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Abstract.~Problems in environmental restoration that involve detecting or
monitoring contamination or site characterization often benefit from
procedures that help select sampling or drilling locations for obtaining
meaningful data that support the analysis. One example of this type of
procedure is a spatial sampling program that will "automatically" (based
on the implementation of a computer algorithm) guide an iterative
investigation through the process of site characterization at a minimal cost
to determine appropriate remediation activities. In order to be effective,
such a procedure should translate site and modeling uncertainties into
terms that facilitate comparison with regulations and should also provide a
methodology that will lead to an efficient sampling plan over the course of
the analysis. In this paper, a general framework is given that can
accomplish these objectives and can be applied to a wide range of
environmental restoration applications. The methodology is illustrated
using an example where soil samples support the characterization of a
chemical waste landfill area.

INTRODUCTION

The objectives of environmental restoration projects often require data for
detecting, monitoring, or estimating the extent of contamination. Spatial sampling -
procedures may be required to help locate soil sample or bore hole locations that
will provide the most additional sité information at the lowest cost, Two examples
of problems that might benefit from this type of procedure follow:

a) Find drilling locations for a monitoring system that will provide the
information required to minimize the probability that a contaminant will cross a site
boundary undetected; and

b) Select samples to reduce as much as possible the area or volume of a 90%
confidence region for a specific concentration contour.
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Two essential elements of procedures designed to accomplish these types of
environmental restoration project objectives are: I) to translate site and modeling
uncertainties into terms that permit comparison with regulations so that
compliance and cleanup requirements can be assessed; and II) to provide
methodology that can lead to an efficient sample plan throughout the course of the
analyses. The concepts involved with these two elements of the procedure provide
the basis for the remainder of this paper.

TRANSLATING SITE AND MODELING UNCERTAINTIES
INTO TERMS OF REGULATORY COMPLIANCE

Limited sampling and other factors contribute to site and modeling uncertainty.
Most site characterization applications include uncertainty from a number of
sources: contaminant values at locations that have yet to be sampled are unknown;
flow and geostatistical models have uncertainty associated with them; and data
available from samples collected at the site and "soft data" relevant to the site,
collected through a number of alternative characterization methodologies have
varying degrees of uncertainty associated with them. ~
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"Recognizing these uncertainties as unavoidable, environmental regljlations.
should be and often are stated probabilistically. Constraints on the »allowqblé
probability of exceeding a regulatory threshold, stated as .a function' of the

(hypothetical unknown) true level of contamination, provides one example: In .

order to be effective, the procedure must translate site uncertainties into the
probabilistic framework of these regulations. Figure 1 illustrates this element of
the process for the (simpler than most) problem of characterizing average
contamination levels. This will provide those responsible for demonstrating
compliance of a site, or those responsible for analyzing cleanup alternatives and
capabilities, with a way of making critical decisions.




The examples discussed earlier will be different (and generally more complex).
Example a), for example, might have a vertical scale indicating the detection
probability. The computation of these probabilities would depend on the assumed
flow models and their parameters as well as the geological features of the site.

This translation of site uncertainties into a regulatory framework can be
achieved through a two-step process. The first step is to convert site and
modeling uncertainties into simulated realizations, each realization providing a
possible map of site contamination. When taken collectively, the realizations reflect
probabilistically the way that contaminant levels at the site might be configured.

. These realizations are then evaluated according to an objective function that

calculates the compliance probability or risk.

The remainder of this section is partitioned into subsections that address these
three components of this process

Factors Contributing to Site and Modeling Uncertainty

At least five general sources might contribute to uncertainty in the estimated
concentration levels of contaminants at a site:

1) Uncertainties in small scale hydrogeologic property values, either in
parameter values or in state variables. These values are uncertain at locations that
have not been sampled,;

2) Uncertainty introduced by incomplete knowledge regarding the location
and extent of large scale geological features such as stratigraphic units or zones of
heavy fracturing; "

3) Uncertainty concerning the extent and configuration of the contaminant
source;

4) Uncertainty concerning the 'appropriate flow and transport: models and in
parameters associated with these models; and

5) Uncertainty in analytical results for samples already collected and analyzed.
The first step of the translation process is to convert site and modeling

uncertainties into simulated realizations that differ from one another to an extent
that reflects these uncertainties. Each source listed above must be taken into




account in the simulation process to reflect its impact on differences between
simulated realizations.

Fields of hydrogeologic parameter values can be generated using stochastic
simulation techniques conditioned on sample data where available. Replication of
this simulation process can account for parameter uncertainty source (1).
Uncertainties in state variables are often estimated through repeated application of
the flow models using different sets of the hydrogeological and other parameter
values (selected through simulation) for each replication and conditioned based on
known values of state variables where applicable. Other parameter values may
include the specification of large scale geological features, source (2) above, or
contaminant source, strength and configuration, source (3). Probabilities for
different contaminant sources and-for different scenarios involving large scale
geological features must be assessed (perhaps subjectively) and introduced into the
simulation process accordingly.

Modeling uncertainty, source (4), can be accounted for by selecting among
alternative models with probability of selection consistent with each model’s
likelihood of being applicable (again, likely to be a subjective decision). In most
cases, the appropriate models are established; but parameters associated with these
models must be specified. Their uncertainty distribution must be estimated, and
the parameters generated randomly through Monte Carlo or perhaps alternative
simulation techniques. The fifth source of uncertainty -- that resulting from inexact
analytical procedures, can be accounted for by reducing the conditioning
requirements of the simulation and consequently allowing differences between
values obtained through sampling and those obtained through simulation at the
same location. ‘

Together, accommodating for these sources of uncertainty through the
simulation process will, if performed correctly, provide an estimated probability
space for site reality that is both unbiased and provides an accurate assessment of
uncertainty based on present site knowledge. This discrete (by necessity)
representation of the probability space is described next. o

The Simulated Realizations

The simulated realizations represent an intermediate step in the translation
process. Each realization provides one possible map of site contaminant levels. At
each grid location, the set of realizations yields a histogram of possible values.
Figure 2 illustrates how the set of realizations can be interpreted in this way.
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An appropriate interpretation of this set of realizations, analyzed pointwise, is
that the probability of a contaminant value at this location, smaller than any level
X, can be estimated by the ratio of the number of realizations that have a value less
than x at this location, to the total number of realizations. This probabilistic
interpretation can be extended to multiple locations or to the entire region. The
probability that no point in the entire region exceeds the level y, for example, can
be estimated by the ratio of the number of realizations where y is not exceeded at
any point in the region to the total number of realizations.

This interpretation of the set of realizations is utilized in two ways in the
methodology presented in this report. It provides justification for the probabilistic
interpretation of the values indicting likelihood of compliance or risk functions that
are compared to regulations and it provides a basis for the resampling procedure
discussed in the subsection Determining an Efficient Sample Plan.

The Objective Function

The objective function is a transformation that will compute a value indicating
the level of compliance based on a complete specification of all site parameters and
* state variables. For the present problem, the objective function is used to transform
the set of simulated realizations into a probabilistic expression that relates .to
regulatory compliance. Examples of the roles that objective functions might play in
the example problems listed in the Introduction Section are: . .

a) Provide an estimate of the probability that.a contaminant will cross a site
boundary undetected by a specific monitoring system within 10 years; and

b) Provide a distribution showing probabilistically the spatial or volumetric
extent of the 90% confidence region for a specific concentration contour.
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DETERMINING AN EFFICIENT SAMPLING PLAN

The process of sample location selection is often an iterative process. As new
data are obtained, models are updated to provide more accurate estimates of site
contamination levels or predictions of flow and transport and a reassessment of
future data needs is performed. A second essential element of an effective spatial
sampling procedure is that it utilizes data available at every sampling iteration and
that models based on these data produce an efficient sample plan — one where
maximum relevant information is provided at the lowest possible cost. At each
iteration, the next set of sample locations is selected from numerous potential
supplemental sample sets. Methods for choosing sets to consider and methods for
evaluating those that are considered must be carefully selected.

A number of applications have been reported in the hydrology and geology
literature where selection of sampling or monitoring locations has been approached
using probabilistic optimization techniques. Early applications, involving resource
assessment generally in mining applications, were based on the assumption that the
level of the state variables in the region (ore grades, in many applications) could be
modeled as a Gaussian random field using regionalized variable theory. For these
applications, the utility of any future sample set could be assessed prior to
collection and analysis by estimating the reduction in kngmg variance or block
kriging variance that the set yielded.

Recently, environmental restoration applications addressing spatial sampling
problems have appeared, primarily in the hydrology literature. These application
are often less straight-forward than those based on regionalized variable theory.
Most applications are based on flow models that use as input, maps of
hydrogeological parameters (porosity or hydraulic conductivity, for examples).
Another possible difference between environmental restoration problems and those
of the earlier applications is the variety of objectives for different analyses. The
objective function determines the utility of further sampling and that of sampling at
specific sets of sample-locations. The likelihood -of a contaminant crossmg a site
boundary undetected by a specific monitoring system; for example is an.analysis

objective thit is not related to a reduction in the kriging variance-in any obvious . -

way. Consequently, the utility of additional sample or monitoring Iocations must
be approached differently for this objective. .

A number of the publications involving spatial sampling problems in
environmental restoration focus on the development of methods that facilitate the
assessment of state variable information (hydraulic head or contaminant levels, for
example) provided by samples of hydrologic parameters. Another primary focus
has been in the development of optimization techniques-that approach these




specific objectives in an efficient manner. One article that provides an excellent
review of accomplishments in these areas and provides numerous further
references is Mc Kinney and Loucks (1992). The primary objective in the present
paper is to develop a more general approach to optimization for spatial sampling
problems that can be applied to a wide range of problems regardless of their
modeling requirements and varying analysis objectives.

A sampling plan can be constructed utilizing the appropriate probability space
generated using the procedures outlined above, along with optimization methods
outlined in this section. A more detailed discussion of these methods is provided
in Rutherford (1996).. The sampling plan is based on an iterative procedure that
requires evaluation of samplescollected at each iteration of the process to provide
new information for selecting sites to be used in the next iteration. Two issues
arise in this process that will be outlined in the next two subsections. The final
subsection provides an example of the entire process.

Assessing the Value of Sampling at Unsampled Locations

As alternative sets of supplemental sample locations are considered, there is a
need to evaluate the potential for improvement provided by each sample set prior
to collection or analyses of the samples. This requires an estimation of the
information available from each sample set and an evaluation of its likely impact on
the objectives of the overall analysis.  Assessment of the relative overall
information provided by sampling at any set of sample locations depends on site
and modeling"information that has been translated to the simulated realizations.
The effect of "realizing" values projected by the simulated realizations provides an
indication of what might occur if that sample set was actually selected and
analyzed.

Figure 2 shows how the resampling process might be implemented. For each
hypothetical sample set, realizations (selected at random) are assumed to represent
the true status of concentration at the 'site. Their values at the candidate
supplemental sample locations can be submitted as conditioning data along with
known sample information t6 formulate new models. These models-can be used to
generate a new set of simulated realizations that are then evaluated using the
objective function to determine the impact of the new information provided.: This
process is repeated several times for each supplemental set of sample sites
considered. Sets of sample locations that demonstrate only small modeling
differences from one realization to the next, or those indicating significant
differences to the models, but where the differences have little impact on the
objective function, should be excluded from further consideration.
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This resampling procedure can be very expensive in terms of computer time,
especially when there are flow and transport models that must be reevaluated at
each step. Consequently, effective procedures are required for selecting sets of
sample sites for consideration.

What is Meant by an Efficient Optimization Algorithm

There are several techniques available for selecting supplemental sample sites.
Some techniques will yield an exact optimal solution; other, less computer
intensive techniques, will yield a "near optimal" solution. The distinction between
these solutions, and the considerations that might provide a preferred technique for
any specific application, are outlined in this subsection.

Spatial sampling problems can be approached as a combinatorial optimization
problem where a large but finite number of solutions are available. Each possible
solution (a set of supplemental sample locations) can be compared through the
objective function, to alternatives, using the resampling procedure.

The ideas involved in the sample set selection algorithm are either to find an
exact optimal solution dismissing as many solutions as possible without a formal
evaluation (recall that formal evaluation may require many executions of a
computer intensive simulation involving a flow and transport code), or to find a
near optimal solution using the fewest comparisons possible. These methods can
be, and probably are, most &ffectively used in combination.

Simulated annealing and genetic algorithms are methods that compare
solutions iteratively, providing a near optimal solution where “near” depends on
the efficiency of the algorithm and the number of computational_ iterations
involved. Branch and bound algorithms ‘can be used to find an exact optimal
solution. These algorithms derive their benefit (compared to an exhaustive search
of every possible solution set) by dismissing large numbers of solutions through a
single objective function comparison. Hybrid methods are available that utilize
features of all of these random search methods.

Details concerning the concepts and methods involved in these algorithms can
be found in references cited in Rutherford (1996). Details of how the procedures
might best be implemented for spatial sampling or monitoring problems can also be
found in that paper.
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Chemical Waste Landfill Exam[ile

This example is provided to illustrate how these spatial sampling procedures
might work. The procedure demonstrated here was implemented using a spatial
sample tool (OPTMAS), developed at Sandia National Laboratories, for the
purpose of locating soil sample locations to provide the maximum relevant site
information. The site analyzed is a chemical waste landfill site at Kirtland Air
Force Base in Albuquerque, New Mexico. The objective of this analysis (for
purposes of illustration) is to determine the extent of a fixed contamination
contour with a 90 percent level of certainty.

Figure 3 illustrates the present sample locations by the black dots. Clearly,
previous sampling was performed according to some systematic prescription. The
center, shape, and extent of the site is presumed to be unknown, but it is assumed
that the contamination occurs throughout a contiguous region or, at least, that the
contour associated with the outer boundary is the one of interest. This is a realistic
problem, for example, in situations where the concern is to achieve a certain level
of assurance that a contaminant is contained within site boundaries, It was further
assumed that 15 additional sample locations were to be specified at each iteration
throughout the analysis. (That is, 15 sample locations are required here. These
samples will be taken and analyzed and the process will be repeated if necessary).

Proposed Solution Pointwise Variance
: T, T % S

Figure 3

The approach taken to estimate the extent of these contours is the approach
described in previous sections of this paper, but with a number of simplifications.
First, the simulated realizations are generated using sequential Gaussian simulation
(because it was readily available, but not necessarily the best approach to modeling
a contaminated region). The set of realizations was used to compute the pointwise
variance as illustrated in Figure 3 (the darker areas indicate higher variance). The




reduction in variance is the assumed objective function criterion for this example.
Therefore, after the pointwise variance of the set of realizations has been
determined, the realizations are no longer needed for the remainder of the analysis
(until the next sampling iteration). This further simplication is possible because it
is assumed for simplicity that the variance is reduced at, and around, sample
locations in a way proportional to the reduction indicated by the previously
simulated realizations. The details are provided in Rutherford (1996). This is a
luxury that is not offered in the generic spatial sampling problem where new
(hypothetical) realizations are required to evaluate each set of potential sample
locations. Finally, it was assumed for reasons outside the scope of this paper that
the sampling had to occur outside the 10th percentile bound for this contamination
contour., B

Alternative sample locations were selected using the hybrid sample selection
algorithm mentioned above, and detailed in Rutherford (1996). For each sample
set selected in the simulated annealing or genetic algorithm portions of the
procedure, the objective function (total variance throughout the region) was
computed. The sample locations were dismissed or retained as a candidate
solution for the problem as prescribed by the hybrid sample site selection
algorithm. The circled locations in Figure 3 present a near optimal solution to this
problem. It is difficult to determine exactly how close they are to the true optimal
solution without using an exact approach. For the present illustration, it suffices to
say that the solution appears to satisfy the obvious desirable characteristics of a
solution to the problem -- the samples are in areas (constrained as described
earlier) where the variability is relatively high and they are spread out throughout
this region so that the reduction in variance achieved by sampling at one location
will have a minimal effect on the variance reduction achieved by sampling at
another selected location.

This simplified example was chosen with a relatively intuitive solution to
illustrate the process. The samples selected in a more realistic example might be
more difficult to analyze intuitively.
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