
ratios, the contrast between the peak value of the non-coherent sum and the non-coherent
sum of clutter is often less than 10 dB. For these cases the current practice is to set the
width of the support to the maximum anticipated value based on the conditions of
operation. This may be the full width of the detected image. The support is then

successively narrowed by 20% with each iteration.

6.5.1 Definition of the New Algorithm

We propose an alternative approach to setting the support threshold using the same non-
coherent data sum. Recall that this non-coherent sum is the sum over range dimension k&

of the magnitude squared of the detected image
N range 2
Su= X, |Ten| - (6-10)
k=1

This new approach shows considerable promise for establishing appropriate support

widths for rural scenes with low signal-to-clutter ratios. The thresholding criterion is set




at the points at which the non-coherent sum first drops below its mean value. The mean

value is the arithmetic average of the non-coherent sum,; that is,

S=

1 &
S . 6-11
sz ( )

az m=1
Because this average is proportional to the total power in the scene, it does not change
with phase aberration. However, the distribution of this power across the azimuth

dimension of the image does change with phase aberration.

Before beginning a review of the data, we will first discuss general findings using this
approach. Results using this thresholding algorithm indicate that, in general, the required
support of the point spread function is overestimated for low signal-to-clutter scenes and
underestimated for high signal-to-clutter scenes. However, these results do compare
favorably to those produced by the current practice. For scenes with low signal-to-clutter
ratios, the new algorithm produces meaningful thresholds where the current practice

defaults to the full width of the image.

6.5.2 Assessment of Algorithm Performance

Algorithm performance and resultant image quality were assessed using five graphic
formats.
1. Plots of the non-coherent sum and the threshold illustrate the algorithm but
prove to be a poor format for comparing performance over a variety of

conditions.




2. Plots comparing peak-sidelobe ratios (PSLR) outside the support (as a
function of support width), image contrast, and the thresholds selected using
both the new algorithm and current practice provide a much more condensed
presentation of data. These plots provide a visual basis for comparing the
thresholds selected using the two algorithms.

3. Final product is illustrated in figures showing the detected image after each
iteration.

4. Plots of initial and residual point spread functions and image peak responses
complement the image data and provide insights into the properties of the
residual phase errors for the selected windows.

5. Plots displaying the menu of metrics defined and illustrated in Section 5.3 of
Chapter 5 provide the most condensed display of residual phase error and

resultant image quality.

6.5.2.1 Plots of Non-Coherent Sums Illustrating Threshold Selection

The plots in Figure 6-32 through Figure 6-35 illustrate the new thresholding algorithm
using the real SAR data from Rural-3 and Urban-1, and the three classes of phase error
functions: quadratic, low order and power law. To complete this part of the investigation,
each of the three phase error functions were scaled by four scale factors; 0.25, 0.50, 1.0,
and 1.5. The non-coherent sums used here were generated from data with shifting errors.
The horizontal line indicates the arithmetic mean, S. The two vertical lines mark the first

crossing of the non-coherent sum below S. Direction of search is outward from the




110
100
90
no aberration
80
70

60

110

100}

0.25 x's
quadratic
phase error

90
80
70

60

110

100

0.25 x's
low order
phase error

70

60

110

100

0.25x's
power law
phase error 80

70

80}

Rural-3 Urban-1
- — 110
100 |
1 90
P I T gy | ' [ |
80 WWWWW
minimum support = 134 bins 0 minimum support = 26 bins
1
1.5 x (~10 dB width) = 48 bins 1.5 x (-10 dB width) = 3 bins
-200 -100 0 100 200 -200 -100 0 100 200
— 110 ——
100
90}
o TR Y A o s
80 W Wﬂ»w
minimum support = 108 bins 20l minimum support = 40 bins
1.5 x (~10 dB width) = 99 bins 1.5 x (-10 dB width) = 18 bins
-200 -100 0 100 200 -200 -100 0 100 200
- 110 — —r
100
90 +
ST QL e =~
80| st M NN
minimum support = 128 bins 70 L minimum support = 36 bins
1.5 x (~10 dB width) = 336 bins 1.5 x (-10 dB width) = 33 bins
-200 ~100 0 100 200 -200 -100 0 100 200
I ] 110
100 |
90
[ NN N | 4
80 mew VMW
minimum support = 86 bins 10 minimum support = 42 bins
1.5 x (~10 dB width) = 108 bins 1.5 x (-10 dB width) = 12 bins

-200 -100 0 100 200

-200 -100 0 100 200

Figure 6-32. Illustration of support threshold algorithm, phases scaled by 0.25.
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Figure 6-33. Illustration of support threshold algorithm, phases scaled by 0.50.
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Figure 6-34. Illustration of support threshold algorithm, phases scaled by 1.00.
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Figure 6-35. Illustration of support threshold algorithm, phases scaled by 1.50.




maximum value at the center. The value for minimum support is the greater of two times
the distance (m pixels) from center to first crossing. This value is tabulated in the lower
portion of each plot. It is called, “minimum support” because support scale factors will
be considered later. Below that is 1.5 times the detected -10 dB width, the current
practice. The four figures show data for no aberration and aberration by each of the phase
quadratic, low order and power law. While these four figures illustrate the process, they

do not provide a convenient basis for comparison.

6.5.2.2 Thresholds Compared to Residual Peak Sidelobes and Image Contrast

The data shown in the four pages of plots just discussed are condensed into four plots,
one plot for each phase scale factor. These four plots of condensed data are shown in
Figure 6-36 and Figure 6-37. These are complicated but very informative plots. The
horizontal axis is the width of the support in pixels. The scale is log base 2. The y axis is
peak sidelobe level in dB normalized to an ideal point spread function with mainlobe
peak of 0 dB. The three downward sloping curves are the peak sidelobe levels of the point
spread functions outside the support of the point spread function due to the three
aberrating phase errors: quadratic, low order and power law. The horizontal lines mark
the maximum values of the ratio of mean clutter signal for the Rural-3 and Urban-1
scenes. The ratio of mean clutter to signal is a measure of image contrast. The black dots
mark the support width thresholds along the horizontal axis selected by the new

algorithm. Phase identifiers associated with the black dots are in upper case alpha
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characters: “Q” for quadratic, “L” for low pass and “P” for power law and appear above
the horizontal lines. The vertical offset of these alpha identifiers was arbitrarily set to
make them readable. The open circles indicate the thresholds selected by current
practice. Associated phase identifiers are in lower case below the horizontal lines: “q”
for quadratic, “1” for low pass and “p” for power law. In order to capture all the phase
sidelobes greater than the maximum CSR, the threshold needs to be to the right of the
intersection of the horizontal maximum CSR line and the peak sidelobe curve for the
phase of interest. If the threshold is too far to the right of this intersection, then more

clutter than necessary is captured by the support window. More clutter means more noise

into the ML estimator.

Let’s consider some of the data shown in the two plots in Figure 6-36. In the upper plot,
for phases scaled by 0.25, current practice, indicated by open circles, consistently
underestimates required support for all these phase errors aberrating Urban-1. Current
practice consistently overestimates required support for all three phase errors aberrating
Rural-3. In contrast, the minimum thresholds for the new algorithm are more closely

grouped. For the Urban-1 data the order is L, Q, P. The minimum thresholds for the low

order phase is right at the intersection of maximum scene contrast and peak sidelobe

outside the support. The quadratic phase threshold is overestimated and the power law

phase is underestimated.




6.5.2.3 Aberrated and Detected Images

Examples of the focused and defocused images and detected images after one, two and
three iterations using the new threshold algorithm are included. The selected data are
Rural-3 aberrated by the low order phase and Urban-1 aberrated by the power law phase.
The initial and defocused images and image peak responses are shown in Figure 6-38.
The detected image after one, two and three iterations using the proposed thresholding

algorithm are shown in Figure 6-39.

6.5.2.4 Initial and Residual Point Spread Function and Image Peak Responses

In Figure 6-40 and Figure 6-41 we see the associated point spread functions and peak
image responses for the three iterations of PGA on Rural-3 and Urban-1 respectively.
The threshold widths are noted in these figures. The Rural-3 thresholds were the
minimum thresholds. The Urban-1 thresholds were twice the minimum thresholds.
These selections represent the worst cases selected from the three dimensional array of
options: five real SAR scenes, three aberrating phases (at full scale) and three threshold
scale factors (1.0, 1.4 and 2.0). The threshold does not narrow significantly after the
second iteration for the rural scenes with low signal-to-clutter ratios. This results in
wider than desired mainlobe widths. The threshold is too narrow on the first iteration for
urban scenes with high signal-to-noise ratios. This results in a well defined mainlobe but
high sidelobes that produce an image with sidelobe streaking, which are noticeable in the

areas of the scene with high contrast.
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Figure 6-38. Focused and defocused images and image peak responses.




1st iteration support = 132 pixels 1st iteration support = 148 pixels

2nd iteration support = 112 pixels 2nd iteration support = 52 pixels

3rd iteration support = 102 pixels 3rd iteration support = 52 pixels

Figure 6-39. Detected images for 3 iterations of PGA using the new thresholding
algorithm without scaling.
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6.5.2.5 Menu of Metrics of PGA Performance for Three Iterations

For completeness the menu of metrics defined and illustrated in Section 5.3 of Chapter 5
are included for all three iterations of the two cases studied here. Those metrics are
displayed in Figure 6-42 through Figure 6-44 for the Rural-3 example and in Figure 6-45
through Figure 6-47 for the Urban-1 example. The vertical lines indicate the window
selected for that iteration. The phase error used for the second and third iterations was, of

course, the residual phase error after the preceding iteration for the selected window.

Graph (a) in Figure 6-42, residual MSE after the first iteration, shows the selected
window to be slightly to the left of the knee of the data. This indicates that the selected
support was slightly too narrow. The improvement seen in the point spread functions
after the second and third iterations is clearly reflected in graphs (d) and (e) of

Figure 6-42, Figure 6-43 and Figure 6-44, which show the Strehl ratio and integrated-
sidelobe ratio (ISLR) respectively. The improvement is not so obvious in graphs (a), (b),
and (c), which show MSE, bandwidth of the residual phase gradients and modulation
index, respectively. These results for Rural-3 contrast sharply with the results for
Urban-1. The selected window for the first iteration shown in graph (a) of Figure 6-45 is
clearly to the left of the knee of the data. This is the cause of the sidelobe streaking
visible in the detected images shown in Figure 6-39. The sidelobe level determined by
the first iteration is shown in graph (h) of Figure 6-45. In graphs (e) one can detect a
slight improvement in ISLR between the first iteration shown in Figure 6-45 and the

second iteration shown in Figure 6-46.
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Figure 6-45. Menu of metrics of PGA performance after 1st iteration for Urban-1
aberrated by the low order phase.
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Figure 6-45 (con’t). Menu of metrics of PGA performance after 1st iteration for
Urban-1 aberrated by the low order phase.
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Figure 6-46. Menu of metrics of PGA performance after 2nd iteration for Urban-1
aberrated by the low order phase.
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Figure 6-46 (con’t). Menu of metrics of PGA performance after 2nd iteration for
Urban-1 aberrated by the low order phase.




10 1
@ o
S, 0.8
jul
® -10 /
2 206
2 X
8 20F . e g
Q. =
-0 / £o4
3 7
g 40
0 0.2
= -50
-60 . 0
16 64 256 1024 16 64 258 1024
Support [pixels] Support [pixels]
T (a) (d)
[=%
5 20
@ 2t rmsbandwidth of uniform dstn = 1.8
ke
- S B 10
2
g15} l/ 0
° —
a S
= ; e -10}
E ?
ha DR NP
2 20 ]
Sost
S =30t | _ _ _ _ _ _ _ _ 1
£ Diffraction |imit = ~31.8 dB
z o -4
c 16 64 256 1024 16 64 256 1024
o Support [pixels] Support [pixels]
(b) (e)
10'
x
S 10° }
£
c
8
s
3
§ 10"
———
107
16 64 256 1024
Support {pixels]
(c)
3rd iteration window = 52 bins
Urban-1
shift errors
1.0 x power law phase
Part 1

Figure 6-47. Menu of metrics of PGA performance after 3rd iteration for Urban-

1 aberrated by the low order phase.
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Figure 6-47 (con’t). Menu of metrics of PGA performance after 3rd iteration for

Urban-1 aberrated by the low order phase.
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A topic not addressed in this dissertation concerns a small, but possibly significant, detail;
that is, the method of extrapolating phase gradients or integrated phase errors to the edges
of the aperture. As the width of the support gets small, the interval requiring
extrapolation gets large. If data are extrapolated inappropriately across a large interval,

extrapolation could introduce a residual phase error significant to image quality.

6.5.3 Summary, Conclusions and Recommendations

These results show that the new thresholding algorithm compares favorably with the
current practice. They indicate that this new algorithm, properly scaled, could provide
better performance. The minimum and maximum values of the coherent sum used to
develop the threshold might provide data useful for developing meaningful threshold
scaling factors. The methods of analysis used in this section are, perhaps, a contribution
as significant as the new thresholding algorithm. These methods provide a means of

visually inspecting large amounts of data over a complex matrix of control variables.
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Chapter 7

Conclusions and Recommendations

The research described in this dissertation has addressed five areas of investigation
pertaining to the implementation and the performance of the Phase Gradient Autofocus
(PGA) algorithm. This research was conducted using three classes of aberrating phase
errors, synthesized SAR data and a set of five real SAR image data. Method of analyses
were both numerical and theoretical. Results have
1. identified a subprocess that can introduce angle-dependent estimator bias and
have shown how this bias can be avoided;
2. identified an angle dependent bias inherent in the non-linearity of the
estimation problem;
3. found indications of clutter correlation in real SAR data that is not present in
the synthesized data;
4. identified limitations of the current data model to represent the effect of shift
errors on algorithm performance and,

5. offered a new approach to defining the support of the point spread function

supported by results. This new approach promises a reduction in the number




of iterations required for scenes with low signal-to-clutter ratios such as the

rural scenes used for this research.

7.1 Review of Methods of Analyses

In Chapter 4 we introduced the phase data and real SAR image data used for this
research. We considered the properties of random modulation and associated metrics of
mean squared phase-gradient error (MSE), bandwidth, and modulation index. We used
the signal-to-clutter ratio of real SAR data to synthesize SAR data with homogeneous
clutter. We considered a number of distributions of real and synthesized SAR signal and
clutter relationships and made comparisons between the real and synthesized SAR data.
As aresult we identified potentially significant differences in the clutter distributions

between the real and synthesized SAR data.

In Chapter 5 we reviewed the theoretical and numerical methods of analysis used for this
research. We presented the general form of the Cramér-Rao lower bound (CRLB) for
both unbiased and biased estimators. We showed how the CRLB for functions of the
basic parameters is calculated. We showed the importance of the formulation of the data
model to the validity of the CRLB and emphasized the importance of verifying the
eéluivalence of results using the two methods of computing the Fisher information matrix.
This verification is of particular importance 1) when the parameter of interest is a non-

linear function of the observations, as is the case with phase-gradient estimation; and
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2) when the data model is predicated on simplifying assumptions, as is the case with the

currently published data model.

The numerical methods reviewed in Chapter 5 were divided into two groups:
1) simulations conducted entirely in the phase-history domain, which do not model the
transfer function of the limited support of the point spread function; and 2) full
processing of data through the PGA process using scene, aberrating phase and support
width as control variables. These simulations generated a menu of nine types of
performance metrics for a total of eleven metrics of algorithm performance. That menu
of nine types of metrics was further divided into metrics of phase residual phase error and
metrics of image quality. They were:
e Metrics of residual phase error:
1) MSE of the residual phase gradients averaged across the aperture
2) rms bandwidth of the residual phase gradients; and
3) modulation index, which is a function of the first two
e Metrics of image quality:
4) Strehl ratio;
5) ISLR (integrated sidelobe ratio);
6) PSLR (peak sidelobe ratio);
7) relative position of the peak side lobe;
8) PSLR outside the support of the point spread function; and

9) -3,-6,-18 dB width of the point spread function.
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This catalogue of metrics was supported by examples. Although these metrics provide a
very condensed presentation of a large amount of data, there are situations when a graphic
presentation of the estimated phase gradient or gradient error is most revealing, as we
showed in Chapter 6, Section 6.1, where the display of the gradient error exposed a clear

estimator bias.

7.2 Review of Research Results

In Chapter 6 we used the data, findings and methods from Chapter 4 and 5 to address five
areas of investigation. We will review those results and recommendations and then

summarize the recommendations in the final section.
7.2.1 Method of Interpolating and Integrating Phase Gradient Estimates

A subprocess of the PGA algorithm not addressed in the literature has been examined
here in detail. Four implementations of this subprocess were considered. Only one of the
four implementations, Method 4 (DFT with phase rate interpolation), produces results
that equal the combined lower bound. For applications where the increased
computational burden of DFTs is unacceptable and FFTs must be used, we have shown
that increasing the width of the support to the next highest power of two is preferable to

zero padding. Only Method 4 was used for the analyses presented here.
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7.2.2 Improvement with Iteration

The experimental results show that there is improvement with iteration if the width of the
support of the point spread function is reduced with iteration. For improvement to occur,
the residual phase gradient must have some detectable low pass structure with bandwidth
less than the bandwidth associated with the support used on that iteration. This is
consistent with the Taylor series expansion, which shows an angle-dependent bias
inherent in maximum-likelihood phase-gradient estimator. The magnitude of this bias is
shown in Appendix D to be inversely proportional to the number of data samples used in
the estimate. Development of a full convergence model using the expression for estimator
bias, requires a well-defined relationship between scene SCR, point spread, and selected

support of the point spread.

7.2.3 Differences Between Synthesized and Real SAR Data

Measures of PGA performance for real and synthesized data aberrated by three phase
errors have been compared. Performance using synthesized data agrees closely with
theoretical bounds. Performance using real SAR data does not agree as closely with
theoretical bounds. We have considered the data to the left of the knee of the combined
lower bound. In this region, for data with uncorrelated noise, performance is determined
by support width. We note from Figure 6-3 that correlated noise results in degraded

performance. We hypothesize that the noise in real SAR data is correlated.
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7.2.4 Effect of Shift Errors on Estimator Performance

We have used synthesized SAR data to show that our data model and derived CRLB do
not represent the performance of the PGA algorithm for shifted data. To make further
progress in this area of mathematically modeling PGA performance, it appears necessary
to expand the data model to explicitly include 1) the transfer function of the support of
the point spread function, and 2) the amplitude and spatial frequency of clutter. The
second recommendation is based both on the SAR data analysis in Chapter 4 and the
PGA performancé analysis in this and the previous section. In Chapter 4 we saw that
signal-to-maximum clutter statistics for real SAR data are lower than for synthesized
SAR data with the same signal-to-clutter statistics. In this and the previous section we

have seen indications that correlated noise may be influencing PGA performance.

The following data model was proposed in equation (6-9). This model uses spatial

frequency, @, normalized over * 1t and SAR pulse repetition period normalized to unity.

X, =h, ®[ej¢'” J.ak(a))ej"‘“’da)}

—

where h,, is the discrete-time transfer function of the support of the point spread
function,

® 1s used here to denote discrete-time convolution,

¢,, is the familiar aberrating phase function at the m™ sample, and
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a,(m) is the spatially continuous complex envelope of both signal and clutter

echos as a function of spatial frequency.

The modulation of both signal and clutter by the aberrating phase is expressed explicitly
in this model. Any inhomogeneous distribution of clutter will likely result in a small but
certainly non-zero correlation of clutter noise. Evaluation of the CRLB using this data

model may well produce the explanation for observed behavior.
7.2.5 Definition of the Support for the Point Spread Function

These results show that the new thresholding algorithm compares favorably with the
current practice. They indicate that this new algorithm, properly scaled, could provide
better performance. The minimum and maximum values of the coherent sum used to
develop the threshold might provide data useful for developing meaningful threshold

scaling factors.

7.3 Review of Recommendations

Through the study of Area 1 the Method of Interpolating and Integrating Phase Gradient
Estimates ), we have shown that the method used to transition from bandlimited estimates
of phase gradients to integrated estimates of phase error interpolated across the full
aperture can introduce a significant bias to the estimate. We recommend that zero-

padding be avoided completely. The recommended method is to use discrete Fourier
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transforms (DFT) to transform shifted, support-limited, complex image data to the phase-
history domain. If DFTs are computationally too burdensome, then we have shown that
the slight increase in MSE due to increased clutter included in the next power-of-two FFT

is far preferable to a biased estimate associated with zero-padded FFTs.

Through the study of Area 2 (Improvement with Iteration), Area 3 (Differences Between
Synthesized and Real SAR Data ) and Area 4 (Effect of Shift Errors on Estimator
Performance) we have identified:

1. an angle-dependent bias inherent in the estimator due to the non-linear

relationship between the parameter of interest and the observations; and

2. limitations in representation of real SAR data by the current data model.
We have recommended that the data model be expanded to include explicit representation
of:

1. the transfer function of the support of the point spread function; and

2. the amplitude, spatial frequency and phase modulation of the scene clutter.
As as a starting point, an equation was suggested at the conclusion of the investigation of
Area 4 in Section 6.4. The problem of developing the full Cramér-Rao lower bound for

this expanded data model is outlined in Appendix D.

Finally, in the study of Area 5 (Definition of the Support for the Point Spread Function)
we have proposed a new method of estimating the required support of the point spread

function. In order to compare current practice to the new proposal, we developed a
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condensed visualization of the selected support relative to peak sidelobes of the aberrated

point spread function outside the selected support.

The results presented here provide the insights necessary and identify the directions of
research required to develop a complete model of the convergence of the Phase Gradient
Autofocus algorithm. As such, they provide information pertinent to the application of

this algorithm to other coherent image applications.




Appendix A
Historical Overview of the Development of

Non-Parametric SAR Autofocus Algorithms

This appendix provides a chronological summary of the evolution of non-parametric SAR

autofocus algorithms and the development of the PGA algorithm addressed here.

The development of synthetic aperture radar originated with Carl Wiley in 1951. He
postulated that azimuth resolution could be achieved through detection of Doppler shift.
The first SAR image was produced in 1958 at the University of Michigan, using optical
processing [30]. At that time, photographic film was the only data storage medium
having the necessary bandwidth and dynamic range for SAR imaging [17, p. 512].
Focusing and autofocusing concepts were developed within this optical imaging
constraint. In the early 1970’s with the advent of off-line non-real time digital signal

process capabilities, the options for SAR autofocus algorithms broadened.

A number of the references are from the literature on optical/stellar imaging where

problems of image blur due to aberrations in the signal path length are similar to those of

SAR imaging.




The definition and the performance of PGA, as applied to SAR imaging, has been
documented in the literature in a series of papers beginning in 1989 submitted by
researchers at Sandia National Laboratories, Albuquerque, New Mexico. Those

researchers names are indicated by boldface type.

October 1974 In [37] Knox & Thompson, researchers in optical imaging, introduce
their algorithm for determining the object transfer function from the

statistical autocorrelation of the image transform.

January 1986 In [3], Aitken, Johnson and Houtman introduce the LUMYV phase-
gradient estimator to optical astronomical imaging through turbulent
media. Related publications are Aitken and Johnson [1] and [2],

Johnson and Aitken [35] and Aitken [4].

1988 In [6] Ayers, Northcott and Dainty compare Knox-Thompson to
triple-correlation (optical) imaging through atmospheric turbulence.
They show that the phase gradient method of Aitken, Johnson and
Houtman [3] is a subset of the more general Knox-Thompson

method.
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January 1989

January, March

1989

1989

QOctober 1989

In [5] Attia & Steinberg introduce the ML phase-gradient estimator

within the context of self-cohering large antenna arrays. See also

Steinberg & Subbaram [52].

In [34], Jakowatz, Eichel and Ghiglia introduced the four essential
steps of the algorithm: 1) shift, 2) window, 3) estimate, and

4) iterate. In [18], the same authors introduced the name “Phase-
Gradient Autofocus” in recognition of the use of the same phase-
gradient estimation kernel by Aitken, Johnson and Houtman in

optical astronomy for imaging through turbulent media [1] and [3].

In [24], Ghiglia and Mastin extended PGA to two-dimensions.
This research considers only the one-dimensional problem of

azimuth autofocus.

In [19], Eichel and Jakowatz showed the phase-gradient estimation
kernel in [18] to be a linear unbiased minimum variance estimator

(LUMV) for large signal-to-noise ratios.

In [14], Calloway, Jakowatz, Thompson and Eichel compared
performance of the PGA algorithm to that of a conventional

subaperture cross-correlation approach.




June 1989

1989

1990

December 1993

In [21], Fienup provides an historical perspective and introduces
“shear averaging”, a phase-gradient estimation algorithm equivalent
to the ML kernel of PGA (but without the essential four steps). He
attributes the initial invention to Attia and Steinberg [5] in the
context of beamforming with large arrays. Fienup makes the

connection with shearing interferometry.

In [26] Gray, Wolfe and Riley present an eigenvector method for
estimating the positions of the elements of an array of receivers.
This is followed in 1990 by Gray and Riley [27] with an ML

estimator and CRLB for a complex signal vector.

In [64], Wahl, Eichel and Jakowatz presented a near real-time

hardware implementation of PGA algorithm.

In [33], Jakowatz and Wahl made a significant modification to the
algorithm. The LUMYV phase-gradient estimation kernel was
replaced with a maximum likelihood (ML) phase-gradient
estimation kernel. This new estimator was shown to compare
favorably to the derived Cramér-Rao lower bound for phase-gradient

estimation. Gray et al [26] and [27] are referenced.
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Summer 1993

1991

1991

July 1994

In [39], Mastin, Plimpton and Ghiglia documented the

implementation of digital spotlight SAR processing, including PGA
autofocus, on the commercially available massively parallel

computers.

This was preceded by [38], in which the same authors presented

details of the implementation of PGA on two of those computers.

In [66], Wahl, Jakowatz, Ghiglia and Eichel considered
application of SONAR self-survey techniques to SAR autofocus
and compared results to those achieved using PGA on SAR imagery.
This work formed an important bridge between the signal processing

methodologies for SAR and SONAR applications.

Most recently, in [65], Wahl, Eichel, Ghiglia and Jakowatz
demonstrated the necessity of the four steps of PGA over a variety of
scene content and phase-error-function structures. They also showed
that the computational demands of the PGA algorithm did not
represent a large fraction of the computational demands of the full

SAR image formation process.




1994 In [51] Snarski considers the problem of range-Doppler imaging
with phase errors that are uncorrelated from pulse to pulse. The
algorithm studied is the Rank One Phase Estimation (ROPE)
algorithm attributed to Dyson et al [16]. This algorithm is very
similar to PGA in that it is a shift, ML estimate, and iterate

algorithm without the windowing step of PGA.

July 1994 In [36] Just and Bamler consider the phase statistics of
interferograms with applications to synthetic aperture radar. The
estimation kernel here is the same ML estimation kernel of PGA.
Rodriguez and Martin [49] are cited as the source for the estimator

and the stated Cramér-Rao lower bound.
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Appendix B

Characterization of Scene Signal-to-Clutter

Ratios

In Chapter 4, Section 4.2, the results of exploratory analysis of the SAR data used in this
dissertation were summarized. The detected images were shown in Figure 4-6 of that
chapter. This appendix offers more detailed discussion of those data and the methods of

analysis.

B.1 Description of the SAR Image Data

Eight images were studied: one synthesized image using Rayleigh statistics is included as
a baseline, three images of rural scenes, two images of urban scenes and two data sets
synthesized from the sample distributions of signal-to-clutter ratios of scenes Rural-3 and
Urban-1 with mean SCR of 15 dB and 27 dB respectively. The Rayleigh image was
generated using Matlab® software, which defaults to double precision floating point
numbers. At each pixel the real and imaginary parts were determined by random draw
from independent but identical Gaussian distributions. The Rayleigh scene clutter power
is, therefore, exponentially distﬁbuted. At each range the signal was defined as the pixel

with the largest squared magnitude. The signal of the Rayleigh scene is Gumbel or




extreme-value distributed [44]. The mean signal-to-clutter ratio (SCR) of the Rayleigh
datais 11.2 dB and is 3 dB less than the mean SCR of the three rural scenes. The
remaining five images are those that appear in [65] and are offered to researchers by the
authors of that reference. The image names used here and the associated filenames from
the data set provided through [65] are catalogued in Table B-1. The detected images have
a dynamic range of 93 dB. All images are displayed in Figure 4-6 of Chapter 4, using a
gray scale of 256 values. The scale is weighted to produce a visually pleasing display.
These corrected SAR images are assumed to be unaberrated and are used to estimate the

scene signal-to-clutter ratios.

The PGA algorithm locates the brightest point at each range in the aberrated image and
assumes it to be ‘signal’. The range and azimuth indices of an isolated bright point in
each scene are catalogued in Table B-1. The positions of these brightest points at each
range were determined from the unaberrated image. These data are used in Chapter 6 to
assess PGA performance with the new algorithm offered here for estimating the required

support for the point spread function.

Consider some of the problems of dealing with real SAR data where truth is not known
but is assumed to be closely approximated by the data. Although the complex image data
sets were 512 by 512 pixels, examination of the range-compressed phase histories reveal
stop bands, or bands of data with very low total power, at the beginning and end of the

phase histories. Among the five images, these stop bands vary in width from 30 to 50
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Table B-1. Catalogue of indices to an isolated bright point in each scene.

Scene

Data file name
from [65]

Range index

Azimuth index

Synthesized Rayleigh image

N/A

Rural-1

figla.iq

Rural-2

fig_2_corrected.iq

Rural-3

fig_4_corrected.iq

Urban-1

fig_3_corrected.iq

Urban-2

fig_b5_corrected.iq

Table B-2. Numbers of data domain azimuth and range samples for six SAR data

sets.

Scene

Data file name
from [65]

No. of azimuth
samples

No. of range
samples

Synthesized Rayleigh image

N/A

512

512

Rural-1

figia.iq

432

512

Rural-2

fig_2_corrected.iq

452

512

Rural-3

fig_4_corrected.iq

412

512

Urban-1

fig_3_corrected.iq

452

512

Urban-2

fig_5_corrected.iq

452

512




pixels on each side. These stop bands suggest that the original phase histories were either
zero padded to achieve 512 azimuth pixels in the image, or were severely attenuated at
the edges of the aperture. There is also an obvious but unknown taper across the aperture.
The stop band and the aperture taper indicate that azimuth resolution is somewhat greater
than a single FFT bin or pixel. Neither the aperture taper nor the size of the stop bands
were provided with the data. The number of azimuth samples determined by examination
of the data are catalogued in Table B-2. Although there also appeared to be stop bands in
the range dimension, it is not an issue as critical to the analysis of the performance of the
PGA algorithm as the stop bands in the azimuth dimension. Stop bands in the range
dimension simply reduce the number of range samples over which phase gradients are
estimated to a number less than 512. For the results presented here the range dimension

was assumed to be the full 512 samples.

B.2 Exploratory Analysis of the SAR Daia

Examination of isolated bright points in the data, as illustrated in Figure B-1 and later
experience with the data, indicate that the total power in the seven pixels centered at the
brightest point renders a reasonable estimation of total signal power. It can be argued that
if seven points are too many, then the contribution to total power from the outer pixels is
insignificant. This approach to determining total signal power is meaningful when
considering signal-to-noise ratio (SNR) into the maximum likelihood (ML) estimation
kernel of the PGA algorithm. Measures of scene contrast, however, require ratios of peak

signal to mean clutter.
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Comparisons of non-coherent sums shown in Figure 4-8 of Chapter 4 suggest differences
in clutter statistics that may be a function of the width of the support of the point spread
function. For this reason, analyses were repeated using the clutter data in the 1/4, 1/8,

1/16 of the total remaining image pixels surrounding the signal, as illustrated in Figure B-

2.

Measures considered were ratios of signal-to- mean, median and maximum clutter. At
each range, the ratio of signal-to- mean, median and maximum clutter was computed,
producing 512 measures for each SAR data set. The arithmetic mean of clutter was used

to calculate signal-to-mean-clutter. All results are expressed in dB. The arithmetic mean,

100

60 .
dB 50 | T %

40+ e 3V R & Kol ) R % g oo 4 o o1 BFT -
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Figure B-1. Exploded view of detected image at range index 462 of scene Urban-1.




minimum, and maximum values for each data set are tabulated in Table B-3 through
Table B-6 for the three selected supports of the point spread function. Mean values are
tabulated in Table B-3 and Table B-4 for peak and total signal power respectively.
Minimum and maximum values are tabulated in Table B-5, and Table B-6 again for peak
and total signal power respectively. Note that there is little difference in the data among
the three rural scenes and likewise little difference in the data between the two urban
scenes. The mean values for the Rayleigh data are at least 3 dB less than those for the
rural scenes. Mean total SCR for the three rural scenes is about 15 dB and about 27 dB

for the two urban scenes.
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Figure B-2. Illustration of three windows used to calculate mean, median and
maximum clutter surrounding brightest points. Data shown are from range index
462 of scene Urban 1. Maximum is at azimuth index 278.




Table B-3. Measures of scene contrast —

summary of mean values using peak signal [dB].

Scene Width of Signal-to- Signal-to- Signal-to-
clutter mean clutter median clutter | maximum clutter
window [dB] (dB] [dB]
mean mean mean
1/4 8.5 10.0 1.5
Rayleigh 1/8 8.5 10.1 2.2
116 8.6 10.2 3.0
1/4 12.6 18.5 2.8
Rural 1 1/8 11.7 16.2 3.5
1/16 11. 14.4 4.7
1/4 11.3 14.5 2.8
Rural 2 1/8 10.7 13.7 3.3
1/16 10.4 13.1 4.3
1/4 10.8 14.5 2.3
Rural 3 1/8 10.4 13.7 3.1
116 10.1 12.8 4.2
1/4 246 31.8 12.8
Urban 1 1/8 24.7 30.6 14.8
116 249 29.2 17.6
1/4 23.6 30.5 12.2
Urban 2 1/8 21.2 28.8 13.9
1/16 23.3 27.4 16.3




Table B-4. Measures of signal and clutter power —
summary of mean values using fotal signal {dB].

Scene Width of Signal-to- Signal-to- Signal-to-
clutter mean clutter median clutter | maximum clutter
window [dB] [dB] [dB]
mean median | mean median { mean median
1/4 11.2 12.8 4.3
Rayleigh 1/8 11.2 12.8 4.9
116 11.3 12.9 5.7
1/4 16.7 22.6 6.9
Rural 1 1/8 15.7 20.3 7.6
1/16 15.0 18.4 8.7
1/4 15.4 18.6 6.8
Rural 2 1/8 14.7 17.8 7.3
1/16 14.3 17.0 8.2
1/4 15.0 18.7 6.5
Rural 3 1/8 14.5 17.9 7.2
116 14.2 16.9 8.3
1/4 26.9 34.2 15.0
Urban 1 1/8 27.0 33.0 16.9
1/16 271 31.4 19.8
1/4 26.0 33.0 14.6
Urban 2 1/8 25.6 31.2 16.2
1/16 25.7 29.8 18.6
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Table B-5. Measures of scene contrast —
summary of minimum and maximum values using peak signal[dB].

Scene

Width of
clutter
window

Signal-to-
mean clutter
[dB]

min max

Signal-to-
median clutter
[dB]

min max

Signal-to-
maximum clutter
[dB]

min max

Rayleigh

1/4
1/8
1/16

6.2 11.2
58 120
56 126

71 136
65 139
6.2 154

0.0 5.0
0.0 5.6
0.0 7.8

Rural 1

1/4
1/8
116

7.0 226
6.1 206
46 240

76 283
76 264
48 258

0.0
0.0
0.0

Rural 2

1/4
1/8
1/16

6.3 193
59 184
47 200

74 232
7.3 227
56 23.0

0.0
0.0
0.0

Rural 3

1/4
1/8
1/16

6.0 198
54 224
49 225

7.0 259
6.2 259
56 259

0.0
0.0
0.0

Urban 1

1/4
1/8
1/16

40.8
89 39.2
6.6 38.0

43.9
42.2
41.6

0.0
0.0
0.0

Urban 2

1/4
1/8
116

36.4
35.1
36.1

45.2
41.0
38.5

0.0
0.0
0.0




Table B-6. Measures of signal and clutter power —
summary of minimum and maximum values using fotal signal[dB].

Scene

Width of
clutter
window

Signal-to-

mean clutter

[dB]

min max

Signal-to-
median clutter
[dB]

min rmax

Signal-to-
maximum clutter
[aB]

min max

Rayleigh

1/4
1/8
116

7.9
7.3
7.4

13.6
14.3
14.4

9.5 15.4
8.0 16.2
8.0 17.7

1.8 7.8
1.8 8.5
1.8 9.4

1/4
1/8
116

9.9
8.1

23.2
22.9
26.5

30.9
28.0
28.3

2.6
2.5
2.8

Rural 2

1/4
1/8
1/16

9.0
9.0
8.6

228
229
23.0

27.0
26.3
26.6

2.4
25
2.6

Rural 3

1/4
1/8
1/16

8.5
7.9
7.7

24.3
25.4
25.4

29.1
29.3
291

1.2
1.2
2.9

Urban 1

1/4
1/8
116

42.4
40.8
39.6

45.4
44.6
43.6

1.9
2.1
2.1

1/4
1/8
1/16

37.9
37.6
37.6

47.2
43.1
40.9

241
2.1
24




B.3 Histograms and Scattergrams of Data for 1/4 Wide Support

Data for the 1/4 image wide clutter are displayed in histograms and scattergrams in
Figure B-3 through Figure B-8 for the Rayleigh data and the five sets of real SAR data.
The histograms and scattergrams in the left columns are for the Rayleigh or real SAR
data. With the exception of the Rayleigh data, where the columns on the right are for
synthesized data with 15 dB SCR, the histograms and scattergrams in the right column
are for synthesized data with the same distributions of signal to clutter. The data

synthesis procedure was described in Chapter 4, Section 4.2.1.

These histograms and scattergrams display the following, using total signal (as opposed
to peak signal):
Distributions of:
1. Signal-to-mean, -median, and -maximum clutter ratios are shown in rows 1, 2,
and 3 of parts (a).
2. Position of maximum clutter pixel relative to signal pixel is shown in row 4 of
part (a).

Correlations between the following are in rows 1 through 4 respectively of parts (b) of the
figures:

1. Position of maximum clutter and signal-to-clutter ratios.
2. Position of maximum clutter and maximum-clutter-to-mean-clutter ratios.
3. Signal-to-maximum clutter ratio and signal-to-mean clutter ratio.

4. Maximum-to-mean clutter ratio and signal-to-mean clutter ratio.




The data were visually inspected and the findings are summarized in Table B-7.

Table B-7. Summary of exploratory analyses of real and synthesized SAR data.

Distributions

Real SAR data

Synthesized SAR data

1. Signal-to-mean ,
-median and
-maximum
clutter ratios.

The range of values is
consistent with measured
RCS reported in the literature.
Monotonic increase in SCR
with increase in width of
support. Calculation of SNR
for a given width of support of
the point spread function may
require special numerical
handling.

No change in SCR as a
function of width of the
support.

SNR = SCR/Nayppor

clutter ratio and signal-to-
mean-clutter ratio.

Y-intercept is significantly less
than for synthesized data than
for real SAR data.

2. Maximum clutter position | Slightly less than uniform. Uniformly distributed.
relative to signal. May be significant to data
model.
Correlations
3. Maximum clutter position | Uncorrelated. Uncorrelated.
and signal-to-clutter
ratios.
4. Maximum clutter position | Uncorrelated. Uncorrelated.
and maximum-clutter-to-
mean-clutter ratios.
5. Signal-to-maximum Linearly correlated. Linearly correlated.

6. Maximum-to-mean clutter
ratio and signal-to-mean
clutter ratio.

May be correlated and
significant to data model.

Uncorrelated.
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Figure B-3a. Comparison of metrics of synthesized Rayleigh data and synthesized
SAR data with 15 dB SCR.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-3b. Comparison of metrics of synthesized Rayleigh data and synthesized
SAR data with 15 dB SCR.
The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-4a. Comparison of metrics of Rural-1 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-4b. Comparison of metrics of Rural-1 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Figure B-5a. Comparison of metrics of Rural-2 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-5b. Comparison of metrics of Rural-2 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Figure B-6a. Comparison of metrics of Rural-3 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-6b. Comparison of metrics of Rural-3 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Figure B-7a. Comparison of metrics of Urban-1 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position
of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-7b. Comparison of metrics of Urban-1 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Figure B-8a. Comparison of metrics of Urban-2 and synthesized SAR data.

The differences in the distributions of signal-to-maximum clutter and the position

of maximum clutter relative to signal suggest differences between the real and
synthesized SAR data.
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Figure B-8b. Comparison of metrics of Urban-2 and synthesized SAR data.

The four upper scattergrams show no correlation between signal-to-clutter ratio
and signal-to-clutter position. The four lower scattergrams indicate some
differences in clutter distributions between real and synthesized SAR data.
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Appendix C

Derivation of Crameér Rao Lower Bound for

Unbiased Estimators

In this appendix the Cramér Rao lower bound is derived for the two data models (zero
mean and non-zero mean) discussed in Chapter 5. In Chapter 3 the model for the
observations, x; , was given as

— Jm
=a.e

m +n, -1

where

a, =|a,|e’™ is the complex envelope of the signal at the K™ range. The expected

3 3 P P g & p
value of the magnitude squared of a,, E{laklz} =0 and || are assumed
to be independent and identically distributed across ranges, but invariant

across azimuth at any single range. Similarly 8,, a target dependent phase

is assumed to be independent and identically and uniformly distributed
across ranges, but invariant across azimuth at any single range.

¢, 1s the aberrating phase of interest at the m™ azimuth sample and is assumed to

be invariant across ranges for any given azimuth index.




n, ., is complex circularly Gaussian noise, assumed to be independent and
identically distributed for all range samples indexed by k and all azimuth

samples indexed by m. Noise power is defined asE{Ink,mlz} =0’

n*

In Chapter 5 the general form of the Cramér Rao lower bound for an unbiased estimator

was given in equation (5-3) as
. 2 2> In p(xly) N
E{(§-y) Ix}> [—E{——a?—- (C-2)

where the Fisher information matrix, J=—F {

0% In p(xiy)
y’ '

In Chapter 5 equation (5-7), it was shown that the log likelihood function for circularly

Gaussian data is

Nmnge:
Y Inp(x,ly)= [ 21n[7r2|C J+x/C "xk] (C-3)
k=1
For pair-wise estimates of zero mean data, the covariance matrix
2 2 2 -Jjv
c,+0 c.e

c={ . o (C-4)

c.e’t ol+o;

and the determinant |C| = (07 + 07, )2 ~(o} )2 =(o? )2 +20202, which is not a function of
. The log likelihood function for identically distributed complex envelop, a, and noise,

n, then reduces to

Nranges ln p(X Il//) ranges Ck“lxk . (C'S)




where

L 1[o*+0? ok
Cl=—]| 7¢O 0L, (C-6)
IC|| ~oZ’" o’+0:
5% In p(x!
The Fisher information matrix J = —E{—%P(zx—"’)}
v

2 -1
= NrangesE{XlIc-I ddez Xk}
y

B 1 A 0 ol
- Nranges ﬁ E{Xk |:O_iejy/ 0 Xk

ranges ﬁE{xm—n'xmo’ae”’ + x —n mo-ie—jw
=Llon (o) (C-7)
|C| ranges a
o (O' i) +20‘ o’
= ( ” . Substituting signal-to-noise ratio f = —% produces
2N n
ranges
1+2
r=—2 -8
rangesﬂ

Consider now data that are not zero mean but with noise that is zero mean, complex,

circularly Gaussian. Then the log-likelihood function is

ranges

i“inp(x 10,0,)= [zm[ *le, ]+ (xt -z, ) (k—uxk)] (€9)
where the covariance matrix

2
C= [G" 02} (C-10)
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and is determinant |C| = (O'i)2, which is not a function of . The log likelihood function

for identically distributed complex envelope, a, and noise, n, then reduces to

Nranges In p(xk“//) = _Nrangex(xlii - “‘; )C_I (Xk - “’xt ) : (C'l 1)
. 2
The Fisher information matrix J,, , = —E{ial;p(——%/—)}

2
= NrangesE{-a—qua:a(xk - u'xk )H C_l (Xk - u’xk )}

1 0’
=N nges ;{E{M(Xk -H, )H(Xk —H,, )}

n

O- a¢m—n¢m
0.2
= 0_‘2’ 2N pees fOTM=n (C-12)

=0 otherwise.

Thus J = —i 2N, bo d
SJ= arn
u i ranges O 1

) R Lo C-13
2N, Blo 1] (C13)

ranges

On page 83 of [61], Van Trees provides the following general form for determining the

CRLB for unbiased estimates of functions, g(A), of the basic parameters, A .

E{(&(A) - g(A)) 1x} 2[V(g" (A))] 3 [V(s"(A))]. (C-14)

where x is the observation vector,
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A is the vector of basic parameters,
g(A) is a column vector of the functions of A that are of interest,
V is the gradient operator,

the superscript H is the Hermitian or complex conjugate transpose, and

J is the Fisher information matrix.

For this application g(A) =y =9, —¢, , and Vg(A)=[-1 1]", thus

CRLB = E{(3(A)- g(A))1x}

1 1 0f-1
v, gt U {0 1][ 1 }

1
= . (C-15)
Nrangesﬁ

This completes the derivation of the CRLB for two data models. Results illustrate
Swerling’s point in [56] that the formulation of the data model affects the computed

CRLB. Equations (C-8) and (C-15) are given in Chapter 5 as equations (5-8) and (5-10).
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Appendix D
Taylor Series Expansion of

Maximum Likelihood Estimator

In this appendix the issue of phase-gradient estimator bias is addressed. This appendix is
subdivided into three topics.

1. Derivation of estimator bias using nested Taylor series expansions.

dE{Y}
dy

2
2. Calculation of [ ) , the numerator in the expression for the Cramér-Rao

lower bound (CRLB) of a biased estimator.
3. Calculation of the Fisher information matrix, the inverse of which completes
the derivation of the CRLB.
The critical expressions necessary to gain insight into the behavior of both noise-induced
and inherent estimator bias are developed. The full expressions for the Cramér Rao lower

bounds are not developed, however, the solution to these problems is outlined.

D.1 Derivation of Estimator Bias

The data model as given in Chapter 3 is:




— s i%m
Xem =" +1,
where

a, =|a,|e’® is the complex envelope of the signal at the k™ range. The expected
k k P p

value of the magnitude squared of g, , E{|ak|2} =0~ and |ak| are assumed

to be independent and identically distributed across ranges, but invariant
across azimuth at any single range. Similarly 8,, a target-dependent phase
at the k™ range, is assumed to be independent and identically and
uniformly distributed across ranges, but invariant across azimuth at any
single range.

@,, is the aberrating phase of interest at fhe m™ azimuth sample and is assumed to
be invariant across ranges for any given azimuth index.

., 18 complex circularly Gaussian noise, assumed to be independent and
identically distributed for all range samples indexed by k and all azimuth
samples indexed by m. Noise power is defined as E{|nk,m\2} =o’.

Here we will consider the case where the correlation between the real parts, and similarly

the correlation between the imaginary parts of the noise, is non-zero; that is,

2
E{n,(cR;n,(cR”)l_n} = E{n,(f ,)nn,(f,)n_n} =p, c;" for Inl > 0. The superscripts (R) and (I) denote the

real and imaginary parts and p, is the noise correlation coefficient at the n™ separation.

We will continue to assume that the cross correlations between real and imaginary parts

of the noise are all zero.
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The maximum likelihood (ML) phase-gradient estimator is defined in Chapter 3 equation

(3-6) as

N,

li/n,m =Z£ Zxk,nx;,m * (D_l)

k=1

We are interested in the expected value of the estimator E{lf/ m’n}. Equation (D-1) can be

restated as

N

ranges

1 Im(xk,nx,’;m)

ranges k=1

1 N,

v, = arctan —
*
N Re(xk’nxk,m)

ranges k=1

N,

ranges
By using the rectangular notation for complex numbers X + jY = Zxk’nxz,m where
ranges k=1

1 W, ranges

X=— > Re(x,,x;,,) (D-3)

ranges k=1

1 N ranges

and Y=— > Im(x, ,x;,.), (D-4)

ranges k=l
(D-2) can be re-expressed as

v, =arctan(Y / X).

On page 181 of [44] Mood, Graybill and Boes give the following general expression for
the expected value of a function of two random variables. This expression uses the

Taylor series expansion of the function g(X,Y) expanded about u, and 4, .




2

0
e g(X,Y)

Ble(X. 1)} = glotro bty ) +2 0%

Hx.ly
2

—g(X
GXY&’XaYg( ,Y)

L, ®
+—0'§? g(X, Y)

2%7% *

Hyx.My

Hx-ly

For the phase-gradient estimator g(X,Y) = arctan(Y / X). Expressions for the means,
variances, covariances, and second partial derivatives are required to evaluate equation

(D-6). The expressions for the variances and covariance are quite complicated to develop

and will be addressed last.

D.1.1 Evaluation of 4, and u,

Referring back to (D-3) and (D-4) we see that

iy = E{X} = E{Re(x, x; )} (D-7)
and t, = E{Y} = E{Im(x, x; )} (D-8)
where

* i % — j * * —j *
Xy X kmn = (ake’ “nae ' +ae’ ' m-n + @ ey Ay k,m—n). (D-9)

If the noise, e is uncorrelated for n # 0, then the expected value of (D-9) reduces to
E{‘ak|zej On=finen } = Giej Yu 1f the noise, P> is correlated for n # O then
E{nk’mn*k,m—n} = p,0> with —1 < p, <1, then the expected value of (D-9) becomes
c2e’V" +p,c?. Thus

Uy =po+0icosy (D-10)

and Ly =0 siny. (D-11)
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D.1.2 Substituting u, and p, into the First Term in the Taylor Series

Using only the first term of the Taylor series expansion in (D-6) we see that the expected

value of the gradient estimate

. olsiny
E = arctan 4 +
A2 { po> +062cosy

it = arctand—PS0Y_ L, i
E{W}—arctan{p+ﬁcosw}+ D-12)

2

- . o . . . o
is biased if the noise is correlated, where the signal-to-noise ratio f =—%. The

o

n

conditions under which noise is correlated are addressed in Chapter 6, Section 6.1.

D.1.3 Evaluating the Second Partial Derivatives in the Second Order Terms

Given the mean value of X and Y, the second partial derivatives in (D-6) can now be

evaluated.

o gxy) = 0"l _yx
2 b _————_2 )
X b OX1+(Y/X) -
_9_ Y |
X X*+Y? sty
. 2XY
()(2+1/2)2
My My
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2 .
= cosy siny

(02)

J 0 1
Xy =2——
ay7 §%:) W 1+(Y/ XY

Hyxly

_9_X
X X*+Y? oty

~2XY
(x> +1?)

Bx.ly

2 .

= cosy/ sy
(o2

d* Jd Y

g(X,Y) =——
XY o XY

(x*+7%)-2y?
(x> +1?)

Hx.Hy

X*-y?
(X2+Y2)2

Hx iy

=(o? )2 (cos® y —sin” y)

-1
=T (cos2y)

(o2)

Before evaluating 6%, 6 and 0, let us consider the form of the second order terms of

(D-6).




2 2 2
1

1 J )
Eciyg(X,Y) +EG§8Y2 g(X.Y) +0'xyﬁg(X,Y)

Hx .My Hx:Hy Ux My

= (0_12)2 [(Gi +07)cosy siny — o, cos 21//] (D-16)

D.1.4 Evaluation of the Variances of X, Y, and Covariance of XY

In order to evaluate the second order term of the Taylor series in equation (D-6) we need

an expression for 05

o@:%Eii o e (D-17)
N™ 553 x(Re(x inXim E(x inXim ))— 7} X)
where
Re(xk,nx,im)
=Re(a,e’*a’ e +a e’ n imon+a've "m0y N ks )

|ak |2 co8(¢,, — Pn )+

_ Iaklcos(¢m _B)n(R)k,m-n +|ak!sin(¢m - B)n(’)k,m_n + e D-18)
iakICOS(¢m_n - e)n(R)k,m—n - Iak I Sin(¢m—n - 6)n(l)k,m +

(1

8 () n “km-n

‘H’L k,mn

1
km-n t n( )k,m

and i, = |ak|2 cos(d)m - ¢m_n). The superscripts (R) and (I) denote the real and imaginary

part of the complex noise. Because the estimator has already been shown to be biased if
the noise is correlated, the higher order terms of (D-6) will only be evaluated for the case

of uncorrelated noise. Forj = k the expectation of (D-17) is
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{aklz cos2(¢,, — e)n(R)zk,m—n + lak|2 sin’(¢,, — G)H(l)zk,m—n +

| c0s*(9,,_, = O)n™® Lnes —|at, | sin? (9

R)2 R)2 n2 n?
+n( ) k,mn( ) k,m-n +n( ) k,mn( ) k,m—n

= NXE wn =+ HD-19)

For j # k the expectation of (D-17) is zero. The expectation of (D-19), 6% reduces to

! (o2)
G§=W ajafﬁ+—2f— . (D-20)

Similarly

D-2D)
and for uncorrelated noise

G,y =0. (D-22)

D.1.5 Explicit Form of Bias Inherent in Estimator

Substituting (D-20), (D-21), and (D-22) into (D-16) gives the explicit form for the

estimator bias, g, for data with uncorrelated noise:

£= (—61;—2[(0?{ +07% )cosy siny — 0y, cos 21//]

a

- Vo )2 [(Zaio'i + (Gi)z)cos ¥ sin l[/]

£=sin2w(g+_1_)
B B

(D-23)




Equation (D-23) is the expression for the angle-dependent bias of the phase-gradient

estimator.

~ 2
D.2 Calculation of [d—iiw"’—}j for the ML Estimator With

Uncorrelated Noise

To determine the Cramér Rao lower bound (CRLB) for the biased estimator we must

2
evaluate [ {W}} ( } We will do so only for p =0 where
dy dy

s1n2l//( + 1)
B B

de cos2y(2 1 :
—= —+— (D-24)
dy N (ﬂ ﬁj
and
de | 2cos2y 1 00521//[2 1H2
I+—] =1+ + ==+ |- (D-25)
(“W) N(ﬁﬁ”N 5P

D.3 Calculation of the Fisher Information Matrix for Data with

Correlated Noise

The log likelihood function

N’

ranges

i‘wlnp (x,10, a,)= [ 2 [ 2|Ckl]+(xllci _u;k )C~l(xk _uxk)) . (D-26)

k=1




The covariance matrix C for the zero-mean data model is

Co ol+o’ ol +po’
ol +po:  ol+o?

and the determinant,
2 . s
ICl=(02+02) (ol +poi)(oie™ +pay),
is a function of the gradient, Y. The development of the Fisher information matrix, J, for

the zero mean data model is complicated by the dependence of ICl on y.

X —H,
The data vector for the non-zero mean data is X = [x 7 } (see equation (5-8) in

m—n Xpnen

1
Chapter 5), and the covariance matrix is C = Gil:P lj The determinant of the

. : 2 . .
covariance matrix |C| = (O'i) (1 - pz), and is not dependent on the gradient, y.

Since |C] is not a function of y, the Fisher information matrix is easily developed using
the method of second derivatives and determining the CRLB for a function of the basic

parameters, ¥, = ¢, —9,._, -

I

4 1 L -p
Cl=——r D-27
02(1—/)2)[—/? 1] ®20

The log-likelihood function L = —(




dL(9) =—_0'_3_ jﬂ’:(xl _:ul)—jau‘l(xl _Ul)* +jpﬂ1(x2 —-,le)*--'
do, IC] —jpu" (%, — 1)

d*L(9) _ —02 | i (= )+ 205 g+ (v = ) = ppa (0, = ) -
de;* | —pit;(x, - 11,)

dzL(q))} o’ . 1 _20%c>
_E _ n 2# ‘Ll, — n a
G =fgawim]= 5
dzL(q))} 0_2 ) 20_20.2
Similarly —F =212 1, |=—2=—*, and
o2 =falowim= "G
PL(p)) -oir . 20262 pcosy
_— _ n + 1= noa
(a¢la¢2 |C| [pﬂlliz p#uuz ] ICI
2.2 1 —
Thus J= 20,9, peosy and
|IC| |—-pcosy 1
1 cos
. T peos¥. D-28)
20,0, 1—-p~cos” y | pcosy 1
The desired function of the basic parameters is D= ¢, —¢,, and VD' =[-1 1].
' 1 cosy || —1
Finally, D'I''D= |(,3| 5 21 5 [—1 1] peosy , and the
20,0, 1-p cos"y pcosy 1 1
unbiased portion of CRLB = 2|2C | 5 (- ;zcos;// )
20,0, (l—p cos t//)
2o (-0 1
202 (1+pcosy)
(1-r’)
=l D-29
Bli+ peosy) 2
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The algebraically tedious product of the first derivatives method has been calculated and
agreement between the two methods has been verified. Details are omitted. Next,

consider the values of (D-29) for ¥ =0 and w =7 /2. For y =0 (D-29) reduces to

- 1= p?
ITP. For yw =7 /2 (D-29) reduces to ( Bp )

D.4 Summary

Using a Taylor series expansion, we have shown that correlated noise causes an angle-
dependent bias in the ML phase-gradient estimator. We have used that same Taylor
series expansion to show that the estimator has an inherent angle-dependent bias and
developed the expression for that second-order bias term. We have developed the Fisher
information matrix and its inverse for data with correlated noise. The inverse of the
Fisher information matrix is the CRLB for the unbiased estimate, that is the estimate
minus the bias. Further development of these terms is required to fully derive the Cramér
Rao lower bound for the biased estimators. The general form of the required equation
was given in Chapter 5, equation (5-3)
R 2
0 E{yi}
Ay

E{(§-y)'1x}> {32 o w)} : (D-30)
I o) Sl s ik 404
oy?

For the case of correlated noise, the numerator of (D-30) is a function of signal-to-noise

ratio, 3, gradient angle, ¥, noise correlation coefficient, p, and inherent estimation bias, €.
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The denominator is a function of Y and p. For the case of uncorrelated noise, the
numerator is a function of 3, y and &, and the denominator is a function of . For the
case of uncorrelated noise, the denominator has already been derived in Appendix C and

reported in Chapter 5 as equation (5-7). The numerator was derived in this appendix in

Section D-2.

Researchers who choose to pursue this derivation for correlated noise should derive the
Fisher information matrix for the zero-mean data model using both the method of second
derivatives and the method of products of first derivatives. The results using these two

methods should be compared to identify the region over which the result is valid.

~255 ~




Appendix E

Expansion of Data Model and CRLB to

Include Shift Errors, oy, Represented as

Multiplicative Measurement Noise

In this appendix, the data model used by Jakowatz, Eichel and Ghiglia in [34] and [18]
and later used by Jakowatz and Wabhl in [33] to derive the Cramér-Rao lower bound
(CRLB) for the phase-gradient estimation problem is modified to include shift errors as
multiplicative noise. The Fisher information matrix is then derived for this expanded
model using both the method of second derivatives and the method of products of first
derivatives. The two derived forms are compared and are shown numerically to agree
only for signal-to-noise ratios (SNR) of < 0 dB. The probability density used here for the
numerical analysis is one derived by Viterbi to describe the steady-state distribution for

phased-locked loops. A similar distribution is used in statistical optics to describe phase

distributions [25]. However, this derivation of the CRLB depends only on E{ej "% },

where @, is the shift error and » is the normalized discrete time difference between the

data samples from which the gradient is estimated.




The data model assumed by Jakowatz and Wahl in [33] for the m™ phase-history data

sample at the k™ range is defined as
Xem = akej¢m T (E-1)
where

a, =|a,Je’® is the complex envelope of the signal at the k™ range. The expected
value of the magnitude squared of q,, E{laklz} =07 and |a,| are assumed

to be independent and identically distributed across ranges, &, but invariant
across azimuth, m, at any single range. Similarly 8,, a target-dependent
phase at the k™ range, is assumed to be independent and identically and
uniformly distributed across ranges, k, but invariant across azimuth, m, at
any single range.

¢, is the aberrating phase of interest at the m™ azimuth sample and is assumed to
be invariant across ranges for any given azimuth index, m.

n,. . is complex circularly Gaussian noise, assumed to be independent and

identically distributed for all range samples indexed by k and all azimuth

n

samples indexed by m. Noise power is defined as E{lnk,mlz} =o’.

Although this data model is defined in the phase-history domain, it defines related
assumptions in the image domain. This data model implies that clutter in the image
domain is also complex circularly Gaussian and independent and identically distributed

for all range samples indexed by k and all azimuth samples indexed by m. It further
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implies that signal is complex circularly Gaussian and independent and identically

distributed for all ranges with only one signal per range.

We next expand (E-1) to include shift errors as multiplicative noise. Then
xk,m = akej¢mejmwk + nk,m (E-Z)
where @, is the radial frequency associated with the shift error at the K" range, and

m is the azimuth index with the time step normalized to unity.

Consider the covariance matrix for sample pairs. The off-diagonal elements are

E{xk,mx,’;m_n} andy, ,=¢, -9, .. Then the covariance matrix is

2 2 2 —jvy, - "
c -5 % +n, ale VeI "
kT i Yma ,J 2
aze’Vrr el " a; +n;,
6124 +Gi Gie—Jw,n,nE{e—lnwk}
= v, i 2 2
ore’ " E{e" ] o’+0’

a

_Giel WmJlC O-z + 6:

O-Z +O'i e Wm...g:l

where the distribution of @ is assumed to be symmetric and zero mean. Then

C:E{ej"w"}:E{e—j"w"}

and

(E-3)

L_ 1| oit+al  —o’"¢
‘o '

—c’¥{  ol+o?




IC|=(o? +Ui)2 —(0'3{)2. (E-4)

N range.

The log likelihood function is L(y) = — Z X7 C;'X,, where Ny, is the number of data

k=1
samples (number of ranges). First we will use Method 1, the second derivative method,

to determine the Fisher information matrix for Nz data samples. We proceed as follows:

Joo E{é‘zL(w)}

oy’
1 . . 0 cle V¢ x,
=Ny,—FE . “
R |C! {[xl Xy ][0'261 Voa 0 :":xz
= NR‘—(lj—IE{xlxzciej "'”‘*"§+xfx2e-j‘”'""‘§‘} (E-5)

where E{xmx,*n_n} = (E{x;xm_n })* =o2e ¥ {. Then (E-5) reduces to

ELACHYN

(E-6)
|
Taking the inverse and collecting terms,

4 _(6i+or) - (o)

2Ng(0% )2

{oi} +2foif{or}+{ol} {2} ¢

2N {0} ¢

O i)
_ {O’i}z (1 C) 21 2{0’i} .
2w 194) %

R {O_i}z
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By substituting f= 0> /¢ for the SNR in (E-7), the CRLB for an unbiased estimator for

the data model in (E-2) is thus expressed as

CRLB>]"'=

B*(1-8*)+1+28

2N, =

Next we consider Method 2, the product of derivatives method of determining the Fisher

information matrix

1 0 __J‘G2e_] Wm.ng X 2
= NR T2 E [x; xr*n—n] 2 ¢ "
| joie'' ¢ 0 -

= N __1.._ {(._jxmx;_no-iej‘l,m,nc + jx* xl e—] Yonn C)z}

R 2 m m—n
IC]
2 2
(620) .\ .
— J2mn (¥ 2 ~J 2% n * 2 *
=N, |C|2 E{(xmxm_n) e (xmxm_n) e +2xmxmxm_nxm_n}

(0'25)2 —Ial4(ej Win 4 ™I Wna ) ...

= Ny 2
C] +2(|a|4 —i—|a|2|nm|2 +al o |” + [l T 2)
2 #\2
=2N, (Tai) (E{lal* {1- E{e™=}) + 20207 + (02)). (E-9)
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If we assume that |g| is Rayleigh distributed and that a’ is consequently exponentially

distributed, then E{|a[4} =202 and (E-9) reduces to
L)Y
E{( (w)) }
oy

2 \2
=2N, (o 2) (2(02) (1-E{e’™ })+20207 +(02)).  (E&-10)

For (E-10) to equal (E-6) the following must be true
Cl=(2(c2) (1~ E{e’***}) + 20202 +(2)’). (E-11)

But referring to (E-4) we see that this is not the case.

The ratio of these two scalar-valued calculations of the Fisher information matrix in dB,

10xlog 10[—E{—%} / E{(—a%]z }], (E-12)

is plotted in Figure E-1 for several values of ¢,. For these calculations, the probability

that is,

density assumed for shift errors was

exp(A cosw)

Pol@ 1N == )

(E-13)

The parameter A controls the spread of the density and, using a linear analysis, is

inversely proportional to the variance of @. This density was derived by Viterbi [63] to




describe the steady-state probability density of phase errors for first order phased-locked
loops. Van Trees [61] uses this family of distributions for the class of signal estimation
problems where the data measurements include nuisance or unwanted parameters. He

uses (E-13) to model the distributions of unwanted random phase angles.

-1

-2

0.11

Difference [dB] between two CRLBs
&
1

0.82

-4+

1.9

20
-5}

6
_6 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20

SNR [dB]

Figure E-1. Ratio [dB] of Fisher information matrix calculated using 2nd
derivatives (E-8) to Fisher information matrix calculated using the product of 1st
derivatives (E-10).




The values of A used are identified in the right margin of the ploi. The values of
A associated standard deviations and widths of uniform distributions with equivalent

variances are summarized in Table 6-1 Chapter 6. That table is repeated here as

Table E-1.

In Figure E-1 we see that the two computed CRLBs begin to diverge for SNRs > 0 dB.
We will use (E-8) to represent CRLBs for the mean squared phase gradient estimation
errors for data with shift errors as modeled in (E-2). This model is, of course, limited to

SNR <0 dB.

Table E-1. Parameters of shift error distributions

A Standard Deviation | Relative width of
[rads] uniform dstn
20.0 0.2 0.125
6.0 04 0.25
1.9 0.9 0.50
0.8 1.4 0.75
0.1 1.8 0.97
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Glossary

By

CRLB

CSR

DFT

Dstn

dB

E{*}

the complex echo amplitude at the k™ range, assumed to be constant over

azimuth -- a, =|a,|exp(j0,)
modulation index

bandwidth of phase gradient, y
signal-to-noise-ratio

velocity of light ~3x10% m/s

Cramér-Rao lower bound

clutter-to-signal ratio, the inverse of signal-to-clutter ratio, a metric of image

contrast
discrete Fourier transform
sample distribution

decibels = 10*log10 (Watts/Watt)

expected value




ISLR

Jij

In(*)

Msupport

ML

MSE

fast Fourier transform
integrated sidelobe ratio
the Fisher information matrix, a square matrix
the imaginary number ~/—1
.th th

thei,j element of the Fisher information matrix J

the i™, j element of J; the variance of any unbiased estimate of ;,

o2, > J

range index, when used as a subscript

when two ranges are indexed, j, k are used

natural logarithm

azimuth index, when used as a subscript

when two azimuth positions are indexed, m, n are used, withn > m
the length of the support for the point spread function

maximum likelihood

mean squared error

MSE [dB] = 10*log10 ( (residual phase-gradient errorfrads])? )
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Him

N ranges

PGA

phase
history

pst

PSLR

Om

l//I’I’l, n

radar

IcS

rms

SAR

the number of azimuth samples in the image

the complex noise in the range-compressed phase history data sample for the

k™ range at the m™ azimuth position

the number of range bins in the image

phase gradient autofocus

range-compressed phase history

point spread function

peak sidelobe ratio

the aberrrating phase at the m™ azimuth sample

the difference in aberrating phase between the m™ and the ™1™ azimuth

samples (@ - O.n)

radio detection and ranging

radar cross section -- a measure of target reflectivity

root mean squared

synthetic aperture radar
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SCR

SNR

6k

Xk,m

signal-to-clutter ratio, an image domain metric of image contrast
signal-to-noise ratio, a phase-history domain metric

a target-dependent phase at the K range, assumed to independent and

uniformly distributed across ranges
hermitian or complex conjugate transpose of the complex matrix x

the range-compressed phase-history data sample for the k™ range at the m™

azimuth position
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