

Nevada Bureau of Mines and Geology

MACKAY SCHOOL OF MINES

RECEIVED
FEB 23 1996
OSTI

UNIVERSITY OF NEVADA
RENO

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

**NEVADA LOW-TEMPERATURE
GEOTHERMAL RESOURCE
ASSESSMENT: 1994**

By: Larry J. Garside

FINAL REPORT

Prepared for

**The Oregon Institute of Technology
GeoHeat Center**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared as part of a study of low- to -moderate temperature geothermal resources of Nevada under the U.S. Department of Energy Low-Temperature Geothermal Resources and Technology Transfer Program

CONTENTS

INTRODUCTION -----	1
Previous Geothermal Assessments	
Need for a New Assessment	
Nevada Assessment Program	
DATA SOURCES -----	4
Preliminary Data Compilation	
DATA FORMAT -----	11
FLUID CHEMISTRY -----	14
DISCUSSION -----	15
SUMMARY -----	16
RECOMMENDATIONS -----	17
BIBLIOGRAPHY -----	18
TABLES	
1. Nevada county abbreviations -----	7
FIGURES	
1. Map of mean annual temperatures -----	10
2. Temperature vs. number of geothermal occurrences -----	15
3. Map of Nevada geothermal resource occurrences -----	16
Plate	
1. Million-scale map of geothermal resource occurrences	

INTRODUCTION

Previous Geothermal Assessments

A statewide inventory of the geology and geochemistry of Nevada's geothermal resources was begun at the Nevada Bureau of Mines and Geology (NBMG) in the late 1970s. NBMG had previously published a 1:1,000,000-scale map of hot springs, sinters, and volcanic cinder cones (Horton, 1964b) and several brief summaries of Nevada's geothermal resources (Horton, 1964a; Garside and Schilling, 1972; Garside, 1974). This inventory, published as NBMG Bulletin 91 (Garside and Schilling, 1979), followed a format used in a number of NBMG publications on mineral commodities of Nevada. The bulletin contained descriptions, by county and hot spring area, of the better known geothermal areas. These descriptions included, where available, maps and other data on the geology, and descriptions of historical and present use. Temperature and water chemistry data were presented in an appendix having about 1,400 individual entries (records). These records commonly included multiple entries for the same or adjacent springs as well as numerous well records from geothermal areas which have a larger areal extent than individual spring sites. A 1:1,000,000-scale map was included in the pocket of NBMG Bulletin 91; nearly 400 geothermal sites (springs, spring groups, well groups, etc.) were included on that map. The lower temperature cut-off for inclusion of data in Bulletin 91 was 70°F (21.1°C).

The location, chemical data, and references for the geothermal springs and wells listed in Bulletin 91 were collected by an extensive and relatively complete search of the available literature. These data were entered by hand on data-collection forms, and these forms were used to typeset the listing of data in the bulletin (Appendix 1). A source of unpublished data was a computer database of water-quality data maintained by the Desert Research Institute at Reno.

GEOTHERM is an acronym for a U.S. Geological Survey (USGS) computerized information system designed to maintain data on the geology, geochemistry, and hydrology of geothermal sites primarily within the United States (Teshin and others, 1979; Bliss, 1983). The system was first proposed in 1974, and was active until 1983. The system utilized a mainframe computer, and most of the data were entered by use of key-punch cards. Key punching was done from a rather extensive data-entry form. When the GEOTHERM database was taken off line, a number of products were published or made available to preserve the data. These include basic data for thermal springs and wells on a state-by-state basis (for Nevada, see Bliss, 1983a) and a listing of each record on a state-by state basis, as microfiche (for Nevada, see Bliss, 1983b). The GEOTHERM database was also filed with the

National Technical Information Service (NTIS) as digital data. A 9-track one-half inch reel-to-reel tape in ASCII format of this GEOTHERM database was provided to NBMG after the start of this project by Howard Ross at the University of Utah Research Institute (UURI). This tape, containing 8,082 records, was originally from NTIS.

GEOTHERM contained 1367 records for Nevada when it was taken off line in 1983; this is the number of Nevada records on the NTIS tape as well. The great majority of these records are from the published sources used to compile Appendix 1 of Bulletin 91. Unpublished site data and analyses from the files of D.E. White (USGS) make up a significant section of the database also. About 75% of this GEOTHERM data was added to the original database during 1978 and 1979 by personnel at NBMG as part of the U.S. Department of Energy State Coupled Program (see Trexler and others, 1979a). In addition to the entry of new data and the editing and verifying of existing data in GEOTHERM, the longitude and latitude locations of springs and wells were determined by plotting them on 1:250,000-scale maps and hand digitization (Trexler and others, 1979a). New analyses were done during this period, and these data were added to GEOTHERM.

The database available in GEOTHERM during the early 1980s was used, along with other data developed from specific geothermal site studies funded by the U.S. Department of Energy (see numerous reports by Trexler and co-workers, 1980-83) to produce two 1:500,000-scale maps illustrating Nevada's geothermal resources (Trexler and others, 1979, 1983). No statewide resource studies were done after the publication of the 1938 NOAA map (Trexler and others, 1983). A nationwide assessment of low-temperature geothermal resources (USGS Circular 892) included data for Nevada, and an open-file report (Reed and others, 1983) included about 350 records for Nevada that were used in that assessment. These records were selected from the GEOTHERM database by use of charge balance determinations and other screening methods (Marshall Reed, written commun., 1993). During this period of time, an increase in exploration for geothermal resources by private industry (mainly for electric-power generation) resulted in the drilling of thousands of gradient and slim holes, and several hundred larger diameter wells for industrial and commercial use (space heating, electric power generation, etc.). Developments in Nevada's geothermal industry are documented in yearly summaries of the Nevada mineral industry, published yearly by NBMG since 1979 (e.g., Hess, 1993). Information that is available on geothermal drilling in Nevada has been summarized by Barton and Purkey (1993).

Need for a New Assessment

Low- and moderate-temperature geothermal resources are widely distributed in the western United States. Although there has been

a substantial increase over the last decade in utilization of these resources in direct-heat applications, the large resource base is greatly underutilized (Ross and others, 1994). Previous studies have demonstrated that Nevada is well endowed with geothermal resources, and much of the state must be considered as having potential for direct use. As Ross and others (1994) describe, the expanded use of low- and moderate-temperature geothermal resources requires, as a start, a current inventory of the resources. Such an inventory, combined with collocation studies (the study of resource location near population centers or areas of potential industrial users); will provide some of the basic information that the potential developers of the geothermal resources need to make sound economic decisions. Collocation factors are of particular significance in Nevada, as well as a number of other western states, because people and most industries are concentrated in a few areas; geothermal resources, on the other hand, are rather widely distributed.

There are many factors that can affect the viability of direct-use geothermal applications. These include not only the suitability of the fluid and the resource for the application (water temperature, chemistry, amount of available heat, etc.) but also the information available to the developer on the technology of the proposed application, and contractual and other economic factors less closely related to the geothermal resource. The collection of data on these geothermal resources and their present uses is only one factor in encouraging their increased use. Other components of the 1992-1993 low-temperature program include development of better techniques to discover and evaluate the resources, and technical assistance to potential developers (Ross and others, 1994).

Nevada Assessment Program

Data compilation for the low-temperature program is being done by State Teams in ten western states. The Nevada program, under the direction of Larry J. Garside at the Nevada Bureau of Mines and Geology at the University of Nevada began data collection in early 1993 (the contract for the research between the University of Nevada and the Oregon Institute of Technology was signed on March 23, 1993). The original contract was to end on December 31, 1993, but was later extended to June 30, 1994. The Technical Project Managers for the agreement were Howard P. Ross (University of Utah Research Institute) and Paul J. Lienau (Oregon Institute of Technology - GeoHeat Center).

The final products of the study include the following: 1) a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate-temperature springs and wells in Nevada; 2) a 1:1,000,000-scale map displaying these geothermal localities, and; 3) a bibliography of references on Nevada geothermal resources. The format for

presentation of these data was worked out through discussions among State Teams and the Project Managers during the first half of the contract period; the model for this database has been described by Blackett (1993).

DATA SOURCES

Information on Nevada's geothermal resources is widely distributed in published reports, in unpublished and limited-distribution sources (commonly referred to as "gray literature"), and as digital information in databases such as GEOTHERM and WATSTORE. The sources of data and methods of data manipulation are discussed below, followed by a description of the bibliography.

Preliminary Data Compilation

The Nevada geothermal database (Appendices 1 and 2) includes "records" (that is, single reports of chemistry, temperature, location, etc. that are represented by a single spreadsheet row) for all known (reported or suspected) geothermal sites in the state. A number of preliminary databases and spreadsheets were compiled before selection of records for the final listing (Appendices to this report). To get the data from various sources into a common format for comparison required months of work using a variety of computer hardware and software available at NBMG. In the following paragraphs I have summarized the major sources of information, the techniques used to modify and utilize them effectively, and some of the sources of error and other problems that were encountered.

GEOTHERM

The history of the GEOTHERM database is summarized above under the description of previous assessments. Because the database was taken off line in 1983, it does not contain data collected after that date. A tape GEOTHERM records that was obtained from UURI was read on to a large magnetic disk at NBMG. Information supplied by NTIS with this tape gave the field lengths of each field in the database. With this information, computer database specialists at NBMG were able to design a database having fixed-length fields and read the GEOTHERM ASCII file into that database. The database on tape contained over 8000 records, with approximately 120 fields for each record. The database software used for this database was INFO, a subset of the ARC/INFO software utilized in many GIS (Geographic Information Systems) applications; hardware was a UNIX-based SUN SPARC II workstation. The database in INFO was nearly 19 MB (megabytes). From this database, the 1367 Nevada records could be exported, by use of PC

ARC/INFO, in a format compatible with modern database-management software (such as dBASE). We used PC-File (a product of ButtonWare, Inc.) as the PC-based database software. The Nevada GEOTHERM database in PC-File is about 3.2 MB, and has a number of problems that make it difficult to use. One of the most notable problem is that in the PC-File format (essentially a dBASE format), most of the numerical data (temperature, water chemistry, etc.) are preceded by a five sided graphic figure which resembles the outline of a small house (or a baseball field "home plate"). This non-ASCII character was apparently a pad character or "punch" symbol in the original database that acted as a space. It can not be searched for, and was only eliminated after a short version of the database was retrieved into spreadsheet software (Quattro Pro, a product of Borland International, Inc.). In addition, some records had data reported in different units from other records (for example ppm or epm); the units used were reported in a separate database field. Fortunately, these problems were overcome in the shortened (spreadsheet) version.

Additionally, a number of other operations were done on a short database of GEOTHERM data that contained only the fields required for this study (Appendix 1). These include: 1) replacing the county name with a two-letter code (abbreviation) for each county, 2) conversion of numerical data from labels to values and insertion by hand of certain qualifiers on some analyses (N for not detected, t for trace, < for less than), 3) addition of calculated columns for ion balance, total calculated dissolved solids, and a major constituents test (is Na>K and Ca>Mg and Cl>F?), 4) rearrangement of columns into final format. Before final column rearrangement, formulas were converted to values, and a fixed number of decimal places was selected for display. About 455 records were finally selected from this spreadsheet to be included in the final tables listed in the Appendix.

WATSTORE

The acronym WATSTORE stands for the National WATer Data STOrage and RETrieval System, a large-scale computerized system developed for the storage and retrieval of water data collected as part of the activities of the USGS, particularly the Water Resources Division (from a 1981 pamphlet, U.S. Government Printing Office: 1981 - 341-618:52). The system was begun in 1971, and contains a very large set of data on surface and groundwater in the U.S. The water-quality file alone is reported to have (in 1991) 34 million observations from over 200,000 stations; 5,000 parameters (major and trace elements, pesticides, organics, etc.) are included. The database contains information on the analyzing and collecting agency, but does not report whether the data has been published or list references. The WATSTORE database can be searched through arrangements with USGS Water Resources district offices or through a national system of water data exchange (NAWDEX);

assistance centers for NAWDEX are also commonly located at USGS Water Resources District Offices. The NAWDEX database also has access to other Federal agency water data, for example the Environmental Protection Agency (EPA), in addition to WATSTORE.

Water quality and other WATSTORE database file information is also available through a commercial outlet, EarthInfo, Inc. of Boulder, Colorado. EarthInfo makes certain data from WATSTORE available on CD-ROMs along with a software retrieval system that can be used by IBM-compatible personal computers. NBMG obtained a CD-ROM that included all Nevada data (current to early 1993) from EarthInfo. Personnel at NBMG (particularly Ron Hess) were able to search the CD-ROM and extract the parameters required for this study (water quality, location, site name, etc.) for all springs and wells having a measured temperature of 18°C or greater. To avoid the combination of parameters (e.g., water chemistry analyses) from different collection dates for the same site, a combination number was created (consisting of the site and collection date numbers) so that a later relational combination of the data would produce records that represent one site visit. These geothermal data were converted to a dBASE format and PC-File was used to eliminate records having temperatures less than 20°C for the area of Nevada south of 38° latitude. At this point, the database consisted of 1,708 records. These records were imported into a spreadsheet format using Quattro Pro software, and a multitude of operations were performed on the data to make it similar to the planned format for the final tables (Appendices 1 and 2). These operations include: 1) conversion of longitude and latitude to decimal degrees, 2) addition of calculated fields for ion balance, total calculated dissolved solids, major constituents test (is Na>K and Ca>Mg and Cl>F?), 3) conversion of depth in feet to meters and flow from cubic feet per second to liters per minute, 4) addition of a reference column for listing of WATSTORE as the reference, 5) convert GW (groundwater) to W (well) and SP to S (spring), 6) conversion of the state-county FIPS code to a two-letter abbreviation (see listing below), 7) conversion of the collection date format to the year/month/day format, 8) re-arrangement of columns, and 9) a sort of rows (records) by longitude and latitude.

A number of additional operations were later performed on about 140 WATSTORE records selected for the final tables. These include: 1) conversion of Fe, and B from micrograms per liter to milligrams per liter (essentially equivalent to parts per million - ppm), and 2) separation of the site name column into two columns (one for name and one for the legal land location, if reported). Following this, Li, oxygen and hydrogen isotope data, and $\text{HCO}_3\text{-CO}_3$ concentrations were added to the short spreadsheet of WATSTORE records. Li, and the ^2H and ^{18}O were inadvertently left out of the first search of the EarthInfo CD-ROM. The search for $\text{HCO}_3\text{-CO}_3$ data in WATSTORE presented a more complicated problem, as these constituents are reported as several different

parameters (fields) in the database. A number of the records generated by the first search were lacking data for these constituents; a second search was done for data in all possible related parameters (about eight of them, including bicarbonate and carbonate field results, laboratory results, dissolved, incremental titration, titration to pH 4.5 and pH 8.3, and alkalinity (field and laboratory). The data were entered by hand into the intermediate spreadsheet of WATSTORE records destined for the final tables.

Table 1. County names for Nevada, FIPS (Federal Information Processing Standard) code (32 is Nevada), and abbreviations used in this report.

<u>County Name</u>	<u>FIPS Code</u>	<u>Abbreviation</u>
Churchill	32001	CH
Clark	32003	CL
Douglas	32005	DG
Elko	32007	EL
Esmeralda	32009	ES
Eureka	32011	EU
Humboldt	32013	Hu
Lander	32015	LA
Lincoln	32017	LI
Lyon	32019	LY
Mineral	32021	MN
Nye	32023	NY
Pershing	32027	PE
Story	32029	ST
Washoe	32031	WA
White Pine	32033	WP
Carson City	32510	CC

Topographic Map Digital Data

A complete examination was made by David Davis at NBMG of the approximately 1,900 7.5-minute topographic maps for Nevada. The entire state has this coverage, and a visual examination was made of each map for any mention of hot or warm springs, geothermal wells, etc. In addition, a 1981 version of GEOTHERM was available in paper copy (Jim Bliss, written commun., 1981) and this was used to identify other geothermal spring and well locations on these topographic maps. About 2700 individual points were marked on the maps, and the locations were digitized in the NBMG GIS laboratory using ARC/INFO software, a CalComp 9500 digitizer, and digital map coordinate data (TIC file) from the USGS. A database of the location and other data collected for this part of the project was created, and about a dozen records in the final table were from the spreadsheet equivalent of that database. In general, the records from this database were for locations where

no data were available in other sources. The references are usually the 7.5-minute quadrangle map that the spring or well appears on. Additionally, when more precise longitude and/or latitude locations were required for records taken from any of the other sources used, the appropriate information from this database was entered in intermediate spreadsheets of selected records.

Other Data Sources

During the selection of records for the final database, if water quality or other data in WATSTORE or GEOTHERM was lacking, incomplete, or appeared to be of poor quality, other sources of information were checked for possible inclusion in the database. Some of these sources were originally cited in NBMG Bulletin 91, but no record of a particular site was ever entered in GEOTHERM. A number of such records refer to dubious thermal spring locations, but must be included in any database that is purported to be complete. Other sources used for one or two sites include Hulen and others (1994), Trexler and others (1990), and Lawrence Livermore Laboratory (1976). Unpublished information in NBMG files and field notes of L. Garside for this and previous geothermal studies was also used. In particular, a number of good analyses and locations reported by Flynn and Buchannan (1990) were used. Their Table 3.1 was scanned, imported into Quattro Pro, and parsed into a spreadsheet of similar format to others used during this study. Also available in spreadsheet format to be checked during the data selection process were the analyses reported by Reed and others (1983) from the GEOTHERM database, and digital data on water analyses done in some areas of Nevada for the NURE (National Uranium Resource Evaluation) program (Hoffman and others, 1991).

Selection Criteria

In the early stages of this study, it became apparent that the bulk of the data on Nevada's low- and moderate-temperature geothermal resources was contained in two databases, GEOTHERM and WATSTORE. Usually, for individual thermal springs and wells, the best one or two records available from either WATSTORE or GEOTHERM was selected. If the data in these databases were incomplete or nonexistent, other known sources were checked.

The process of record selection for the final database began with hardcopy printouts of the spreadsheets described above (e.g., GEOTHERM, WATSTORE, and the topographic maps). Digital files of the longitude and latitude information for these three databases were used to plot the geothermal localities on 1:1,000,000-scale maps of Nevada in NBMG's GIS lab, using ARC/INFO software. Each of the points or point groups on these maps was checked in a regular fashion for possible errors of location. The 1:1,000,000-scale maps were examined, on 1° by 1° blocks of latitude-

longitude (about 34 partial or complete blocks for Nevada). Every 7.5-minute topographic map that was shown to have a geothermal locality was re-examined, and the locations displayed on the million-scale maps were compared to those on the 7.5-minute quadrangles. From the available records for a particular spring, the best one, or in a few cases, two records were selected. For groups of springs that are found over several square kilometers, several records were commonly selected to best represent the geographic range and provide a more varied data set of water chemistry. The records selected were numbered, notes were taken on any problems recognized, and the number was written on a million-scale map and on the hardcopy of the appropriate database. This record selection process proceeded from west to east across the state, beginning in northwest Nevada and ending at its southern tip. The selection of the "best" records was somewhat subjective, but generally proceeded as follows. If a point on the maps was determined to be a valid geothermal site, GEOTHERM and WATSTORE records of that site or site area were examined. Selection from one of these databases was generally based on having an ion balance between 0.90 and 1.10, and a check to see if $Na > K$ and $Ca > Mg$ and $Cl > F$. The ion balance formula used was

$Na*0.04350+K*0.02558+Ca*0.04990+Mg*0.08229/Cl*0.02821+F*0.05264+HCO_3*0.01639+CO_3*0.03333+SO_4*0.02082$; resulting in a value in milliequivalents per liter, cations/anions. For those records that met these criteria, selection was based on completeness of the other analytical data (temperature, pH, minor constituents, etc.).

During the record selection process, spring and well records that did not meet certain minimum temperature criteria were eliminated from further consideration. According to the statement of work for this project, the minimum temperature for a low temperature resource is defined to be $10^\circ C$ above the mean annual air temperature at the surface, and should increase by $25^\circ C/km$ with depth (for wells). The mean annual air temperature in Nevada varies from somewhat less than $7^\circ C$ to over $18^\circ C$ (Houghton and others, 1975, figure 17; see figure 1 below). This variation is an effect of both latitude and elevation; southern Nevada's higher mean annual temperature results from its lower latitude and its lower average elevation (Houghton and others, 1975). Based on this map of mean annual temperature, a lower spring and well temperature limit was set for certain latitude ranges in the state. For springs, the decision whether to include or not was relatively simple - if the spring temperature was at or above the set limit, it was included. For wells, only those were considered for inclusion that fell above a gradient of $25^\circ C$ per kilometer with a beginning (surface) temperature at or above the minimum selected for that latitude range. The total well depth provided in the database was used to calculate this gradient. The following temperature limits were applied during record selection: 1) north of 39° latitude, $18^\circ C$ or above; 2) 38° to 39°

latitude, 19°C and above (20°C was used for some sites, mostly wells, in the 38°-38.5° range, 3) 37° to 38° latitude, 20°C or above, and 35° to 37° latitude, 25°C and above. No upper temperature limit was used to restrict inclusion in the final data compilation. The statement of work for this project listed an upper limit of 150°C for occurrences to be included in the compilation. Seven occurrences with temperatures above 150°C were included in the database; mainly for completeness. The only data available for some geothermal occurrences was the analysis and associated location information for the high-temperature fluid. It is obvious that lower temperature geothermal fluids are available at these sites (in peripheral areas or, in the case of electric-power generation areas, as condensed steam or reinjection fluids). Because analyses of these lower temperature fluids were not often available, the high temperature fluid analysis was listed as a substitute.

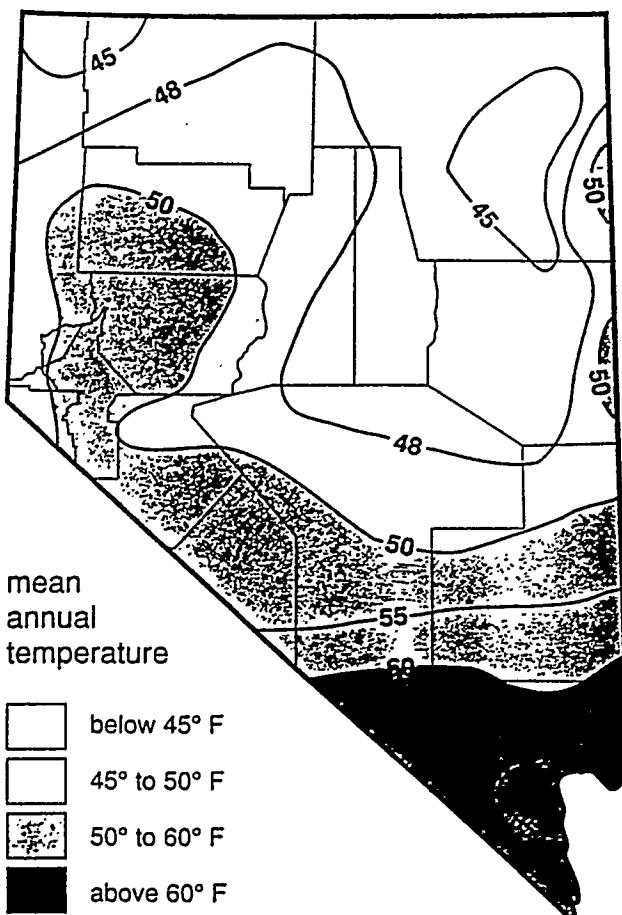


Figure 1. Map of mean annual temperatures in Nevada (from Houghton and others, 1975).

A number of problems were noted for both the GEOTHERM and WATSTORE databases as each plotted point on the million-scale maps was checked to see if it matched a known geothermal site. In quite a number of cases, certain geothermal locations were found

to have an incorrect longitude or latitude or both. These were commonly discovered when the 7.5-minute topographic map was compared to the million-scale plot. In some cases, the legal description (section-township-range) was correct, but the longitude or latitude had an error of, for example, one whole degree or one whole minute. These inaccurate site locations were noted, but not corrected in the individual databases unless the record was needed for the final table.

DATA FORMAT

Data on Nevada's low- to moderate-temperature geothermal resources are presented in Appendices 1 and 2. The data in these tables are in spreadsheet format, and the digital data used to produce them (and provided separately on diskette) can be searched and otherwise manipulated in a great variety of ways utilizing a number of commercially available spreadsheet and database management software packages. Although there are two Appendices, they were printed from a single spreadsheet. The software and data manipulation methods used at NBMG during this study are further described above, under data sources. The format of the tables and, thus, the spreadsheets, in most respects follows rather closely that of Blackett (1993).

The column headings and data in the columns are generally self-explanatory, but a few comments should be made. Each column heading is listed below, with a description of the data and a discussion of format and problems.

The site number is used to identify the site on the 1:1,000,000-scale map. It was added to the record when that record was selected for inclusion in the final database. The process of record selection was done in 1-degree blocks, proceeding from west to east, beginning in northwestern Nevada. Sites added later may not entirely follow this numbering progression, and to prevent renumbering of many of the sites, some added sites use decimal tenths (e.g., 143.1 and 142.2).

NAME The site name is commonly that listed in the source reference. In some cases, corrections, additions, or modifications were made to provide more information.

CO The two-letter abbreviation for one of Nevada's 17 counties is listed here. These abbreviations are listed above, under the Data Sources heading, with their FIPS code.

T, R, SC The legal land description, Township, Range, and Section are listed under these columns. These were commonly taken from the cited source, but some additions and corrections were

made during the data evaluation. Because some of these location data were derived (in the original studies) from maps of varying ages or scales, or by projecting section lines into unsurveyed areas, there is a chance for error. Although some of these errors were noted and corrected, there are certainly many that were not. The best location data for the sites is generally the longitude and latitude; however, if correct, the section-township-range location can be used to confirm a site on topographic maps. Some section locations were determined by use of 1:100,000-scale topographic maps, on which the protracted sections are commonly displayed.

QSEC The data in this column, if present, describe the portion of the section in which the geothermal site is located. The quarter-quarter-quarter system (for example: NE SE NW) indicates an approximately 10 acre parcel in the 1 square mile section (640 acres) that is located in the northeast quarter of the southeast quarter of the northwest quarter. For data from the WATSTORE database, letters are used to indicate (from left to right) the quarter section, quarter-quarter section, and so on; the letters A, B, C, and D designate the northeast, northwest, southwest, and southeast quarters, respectively. Thus, for example, ABC would represent the southeast(C) quarter of the northwest quarter(B) of the northeast(A) quarter. The A-B-C-D system thus lists the largest quarter first, followed by progressively smaller quarters; the NE-NW-SW-SE system lists the smallest quarter section first.

T This column lists the type of occurrence, either spring (S) or well (W). In a few cases, the original listing did not fall into these two categories, and it was modified. For example, a hot pool was listed as a spring, and mine shafts or mineral exploration drill holes were listed as wells.

TEMP The reported temperature of the well or spring is listed, in degrees Celsius, in this column. Many of these reported temperatures were measured and originally reported in degrees Fahrenheit; those converted to °C were rounded to one decimal place after conversion. If the only information reported on temperature is "warm" or "hot" (for example, from a topographic map), this is listed. The reported temperature is that of the cited reference. It is not necessarily the highest temperature reported in all of the available data for a particular spring or well; a particular record may have been selected because of its complete analysis, rather than because it had the highest reported temperature.

FLOW The flow, in liters per minute (L/min) is shown in this column. For wells, this value is commonly the discharge during pumping. Values are reported to one decimal place.

DEPTH For wells, the depth in meters is listed, if available

from the original source.

CDATE The date of collection is listed here, in the format: year/month/day. For many records that list only the year of collection, this was added during this study, based on other information.

pH The reported pH is listed here.

Chemical constituents (Na, Cl, etc.) For most of the chemical constituents, they are listed as reported in the original references or databases. The reporting units are milligrams per liter (mg/L); these are essentially equivalent to parts per million at the concentration levels of the fluids listed in the Appendix. For some analyses, constituent values originally reported in $\mu\text{gm/L}$ (micrograms per liter or parts per billion - ppb) were converted to mg/L. If the original source listed a particular constituent as less than a certain value, this was reported using the symbol "<". Similarly, "t" indicates that a trace amount was detected, and "N" indicates the constituent was analyzed for but not detected. The number of decimal places displayed for each element is generally based on that reported in the sources of data. For most of the reported analyses, bicarbonate (HCO_3) and carbonate (CO_3) are listed as reported in the sources. Carbonate values are usually only found in waters with a pH of 8.2 or greater. A few sources (e.g., Lawrence Livermore Laboratory, 1976) report total alkalinity; these values were recalculated and reported as bicarbonate, as were the values reported in a $\text{HCO}_3 + \text{CO}_3$ column of Table 3.1 of Flynn and Buchannan (1990). Some analyses are noted to be relatively complete, but lack Na and K values. Commonly, the reason for this absence is that the original analysis reported Na + K as a single value, and thus, no data was entered in the Na and K fields in databases such as GEOTHERM.

TDS_m, TDS_c These columns present the total dissolved solids, measured and calculated. The measured value, if present, is from the original data source (presumed to be a residue on evaporation at 105°C). The calculated value was determined by summing the constituents reported. Thus, the TDS_c value reported for incomplete analyses only represents a partial sum. A few analyses were summed before Li was added, and may be one to several ppm low. The HCO_3 value was multiplied by 0.492 to make the calculated TSDS values comparable with residue values.

ChgBal The electroneutrality of the analysis was evaluated using a charge (ion) balance formula (described further in the section on selection criteria). No value is reported for records which have no or extremely limited analytical data, as such a calculation would be meaningless. The most common reason for a charge balance that varies considerably from 1.00 is a lack of data for HCO_3 . Other missing major ions can also result in a

"poor" charge balance.

de1D, de1018 These columns contain isotopic compositions for the stable isotopes ^{18}O and deuterium (^3H). Data are reported to zero or one decimal place for ^{18}O and one or two decimal places for deuterium.

REFERENCE The reference citation in this column is that for the source of the data. The records that were taken from the GEOTHERM database include the reference listed therein. The WATSTORE citation is from the database search described above under data sources. An asterisk (*) precedes some citations; this was used in the GEOTHERM database to indicate unpublished data from individuals or agencies (for example, *WHITE, D., USGS, MENLO PARK or *DESERT RESEARCH INSTITUTE, 1973). The *NEVADA BUREAU OF MINES AND GEOLOGY citation includes unpublished data from that agency's files entered into the original GEOTHERM database as well as some entries made during this study. The *WATSTORE reference refers to data from GEOTHERM that originated from a WATSTORE search, probably in the late 1970s.

USE This data category lists the geothermal application for which the thermal water is presently used, or has been used for in the recent past but is not presently (in parentheses). The source of most of this data is Garside and Hess (1994), with some later additions during the later part of this study. Garside and Hess (1994) is reproduced as Appendix 3. No attempt was made to list uses of only the water but not the contained heat (livestock watering, for example). At least a dozen hot spring areas in Nevada have had hotel spas at them; most were built in the late 19th and early 20th Centuries. These were not listed as a past use, but present spas, swimming pools, etc., were reported.

FLUID CHEMISTRY

The geochemistry of thermal water in Nevada (and adjacent areas) has been discussed by a number of authors (e.g., Mariner and others, 1983; Flynn and Buchanan, 1990; Welch and Preissler, 1990; Young and Lewis, 1982). A simplification of the pattern of chemistry exhibited by Nevada thermal water is that eastern Nevada geothermal fluids are calcium bicarbonate dominated, central and northern Nevada has mainly sodium bicarbonate type fluids, and the western part of the state has mostly sodium chloride and sodium sulfate types. The reasons for this pattern are, no doubt, relatively complex; however, water-rock interactions are certainly a significant factor. Thus, eastern Nevada calcium bicarbonate geothermal fluids are strongly influenced by the presence of a regional carbonate aquifer. At least some of the sodium bicarbonate geothermal fluids of the central and north-central parts of the state may result from the exchange of sodium (possibly from volcanic rocks) for calcium in

fluids that were originally calcium bicarbonate in character. Western Nevada sodium chloride and sodium sulfate waters may reflect increased water-rock interaction (and thus generally higher temperatures) as well as possible evaporative concentration of fluids prior to deep circulation and/or extraction of salts from Quaternary playa lake deposits.

DISCUSSION

Nevada is well endowed with both high- and low-temperature geothermal resources. Based on a generalized map of known and potential geothermal resource areas of the United States (e.g., Lienau, 1988) over 40% of the state is believed to have potential for the discovery of high-temperature geothermal resources, and another 50% has potential for low -to moderate-temperature resources. This potential is well illustrated by the 1:1,000,000-scale map of geothermal occurrences produced during this study (Plate 1). The database for this study consists of 455 individual records, representing more than 300 resource areas. The geothermal springs and wells are distributed over the entire state, with an increased concentration in the northwestern part of the state (Figure 3). Maximum spring and well temperatures are higher in the north and northwest parts of the state. Geothermal occurrence temperatures greater than 75°C are confined to the northwestern half of the state, a pattern that closely follows that of heat flow (see Sass and others, 1981). The distribution of reported temperature vs. number of occurrences is shown below (Figure 2). About 400 springs and wells plot in 11 temperature ranges; additionally 30 sites are listed as "warm" and 23 as "hot".

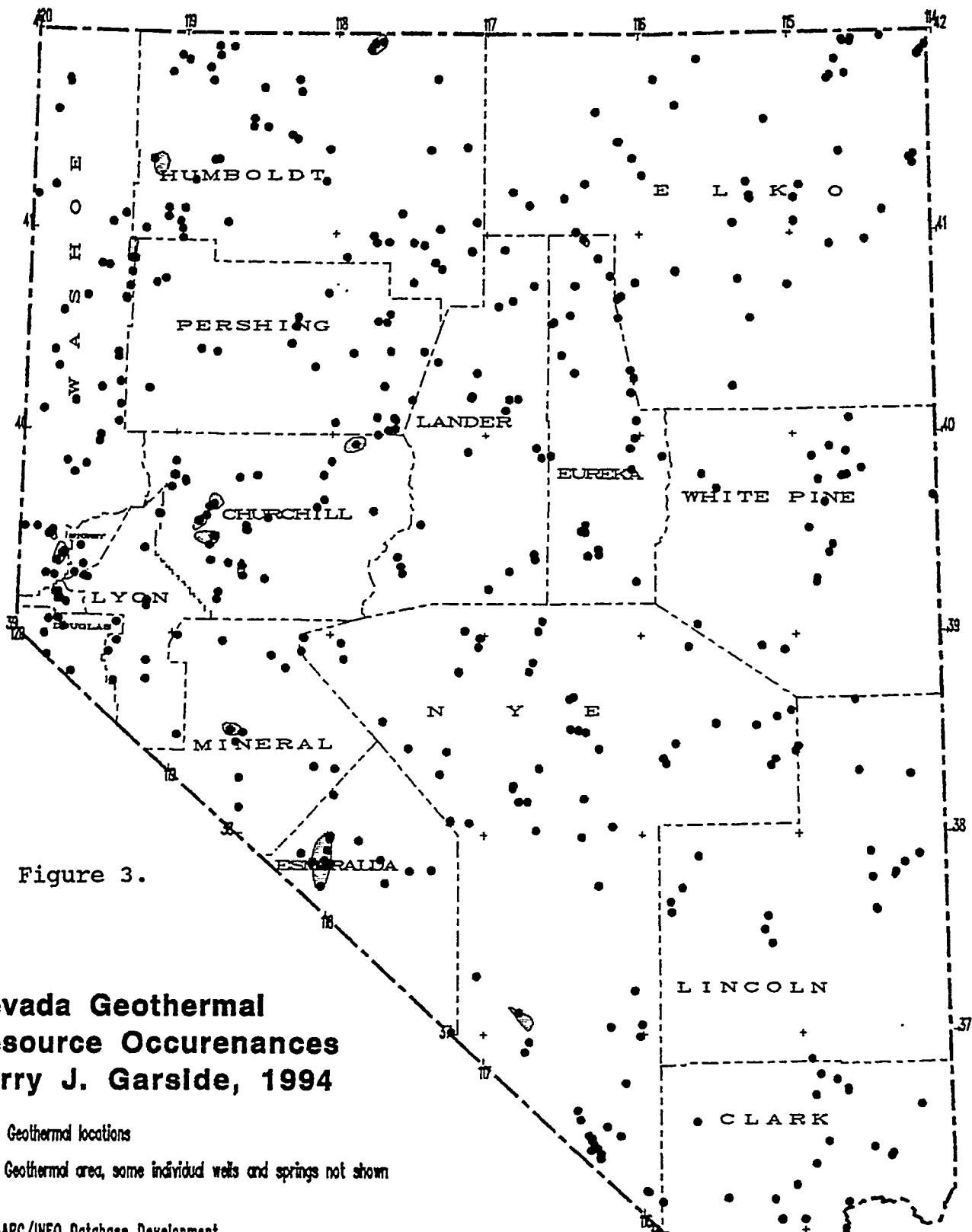



Figure 2. Bar graph of temperature vs. number of geothermal occurrences.

Geothermal reservoirs in the northwestern part of the state have generally higher temperatures; these reservoirs are usually interpreted as being related to circulation of ground water to deep levels along faults in a region of higher-than-average heat flow (the Battle Mountain heat flow high). In east-central and southern Nevada, the low- to moderate-temperature geothermal resources are generally believed to be related to regional groundwater circulation in fractured carbonate-rock aquifers. Discharge areas (like warm springs) may be up to several hundred kilometers from the area of recharge, and the waters may have circulated for hundreds to thousands of years to depths of several kilometers. Maximum temperatures attained during this journey could be 100°C or higher, but spring temperatures at discharge points are generally less than 65°C.

The Eureka heat flow low, a region of less than 1.5 HFU (heat flow units; 41.8 milliWatts per square meter, mWm^{-2}) located in eastern Nye and northwestern Lincoln Counties, is centered on the Nevada portion of a large area of Middle Cambrian to Lower Triassic carbonate rocks (the carbonate rock province). This carbonate rock province underlies southern and eastern Nevada and northeastern Utah (Plume and Carlton, 1988). The Eureka Low is most likely a regional-scale hydrologic feature, representing colder groundwater recharge to regional aquifers.

SUMMARY

Nevada is a large state with sparse but locally concentrated population. It has a wide range in average annual temperature, and thus a wide range in the lower limit of temperatures considered anomalous for geothermal fluids. The state's complex pattern of geology and heat flow results in geothermal resource areas of diverse character located throughout the state.

There have been many studies, both general and specific, on Nevada's geothermal resources (see Bibliography). Considerable data are available on specific geothermal spring and well sites but some remote areas are still poorly understood and information on their geothermal resources are incomplete or possibly inaccurate. There are many accurate and complete water analyses and associated location information for well-studied geothermal areas. However, many remote individual springs and wells throughout the state lack complete analyses, and some lack good location information; in some cases, there is uncertainty about the existence of certain springs. For example, Appendix 1 lists over 50 sites for which the only temperature information is "warm" or "hot."

In Nevada, as in many arid areas of the west, most water (whether thermal or nonthermal) has been put to use. Some nonthermal applications actually require cooling before use. Present and

recent past uses of the contained heat of Nevada thermal waters are quite varied (see Appendix 3). However, more such use is feasible if potential developers are well informed and encouraged to be conservative in their use of fossil fuels.

RECOMMENDATIONS

There are many remote geothermal sites for which no complete data set could be found in the sources examined. For completeness, some of these should be visited and sampled but most of them are unlikely to be put to any low-temperature use because of their remoteness. Having a more complete data set would, however, be useful in regional studies, and might result in the discovery of previously unknown higher temperature resources.

No attempt was made during this study to combine trace-element water chemistry data from more than one analysis into a single record. For example, analyses of B, Li, and F may have been reported in a analysis with poor ion balance while the best analysis in terms of major constituents may have been lacking some of the trace-element data. Some of this type of trace-element data could be added to the final database, but it seemed like a poor practice for this original compilation.

Some sources of information on geothermal springs and wells that were not used during this study might be useful to pinpoint previously unknown (especially low-temperature) geothermal sites. However, the mass of data available and its concentration in populated areas (where good information already exists), make searching such data relatively unproductive. Some examples of such available data include the water well records (submitted by well drillers) for the state available from the Nevada Division of Water Resources. These water well records have many errors (especially in location); searching and confirming previously unknown geothermal sites would take considerable effort. Other sources of water data that are likely to have similar potential errors include the analyses of agencies like the Nevada Division of Health, the Nevada Division of Environmental Protection, and the U.S. Environmental Protection Agency. One source of information that might have a higher potential for adding to the geothermal database is the largely confidential files of geothermal exploration companies. Thousands of shallow to moderately deep (100 to 1000 m) geothermal gradient and "slim holes" were drilled in the search for high temperature geothermal resources (for electric power generation) over the last 30 years. This source of geothermal data was suggested by a number of industry representatives at a March 1994 symposium sponsored by the Geothermal Resources Council on the geothermal resources and exploration of the Basin and Range Province. The extent of the data is not presently known.

Finally, increased future use of geothermal energy in low- to moderate-temperature applications will require not only studies that demonstrate the availability of the resource but also dissemination of information (such as case histories) that illustrate the details of these uses. Such case histories should be understandable by the general public, but also make available details of the technical data. Because some uses, such as district heating systems, require considerable front-end investment compared to individual fossil fuel heating units, projects that can bring together several funding sources have a better chance of success.

BIBLIOGRAPHY

One task of the study was the identification of geological, geophysical, geochemical, and hydrologic studies that have been done since the last resource assessment. The bibliography (Appendix 4) is the result of that literature search. There are 907 citations listed in the bibliography; of these, nearly one-half are from the bibliography in Garside and Schilling (1979). This bibliography was nearly exhaustive, at least for published sources, through about 1978. That bibliography was scanned and converted with text-recognition software to a format useable by word-processing software. The references from this 1979 bulletin included general references to the geology of geothermal areas as well as references specific to geothermal resources. The additional references in Appendix 4 were obtained from a variety of sources; most were entered in the document by hand, rather than taken directly from other digital data sources. Several methods were used to find these additional references. The bibliography for GEOTHERM (Bliss, 1983 a) was checked for references not in Garside and Schilling (1979). Additionally, the geothermal files in the Public Information Office of the Nevada Bureau of Mines and Geology were a good source, especially for unpublished reports. My own library of geothermal references was searched, and the CD-ROM for GeoRef (the bibliographic database of the American Geological Institute) was searched for any Nevada geothermal references. A similar search was done of the WolfPAC NALIS library information system (the Northern Nevada Academic Libraries Information System). The Geothermal Resources Council Bulletin and Transactions, and the GeoHeat Center Quarterly Bulletin were also scanned for any Nevada references.

NEVADA GEOTHERMAL BIBLIOGRAPHY - 1994

Aberdeen, E. J., White, W. F., Sherwood, A. M., Bruce, F. L., and Ferguson, D. E., 1952, Interim report on the location of non-saline uraniferous waters suitable for ion-exchange process: U.S. Geological Survey Trace Element Memorandum Report 281, 46 p.

Adams, M. C., Christensen, J., Moore, J. N., and Wright, P. M., 1989, Application of tracers to geothermal systems: Gound Water, v. 27, p. 719-720.

Adams, W. B., 1944, Chemical analysis of municipal water supplies, bottled mineral waters and hot springs, Nevada: Nevada University, Reno, Department of Food and Drugs, Public Service Division, 16 p.

Adams and Bishop, 1884, The Pacific tourist: New York, p. 192-195.

Adams, W. B., 1944, Chemical analyses of municipal water supplies, bottled mineral waters and hot springs of Nevada: Nevada University, Reno, Department of Food and Drugs, Public Service Division, 16 p.

Adams, M. C., Benoit, W. R., Doughty, C., Bodvarsson, G. S., and Moore, J. N., 1989, The Dixie Valley, Nevada, tracer test: Geothermal Resources Council Transactions, v. 13, p. 215-220.

Albers, J. P., and Stewart, J. H., 1972, Geology and mineral deposits of Esmeralda County, Nevada: Nevada Bureau of Mines and Geology Bulletin 78.

Allen, W. W., 1962, Field data from geothermal steam well tests on Beowawe, Nevada, geothermal steam wells for Magma-Vulcan thermal power project: Magma Power Co., unpublished report.

Allen, E. T., and Day, A. L., 1935, Hot springs of the Yellowstone National Park. Microscopic examinations by H. E. Merwin: Carnegie Institution of Washington Publication 466, 525 p.

Anctil, R. J., 1960, Areal economic geology of T37N,R43E and 44E, M.D.M.: Southern Pacific Co., unpublished map.

Anctil, R. J., and others, 1960, Geology of Brady Hot Springs and vicinity, Churchill County, Nevada: Southern Pacific Co., unpublished map.

Anderson, J. P., 1977, A geological and geochemical study of the southwest part of the Black Rock Desert and its geothermal area, Washoe, Pershing, and Humboldt Counties, Nevada: MS thesis, Colorado School of Mines, 86 p.

Anderson, Robert, 1909, Geology and oil prospects of the Reno region, Nevada: U.S. Geological Survey Bulletin 381, pp. 475-489.

Anderson, J. P., 1978, A geochemical study of the southwest part of the Black Rock Desert and its geothermal areas; Washoe, Pershing, and Humboldt Counties: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system innorthwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 15-22.

Anderson, L. A., 1978, Some observations of the self-potential effect in geothermal areas in Hawaii and Nevada: Geothermal Resources Council Transactions, v. 2, section 1, p. 9-12.

Anderson, Robert, 1908, Oil prospects in Lyon County, Nevada, in Contributions to economic geology, pt. II, Mineral fuels: U.S. Geological Survey Bulletin 281, p. 490-493.

Archbold, N. L., 1969, Industrial mineral deposits, in Moore, J. G., 1969, Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bureau Mines Bulletin 75.

Ashley, R. P., Goetz, F. H., Rowan, L. C., and Abrams, M. J., 1979, Detection and mapping of hydrothermally altered rocks in the vicinity of the Comstock Lode, Virginia Range, Nevada, using enhanced landsat images: U. S. Geological Survey open-file report 79-960, 46 p.

Atinkson, R.K., 1984, Geothermal evaluation model: a utility perspective, unpubl. M.B.A., University of Nevada, Reno, 108 p.*

Atkinson, D. J., 1981, The geothermal system of Reno, Nevada: Geothermal Resources Council Transactions, v. 5, p. 491-494.

Austin, C. F., Austin, W. H., Jr., and Leonard, G. W., 1971, Geothermal science and technology, a national program: Naval Weapons Center, China Lake, CA, Technical Service 45-029-72.

Bailey, E. H., and Phoenix, D. A., 1944, Quicksilver deposits in Nevada: Nevada University Bulletin, v. 38, no. 5 [41], 206 p.

Baker, A., III, Archbold, N. L., and Stoll, W. J., 1972, Forecasts for the future-minerals: Nevada Bureau Mines and Geology Bulletin 82.

Bakewell, C. A., and Renner, J. L., 1982, Potential for substitution of geothermal energy at domestic defense installations and White Sands missile range: United States Department of Energy, Division of Geothermal Energy, DOE/NV/ 10072-4, 142 p.

Ball, S. H., 1907, A geological reconnaissance in southwestern Nevada and eastern California: U.S. Geological Survey Bulletin 308, 218 p.

Barton, B.J., and Purkey, B.W., 1919, Geothermal wells drilled in Nevada since 1979: Nevada Bureau of Mines and Geology List L-5, 28 p.

Bastin, E. S., and Laney, F. B., 1918, Genesis of ores at Tonopah, Nevada: U.S. Geological Survey Professional Paper 104, 50 p.

Bateman, R. L., and Scheibach, R. B., 1975, Evaluation of geothermal activity in the Truckee Meadows, Washoe County, Nevada: Nevada Bureau Mines and Geology Report 25, 38 p.

Batzle, M. L., Hammond, S. E., and Farkash, V. N., 1976a, Telluric traverse location map and profiles for Pinto Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-701A, 3 p.

Batzle, M. L., Hammond, S. E., and Farkash, V. N., 1976b, Telluric traverse location map and profiles for Ruby Valley Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-701B, 3 p.

Beard, G. A., 1981, Geothermal reservoir assessment case study, northern Basin and Range Province, Leach

Hot Springs area, Pershing County, Nevada; final report for the period April, 1979, through December, 1981: U.S. Department of Energy, Division of Geothermal Energy, 18 p.

Becker, G. F., 1888, Geology of the quicksilver deposits of the Pacific slope: U.S. Geological Survey Mon. 13, 486 p.

Becker, G. F., 1889, Summary of the geology of the quicksilver deposits of the Pacific slope: U.S. Geological Survey 8th Ann. Report, pt. 2, p. 965-985.

Becker, G. F., 1882, Geology of the Comstock Lode and the Washoe district: U.S. Geological Survey Monograph 3, 422 p.

Bedell, G. W., 1983, Nevada—the frontier of bio-geothermal conversion of blue-green algae, Spirulina, a high-protein food: Geothermal Resources Council Bulletin, v. 12, no. 8, p. 7-10.

Bell, E. J., and Juncal, R. W., 1981, Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada—part I: petrochemistry: Geothermal Resources Council Transactions, v. 5, p. 47-50.

Bell, E. J., and Larson, L. T., (editors), 1980, Geothermal reservoir assessment case study, northern Basin and Range province, northern Dixie Valley, Nevada: Mackay Minerals Research Institute, University of Nevada, Reno, Nevada, 4 volumes, 467 p.

Benoit, W. R., and Butler, R., 1983, A review of high-temperature geothermal developments in the northern Basin and Range province: Geothermal Resources Council Special Report 13, p. 57-80.

Benoit, W. R., 1987, Early stage carbonate scaling characteristics in Dixie Valley well bores: Geothermal Resources Council Transactions, v. 11, p. 495-502.

Benoit, D., 1994, Review of geothermal power generation projects in the Basin and Range Province, 1993: Geothermal Resources Council Bulletin, v. 23, no. 5, p. 173-177.

Benoit, W. R., Hiner, J. E., and Forest, R. T., 1982, Discovery and geology of the Desert Peak geothermal field; a case history: Nevada Bureau of Mines and Geology Bulletin 97, 82 p.

Benoit, D., 1992, A case history of injection through 1991 at Dixie Valley, Nevada: Geothermal Resources Council Transactions, v. 16, p. 611-620.

Benoit, W.R., 1990, Development of a carbonate scale inhibition program at Dixie Valley, Nevada: Geothermal Resources Council Transactions, v. 14, Part II, p. 1567-1574.

Benoit, D., and Stock, D., 1993, A case history of injection at Beowawe, Nevada geothermal reservoir: Geothermal Resources Council Transactions, v. 17, p. 473-480.

Benoit, W. R., 1978, The use of shallow and deep temperature gradients in geothermal exploration in northwestern Nevada using the Desert Peak thermal anomaly as a model: Geothermal Resources Council Transactions, v. 2, section 1, p. 45-46.

Berger, B. R., Silberman, M. L., and Koski, R. A., 1975, Discussion on K-Ar relations of granodiorite emplacement and tungsten and gold mineralization near the Getchell Mine, Humboldt County, Nevada—a reply: Econ. Geology, v. 70, p. 1487-1491.

Berry, G. W., Grim, P. J., and Ikelman, J. A., 1980, Thermal springs list for the United States: National

Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12, National Geophysical and Solar- Terrestrial Data Center, Boulder, Colorado, June, 1980, 59 p.

Beyer, J. H., 1977, Telluric and D. C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part III, The analysis of data from Grass Valley, Nevada: California University, Lawrence Berkeley Laboratory Report 6325.

Beyer, H., Morrison, H. F., and Dey, A., 1975, Electrical exploration of geothermal systems in the Basin and Range valleys of Nevada: 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 2, p. 889-894.

Beyer, J. H., 1977, Telluric and D.C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part I, The E-field ratio telluric method: California University, Lawrence Berkeley Laboratory Report 6325.

Beyer, J. H., 1977, Telluric and D. C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part II, A numerical model study of dipole-dipole and Schlumberger resistivity methods: California University, Lawrence Berkeley Laboratory Report 6325.

Beyer, H., Dey, A., Liaw, A., Majer, E., McEvilly, T. V., Morrison, H. F., and Wollenberg, H., 1976, Geological and geophysical studies in Grass Valley, Nevada: National Technical Information Service, preliminary Open-File Report LBL-5262.

Bidwell, J., 1842, A journey to California (pamphlet).

Bingler, E. C., and Bonham, H. F., Jr., 1976, Geologic map [Reno 7.5'-minute quadrangle]: Nevada Bureau Mines and Geology Environmental Series, Reno Folio, p. 24-31.

Bingler, E. C., 1975, Guidebook to the Quaternary geology along the western flank of the Truckee Meadows, Washoe County, Nevada: Nevada Bureau Mines and Geology Report 22.

Blackett, R. E., 1986, Assessment of geothermal related data bases: Geo-heat Center Quarterly Bulletin, v. 9, no. 4, p. 8-11.

Blackett, R. E., Satrape, J., and Beeland, G., 1986, A decade of geothermal development in the United States, 1974-1984: a federal perspective, part 1: Geothermal Resources Council Bulletin, v. 15, no. 6, p. 10-19.

Blackett, R. E., Satrape, J., and Beeland, G., 1986, A decade of geothermal development in the United States, 1974-1984: a federal perspective, part 2: Geothermal Resources Council Bulletin, v. 15, no. 7, p. 5-14.

Blackett, R. E., Satrape, J., and Beeland, G., 1986, A decade of geothermal development in the United States, 1974-1984: a federal perspective, part 3: Geothermal Resources Council Bulletin, v. 15, no. 8, p. 27-33.

Blackwelder, Eliot, 1948, The Great Basin, with emphasis on glacial and postglacial times; I. The geological background: Utah University Bulletin, v. 38, no. 20, p. 3-16.

Blackwell, D. D., 1983, Heat flow in the northern Basin and Range Province: Geothermal Resources Council, Special Report 13, p. 81-91.

Blackwell, D.D., and Steele, J.L., 1992, Geothermal map of North America: Geological Society of America, Map CSM006, four sheets, 1:5,000,000.

Blackwell, D. D., and Chapman, D. S., 1977, Interpretation of geothermal gradient and heat flow data for Basin and Range geothermal systems: Geothermal Resources Council Transactions, v. 1, p. 19-20.

Blackwell, D. D., 1983, Heat flow in northern Basin and Range province: Geothermal Resources Council Special Report 13, p. 81-92.

Blake, W. P., 1873, Diatoms in a hot spring in [Pueblo Valley, Humboldt County] Nevada: California Acad. Sci. Mtg., August 21, 1871, Proceedings, v. 4, pt. 4, p. 183.

Bliss, J. D., 1983a, Nevada basic data for thermal springs and wells as recorded in Geotherm Part A: U.S. Geological Survey open-file report 83-433A, 102 p.

Bliss, J. D., 1983b, Nevada basic data for thermal springs and wells as recorded in Geotherm Part B: U.S. Geological Survey open-file report 83-433B, 688 p.

Bohn, B. W., and Jacobson, R. L., 1977, Preliminary investigation of the geothermal resource near Hawthorne, Nevada: Water Resources Center (Desert Research Institute, University of Nevada System) Project Report no. 50, 30 p.

Bohn, B., 1984, Possible relations between anomalous spring water chemistry in the Stillwater Range and the Dixie Valley geothermal system, northern Nevada: Geothermal Resources Council Transactions, v. 8, p. 369-371.

Bohn, B., and Jacobson, R. L., 1977, Results on the pump test of NAD 1: Water Resources Center (Desert Research Institute, University of Nevada System).

Bonham, H. F., Jr., and Bingler, E. C., 1973, Geologic map, Reno Folio: Nevada Bureau of Mines and Geology.

Bonham, H. F., Jr., 1960, Areal geology map T22N, R25 and 26E: Southern Pacific Co.

Bonham, H. F., Jr., 1969, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, 140 p.

Bowen, R., 1979, Geothermal resources: Applied Science Publishers, Ltd., London, England, 243 p.

Bowman, H., Hebert, A. J., Wollenberg, H. A., and Asaro, F., 1974, A detailed chemical and radiometric study of geothermal waters and associated rock formations, with environmental implications: Calif. University, Lawrence Berkeley Laboratory, U.S. Atomic Energy Commission contract W-7405-ENG-48.

Bowman, J. R., and Cole, Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora < Nevada, thermal area: Geothermal Resources Council Transactions, v. 6, p. 77- 80.

Bowman, H., Hebert, A. J., Wollenberg, H. A., and Asaro, F., 1975, Trace, minor, and major elements in geothermal waters and associated rock formations (north-central Nevada): 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 1, p. 699-702.

Bradberry, C. E. and Associates, 1964, Mineral inventory of lands bordering the Western Pacific Railroad Company: Western Pacific Railroad Co., Los Altos, CA.

Brannock, W. W., Fix, P. F., Gianella, V. P., and White, D. E., 1948, Preliminary geochemical results at Steamboat Springs, Nevada: Am. Geophys. Union Trans., v. 29, no. 2, p. 211-226.

Breese, C. R., Jr., 1968, A general limnological study of Big Soda Lake: M.S. thesis, University of Nevada, Reno, 83 p.

Broderick, A. T., 1949, Geology of the southern part of the San Antonio Mountains: Ph.D. thesis, Yale University

Bronder, L., Meyer, R. T., Roberts, S., and Gertsch, W. D., 1979, Evaluation of state taxes and tax incentives and their impacts on the development of geothermal energy in the western states: Geothermal Resources Council Transactions, v. 3, p. 65-68.

Bronicki, L., 1986, Electrical power from moderate temperature geothermal sources with modular mini-power plants: Proceedings of a topical meeting on small scale geothermal power plants and geothermal power plant projects, Meeting sponsored by Geothermal Resources Council in Reno, Nevada, February 12-13, 1986, p. 7-26.

Brown, L. G., and Mansure, A. J., 1981, A forecast of geothermal drilling activity: Geothermal Resources Council Transactions, v. 5, p. 225-228.

Bruce, J. L., 1980, Fallon geothermal exploration project, naval air station, Fallon, Nevada, interim report: Naval Weapons Center, NWC TP 6194, 54 p.

Brues, C. T., 1928, Studies on the fauna of hot springs in the western United States and the biology of thermophilous animals: Am. Acad. Arts and Sci. Proc., v. 63, no. 4, p. 139-228; 1929, abs., International Cong. Enbiology, 1928, Report, p. 237-240.

Brues, C. T., 1932, Further studies on the fauna of North American hot springs: Am. Acad. Arts and Sci. Proc., v. 67, no. 7, p. 185-303.

Buchanan, P. K., 1989, Recharge of geothermal fluids in the Great Basin: Geothermal Resources Council Transactions, v. 13, p. 117-123.

Bugenig, D. C., 1991, Problems with disposal of thermal effluent; their influence on development of low-to-moderate temperature geothermal reservoirs: Geo-heat Center Quarterly Bulletin, v. 13, no. 3, p. 15-20.

Bushnell, Kent, 1967, Geology of the Rowland quadrangle, Elko County, Nevada: Nevada Bureau of Mines and Geology Bulletin 67.

California Geothermal Resources Board, 1971, Economic potential of geothermal resources in California: California Geothermal Resources Board.

Callaway, J., 1978, Reflection seismic traverse across Black Rock Desert and Hualapai Flat, Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 65-72.

Camozzi, R. O., 1942, How a tough water problem was handled at Jarbidge (Nevada): Eng. and Mining Journal, v. 143, no. 7, p. 45-48.

Cargill, K., and Conover, R. D., 1978, Concepts in utilization of Federal geothermal leases: Geothermal Resources Council Transactions, v. 2, section 1, p. 67-70.

Carlson, K. W., 1975, Seismic noise and microseismicity in a Nevada geothermal prospect: MS thesis, Colorado School of Mines, ? p.

Carlson, H. S., 1974, Nevada place names: University Nevada Press, Reno.

Carlson, D. E., 1982, District space heating from a single geothermal well, Warren Estates, Reno, Nevada: Geothermal Resources Council Transactions, v. 6, p. 429-432.

Carpenter, E. B., 1915, Ground water in southeastern Nevada: U.S. Geological Survey Water-Supply Paper 365, 86 p.

Carr, J. R., and Oleson-Elliott, S. G., 1991, Geothermal influences on water quality at Stillwater National Wildlife Refuge, Nevada: Geothermal Resources Council Transactions, v. 15, p. 129-134.

Cartwright, K., Swinderman, J. N., and Gimlett, J. I., 1964, Extension of the East Range fault by gravity exploration: Nevada University, Reno, Desert Research Institute Technical Report 2, pt. III.

Cathrall, J. B., Siems, D. F., Crenshaw, G. L., and Cooley, E. F., 1984, Geochemical evaluation of the mineral and geothermal resources of the Charles Sheldon Wilderness Study Area, Nevada and Oregon: U.S. Geological Survey Bulletin 1538-C, 53-88.

Cathrall, J. B., and others, 1977, Listing of analytical results for rock, stream-sediment water, and algae samples; calculated minimum thermal-reservoir temperatures; and the statistical summary of the analytical results for rock and stream-sediment samples, Charles Sheldon wilderness study area, Humboldt and Washoe Counties, Nevada, and Lake County, Oregon: U.S. Geological Survey Open-File Report 77-403, 101 p.

Cathrall, J. B., Greene, R. C., Plouff, D., Siems, D. F., Crenshaw, G. L., and Cooley, 1978, Mineral resources of the Charles Sheldon Wilderness Study Area, Humboldt and Washoe Counties, Nevada, and Lake and Harney Counties, Oregon: U. S. Geological Survey Open-File Report 78-1002, 158 p.

CER Corporation, 1980, Site specific development plan, Carlin, Nevada: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 77 p.

Cerini, D. J., Diddle, C. P., and Gonser, W. C., 1984, Project development Desert Peak: Geothermal Resources Council Transactions, v. 8, p. 33-39.

Childs, F. W., 1984, Direct use geothermal PON and PRDA projects under DOE-ID administration annual report FY 1983: United States Department of Energy, Division of Geothermal Energy, IDO-10118 (84), 30 p.

Christensen, O. D., 1980, Trace element geochemistry of gradient hole cuttings, Beowawe Geothermal Area, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-21, ESL-48, 28 p.

Christopherson, K. R., Hoover, D. B., and Cesario, D. J., 1977, Telluric traverse location map and profile for Gerlach Northwest Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-66E, 3 p.

Christopherson, K. R., Hoover, D. B., and Senterfit, M., 1977, Telluric traverse location map and profiles for Fly Ranch North-east Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-66D, 3 p.

Church, J. A., 1878, Heat of the Comstock mines: Am. Institute Mining Metall. Petroleum Engineers Trans., v. 7, p. 45-76.

Church, J. A., 1879, Underground temperatures on the Comstock Lode: Am. Journal Science, v. 17, p. 289-300.

Clark, W. O., Riddell, C. W., and Meinzer, O. E., 1920, Exploratory drilling for water and use of ground water for irrigation in Steptoe Valley, Nevada: U.S. Geological Survey Water-Supply Paper 467, 70 p.

Clebsch, A., Jr., 1961, Ground Water in the Oak Springs formation and hydrologic effects of underground nuclear explosions at the Nevada Test Site: U.S. Geological Survey Trace Element Inv. Report TEI-759.

Cohen, Philip, 1962b, Hydrogeologic evidence of the extension of the East Range fault, Humboldt and Pershing Counties, Nevada: U.S. Geological Survey Professional Paper 450-13, art. 4, p. 139-H10.

Cohen, Philip, and Loeltz, O. J., 1964, Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows area, Washoe County, Nevada: U.S. Geological Survey Water-Supply Paper 1779-S. Also Nevada Department Conserv. and National Resources, Water Resources Bulletin 28.

Cohen, Philip, 1962c, Preliminary results of hydrogeochemical studies in the Humboldt River valley near Winnemucca, Nevada: Nevada Department Conserv. and National Resources, Water Resources Bulletin 19.

Cohen, Philip, 1962a, Uranium in the waters of the Truckee Meadows, *in* Contributions to the hydrology of northern Nevada: Nevada Department Conserv. and National Resources, Inf. Ser. Report 3, p 1-11.

Cohen, Philip, 1966, Water in the Humboldt River valley near Winnemucca, Nevada: U.S. Geological Survey Water-Supply Paper 1816, 69 p.

Combs, J., Berge, C. W., Lund, J. W., Anderson, D. N., and Parmentir, P. P., 1983, Developments in geothermal resources in 1982: American Association of Petroleum Geologists Bulletin, v. 67, p. 1990-1998.

Cohen, Philip, and Everett, D. E., 1963, A brief appraisal of the ground-water hydrology of the Dixie-Fairview Valley area, Nevada: Nevada Department Conserv. and National Resources, Ground Water Resources-Reconnaissance Series Report 23, 40 p.

Cohen, Philip, 1962, Preliminary results of hydrogeochemical studies in the Humboldt River Valley near Winnemucca, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin no. 19, 27 p.

Cohen, Philip, 1963, An evaluation of the water resources of the Humboldt River Valley near Winnemucca, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin no. 24, 103 P.

Cohen, Philip, 1966, Water in the Humboldt River Valley near Winnemucca, Nevada: U.S. Geological Survey Water-Supply Paper 1816, 69 p.

Cohen, Philip, 1964, An evaluation of the water resources of the Humboldt River valley near Winnemucca, Nevada: Nevada Department Conserv. and National Resources, Water Resources Bulletin 24.

Cornwall, H. R., and Kleinhampf, F. J., 1961, Geology of the Bare Mountain quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-157.

Cornwall, H. R., 1972, Geology and mineral deposits of southern Nye County, Nevada: Nevada Bureau of Mines and Geology Bulletin 78.

Corwin, R. F., 1975, Self-potential exploration for geothermal reservoirs: 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 2, p. 937-945.

Cosner, S. R., and Apps, J. A., 1978, Compilation of data on fluids from geothermal resources in the United States: University of California, Lawrence Berkeley Laboratory Report 5936, 108 p.

Cowan, C. J., 1988, A decade of geothermal development in Nevada, 1978-1988: Geothermal Resources Council Transactions, v. 12, p. 323-328.

Craig, Harmon, 1953, Isotopic geochemistry of hot springs [abs.] Geological Society America Bulletin, v. 64, no. 12, p. 2, p. 1410; also, 1954, Am. Mineralogist, v. 39, nos. 3-4, p. 322.

Crewdson, R. A., 1976, Geophysical studies in the Black Rock Desert geothermal prospect, Nevada: PhD dissertation, University of Nevada, Reno, 366 p.

Crewdson, R. A., 1978, A gravity survey of Hualapai Flat and the southern part of the Black Rock Desert, Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 73-80.

Crewdson, R. A., 1978, Ground temperature survey: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 23-26.

Crofutt, G. A., 1872, Crofutt's transcontinental tourist's guide: New York, Geo. A. Crofutt.

Crook, J. K., 1899, Mineral waters of the United States and their therapeutic uses: New York and Philadelphia, Lea Brothers & Co.

Crosthwaite, E. G., 1963, Ground-water appraisal of Antelope and Middle Reese River Valleys, Lander County, Nevada: Nevada Department Conserv. and National Resources, Ground-water Resources--Reconnaissance Series Report 19, 33 p.

Culver, G., 1981, What's happening in Reno: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 19-21.

Culver, G., 1991, Direct use reservoir models; how we think they work: Geo-heat Center Quarterly Bulletin, v. 13, no. 1, p. 1-7.

Culver, G., 1989, Direct use injection wells: Geo-heat Center Quarterly Bulletin, v. 11, no. 4, p. 1-5.

Cunneen, R., and Sillitoe, R. H., 1989, Paleozoic hot spring sinter in the Drummond Basin, Queensland, Australia: Economic Geology, v. 84, p. 135-142.

CWRR, 1973, (Center for Water Resources Research); Nevada University, Reno, Desert Research Institute, center for Water Resources Research: computer data bank.

Dangberg, Grace, 1972, Historical sketches of Nevada's first settlement: Carson Valley Historical Society.

Darlington, P. J., Jr., 1928, New *Coleoptera* from western hot springs: *Psyche*, v. 35, no. 1, p. 1-6.

Darton, N. H., 1920, Geothermal data of the United States: U.S. Geological Survey Bulletin 701.

Davis, L. E., and Ashizawa, R. Y., 1964, The mineral industry of Nevada: U.S. Bureau Mines, Minerals Yearbook, 1963, v. 111, p. 623-648.

Davis, L. E., Ashizawa, R. Y., and Giorgetti, L., 1961, The mineral industry of Nevada: U.S. Bureau Mines,

Minerals Yearbook, 1960, v. III, p. 635-661.

Davis, H. C., 1954, Summary report of reconnaissance and exploration for uranium deposits in northern Nevada (rev.): U.S. Atomic Energy Comm. RME-2013, pt. 1, 23 p.

Davis, L. E., and Ashizawa, R. Y., 1960, The mineral industry of Nevada: U.S. Bureau Mines, Minerals Yearbook, 1959, v. III, p. 623-648.

Davis, L. E., Ashizawa, R. Y., and Giorgetti, L., 1962, The mineral industry of Nevada: U.S. Bureau Mines, Minerals Yearbook, 1961, v. 111, p. 659-685.

Davis, J. O., 1983, Level of Lake Lahontan during deposition of the Trego Hot Springs Tephra about 23,400 years ago: Quaternary Research, v. 19, p. 314-324.

Day, T. J., 1975, A geothermal temperature study in and around Beowawe (Nevada): M.S. report, Stanford University.

Day, G. A., 1987, Source of recharge to the Beowawe geothermal system, north-central Nevada: MS thesis, University of Nevada, Reno, 82 p.

Day, G. A., 1987, Source of recharge to the Beowawe geothermal system, north-central Nevada: University of Nevada, Reno, masters thesis #2170, 82 p.

de Braga, Marcia, 1964, Dig no graves, a history of Churchill County, Nevada: Western Printing and Publishing Co., Sparks, NV.

Decius, L. C., 1964, Geological environment of hyperthermal areas in continental United States and suggested methods of prospecting them for geothermal power: United Nations Conference on New Sources of Energy, Rome, August 1961, Proceedings, v. 2, p. 166-178.

Dellinger, M., and Stryer, R. J., 1982, Reno district heating system: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 19-20.

Dellinger, M., 1982, Hawthorne geothermal district heating system: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 17-18.

DeMouly, G. T., and Corwin, R. F., 1980, Self-potential survey results from Beowawe KGRA, Nevada: Geothermal Resources Council Transactions, v. 4, p. 33-36.

Denton, J. M., Bell, E. J., and Jodry, R. L., 1980, Geothermal reservoir assessment case study - northern Dixie Valley, Nevada: U.S. Department of Energy, Division of Geothermal Energy, DOE/ET/27006-1, 481 p.

Department of Energy, 1981, Geothermal Progress Monitor, Report No. 5, June 1981: U.S. Department of Energy, Division of Geothermal Energy, DOE/CE-0009/5, 93 p.

Desormier, W. L., 1987, Dixie Valley six well flow test: Geothermal Resources Council Transactions, v. 11, p. 515-520.

Diddle, C. P., and Gonser, W. C., 1986, Project development Desert Peak: Proceedings of a topical meeting on small scale geothermal power plants and geothermal power plant projects, Meeting sponsored by Geothermal Resources Council in Reno, Nevada, February 12-13, 1986, p. 107-111.

Diddle, C., and Gosner, W. C., 1985, Project development Desert Peak: Geothermal Resources Council Transactions, v. 9, part II, p. 127-131.

DiPippo, R., 1988, International developments in geothermal power production: Geothermal Resources Council Bulletin, v. 17, no. 5, p. 8-19.

DiPippo, R., 1985, Geothermal electric power, the state of the world-1985: Geothermal Resources Council Bulletin, v. 14, no. 9, p. 3-18.

DiPippo, R., 1986, Geothermal power plants, worldwide status-1986: Geothermal Resources Council Bulletin, v. 15, no. 11, p. 9-18.

Dole, R. B., 1913, Exploration for satines in Silver Peak Marsh, Nevada: U.S. Geological Survey Bulletin 530.

Dreyer, R. M., 1940, Goldbanks mining district, Pershing County, Nevada: Nevada University Bulletin, v. 34, no. 1, Geology and Mining Series no. 33, 38 p.

Duchane, D., 1990, Hot dry rock: a realistic energy option: Geothermal Resources Council Bulletin, v. 19, no. 3, p. 83-88.

Dudley, W. W., Jr., and Larson, J. D., 1976, Effect of irrigation pumping on desert pupfish habitats in Ash Meadows, Nye County, Nevada: U.S. Geological Survey Professional Paper 927, 52 p.

Duffrin, B. G., Berger, D. L., and Schaefer, D. H., 1985, Principal facts for gravity stations in the Humboldt House Geothermal Area, Pershing County, Nevada: U.S. Geological Survey open-file report 85-162, 11 p.

Dunn, L. E., and Hanson, R. A., 1967, Chemical composition and quality of Nevada waters: Nevada University, Reno, Agricultural Expt. Sta., Report R32.

Eakin, T. E., and Moore, D. O., 1964, Uniformity of discharge of Muddy River Springs, southeastern Nevada, and relation to inter-basin movement of ground water in Geologic Survey Research: U.S. Geological Survey Professional Paper 501, chapter D., p. 171-176.

Eakin, T. E., 1962b, Ground-water appraisal of Gabbs Valley, Mineral and Nye Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 9, 27 p.

Eakin, T. E., 1964, Ground-water appraisal of Coyote Springs and Kane Springs Valleys and Muddy River Springs area, Lincoln and Clark Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 25, 40 p.

Eakin, T. E., Schoff, S. L., and Cohen, Philip, 1963, Regional hydrology of a part of southern Nevada; a reconnaissance: U.S. Geological Survey Trace Element Inv. Report TEI-833.

Eakin, T. E., 1962c, Ground-water appraisal of Ralston and Stonecabin Valleys, Nye County, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 25, 32 p.

Eakin, T. E., Maxey, G. B., Robinson, T. W., Fredericks, J. C., and Loeltz, O. J., 1951, Contributions to the hydrology of eastern Nevada: Nevada Department Conservation and National Resources, Water Resources Bulletin 12, 171 p.

Eakin, T. E., Hughes, J. L., and Moore, D. O., 1967, Ground-water appraisal of Steptoe Valley, White Pine County, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 42, 48 p.

Eakin, T. E., 1966, Regional interbasin ground-water system in the White River area, southeastern Nevada: Water Resources Research, v. 2, no. 2, p. 251-271; also Nevada Department Conservation and National Resources, Water Resources Bulletin 33, 20 p.

Eakin, T. E., 1962a, Ground-water appraisal of Diamond Valley, Eureka and Elko Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 6, 60 p.

Eakin, T. E., 1963a, Ground-water appraisal of Garden and Coal Valleys, Lincoln and Nye Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 18, 29 p.

Eakin, T. E., and Maxey, G. B., 1951, Ground water in Ruby Valley, Elko and White Pine Counties, Nevada, in Contributions to the hydrology of eastern Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin no. 12, 171 P.

Eakin, T. E., and Robinson, T. W., 1950, Ground-water conditions in Whisky Flat, Mineral County, Nevada: U.S. Geological Survey Open-File Report.

Eakin, T. E., 1961, Ground-water appraisal of Pine Valley, Eureka and Elko Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 2.

Eakin, T. E., Price, D., and Harrill, J. R., 1983, Great Basin region: in Todd, D. K., (compiler), Groundwater Resources of the United States, Premier Press, Berkeley, California, p. 543-590.

Eakin, T. E., 1963b, Ground-water appraisals of Pahranagat and Pahroc Valleys, Lincoln and Nye Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 21, 36 p.

Eakin, T. E., 1966, Regional interbasin groundwater system in the White River area, southeastern Nevada: Nevada Water Resource Bulletin no. 33, 20 P.

Eakin, T. E., 1960, Ground-water appraisal of Newark Valley, White Pine County, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 1, 33 p.

Eaton, R. R., and Hickox, C. E., 1994, Analysis of Steamboat Hills spinner data; unpubl. memos to J. Finger, dated 11 Jan 1994, 12 Jan 1994, Sandia National Laboratories, Albuquerque, New Mexico.

Edmiston, R. C., 1993, Using flow tests in slim holes to reduce geothermal exploration costs in the Basin and Range geologic province of the USA: Geothermal Resources Council Transactions, v. 17, p. 417-424.

Edmiston, R. C., 1979, Ore deposits as exploration models for geothermal reservoirs in carbonate rocks in the eastern Great Basin: Geothermal Resources Council Transactions, v. 3, p. 181-184.

Edmiston, R. C., and Benoit, W. R., 1984, Characteristics of Basin and Range geothermal systems with fluid temperatures of 150°C to 200°C: Geothermal Resources Council Transactions, v. 8, p. 417-424.

Edmiston, R. C., 1982, A review and analysis of geothermal exploratory drilling results in the northern Basin and Range geologic province of the USA from 1974-1981: Geothermal Resources Council Transactions, v. 6, p. 11-14.

Edquist, R. K., 1981, Geophysical investigation of the Baltazar Hot Springs known geothermal resource area and the Painted Hills thermal area, Humboldt County, Nevada: MS thesis, University of Utah, 90 p.

EG&G Idaho, Inc., 1979, Nevada hydrothermal commercialization baseline: Hanny, J. A., and Lunis, B. C. (editors), U. S. Department of Energy Idaho Operations Office and Resource Applications, Geothermal Resource Office, unpublished report, 112 p.

Egami, R.T., Chow, J.C., Watson, J.G., and DeLong, T., 1990, PM₁₀ source apportionment study in Pleasant Valley, Nevada: Geothermal Resources Council Transactions, v. 14, Part II, p. 1115-1120.

Ehrlich, G. G., and Schoen, R., 1967, Possible role of sulfur oxidizing bacteria in surficial acid alteration near hot springs: U.S. Geological Survey Professional Paper 575-C, p. C110.

Elliott, L. T., 1986, Beowawe 16MW geothermal power plant project Chevron Geothermal Company/Crescent Valley Energy Company: Proceedings of a topical meeting on small scale geothermal power plants and geothermal power plant projects, Meeting sponsored by Geothermal Resources Council in Reno, Nevada, February 12-13, 1986, p. 83-97.

Emerson, C., 1984, Energy springs eternal: Nevada, September/ October issue, p. 15-20.

Energy Research and Development Administration, 1977, Guidelines to the preparation of environmental reports for geothermal development projects: U.S. Energy Research and Development Administration, Division of Geothermal Energy, ERHQ-0001.

Eng. Mining Journal-Press, 1923, No dividend no mill for Divide: Eng. Mining Journal-Press, v. 115, no. 12, p. 556.

Epperson, I. J., 1982, Beowawe, Nevada, well testing: history and results: Geothermal Resources Council Transactions, v. 6, p. 257-260.

Epperson, I. J., 1983, Beowawe acid stimulation: Geothermal Resources Council Transactions, v. 7, p. 409-412.

Epperson, I. J., 1983, Interference well testing: Beowawe, NV: Geothermal Resources Council Transactions, v. 7, p. 413-416.

Erdman, J. A., Hoover, D. B., McCarthy, J. H., Jr., Ficklin, W. H., Watterson, J. R., Lovering, T. G., and Owen, R. W., 1991, Geophysical, soil-gas, and geochemical evidence of a concealed, mineralized fault near W- and Sb-rich hot springs, Pumpernickel Valley, Nevada: U.S. Geological Survey open-file report 91-1497, 8 p.

Ettinger, T., and Brughman, 1992, Brady Hot Springs geothermal power plant: Geothermal Resources Council Bulletin, v. 21, no. 8, p. 259-260.

Ettinger, T., and Brugman, J., Brady Hot Springs geothermal power plant: Geothermal Resources Council Bulletin, v. 21, no. 8, p. 259-264.

Evans, A. S., 1869, In Whirlwind Valley: Overland Monthly [San Francisco, CA], v. 2, no. 2, p. 111-115.

Everett, D. E., and Rush, F. E., 1965, Water resources appraisal of Lovelock Valley, Pershing County, Nevada: Nevada Department Conserv. and National Resources, Water Resources-Reconnaissance Series Report 32, 40 p.

Everett, D. E., and Rush, F. E., 1967, Brief appraisal of water resources of Walker Lake area, Mineral, Lyon, and Churchill Counties, Nevada: Nevada Department Conserv. and National Resources, Water Resources-Reconnaissance Series Report 40, 44 p.

Everett, D. E., and Rush, F. E., 1964, Ground-water appraisal of Smith Creek and Lone Valleys, Lander and Nye Counties, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Reconnaissance Series Report no. 28, 21 p.

Everett, D. E., and Rush, F. E., 1966, Brief appraisal of the water resources of Grass and Carico Lake Valleys, Lander and Eureka Counties, Nevada: Nevada Department Conserv. and National Resources, Water Resources-Reconnaissance Series Report 37, 28 p.

Everett, D. E., 1964, Ground-water appraisal of Edwards Creek Valley, Churchill County, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Reconnaissance Series Report no. 26, 18 P.

Everett, D. E., 1964b, Map showing saline ground-water areas of Nevada: U.S. Geological Survey Open-File Report.

Everett, D. E., and Rush, F. E., 1964, Ground-water appraisal of Smith Creek and lone Valleys, Lander and Nye Counties, Nevada: Nevada Department Conserv. and Nat Resources, Ground-water Resources-Reconnaissance Series Report 28, 21 p.

Everett, D. E., 1964a, Ground-water appraisal of Edwards Creek Valley, Churchill County, Nevada: Nevada Department Conserv. and National Resources, Ground-water Resources-Reconnaissance Series Report 26.

Facca, G., and Tonani, F., 1962, Natural steam exploration in USA: Boll. Geofisica Teor. ed Appl., v. 4, no. 14, p. 155-170.

Fall, H. C., 1928, A new coelambus from a thermal spring in [Ruby Valley] Nevada: Psyche, v. 35, no. 1, p. 64-65.

Faulder, D. D., and Johnson, S. D., 1987, Desert Peak geothermal field performance: Geothermal Resources Council Transactions, v. 11, p. 527-534.

Feldman, S. C., Honey, F. R., and Ballew, G. I., The spectral anomaly over Railroad Valley oil field, Nevada: American Association of Petroleum Geologists Bulletin, v. 74, no. 5, p. 652-653.

Felmlee, J. K., and Cadigan, R. A., 1978, Radium and uranium data for Mineral Springs in eight western states: U.S. Geological Survey open-file report 78-561, 48 p.

Ferguson, H. G., Roberts, R. J., and Muller, S. W., 1952, Geology of the Golconda quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-15.

Ferguson, H. G., Muller, S. W., and Roberts, R. J., 1951a, Geology of the Winnemucca quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-11.

Ferguson, H. G., Muller, S. W., and Roberts, R. J., 1951b, Geology of the Mount Moses quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-12.

Feth, J. H., Roberson, C. E., and Polzer, W. L., 1964, Sources of mineral constituents in water from granitic rocks Sierra Nevada, California and Nevada: U.S. Geological Survey Water-Supply Paper 1535-I.

Ficklin, W. H., Smith, C. L., and Motooka, J. M., 1986, Analytical results for 38 hot spring samples collected in the western United States: U.S. Geological Survey open-file report 86-283, 3 p.

Fiero, G. W., Jr., 1968, Regional ground-water flow systems of central Nevada: Nevada University, Reno, Desert Research Institute, Center for Water Resources Research Miscellaneous Report 5, 212 p.

Fitch, W. E., 1927, Mineral waters of the United States and American spas: Philadelphia and New York, Lea & Febiger, 790 p.

Flynn, T., and Ghusn, G., 1984, Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada, final report: Division of Earth Sciences, Environmental Research Center, University of Nevada, Las Vegas, 148 p.

Flynn, T., 1986, Virginia Lake Townhouses geothermal fluid injection well: probably of impacting surrounding wells: unpublished report by REMCO-Earth Sciences Division, Reno, Nevada, for Mr. Fred Kohlenberg, San Francisco, California, September, 1986, 26 p.

Flynn, T., 1994, Critique of hot dry rock program: Geothermal Resources Council Bulletin, vol. 23, no. 3, p. 78-79.

Flynn, T., Trexler, D. T., and Koenig, B. A., 1979, Use of thermophilic algae in geothermal exploration records: Geothermal Resources Council Transactions, v. 3, p. 213-215.

Flynn, T., and Ghusn, G., Jr., 1983, Geologic and hydrologic research on the Moana Geothermal System, Washoe County, Nevada: Geothermal Resources Council Transactions, v. 7, p. 417-422.

Flynn, T., 1986, Geothermal resources description, well completion and preliminary testing, Virginia Lake Townhouses and Apartments, Reno, Nevada: unpublished report by REMCO- Earth Sciences Division, Reno, Nevada, for Fred Kohlenberg, Virginia Lake Townhouses and Apartments, February, 1986, 40 p.

Flynn, T., Buchanan, P. K., and Miller, J. D., 1994, Summary of geology and core lithology, slim hole SNLG 87-29, Steamboat Hills, Nevada: Geothermal Resources Council Bulletin, vol. 23, no. 3, p. 105-110.

Flynn, T., Trexler, D. T., and Koenig, B. A., 1982, The Kemp thermal anomaly: a newly discovered geothermal resource in Pumpernickel Valley, Nevada: Geothermal Resources Council Transactions, v. 6, p. 121-124.

Flynn, T., and Larson, M. K., 1983, Drilling, completion, and testing of geothermal wells CD-1 and CD-2, Caliente, Nevada: Geothermal Resources Council Transactions, v. 7, p. 595-600.

Flynn, T., and Buchanan, P. K., 1990, Geothermal fluid genesis in the Great Basin: Environmental Research Center, University of Nevada, Las Vegas, Report 90R1, 141 p.

Flynn, T., Koenig, B. A., Trexler, D. T., and Bruce, J. L., 1980, Area specific investigations of three low- to moderate- temperature geothermal resource areas in Nevada: Geothermal Resource Council, Transactions, v. 4, p. 41-44.

Flynn, T., Ghusn, G., Jr., and Trexler, D. T., 1984, Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada: Geo-heat Center Quarterly Bulletin, v. 8, no. 2, p. 3-6.

Flynn, T., 1986, Geothermal fluid injection tests and analysis of data, Virginia Lake-Townhouses and Apartments, Reno, Nevada: unpublished report by REMCO-Earth Sciences Division, Reno, Nevada, for Fred Kohlenberg, Virginia Lake Townhouses and Apartments, April, 1986, 12 p.

Fornes, A., 1981, Direct-use geothermal district heating projects in the U. S.....a summary: Geo-heat Center Quarterly Bulletin, v. 6, no. 3, p. 3-6.

Fornes, A., 1982, The status of geothermal development in Nevada: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 3-8.

Fournier, R. O., A revised equation for the Na/K geothermometer: Geothermal Resources Council Transactions, v. 3, p. 221-224.

Fournier, R. O., and Rowe, J. J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-stream wells: American Journal of Science, v. 264, p. 685-697.

Fredericks, J. C. and Loeltz, O. J., 1947, Ground water in the vicinity of Elko, Nevada, in Contributions to the hydrology of eastern Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin, no. 12, 171 P.

Fremont, J. C., 1845, Report of the exploring expedition to Oregon and north California in the years 1843-44: Illinois University Press [1970], Expeditions of John Charles Fremont, v. 1, pt. 137.

Fulton, J. A., and Smith, A. M., 1932, Nonmetallic minerals in Nevada: Nevada University Bulletin, v. 26, no. 7 [17]; reprinted from Pit and Quarry, v. 24, no. 11, Aug. 24, 1932.

Fultz, L. A., Bell, E. J., and Trexler, D. T., 1984, Geochemistry, age, and strontium isotope composition of Late Tertiary and Quaternary basalts and andesites in western Nevada and their relation to geothermal potential, final report, October 1, 1982 - December 31, 1983: U.S. Department of Energy, DOE/RA/50075-2, 170 p.

Garbrecht, D. A., 1978, Lineamints in north-central Nevada and their relations to geothermal areas: MS thesis, University of Nevada, Reno, 37 p.

Garside, L. J., 1973, Radioactive mineral occurrences in Nevada: Nevada Bureau of Mines and Geology Bulletin 81.

Garside, L. J., and Hess, R. H., 1994, Nevada geothermal resource use - 1993: Geothermal Resources Council Bulletin, v. 23, no. 2, p. 47-52.

Garside, L. J., 1974, Geothermal exploration and development in Nevada through 1973: Nevada Bureau of Mines and Geology Report 21, 12 p.

Garside, L. J., and Schilling, J. H., 1972, Geothermal exploration and development in Nevada, in Geothermal overviews of the western United States: Geothermal Resource Council Conference, El Centro, 1972, Proceedings, paper H; also, 1972, in Geothermal World Directory, Meadows, K. F., ed.

Garside, L. J., and Schilling, J. H., 1979, Thermal waters of Nevada: Nevada Bureau of Mines and Geology Bulletin 91, 163 p.

Garside, L. J., 1983, Preliminary map of thermal wells in the Moana Geothermal Area, Reno, Nevada: Nevada Bureau of Mines and Geology Open File Report 83-6.

Geo-Heat Center, 1988, Mineral processing enters second phase: Geo-heat Center Quarterly Bulletin, v. 11, no. 1, p. 28.

Geo-Heat Center, 1986, Department of Minerals provides Nevada geothermal activity update: Geo-heat Center Quarterly Bulletin, v. 9, no. 4, p. 22.

Geo-Heat Center, 1989, OESI dedicates Stillwater plant: Geo-heat Center Quarterly Bulletin, v. 12, no. 1, p. 24.

Geo-Heat Center, 1985, Elko school district drills geothermal well: Geo-heat Center Quarterly Bulletin, v. 9, no. 1, p. 19.

Geo-Heat Center, 1986, Walley's Hot Springs receives national award: discovery: Geo-heat Center Quarterly Bulletin, v. 9, no. 3, p. 22-23.

Geo-Heat Center, 1985, Turbine purchase proceeding for Beowawe site: Geo-heat Center Quarterly Bulletin, v. 9, no. 1, p. 19.

Geo-Heat Center, 1985, One operating, four more power plants to go on line this year: Geo-heat Center Quarterly Bulletin, v. 9, no. 9, p. 18-19.

Geo-Heat Center, 1984, Nevada proposes new geothermal regulations: Geo-heat Center Quarterly Bulletin, v. 8, no. 4, p. 25.

Geo-Heat Center, 1986, Binary wellhead generator being tested at Wabuska: Geo-heat Center Quarterly Bulletin, v. 9, no. 3, p. 22.

Geo-Heat Center, 1993, New power plant: Geo-heat Center Quarterly Bulletin, v. 15, no. 1, p. 25

Geo-Heat Center, 1984, Elko district heating system continues expansion: Geo-heat Center Quarterly Bulletin, v. 8, no. 2, p. 19.

Geo-Heat Center, 1984, Ormat opens new facility in Sparks: Geo-heat Center Quarterly Bulletin, v. 8, no. 4, p. 25-26.

Geo-Heat Center, 1989, Peppermill installs injection well: Geo-heat Center Quarterly Bulletin, v. 12, no. 1, p. 24.

Geo-Heat Center, 1984, Binary generator produces power at Wabuska: Geo-heat Center Quarterly Bulletin, v. 8, no. 4, p. 25.

Geo-Heat Center, 1991, Brady Power Partners contract with The Ben Holt Company to develop a power plant: Geo-heat Center Quarterly Bulletin, v. 13, no. 4, p. 25

Geo-Heat Center, 1986, Geothermal well to be drilled for hotel/ casino complex in Reno: Geo-heat Center Quarterly Bulletin, v. 9, no. 3, p. 22.

Geothermal Resources Council, 1984, Phase 1 of Fallon Naval Air Station geothermal project underway: Geothermal Resources Council Bulletin, v. 12, no. 9, p. 28.

Geothermal Resources Council, 1984, Sierra Pacific signs three power plant contracts: Geothermal Resources Council Bulletin, v. 13, no. 2, p. 20-21.

Geothermal Resources Council, 1981, Nornav completes geothermal heat exchanger shakedown: Geothermal Resources Council Bulletin, v. 10, no. 6, p. 20.

Geothermal Resources Council, 1981, Long-term flow test planned for Elko Heat Co. well: Geothermal Resources Council Bulletin, v. 10, no. 9, p. 18.

Geothermal Resources Council, 1984, Second well completed in Dixie Valley: Geothermal Resources Council Bulletin, v. 13, no. 3, p. 24-25.

Geothermal Resources Council, 1984, Nevada's first geothermal plant in operation: Geothermal Resources Council Bulletin, v. 13, no. 11, p. 22.

Geothermal Resources Council, 1984, New well in Dixie Valley: Geothermal Resources Council Bulletin, v. 13, no. 4, p. 25-26.

Geothermal Resources Council, 1981, Tests begin on Churchill County well: Geothermal Resources Council Bulletin, v. 10, no. 7, p. 18.

Geothermal Resources Council, 1978, First geothermal vegetable dryer dedicated: Geothermal Resources Council Bulletin, v. 7, no. 5, p. 1-3.

Geothermal Resources Council, 1974, A brief outline of geothermal regulatory agencies in the western United States: Geothermal Resources Council, Davis, CA.

Geothermal Resources Council, 1980, Nevada plant uses geothermal to manufacture alcohol: Geothermal Resources Council Bulletin, v. 9, no. 9, p. 6.

Geothermal Resources Council, 1980, Seismic surveys and drilling under way in northern Nevada: Geothermal Resources Council Bulletin, v. 9, no. 11, p. 17-18.

Geothermal Resources Council, 1983, The role of heat in the development of energy and mineral resources in the northern Basin and Range province: Geothermal Resources Council, Special Report 13, 384 p.

Geothermal Development Associates, 1987, Environmental assessment Empire geothermal project, San Emidio Desert Known Geothermal Resource Area (KGRA), geothermal lease no. N-42707: unpublished report, 56 p.

Geothermal Resources Council, 1979, Andersen Laboratories buys vegetable dehydration company: Geothermal Resources Council Bulletin, v. 8, no. 6, p. 1.

Geothermal Resources Council, 1977, The geothermal registry: Geothermal Resources Council publication, 328 p.

Geothermal Resources Council, 1984, Nevada approves power plants: Geothermal Resources Council Bulletin, v. 13, no. 9, p. 28.

Geothermal Resources Council, 1983, Twelve wells slated for Fish Lake Valley area: Geothermal Resources Council Bulletin, v. 12, no. 6, p. 13-14.

Geothermal Resources Council, 1987, New geothermal video films from Nevada: Geothermal Resources

Council Bulletin, v. 16, no. 2, p. 18.

Geothermal Development Associates, 1981, A preliminary plan for the development of geothermal energy in the town of Gabbs, Nevada: Department of Energy publication, 95 p.

Geothermal Development Associates, 1981, A preliminary plan for the development of geothermal energy in the town of Hawthorne, Nevada: Department of Energy publication, 106 p.

Geothermal Resources Council, 1987, New power plant scheduled for Steamboat Hot Springs, Nevada: Geothermal Resources Council Bulletin, v. 16, no. 3, p. 23.

Geothermal Resources Council, 1986, Elko County school district going geothermal: Geothermal Resources Council Bulletin, v. 15, no. 3, p. 20.

Geothermal Resources Council, 1986, The Beowawe geothermal power project: Geothermal Resources Council Bulletin, v. 15, no. 11, p. 15-17.

Geothermal Resources Council, 1986, Trans-Pacific Geothermal Corporation planning Stillwater development: Geothermal Resources Council Bulletin, v. 15, no. 4, p. 22.

Geothermal Resources Council, 1986, BLM approves Dixie Valley power plant: Geothermal Resources Council Bulletin, v. 15, no. 11, p. 27.

Geothermal Resources Council, 1982, Phillips to drill Desert Peak well: Geothermal Resources Council Bulletin, v. 11, no. 9, p. 35.

Geothermal Resources Council, 1981, Andersen Group sells geothermal food processing plant: Geothermal Resources Council Bulletin, v. 10, no. 11, p. 14-15.

Geothermal Resources Council, 1983, Elko geothermal project a bubbling success: Geothermal Resources Council Bulletin, v. 12, no. 4, p. 18.

Geothermal Resources Council, 1984, District heating system to go public: Geothermal Resources Council Bulletin, v. 13, no. 7, p. 20.

Geothermal Resources Council, 1981, Getty evaluates Beowawe well: Geothermal Resources Council Bulletin, v. 10, no. 10, p. 21.

Geothermal Resources Council, 1982, Chevron test Nevada wildcat: Geothermal Resources Council Bulletin, v. 11, no. 5, p. 16.

Geothermal Resources Council, 1983, Geothermal direct use progresses in Reno: Geothermal Resources Council Bulletin, v. 12, no. 1, p. 22.

Geothermal Resources Council, 1982, Elko geothermal project moves ahead on schedule: Geothermal Resources Council Bulletin, v. 11, no. 9, p. 35-36.

Geothermal Resources Council, 1981, Gasohol produced with geothermal heat sells in Nevada: Geothermal Resources Council Bulletin, v. 10, no. 6, p. 20.

Geothermal Resources Council, 1986, Navy is not abandoning its geothermal project: Geothermal Resources Council Bulletin, v. 15, no. 3, p. 19.

Geothermal Resources Council, 1986, Geothermal resources in Nevada; Geothermal Resources Council Bulletin, v. 15, no. 5, p. 21-22.

Geothermal Resources Council, 1988, Warren properties district heating system expands: Geothermal Resources Council Bulletin, v. 17, no. 9, p. 20.

Geothermal Resources Council, 1985, Elko school district has geothermal well: Geothermal Resources Council Bulletin, v. 14, no. 4, p. 20.

Geothermal Resources Council, 1986, Chevron purchases Phillips holdings: Geothermal Resources Council Bulletin, v. 15, no. 3, p. 19.

Geothermal Resources Council, 1988, Elko district heating system experience significant growth: Geothermal Resources Council Bulletin, v. 17, no. 9, p. 20.

Geothermal Resources Council, 1988, Energy award to mining company: Geothermal Resources Council Bulletin, v. 17, no. 6, p. 21.

Geothermal Resources Council, 1990, Applying the air quality source apportionments to geothermal power plant emissions: Geothermal Resources Council Bulletin, v. 19, no. 8, p. 208-213.

Geothermal Resources Council, 1990, Courthouse geothermal system up and running: Geothermal Resources Council Bulletin, v. 19, no. 2, p. 60.

Geothermal Resources Council, 1986, GDA-Ormat Steamboat Springs geothermal power plant performs: Geothermal Resources Council Bulletin, v. 15, no. 2, p. 23.

Geothermal Resources Council, 1986, Chevron Beowawe plant completed: Geothermal Resources Council Bulletin, v. 15, no. 3, p. 19-20.

Geothermal Resources Council, 1987, Geothermal resources in Nevada: Geothermal Resources Council Bulletin, v. 16, no. 5, p. 14-15.

Geothermal Resources Council, 1985, New power station at Steamboat Hot Springs: Geothermal Resources Council Bulletin, v. 14, no. 10, p. 14.

Geothermal Resources Council, 1985, Sewage plant a winner: Geothermal Resources Council Bulletin, v. 14, no. 3, p. 25.

Geothermal Resources Council, 1985, Development at Fallon air station terminated: Geothermal Resources Council Bulletin, v. 14, no. 9, p. 35.

Geothermal Resources Council, 1985, Gilroy Foods purchases Nevada onion dehydration plant: Geothermal Resources Council Bulletin, v. 14, no. 6, p. 18.

Geothermal Resources Council, 1986, Desert Peak power plant on line: Geothermal Resources Council Bulletin, v. 15, no. 2, p. 23.

Geothermal Resources Council, 1985, Anadarko Petroleum announces Nevada geothermal discovery: Geothermal Resources Council Bulletin, v. 14, no. 11, p. 18.

Geothermal Resources Council, 1992, OESI Power Corp. announces successful well at Rye Patch: Geothermal

Resources Council Bulletin, vol. 21, no. 1, p. 21.

Geothermal Resources Council, 1986, Chevron dedicates Beowawe power plant: Geothermal Resources Council Bulletin, v. 15, no. 10, p. 15.

Geothermal Resources Council, 1981, Sunedco completes Dixie Valley well: Geothermal Resources Council Bulletin, v. 10, no. 1, p. 16.

Geothermal Resources Council, 1994, Fish Lake Valley geothermal unit has been proposed: Geothermal Resources Council Bulletin, vol. 23, no. 3, p. 84.

Geothermal Resources Council, 1987, New exploring expression interest for Fallon: Geothermal Resources Council Bulletin, v. 16, no. 5, p. 15.

Geothermal Resources Council, 1981, Start-up at Nevada's Wabuska ethanol plant: Geothermal Resources Council Bulletin, v. 10, no. 1, p. 15.

Geothermal Resources Council, 1981, Nevada casino converts to geothermal heating: Geothermal Resources Council Bulletin, v. 10, no. 1, p. 15.

Geothermal Resources Council, 1994, Alturas intertie project: Geothermal Resources Council Bulletin, vol. 23, no. 3, p. 83-84.

Geothermal Resources Council, 1981, MX missile area geothermal source tapped: Geothermal Resources Council Bulletin, v. 10, no. 4, p. 16.

Geothermal Resources Council, 1988, Ormat to build new plant: Geothermal Resources Council Bulletin, v. 17, no. 3, p. 11.

Geothermal Resources Council, 1981, Anadarko completes Nevada geothermal wildcat: Geothermal Resources Council Bulletin, v. 10, no. 5, p. 18.

Geothermal Resources Council, 1987, Oxbow underway with Dixie Valley power plant: Geothermal Resources Council Bulletin, v. 16, no. 6, p. 8.

Geothermal Resources Council, 1988, Two new power plants for Nevada: reprint from The Energy Scene, November/December, 1987, Geothermal Resources Council Bulletin, v. 17, no. 2, p. 8.

Geothermal Resources Council, 1988, Mineral processing enters second phase: Geothermal Resources Council Bulletin, v. 17, no. 3, p. 11.

Geothermal Resources Council, 1987, Second unit at Wabuska: Geothermal Resources Council Bulletin, v. 16, no. 7, p. 16.

Geothermal Resources Council, 1987, Ormat schedules two power plants: Geothermal Resources Council Bulletin, v. 16, no. 10, p. 15-16.

Geothermal Resources Council, 1990, Geothermal plant can grow: Geothermal Resources Council Bulletin, vol. 19, no. 9, p. 257.

Geothermal Resources Council, 1988, Geothermal energy to be used in gold leaching system: Geothermal Resources Council Bulletin, v. 17, no. 5, p. 21.

Goranson, C. B., and Combs, J., 1994, Steamboat Hills Geothermal Field - Far West Capital, Inc., SBII and SBIII power plants lease area data package, 3 volumes.

Gordon, S. S., 1985, Elko Heat Company: Geo-Heat Center Quarterly Bulletin, v. 9, no. 1, p. 13-14.

Grose, L. T., and Keller, G. V., 1976, Research on the physical properties of geothermal reservoir rocks. Summary report on collection of samples of volcanic rocks for petrophysical studies. Progress Report 1: National Technical Information Service Report COO-2908-1.

Grose, L. T., and Keller, G. V., 1975a, Colorado School of Mines Nevada Geothermal Study-Progress Report No. 3-for Period November 1, 1974 to January 31, 1975: Colorado School of Mines report, National Science Foundation grant GI 43866.

Grose, L. T., and Keller, G. V., 1975b, Colorado School of Mines Nevada Geothermal Study Progress Report No. 4-for Period February 1, 1975 to October 31, 1975: Colorado School of Mines report, National Science Foundation grant GI 43866.

Grose, T. L. T., 1987, Major extensional tectonic interaction at the Gerlach thermal area, northwestern Nevada: EOS, Transactions American Geophysical Union, v. 68, p. 1509-1510.

Grose, L. T., 1978, Late Quaternary tectonic controls of occurrence of geothermal systems in Gerlach-Hualapai Flat area, northwestern Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 11-14.

Grose, L. T., and Sperandio, R. J., 1978, Geology of the Gerlach- Hualapai Flat Geothermal Area, northwestern Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 1-10.

Grose, L. T., and Keller, G. V., 1974b, Colorado School of Mines Nevada Geothermal Study-Report of Progress for Period August 1, 1974 to October 30, 1974: Colorado School of Mines report, National Science Foundation grant GI 43866.

Grose, L. T., 1971, Geothermal energy: geology, exploration, and developments, Part 1: Colorado School of Mines Mineral Industries Bulletin v. 14, no. 6.

Grose, L. T., and Keller, G. V., 1974a, Colorado School of Mines Nevada Geothermal Study-Report of Progress for the Period May 1, 1974 to July 31, 1974: Colorado School of Mines report, National Science Foundation grant GI 43866.

Guffanti, M., and Nathenson, M., 1980, Preliminary map of temperature gradients in the conterminous United States: Geothermal Resources Council Transactions, v. 4, p. 53-56.

Hadgu, T., et. al., 1993, Preliminary report on recent injection and flow tests in well SNLG 87-29, Steamboat Hills Geothermal Field, Nevada: draft, Lawrence Berkeley Laboratory, Berkeley, CA, December, 1993.

Hague, Arnold, and Emmons, S. F., 1877, U.S. Geological Exploration 40th Parallel, v. 2, 890 p.

Hardman, G., and Miller, M., 1934, Quality of water of southeastern Nevada, drainage basins and water resources: Nevada University, Reno, Agricultural Experiment Station Bulletin 136.

Harrill, J. R., and Moore, D. O., 1970, Effects of ground-water regimen of Paradise Valley, Humboldt County, Nevada, 1948-68, and hydrologic reconnaissance of the tributary areas: Nevada Department

Conservation and National Resources, Water Resources Bulletin 39.

Harrill, J. R., 1970, Water-resources appraisal of the Granite Springs Valley area, Pershing, Churchill, and Lyon Counties, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 55, 36 p.

Harrill, J. R., 1968, Ground water in Diamond Valley, Eureka County, Nevada: Nevada Department Conservation and National Resources, Water Resources Bulletin 35, 85 p.

Harrill, J. R., 1969, Hydrologic response to irrigation ground-water pumping in Hualapai Flat, Washoe, Humboldt, and Pershing Counties, Nevada, 1960-67: Nevada Department Conservation and National Resources, Water Resources Bulletin 37, 75 p.

Harrison, R., 1986, Economics of some direct use geothermal schemes in the U. S. A.: Geothermal Resources Council Transactions, v. 10, p. 261-266.

Hatton, K. S., 1984, Geothermal tax incentives in the western United States: Geothermal Resources Council Transactions, v. 8, p. 17-18.

Hawley, J. W., and Wilson, W. E., 1965, Quaternary geology of the Winnemucca area: Nevada University, Reno, Desert Research Institute Technical Report 6.

Heald, W. F., 1952, Geysers: Scenic Guide to Nevada, p. 25.

Heald, W. F., 1952, Cone of Colors: Scenic Guide to Nevada, p. 12-13.

Henry, T. L., and Lee, T. C., 1976, Heat flow in Lake Tahoe, California-Nevada, and the Sierra Nevada-Basin and Range transition: Geological Society America Bulletin, v. 87, p. 1179-1187.

Herr, J. J., Phillips, S. L., Schwartz, S. R., and Trippe, 1975, Standards for multilateral and worldwide exchange of geothermal data: University of California System, Lawrence Berkeley Laboratory Publication UCID-3792, 9 p.

Hess, 1993, Geothermal energy, in The Nevada mineral industry, 1992: Nevada Bureau of Mines and Geology Special Publication MI-1992, p. 49-52.

Higgins, C. T., Chapman, R. H., Chase, G. R., Bacon, C. F., Flynn, T., Trexler, D. T., and Ghosh, G. Jr., 1985, Geothermal systems in the Mono Basin-Long Valley region, eastern California and western Nevada, EOS, Transactions American Geophysical Union, v. 66, p. 1146.

Hill, D. G., 1979, Intermediate depth geothermal temperature study, Gradient Holes: 11-33 and 63-33, Soda Lake, Nevada: United States Department of Energy, Division of Geothermal Energy, DOE/ET/27100-1, 37 p.

Hill, D. G., Layman, E. B., Swift, C. M., and Yungul, S. H., Soda Lake, Nevada, thermal anomaly: Geothermal Resources Council Transactions, v. 3, p. 305-308.

Hoffman, J.D., Gunnells, G.B., and McNeal, J.M., 1991, National geochemical data base: National Uranium Resource Evaluation data for the conterminous United States: U.S. Geological Survey Digital Data Series, DDS-1.

Hollander, J. M., Laird, A. D. K., Mirk, K. F., and Wollenberg, H. A., 1974, Utilization of

intermediate-temperature geothermal brines in the production of electric power, *in* Geothermal Resources-Parts I and II: Committee on Interior and Insular Affairs, Washington, D. C., p. 126-140.

Holmes, G. H., Jr., 1966, Water requirements and uses in Nevada mineral industries: U.S. Bureau Mines Information Circular 8288, 66 p.

Hoover, D. B., O'Donnell, J., Batzle, M., and Rodriguez, R., 1975, Map of telluric profiles, Steamboat Hills, Nevada: U.S. Geological Survey Open-File Report 75-445.

Hoover, D. B., Batzle, M., and Rodriguez, R., 1975, Self-potential map-Steamboat Hills, Nevada: U.S. Geological Survey Open-File Report 75-446.

Hoover, D. B., Brougham, G., and Clark, J., 1976, Audio-magnetotelluric data log, station location map, and telluric profile data for the Elko Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-152, 8 p.

Hoover, D. B., Manydeeds, S., and Martinez, R., 1975, Audio-magnetotelluric data log, station location map, and telluric profile for San Emidio Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 75-670, 8 p.

Horton, R. C., 1964a, Geothermal power in Mineral and water resources of Nevada: Nevada Bureau of Mines and Geology Bulletin 65, p. 267-269.

Hoover, D. B., Peterson, D. L., and Farkash, V., 1977, Telluric profile location map and telluric data for the Baltazar Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-66C, 3 p.

Hoover, D. B., and Batzle, M., 1977, Audio-magnetotelluric data log and station location map for Pinto Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-65 A.

Hoover, D. B., Senterfit, R. M., Fisher, D., and Radtke, B., 1977, Telluric profile location map and telluric data for the Salt Wells Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-66F, 3 p.

Horton, R. C., 1964b, Hot springs, sinter deposits and volcanic cinder cones in Nevada: Nevada Bureau of Mines and Geology Map 25.

Hose, R. K., and Taylor, B. E., 1974, Geothermal systems of northern Nevada: U.S. Geological Survey Open-File Report 74-271, 27 p.

Houghton, J.G., Sakamoto, C.M., and Gifford, R.O., 1975, Nevada's weather and climate: Nevada Bureau of Mines and Geology Special Publication 2, 78 p.

Hubbs, C. L., Miller, R. R., and Hubbs, L. C., 1974, Hydrographic history and relict fishes of the north-central Great Basin: California Acad. Science Mem., v. 7.

Hughes, J. L., 1966, Some aspects of the hydrogeology of the Spring Mountains and Pahrump Valley, Nevada, and environs, as determined by spring evaluation: M.S. thesis, University of Nevada, Reno, 116 p.

Hulen, J. B., 1983, Structural control of the Baltazar Hot Springs Geothermal System, Humboldt County, Nevada: Geothermal Resources Council Transactions, v. 7, p. 157-162.

Hulen, J. B., Bortz, L. C., and Bereskin, S. R., 1991, The role of active and ancient geothermal systems in evolution of Grant Canyon oil field, Railroad Valley, Nye County, Nevada: American Association of Petroleum Geologists Bulletin, v. 75, p. 1128.

Hulen, J. B., 1979, Geology and alteration of the Baltazar Hot Springs and Painted Hills Thermal Areas, Humboldt County, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ET/28392-36, 78/1701.b.1.2.5, ESL-27, 21 p.

Hummel, N. A., 1888, General history and resources of Washoe County, Nevada: Nevada Educ. Association (printed by the Reno Evening Gazette).

Hunt, C. B., Robinson, T. W., Bowles, W. A., and Washburn, A. L., 1966, Hydrologic basin, Death Valley, California: U.S. Geological Survey Professional Paper 494-B, 138 p.

Huxel, C. J., 1969, Ground water in Mason Valley, Lyon County, Nevada: Nevada Department Conservation and National Resources, Water Resources Bulletin 38, 77 p.

Ingraham, N. L., 1982, Environmental isotope hydrology of the Dixie Valley geothermal system, Dixie Valley, Nevada: MS thesis, University of Nevada, Reno, 96 p.

Jacobson, E. A., and Johnson, J. W., 1991, The Moana geothermal system in Reno, Nevada: a hydrologic, geochemical, and thermal analysis: Water Resources Center (Desert Research Institute, University of Nevada System), publication #41131 (DOE/ID12757-01, UC-600), 169 p.

Jacobson, R. L., Ingraham, N. L., and Compana, M. E., 1983, Isotope hydrology of a Basin and Range geothermal system: University of Nevada System - Desert Research Institute, Water Resources Center Publication #41087, 18 p.

Jacobson, E., and Johnston, J., 1991, Development response of the Moana Geothermal System, Reno, Nevada: Geothermal Resources Council Transactions, v. 15, p. 489-496.

Jewel, P. W., 1982, Open-file report, geology and geothermal potential north of Wells, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-83, NV/WLS/ESL-1, 38 p.

Johnson, H. C., 1945, Beowawe: Scenic guide to Nevada, p. 8-9.

Johnson, H. C., 1945, Small geysers: Scenic guide to Nevada, p. 69.

Johnson, M. G., 1977, Geology and mineral deposits of Pershing County, Nevada: Nevada Bureau of Mines and Geology Bulletin 89, 115 p.

Johnson, E. A., Renner, J. L., and Telleen, K. E., 1976, Hydrothermal convection systems in Nevada, in Renner, J. L., and others, Selected geothermal resources data: Hydrothermal convection systems in the states of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming: National Technical Information Service PB-250 377.

Jones, J. C., 1914, Occurrence of stibnite and metastibnite at Steamboat Springs, Nevada [abs.]: Geological Society America Bulletin, v. 25, no. 1, p. 126.

Juncal, R. W., 1980, Exploration for geothermal resources using arsenic and mercury soil geochemistry, Dixie Valley, Nevada: MS thesis, University of Nevada, Reno, 87 p.

Juncal, R. W., and Bell, E. J., 1981, Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada--part II: geochemistry: Geothermal Resources Council Transactions, v. 5, p. 51-54.

Kaplan, U., Krieger, Z., and Dillenberger, A., 1987, Innovative design, construction, and operation of the Steamboat 5MW geothermal power plant at Steamboat Springs, Washoe County, Nevada: Geothermal Resources Council Transactions, v. 11, p. 429-436.

Karst, G. B., Campana, M. E., and Jacobson, R. L., 1988, A mixing-cell model of the hydrothermal flow system, northern Dixie Valley, Nevada: Transactions Geothermal Resources Council, v. 12, p. 167-172.

Katz, L. J., 1984, Seismic emissions surveys: Geothermal Resources Council Transactions, v. 8, p. 505-510.

Katzenstein, A. M., and Bjornstad, S. C., 1987, Geothermal resource evaluation at naval air station, Fallon, Nevada: report by Naval Weapons Center, NWC TP 6808, 53 p.

Katzenstein, A. M., and Danti, K. J., 1982, Evaluation of geothermal potential of the naval air weapons training complex, Fallon, Nevada: Naval Weapons Center, NWC TP 6359, 110 p.

Kaufmann, H., 1976, Telluric profiles across the Darrough Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-286, 5 p.

Keller, G. V., Grose, L. T., and Crewdson, R. A., 1978, Speculations on the nature of geothermal energy in Basin and Range Province of western United States: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 71-80.

Keller, G. V., Grose, T., and Crewdson, R. A., 1974, Colorado School of Mines Nevada geothermal study: Conference on Research for Devel. of Geothermal Energy Resources, Pasadena, CA, 1974, Proceedings, p. 73-84; also National Science Foundation RANN Report 74-159.

Keller, G. V., Crewdson, R. A., and Daniels, J. J., 1978, Time- domain electromagnetic survey in Black Rock Desert-Hualapai Flat area of northwestern Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 47-56.

Keller, G. V., 1993, Geothermal exploration in the western United States: Colorado School of Mines Quarterly Review, v. 93, p. 23-38.

Keplinger and Associates, Inc., 1978, Interim evaluation of exploration and development status, geothermal potential, and associated economics of Dixie Valley, Nevada: unpublished report by Keplinger and Associates, Inc., Houston, Texas, for Millican Oil Company, Houston, Texas, September 1, 1978, 113 p.

Kerr, P. F., 1940, Tungsten-bearing manganese deposit at Golconda, Nevada: Geological Society America Bulletin, v. 51, p. 1359-1389.

Kerr, P. F., 1946, Tungsten mineralization in the United States: Geological Society America Mem. 15.

Kharaka, Y. K., Lico, M. S., Carothers, W. W., Welch, A. H., Sorey, M. L., Olmsted, F. H., Moench, A. F., Denlinger, R. P., Herkelrath, W. N., and Robison, J. H., 1981, Western region: U.S. Geological Survey Professional Paper 1275, p. 106-112.

Kiersch, G. A., 1964, Geothermal steam, origin, occurrence, characteristics and exploitation: Cornell

University, Ithaca, NY (Prepared under contract for U.S. Air Force Cambridge Research Labs.).

Kingman, D. S., 1958, Camp Desert Rock, Nevada-water supply investigation: report to U.S. Corps of Engineers, San Francisco District, CA.

Kingman, D. S., 1959, Water supply investigation: Naval Auxiliary Air Station, Fallon, Nevada, for District Public Works Office, U.S. Navy, Twelfth Naval District, San Bruno, CA.

Knopf, Adolph, 1917, Tin ore in northern Lander County, Nevada: U.S. Geological Survey Bulletin 640-g, p. 125-138.

Koenig, B. A., Trexler, D. T., and Flynn, T., 1979, Nevada's geothermal resources and their potential for direct utilization: Geothermal Resources Council Transactions, v. 3, p. 345-347.

Koenig, B. A., Trexler, D. T., and Flynn, T., 1980, Fluid chemistry studies of three low- to moderate-temperature geothermal resource areas in Nevada: Geothermal Resources Council Transactions, v. 4, p. 169-172.

Koenig, J. B., 1973, Worldwide status of geothermal resources, in Kruger, Paul and Otte, Carel (eds.), Geothermal energy-resources, production, stimulation: Stanford University Press, Stanford, CA.

Koenig, J. B., and McNitt, J. R., 1983, Controls on the location and intensity of magmatic and non-magmatic geothermal systems in the Basin and Range province[abs.]: Geothermal Resources Council Special Report 13, p. 93.

Koenig, J. B., Greensfelder, R. W., Klein, C. W., 1976, Geothermal potential of the Quest leasehold, Dixie Valley, Nevada: unpublished report by GeothermEx, Inc., Berkeley, California, for Dow Chemical Company, December, 1976, 149 p.

Koenig, J. B., 1970, Geothermal exploration in the western United States: Geothermics, Special Issue 2, v. 2, pt. 1, p. 1-13.

Koenig, H., 1989, Recent geyser activity at Steamboat Springs, Nevada: GOSA Transactions, the Annual Journal of the Geyser Observation and Study Association, v. 1, p. 243-254.

Koenig, J. B., Anderson, D. N., and Huttner, G. W., 1975, Exploration and development of geothermal resources in the United States, 1968-1975: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 1, p. 139-142.

Kumamoto, L. H., Microearthquake surveys of the Snake River Plain and northwest Basin and Range geothermal areas: PhD dissertation, Colorado School of Mines, 181 p.

Kunmamoto, L., 1978, Microearthquake survey in the Gerlach-Fly Ranch area of northwestern Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 45-64.

Kuwada, J. T., 1982, Field demonstration of the EFP system for carbonate scale control: Geothermal Resources Council Bulletin, v. 11, no. 9, p. 3-9.

Lamke, R. D., and Moore, D. O., 1965, Interim inventory of surface-water resources of Nevada: Nevada Department Conservation and National Resources, Water Resources Bulletin 30, 39 p.

Lange, A. L., 1980, The McCoy, Nevada, geothermal prospect, an interim case history: AMAX Exploration, Inc., Wheat Ridge, Colorado, paper delivered at the 50th annual meeting of the Society of Exploration Geophysicists, Houston, Texas, 17 November, 1980, 52 p.

LaPointe, D. D., Tingley, J. V., and Jones, R. B., 1991, Mineral resources of Elko County, Nevada: Nevada Bureau of Mines and Geology Bulletin 106, 236 p.

Lawrence, E. F., 1971, Mercury mineralization at the Senator Fumaroles, Dixie Valley, Nevada [abs.]: Geological Society America Abstracts with Programs, v. 3, no. 2, p. 147 (Cordilleran Section).

Lawrence Livermore Laboratories, 1977, Hydrogeothermal and stream-sediment survey of the National Uranium Resource Evaluation (NURE) Program-western United States: U.S. Energy Research and Development Administration, GJBX-53(77), 15 p.

Lawrence Livermore Laboratory, 1976, Preliminary report on the Smoke Creek Desert basin pilot study (Nevada); Hydrogeochemical and stream-sediment survey (NURE): United States Energy Research and Development Administration, GJBX-42 (76), UCID-16911-P-3.

Lawson, A. C., 1912, The recent fault scarps at Genoa, Nevada: Seismol. Society America Bulletin, v. 2, no. 3, p. 193-200.

Layman, E. B., 1984, A simple basin and range fault model for the Beowawe geothermal system, Nevada: Geothermal Resources Council Transactions, v. 8, p. 451-456.

LeConte, Joseph, 1883, On mineral vein formation now in progress at Steamboat Springs [Nevada] compared with the same at Sulphur Bank [California]: Am. Journal Science, 3d ser., v. 25, p. 424-428.

Lee, K., 1978, Analysis of thermal infrared imagery of the Black Rock Desert Geothermal Area, 1978: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 31-44.

Liaw, A. L. C., 1977, Microseisms in geothermal exploration-studies in Grass Valley, Nevada: California University, Lawrence Berkeley Laboratory Report LBL-7002.

Lienau, P. J., 1991, Geothermal aquaculture development: Geo-heat Center Quarterly Bulletin, v. 13, no. 2, p. 5-7.

Lienau, P. J., 1986, Status of direct heat projects in western states: Geo-heat Center Quarterly Bulletin, v. 9, no. 4, p. 3-7.

Lienau, P. J., 1986, Status of direct heat projects in western states: Geothermal Resources Council Transactions, v. 10, p. 13-18.

Lienau, P.J., Culver, G., and Lund, J.W., 1988, Geothermal direct use developments in the United States, Report prepared for the U.S. Department of Energy under contract No. DE-FG07-87ID 12693: Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, 104 p.

Lienau, P. J., and Ross, H., 1993, Low-temperature resource assessment program update: Geo-Heat Quarterly Bulletin, v. 15, no. 1, p. 17-21.

Lienau, P. J., 1988, Direct use developments in the United States: Geo-heat Center Quarterly Bulletin, v. 11, no. 1, p. 1-4.

Liggett, M. A., 1974, Reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau-Final report: Natl. Aeronautics and Space Admin. CR Report 139434, Natl. Tech. Information Service.

Lindgren, Waldemar, 1905, Occurrence of stibnite at Steamboat Springs, Nevada: Society Mining Engineers Trans., v. 36.

Lindgren, Waldemar, 1911, Tertiary gravels of the Sierra Nevada of California: U.S. Geological Survey Professional Paper 73, 226 p.

Lineau, P. J., and Lund, J. W., 1992, Significant events in the development of geothermal use in the United States: Geo-Heat Center Quarterly Bulletin, v. 14, no. 3, p. 1-8.

Lintz, Joseph, Jr., 1957, Nevada oil and gas drilling data, 1906-1953: Nevada Bureau of Mines and Geology Bulletin 52.

Livingston, Penn, 1940, Underground leakage from artesian wells in the Las Vegas area, Nevada: U.S. Geological Survey Water-Supply Paper 849-C, 26 p.

Locke, A., 1912, The abnormal temperatures on the Comstock Lode: Economic Geology, v. 7, p. 583-587.

Loeltz, O. J., and Eakin, T. E., 1953, Geology and water resources of Smith Valley, Lyon and Douglas Counties, Nevada: U.S. Geological Survey Water-Supply Paper 1228.

Loeltz, O. J., 1953, Results of pumping test of an artesian well near Battle Mountain, Lander County, Nevada: U.S. Geological Survey Open-File Report.

Loeltz, O. J., Phoenix, D. A., Robinson, T. W., 1949, Ground water in Paradise Valley, Humboldt County, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 10, 61 p.

Loeltz, O. J., and Phoenix, D. A., 1955, Geology and ground-water resources of Buena Vista Valley, Pershing County, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin no. 13, 46 p.

Loeltz, O. J., 1953, Hydrologic characteristics of aquifers penetrated by irrigation wells in the vicinity of Orovada, Humboldt County, Nevada: U.S. Geological Survey Open-File Report.

Long, C. L., and Brigham, R. H., 1975b, Audio-magnetotelluric data log for Steamboat Hills, Nevada: U.S. Geological Survey Open-File Report 75-447.

Long, C. L., and Batzle, M. L., 1976a, Station location map and audiagnetotelluric data log for Monte Neva Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-700A, 6 p.

Long, C. L., Senterfit, M., and Kaufmann, H., 1975, Audiagnetotelluric data log and station location map for Gerlach Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 75-669, 8 p.

Long, C. L., and Senterfit, M., 1977b, Audio-magnetotelluric data log and station location map for Fly Ranch Northeast Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-65C, 6 p.

Long, C. L., and Brigham, R. H., 1975a, Audio-magnetotelluric data log for Wabuska, Nevada: U.S. Geological Survey Open-File Report 75-444.

Long, C. L., and Batzle, M. L., 1976b, Station location map and audiagnetotelluric data log for Ruby Valley Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-700B, 5 p.

Long, C. L., Senterfit, M., and Kaufmann, H., 1976, Audio-magnetotelluric data log, apparent resistivity maps and station location map for the Darrough Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-285, 10 p.

Long, C. L., and Senterfit, M., 1977c, Audio-magnetotelluric data log and station location map for Gerlach Northwest Known Geothermal Resource Area, Nevada: U. S. Geological Survey Open-File Report 77-65D, 7 p.

Long, C. L., and Senterfit, M., 1977a, Audio-magnetotelluric data log and station location map for Baltazar Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-65B, 6 p.

Long, C. L., and Batzle, M. L., 1976c, Station location map and audio-magnetotelluric data log for Rye Patch Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-700C, 4 p.

Lord, E., 1883, Comstock mining and miners: U.S. Geological Survey Mon. 4.

Lund, J. W., 1982, Geothermal vegetable dehydration at Brady's Hot Springs: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 14-16.

Lund, J.W., Lienau, P.J., and Culver, G.G., 1990, The current status of geothermal direct use in the United States, Update: 1985-1990: Geothermal Resources Council Transactions, v. 14, Part I, p. 277-291.

Lund, J. W., 1981, Direct use geothermal potential within the BPA marketing area: Geothermal Resources Council Transactions, v. 5, p. 535-536.

Lund, J.W., Lienau, P.J., and Culver, G.G., 1990, The current status of geothermal direct use in the United States, Update: 1985-1990: Geothermal Resources Council Transactions, v. 14, Part I, p. 277-291.

Lund, J. W., 1985, Agriculture and aquaculture applications of geothermal energy: Geo-heat Center Quarterly Bulletin, v. 9, no. 2, p. 6-8. Lund, J. W., 1988, Geothermal heat pump utilization in the United States: Geo-heat Center Quarterly Bulletin, v. 11, no. 4, p. 5-7. Lunis, B. C., and Lienau, P. J., 1988, Status and trends of geothermal direct use projects in the United States:Geothermal Resources Council Transactions, v. 12, p. 15-19.

Lund, J. W., 1984, Low-temperature geothermal development: Geothermal Resources Council Bulletin, v. 13, no. 3, p. 20-22.

Lutsey, I. A., and Nichols, S. L., 1972, Land status map of Nevada (2nd edition): Nevada Bureau of Mines and Geology Map 40.

Lyle, D. A., 1878) The springs of southern Nevada: Amer. Naturalist, v. 12, p. 18-27.

Lyles, B. F., 1985, Time-variant hydrogeologic and geochemical study of selected thermal springs in western Nevada: MS thesis, University of Nevada, Reno, 203 p.

Mackay Minerals Research Institute, 1979, Analysis of shallow gradient holes: unpublished report submitted to Southland Royalty Company, Fort Worth, Texas, under subcontract to the U. S. Department of Energy by Mackay Minerals Research Institute, University of Nevada, Reno, Nevada, November 1, 1979, 56 p.

Mackelprang, C. E., 1982, Two-dimensional model results of telluric-magnetotelluric data from the Tuscarora

area, Elko County, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-48, NV/WLS/ESL-63, 25 p.

Mackelprang, C. E., Moore, J. N., and Ross, H. P., 1980, A summary of the geology and geophysics of the San Emidio KGRA, Washoe County, Nevada: Geothermal Resources Council Transactions, v. 4, p. 221-224.

Mackelprang, C. E., 1982, Interpretation of the dipole-dipole electrical resistivity survey, Tuscarora Geothermal Area, Elko County, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-59, NV/WLS/ESL-72, 16 p.

Majer, E., Liaw, A., and McEvilly, T. V., 1976, Seismological investigations near Leach Hot Springs, Nevada [abs.]: EOS, Am. Geophys. Union Trans., v. 57, no. 3, p. 153.

Majer, E., 1978, Seismological investigations in geothermal regions: PhD dissertation, University of California, Berkeley, 232 p.

Malmberg, G. T., and Worts, F. G., Jr., 1966, Effects of pumping on the hydrology of Kings River Valley, Humboldt County, Nevada, 1957-64: Nevada Department Conservation and National Resources, Water Resources Bulletin 31.

Malmberg, G. T., 1965, Available water supply of the Las Vegas ground-water basin, Nevada: U.S. Geological Survey Water-Supply Paper 1780.

Malmberg, G. T., 1967, Hydrology of the valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California: U.S. Geological Survey Water-Supply Paper 1832.

Malmberg, G. T., and Eakin, T. E., 1962, Ground-water appraisal of Sarcobatus Flat and Oasis Valley, Nye and Esmeralda Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 10, 39 p.

Mariner, R. H., Brook, C. A., Reed, M. J., Bliss, J. D., Rapport, A. L., and Lieb, R. J., 1983, Low-temperature geothermal resources in the western United States: in Reed, M. J., (editor), Assessment of low-temperature geothermal resources of the United States - 1982, U. S. Circular 892, p. 31-50.

Mariner, R. H., Presser, T. S., Rapp, J. B., and Willey, L. M., 1975, Minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey Open-File Report, 27 p.

Mariner, R. H., Presser, T. S., and Evans, W. C., 1983, Geochemistry of active geothermal systems in the northern Basin and Range province: Geothermal Resources Council Special Report 13, p. 95-119.

Mariner, R. H., Rapp, J. B., Willey, L. M., and Presser, T. S., 1974, Chemical composition and estimated minimum thermal reservoir temperatures of the principal hot springs of northern and central Nevada: U.S. Geological Survey Open-File Report, 32 p.

Mariner, R. H., Presser, T. S., and Evans, W. C., 1983, Geochemistry of active geothermal systems in the northern Basin and Range province: Geothermal Resources Council, Special Report 13, p. 95-119.

Mariner, R. H., Presser, T. S., and Evans, W. C., 1976a, Chemical data for eight springs in northwestern Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Reconnaissance Series Report no. 30, 45 p.

Mariner, R. H., Rapp, J. B., Willey, L. M., and Presser, T. S., 1974b, Chemical composition and estimated minimum thermal reservoir temperatures of the principal hot springs of northern and central Nevada: U.S. Geological Survey Open-File Report, May 1974, 32 p.

Markiewicz, J. J. Jr., Albert, M., and Kenkeremath, D., 1981, Development status reports - hydrothermal electric power and direct use - site specific and state summaries: Geothermal Resources Council Transactions, v. 5, p. 537-540.

Marshall, Ruth, 1928, A new species of water mite from thermal springs: *Psyche*, v. 35, no. 2, p. 92-96.

Mase, C. W., and Sass, J. H., 1980, Heat flow from the western arm of the Black Rock Desert, Washoe County, Nevada: U.S. Geological Survey open-file report 80-1238, 39 p.

Matlick, J. S., III, and Shiraki, M., 1981, Evaluation of the mercury soil mapping geothermal exploration technique: Geothermal Resources Council Transactions, v. 5, p. 95-98.

Maxey, G. B., and Mifflin, M. D., 1966, Occurrence and movement of ground water in carbonate rocks of Nevada: National Speleol. Society Bulletin, v. 28, no. 3.

Maxey, G. B., and Jameson, C. H., 1946, Well data in Las Vegas and Indian Spring Valleys, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 4, 128 p.

Maxey, G. B., and Jameson, C. H., 1948, Geology and water resources of Las Vegas, Pahrump, and Indian Spring Valleys, Clark and Nye Counties, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 5, 43 p.

Maxey, G. B., and Eakin, T. E., 1949, Ground water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 8, 54 p.

McDaniel, S., 1986, Geothermal resources in Nevada: Update, a Newsletter of the Nevada Department of Minerals, Winter, 1986 issue.

McKay, W. A., 1981, Hydrogeochemical inventory and analysis of thermal springs in the Black Canyon-Hoover Dam area, Nevada and Arizona: Geothermal Resources Council Transactions, v. 5, p. 185-188.

McKee, E. H., 1968, Geologic map of the Spencer Hot Springs quadrangle, Lander County, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-770.

McManness, D., Quillin, B., and Butler, D., 1981, Granite Mountain, Nevada, geothermal prospect; a case study: Geothermal Resources Council Transactions, v. 5, p. 99-102.

McMillan, D., 1986, Nevada's energy alternative: Nevada Business Journal, March, 1986, p. 58-63.

McNitt, J.R., Stratigraphic and structural controls of the occurrence of thermal fluid at the Soda Lakes Geothermal Field, Nevada: Geothermal Resources Council Transactions, v. 14, Part II, p. 1507-1514.

Meeks, J., and Lattin, M. W., 1982, Geothermal development in Elko, Nevada - project summary: Geo-heat Center Quarterly Bulletin, v. 7, no. 2, p. 9-13.

Meinzer, O. E., 1917, Geology and water resources of Big Smokey, Clayton, and Alkali Spring Valleys, Nevada: U.S. Geological Survey Water-Supply Paper 423.

Mendenhal, W. C., 1909, Some desert watering places in south-western Nevada and eastern California: U.S. Geological Survey Water-Supply Paper 224.

Meyer, R. T., and Bronder, L. D., 1980, Evaluation of state taxes and tax incentives and their impact on development of geothermal energy in western states: Geothermal Resources Council Transactions, v. 4, p. 739-742.

Middleton, W. M., undated, Data and comments on geothermal steam wells at Brady Hot Springs, Nevada: Magma Power Co. unpublished report.

Middleton, W. M., 1961, Report on Beowawe, Nevada, geothermal steam wells for Magma-Vulcan thermal power project: Vulcan Thermal Power Co. unpublished report.

Mifflin, M. D., 1968, Delineation of ground-water flow systems in Nevada: Nevada University, Reno, Desert Research Institute, Center for Water Resources Research Technical Report H-W, no. 4, 110 p.

Mifflin, M. D., and Domenico, P. A., 1964, Hydrogeology in Seismology, hydrogeology, and meteorology of the proposed nuclear power plant site in Mason Valley, Nevada: Nevada University, Reno, Desert Research Institute report to Sierra Pacific Power Co.

Mifflin, M. D., 1963, Preliminary report on ground-water possibilities in Valley of Fire State Park, Nevada: Nevada University, Reno, Desert Research Institute report to Director Nevada Division of State Parks.

Mifflin, M. D., and Maxey, G. B., 1963, Preliminary report of the geology and hydrology of the Settlemeyer site, Carson Valley, Nevada: Nevada University, Reno, Desert Research Institute report to Division of Fisheries and Wildlife, U.S. Fish and Wildlife Service.

Miller, D. W., 1978, Hydrogeologic analysis of shallow hole temperatures at Allen Springs and Lee Hot Springs, Churchill County, Nevada: MS thesis, University of Nevada, Reno, 73 p.

Miller, M. R., Hardman, George, and Mason, H. G., 1953, Irrigation waters in Nevada: Nevada University, Reno, Agr. Expt. Sta. Bulletin 187, 63 p.

Mirk, K. F., and Wollenberg, H. A., 1974, Lawrence Berkeley Laboratory geothermal program in northern Nevada: California University, Lawrence Berkeley Laboratory Report 3224, U.S. Energy Research and Development Administration contract no. W-7405-ENG-48.

Mirk, K. F., and Wollenberg, H. A., 1975, Lawrence Berkeley Laboratory geothermal program in northern Nevada: Conference. on Research for Devel. of Geothermal Energy Resources, Pasadena, CA, 1974, Proceedings, p. 167-185.

MITRE/METREK, 1978, Site-specific analysis of geothermal development-data files of prospective sites: U. S. Department of Energy, HCP/T4014-01/3 v. III, 98 p.

Mitzger, D. G., Carstens, G. H., and Somers, W. P., 1953, Preliminary report on water resources in the vicinity of the Naval Ammunition Depot, Hawthorne, Nevada: U.S. Geological Survey administration report.

Monastero, F. C., Shepard, C. A., Bjornstad, S. C., and Katzenstein, A. M., 1989, Potential and U. S. Navy plans to develop geothermal resources at naval air station, Fallon, Nevada: Geothermal Resources Council Transactions, v. 13, p. 179-186.

Moore, J. N., 1979, Geology of the San Emidio Geothermal Area: Earth Science Laboratory, (University of

Utah Research Institute), DOE/ET/28392-33, 78-1701.b.1.2.2, ESL-23, 8 p.

Moore, J. G., 1969, Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 75, 45 p.

Moore, D. O., and Eakin, T. E., 1968, Ground-water appraisal Snake River tributaries, Elko and Humboldt Counties, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 48, 103 p.

Morgan, D. S., 1982, Hydrology of the Stillwater Geothermal Area, Churchill County, Nevada: U.S. Geological Survey open-file report 82-345, 108 p.

Moring, B. C., Dohrenwend, J. C., and Jachens, R. C., 1994, Regional setting of thermal springs in Nevada: Geological Society of America, abstracts with programs, v. 26, p. 76.

Morris, H. G., 1903, Hydrothermal activity in the veins at Wedekind, Nevada: Engineering Mining Journal, v. 76, p. 275-276.

Morris, D., 1975, Quadripole mapping near the Fly Ranch geothermal prospect, northwest Nevada: Hall. Technical Information Service Report PB-262779.

Morris, C. W., Verity, R. V., and DaSie, W., 1984, Chemical stimulation treatment of a well in the Beowawe geothermal field: Geothermal Resources Council Transactions, v. 8, p. 269-274.

Morris, D., 1978, A quadripole resistivity survey north of Gerlach, Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 1-18.

Morrison, R. B., 1964, Lake Lahontan: geology of southern Carson Desert, Nevada: U.S. Geological Survey Professional Paper 401, 117 p.

Morrison, H. F., Lee, K. H., Oppliger, G., and Dey, A., 1979, Magnetotelluric studies in Grass Valley, Nevada: California University, Lawrence Berkeley Laboratory Report LBL-8646, 210 p.

Muffler, L. J. P., (editor), 1978, Assessment of geothermal resources of the United States - 1978: U. S. Geological Survey Circular 790, 163 p.

Muffler, L. J. P., 1975a, Present status of resources development: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 1, p. iv.

Muffler, L. J. P., 1975b, Tectonic and hydrologic control of the nature and distribution of geothermal resources: 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 1, p. 499-507.

Muller, S. W., Ferguson, H. G., and Roberts, R. J., 1951, Geology of the Mount Tobin quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-7.

Munroe, R. J., and Moses, T. H., Jr., 1969, Temperature data from exploratory boreholes at the supplemental test site, central Nevada: U.S. Geological Survey interim report, contract no. AT-(29-2)-474.

Murbarger, Nell, 1956, Geysers of Whirlwind Valley (Nevada): Desert Mag., v. 19, no. 1, p. 17-20.

Myerson, B. L., 1956, Uranium occurrence near Panaca, Lincoln County, Nevada: U.S. Atomic Energy Comm. RME-2052.

Myrick, D. F., 1962, Railroads of Nevada and eastern California, the northern roads, v. 1: Berkeley, CA, Howell-North.

Naff, R. L., 1973, Hydrogeology of the southern part of Amargosa Desert in Nevada: M.S. thesis, University of Nevada, Reno, 207 p.

Nathenson, M., Guffanti, M., Sass, J. H., and Munroe, R. J., 1983, Regional heat flow and temperature gradients: in Reed, M. J., (editor), Assessment of low-temperature geothermal resources of the United States - 1982, U. S. Geological Survey Circular 892, p. 9-16.

Nehring, N. L., 1979, Reservoir temperature, flow, and recharge at Steamboat Springs, Nevada: Geothermal Resources Council Transactions, v. 3, p. 481-484.

Nehring, N. L., and Mariner, R. H., 1979, Sulfate-water isotopic equilibrium temperatures for thermal springs and wells of the Great Basin: Geothermal Resources Council Transactions, v. 3, p. 485-488.

Nehring, N. L., 1980, Geochemistry of Steamboat Springs, Nevada: U.S. Geological Survey open-file report 80-887, 66 p.

Nevada Department of Energy, 1982, Energy in Nevada, development and utilization: Nevada Department of Energy publication, 22 p.

Nevada Mining Association, 1964, Geothermal power: Nevada Mining Assoc. Newsletter no. 140, November 15, 1964, p. 9, 10.

Nevada Department of Energy, 1980, Energy in Nevada, a summary of historical and projected energy uses: Nevada Department of Energy publication, 166 p.

Nevada Bureau of Mines and geology, 1994, Geothermal wells drilled since 1979: Nevada Bureau of Mines and Geology List L-5.

Nicholl, J. J., Jr., and Lange, A. L., 1981, Passive seismic results near the Tuscarora prospect, Nevada: Geothermal Resources Council Transactions, v. 5, p. 197-200.

Noble, D. C., Plouff, D., Berquist, J. R., Barton, H. N., and Olson, J. E., 1987, Mineral resources of the Pahute Peak Wilderness Study Area, Humboldt County, Nevada: U.S. Geological Survey Bulletin 1727-C, p. C1-C12.

Noble, D. C., Wollenberg, H. A., Silberman, M. L., and Archibald, Douglas, 1975, Late Cenozoic structural, volcanic, and hydrothermal evolution of the Leach Hot Springs geothermal area, Pershing County, Nevada: Geological Society America Abstract with Programs, 1975, p. 357.

Noble, D. C., Plouff, D., Berquist, J. R., Neumann, T. R., and Close, T. J., 1987, Mineral resources of the High Rock Lake Wilderness Study Area, Humboldt County, Nevada: U.S. Geological Survey Bulletin 1707-A, p. A1-A9.

Nolan, T. B., and Anderson, G. H., 1934, Geyser area near Beowawe, Eureka County, Nevada: American Journal Science, 5th series, v. 27, no. 159, p. 215-229.

Nosker, R. E., 1981, Stratigraphy, structure, geophysics, and water chemistry of the Jersey Valley area, Pershing and Lander Counties, Nevada: MS thesis, University of Nevada, Reno, 88 p.

O'Donnell, J. E., Brougham, G. W., Martinez, R., and Christopherson, K. R., 1977, Telluric survey data for Pinto Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-66A (Supplement to 76-701A), 2 p.

O'Donnell, J. E., 1976, Magnetotelluric soundings in the Darrough Hot Springs area, Nevada: U.S. Geological Survey Open-File Report 76-288.

Oesterling, W. A., and Anctil, R. J., 1962, Geological and economic appraisal of geothermal steam resources at Brady Hot Springs, Nevada: Southern Pacific Co., unpublished report.

Oesterling, W. A., 1961, Areal economic geology of T38N, R61 and 62E, M.D.M.: Land Department, Southern Pacific Co., San Francisco, unpublished map.

Oesterling, W. A., 1962, Geothermal power potential of northern Nevada: Pacific Southwest Mineral Industry Conference., Am. Institute Mining, Metallurgical, Petroleum Engineers, San Francisco, unpublished report.

Oesterling, W. A., and others, 1960, Geological appraisal of geothermal steam resources at The Geysers near Beowawe, Nevada: Southern Pacific Co., unpublished report.

Oesterling, W. A., 1959, Areal economic geology of T33N, R39 and 40E, M.D.M.: Land Department, Southern Pacific Co., San Francisco, unpublished maps.

Oesterling, W. A., 1960, Areal economic geology of T37N, R61 and 62E, M.D.M.: Land Department, Southern Pacific Co., San Francisco, unpublished map.

Olcott, G. W., 1959, Areal economic geology of T34N, R41 and 42E, M.U.M.: Southern Pacific Co., unpublished maps.

Olcott, G. W., and Spruck, W. H., 1961, Areal economic geology of T32N, R33 and 34E, M.D.M: Land Department, Southern Pacific Co., unpublished map.

Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and VanDenburgh, A. S., 1973, Sources of data for evaluation of selected geothermal areas in northern and central Nevada-Water resources investigations: U.S. Energy Research and Development Administration Report 222948; also, U.S. Geological Survey Water Resources Investigations 44-73, 78 p.

Olmsted, F. H., 1974b, Leach Hot Springs geothermal area, Nevada [abs.]: Geological Society America Abstract with Programs, v. 6, no. 7, p.899.

Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and Van Denburgh, A. S., 1973, Sources of data for evaluation of selected geothermal areas in northern and central Nevada: U.S. Geological Survey Water-Resources Investigations Report 73-212, 78 p.

Olmsted, F. H., 1977, Use of temperature surveys at a depth of 1 meter in geothermal exploration in Nevada: U. S. Geological Survey Professional Paper 1044-B, 25 p.

Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and VanDenburgh, A. S., 1975, Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U.S. Geological

Survey Open-File Report 75-56, 267 p.

Olmsted, F. H. and Rush, F. E., 1977, Data released on potential geothermal area, Beowawe, Nevada: U.S. Geological Survey Water Resources Open-File Report, 41 p.

Olmsted, F. H., and Rush, F. E., 1987, Hydrogeologic reconnaissance of the Beowawe Geysers geothermal area, Nevada: Geothermics, v. 16, no. 1, p. 27-46.

Olmsted, F. H., and Olmsted, G. H., 1977, Use of temperature surveys at a depth of 1 meter in geothermal exploration in Nevada: U.S. Geological Survey Professional Paper 1044-B, 25 p.

Olmsted, F. H., Welch, A. H., and Ingebritzen, S. E., 1986, Shallow subsurface temperature surveys in the Basin and Range province, United States A. --I. Review and evaluation: Geothermics, v. 15, no. 3, p. 251-265.

Olmsted, F. H., Welch, A. H., Van Denburgh, A. S. Ingebritzen, S. E., 1984, Geohydrology, aqueous geochemistry, and thermal regime of the Soda Lakes and Upsal Hogback geothermal systems, Churchill County, Nevada: U.S. Geological Survey Water-Resources Investigations Report 84-4054, 166 p.

Olmsted, F. H., 1974a, Hydrologic reconnaissance of geothermal areas in Black Rock Desert and Cason Desert, Nevada [abs.]: Geological Society America Abstract with Programs, v. 6, no. 3, p. 232.

Olmsted, F. H., 1985, Ground water discharge and recharge in the Soda Lakes and Upsal Hogback geothermal areas, Churchill County, Nevada: U.S. Geological Survey Water-Resources Investigation Report 85-4033, 27 p.

Olson, R. H., 1964, Sulfur, in Mineral and water resources of Nevada: Nevada Bureau of Mines and Geology Bulletin 65, p. 254-256.

Olson, H. J., Dellechaie, F., Pilkington, H. D., and Lange, A. L., 1979, The McCoy Geothermal Prospect; status report of a possible new discovery in Churchill and Lander Counties, Nevada: Geothermal Resources Council Transactions, v. 3, p. 515-518. Parchman, W. L., and Knox, J. W., 1981, Exploration for geothermal resources in Dixie Valley, Nevada: Geothermal Resources Council Bulletin, v. 10, no. 5, p. 3-6.

Overton, T. D., 1947, Mineral resources of Douglas, Ormsby, and Washoe Counties (Nevada): Nevada University Bulletin, v. 41, no. 9, [46].

Paden, I. D., 1949, Prairie schooner detours: New York, The Macmillan Co.

Papke, K. G., 1976, Evaporites and brines in Nevada playas: Nevada Bureau of Mines and Geology Bulletin 87.

Papke, K. G., 1969, Industrial rock and mineral deposits in Bonham, H. F., Jr., Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70.

Parr, A. J., and Percival, T. J., 1991, Epithermal gold mineralization and a geothermal resource at Blue Mountain, Humboldt County, Nevada: Geothermal Resources Council Transactions, v. 15, p. 35-39.

Patterson, E. B., Ulph, L. A., and Goodwin, V., 1969, Nevada's northeast frontier: Sparks, NV, Western Printing and Publishing Co.

Peale, A C., 1886, Lists and analyses of the mineral springs of the United States (a preliminary study): U.S.

Geological Survey Bulletin 32, 235 p.

Penrose, R. A. F., Jr., 1893, Pleistocene manganese deposit near Golconda, Nevada: *Journal Geology*, v. 1, no. 3, p. 275-282.

Peterson, D. L., and Kaufmann, H. E., 1978, Principal facts for a gravity survey of the Fly Ranch Extension Known Geothermal Resource Area, Pershing County, Nevada: U.S. Geological Survey open-file report 78-107C, 5 p.

Peterson, D. L., and Kaufmann, H. E., 1978, Principal facts for a gravity survey of the Double Hot Springs Known Geothermal Resource Area, Humboldt County, Nevada: U.S. Geological Survey open-file report 78-107A, 6 p.

Peterson, D. L., and Kaufmann, H. E., 1977, Principal facts for a gravity survey of Salt Wells Basin, Churchill County, Nevada: U.S. Geological Survey Open-File Report 77-67D.

Peterson, R. E., 1976, Nonelectric geothermal-a versatile resource: *Geothermal Energy*, v. 4, no. 11, p. 8-18.

Peterson, D. L., and Kaufmann, H. E., 1978, Principal facts for a gravity survey of the Gerlach Extension Known Geothermal Resource Area, Pershing County, Nevada: U.S. Geological Survey open-file report 78-107B, 6 p.

Peterson, D. L., and Dansereau, D. A., 1976b, Principal facts for gravity stations in the Elko Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-151, 4 p.

Peterson, D. L., and Dansereau, D. A., 1976a, Principal facts for gravity stations in the Darrough Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-289, 4 p.

Peterson, D. L., and Hassemer, J. H., 1977, Principal facts for a gravity survey of Pinto Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-67B, 4 p.

Peterson, D. L., and Hoover, D. B., 1977, Principal facts for a gravity survey of Baltazor Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 77-67C, 5 p.

Peterson, D. L., and Dansereau, D. A., 1975, Principal facts for gravity stations in Gerlach and San Emidio Known Geothermal Resource Areas, Nevada: U.S. Geological Survey Open-File Report 75-668.

Peterson, D. L., 1975, Principal facts for gravity stations in Steamboat Hills and Wabuska, Nevada: U.S. Geological Survey Open-File Report 75-443.

Phillips, J. A., 1879, A contribution to the history of mineral veins: *Geological Society London Quart. Journal*, v. 35, p. 390-396.

Phillips Petroleum Company, 1979, Geothermal reservoir assessment case study, Northern Basin and Range Province; final report, October, 1978,-September, 1979: U.S. Department of Energy, Division of Geothermal Energy, DOE/ET/27099-1, 114 p.

Phillips, J. A., 1871, On the connexion of certain phenomena with the origin of mineral veins: London, Edinburgh, and Dublin Philos. Mag. and Journal Science, 4th ser., v. 42, no. 282, p. 401-413.

Phillips, S. L., Fair, J. A., Henderson, F. B., and Trippe, T. G., 1975, National geothermal information resource: University of California System, Lawrence Berkeley Laboratory Publication LBL-4420, 18 p.

Phoenix, D. A., 1949b, Results and description of test drilling in Argenta swamp near Battle Mountain, Lander County, Nevada: U.S. Geological Survey Open-File Report.

Phoenix, D. A., 1948b, Ground-water conditions in the vicinity of Tonopah, Nye County, Nevada: U.S. Geological Survey Open-File Report.

Phoenix, D. A., 1949a, Ground water in the Austin area, Lander County, Nevada: U.S. Geological Survey Open-File Report.

Phoenix, D. A., 1948a, Geology and ground water in the Meadow Valley Wash drainage area, Nevada, above the vicinity of Caliente, with statements on classification of irrigable lands in the Panaca area of Meadow Valley, by George Hardman and H. G. Fox, and Quality of spring and well waters of the Meadow Valley Wash drainage area above the vicinity of Caliente, by George Hardman and M. R. Miller: Nevada Department of Conservation and National Resources, Water Resources Bulletin 7.

Phoenix, D. A., 1948, Geology and ground water in the Meadow Valley Wash drainage area, Nevada, above the vicinity of Caliente, with statements on classification of irrigable lands in the Panaca area of Meadow Valley, by George Hardman and H. G. Fox, and quality of spring and well waters of the Meadow Valley Wash drainage area above the vicinity of Caliente, by G. Hardman and M. R. Miller: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin 7, 117 p.

Pierce, H. A., and Hoover, D. B., 1988, Electrical survey of the Honey Lake Valley, Lassen County, California and Washoe County, Nevada: United States Geological Survey Open-File Report 88-668, 125 p.

Pilkington, H. D., Lange, A. L., and Berkman, F. E., 1980, Geothermal exploration at the Tuscarora prospect in Elko County, Nevada: Geothermal Resources Council Transactions, v. 4, p. 233-236.

Pilkington, H. D., 1982, The McCoy area, Nevada geothermal reservoir assessment case history, northern Basin and Range; annual report 1 January, 1981-31 December, 1981: U.S. Department of Energy, Division of Geothermal Energy, DOE/ET/27010-3, 23 p.

Pioneer Nevada, 1951,: Reno, Harolds Club.

Piper, A. M., 1923, Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. Mines and Geology Bulletin 6, 78 p.

Pires, A. B., Network modeling of resistivity data: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 19-38.

Plouff, D., 1984, Interpretation of aeromagnetic and gravity data, Charles Sheldon Wilderness Study Area, Nevada and Oregon: U.S. Geological Survey Bulletin 1538-B, p. 37-50.

Pottoroff, E. J., 1988, A new approach for simulating heat transfer and groundwater flow in the Leach Hot Springs hydrothermal system, Pershing County, Nevada: MS thesis, University of Nevada, Reno, 153 p.

Prehn, W. L., 1973, Future role of desalting in Nevada: Washington, U.S. Govt. Printing Office, PB Report 226760.

Pruss, D. E., Bonham, H. F., Jr., and Spruck, W. H., 1961, Areal economic geology of T28N, R31 and 32E, M.D.M.: Southern Pacific Co., unpublished map.

Pugsley, M., 1979, Geothermal resource area 1, Washoe County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC07-791D12019, 82 p.

Pugsley, M., 1979, Geothermal resources area 4, Carson City, Nevada, area development plan: Nevada Department of Energy publication, United States Department of Energy Contract DE- FC07-791D12019, 54 p.

Rafferty, K. D., 1989, A materials and equipment review of selected U. S. geothermal district heating systems:Geothermal Resources Council Transactions, v. 13, p. 49-56.

Rafferty, K., 1988, Elko, Nevada - showcase of geothermal district heating: Geo-Heat Center Quarterly Bulletin, v. 11, no. 1, p. 20-22.

Rannels, J. E., and McLarty, L., 1990, Geothermal power generation in the United States: 1985 through 1989: Geothermal Resources Council Transactions, v. 14, part I, p. 293-304.

Ransome, F. L., 1909b, Notes on some mining districts in Humboldt County, Nevada: U.S. Geological Survey Bulletin 414.

Ransome, F. L., 1909a, Geology and ore deposits of Goldfield, Nevada: U.S. Geological Survey Professional Paper 66.

Reed, M.J.,ed., 1983, Assessment of low-temperature geothermal resources of the United States - 1982: U.S. Geological Survey Circular 892, 73 p.

Reed, M. J., Mariner, R. H., Brook, C. A., and Sorey, M. L., 1983, Selected data for low-temperature (less than 90 degrees C) geothermal systems in the United States; (reference data for USGS Circular 892): U.S. Geological Survey open-file report 83-250, 129 p.

Reid, J. A., 1905, Structure and genesis of the Comstock Lode: California University, Department Geology Bulletin, v. 4, no. 10, p. 177-199.

Renner, J. L., White, D. E., and Williams, D. L., 1975, Hydrothermal convection systems, in White, D. E., and Williams, D. L., eds., Assessment of geothermal resources of the United States-1975: U.S. Geological Survey Circular 726, p. 5-57.

Renner, J. L., 1976, Selected geothermal resources data: Hydrothermal convection systems in the States of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming: National Technical Information Service Report USGS-CD-76-001.

Rinehart, J. S., 1968, Geyser activity near Beowawe, Eureka County, Nevada: Journal Geophys. Research, v. 73, no. 24, p. 7703-7706.

Roberts, R. J., Montgomery, K. M., and Lehner, R. E., 1967, Geology and mineral resources of Eureka County, Nevada: Nevada Bureau of Mines and Geology Bulletin 64, 152 p.

Roberts, J. A., 1989, An historical overview of the Beowawe geysers, Nevada: GOSA Transactions, the Annual Journal of the Geyser Observation and Study Association, v. 1, p. 255-293.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 7, White Pine County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 62 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 8, Mineral and Esmeralda Counties, area

development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 79 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 6, Lander and Eureka Counties, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 94 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 5, Churchill, Douglas, and Lyon Counties, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 111 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 11, Clark County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 44 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 10, Lincoln County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 48 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 9, Nye County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 92 p.

Robinson, T. W., and Fredericks, J. C., 1946, Ground water in Lovelock Valley, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 2.

Robinson, T. W., 1950, Ground water in Nevada: Colorado School Mines Quart., v. 45, no. 4B, p. 3338.

Robinson, T. W., Loeltz, J. O., and Poole, J. L., 1951, Groundwater in the vicinity of Verdi, Washoe County, Nevada: U.S. Geological Survey Open-File Report.

Robinson, T. W., and Phoenix, D. A., 1948, Ground water in Spanish Springs and Sun Valley, Washoe County, Nevada: U.S. Geological Survey Open-File Report.

Robinson, T. W., 1950, Ground water for Indian Service hospital at Schurz, Nevada: U.S. Geological Survey Open-File Report.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 2, Humboldt and Pershing Counties, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 121 p.

Robinson, S., and Pugsley, M., 1981, Geothermal resource area 3, Elko County, area development plan: Department of Energy publication, United States Department of Energy Contract DE-FC03-80RA50075, 79 p.

Rodriguez, J. C., 1978, Inversion of TDEM (near-zone) sounding curves with catalog interpolation: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 57-70.

Romberger, S. B., 1978, Preliminary study of hydrothermal alteration associated with hot spring activity, Gerlach area, in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 1, Colorado School of Mines Quarterly, v. 73, no. 3, p. 27-30.

Rose, J. T., 1989, Development of effective scale control for geothermal production wells: Geothermal Resources Council Bulletin, v. 18, no. 8, p. 5-7.

Rosevear, M. D., 1976, Growing up in Tonopah in Nevada official bicentennial book: Las Vegas, Nevada Publications.

Ross, H., Wright, M., and Lienau, P.J., 1994, Low-temperature geothermal resource assessment preliminary results: Geo-Heat Center quarterly bulletin, Oregon Institute of Technology, v. 15, no. 3, p. 16-19.

Rosser, J. R., Payne, M. A., and Allen, T. S., 1984, An update on the role of step-rate injectivity testing in liquid dominated, highly fractured geothermal reservoirs: Geothermal Resources Council Transactions, v. 8, p. 343-348.

Rowan, L. C., Offield, T. W., and Podwysocki, M. H., : Analysis of lineaments in the Great Basin [abs.]: relationship to geothermal resources: Geothermal Resources Council Special Report 13, p. 317.

Rowley, J. C., 1982, Worldwide geothermal resources: in Edwards, L. M., Chillingar, G. V., Rieke, H. H., III, and Fertl, W. H., (editors), Handbook of Geothermal Energy, Gulf Publishing Company, Houston, Texas, p. 44-176.e

Rush, F. E., 1967, Water resources appraisal of Washoe Valley, Washoe County, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 41, 39 p.

Rush, F. E., 1964, Ground-water appraisal of the Meadow Valley area, Lincoln and Clark Counties, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Reconnaissance Series Report no. 27, 43 p.

Rush, F. E., 1968c, Water resources appraisal of the lower Moapa-Lake Mead area, Clark Co., Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 50.

Rush, F. E., and Everett, D. E., 1966, Water resources appraisal of Little Fish Lake, Hot Creek, and Little Smoky Valleys, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 30.

Rush, F. E., 1964, Ground-water appraisal of the Meadow Valley area, Lincoln and Clark Counties, Nevada: Nevada Department Conservation and Natural Resources, Ground-water Resources-Reconnaissance Series Report 24, 29 p.

Rush, F. E., and Katzer, T. L., 1973, Water resources appraisal of Fish Lake Valley, Nevada and California: Nevada Department of Conservation and National Resources, Water Resources-Reconnaissance Series Report 58, 70 p.

Rush, F. E., 1968b, Ground-water appraisal of Thousand Springs Creek Valley, Elko County, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 47.

Rush, F. E., and Kazmi, S. A.T., 1965, Water resources appraisal of Spring Valley, White Pine and Lincoln Counties, Nevada: Nevada Department Conservation and National Resources-Reconnaissance Series Report 33.

Rush, F. E., and Everett, D. E., 1964, Ground-water appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 30.

Rush, F. E., 1968a, Ground-water appraisal of Clayton Valley-Stonewall Flat area, Nye County, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report, 45,

54 p.

Rush, F. E. and Schroer, C. V., 1970, Water resources of Big Smokey Valley, Lander, Nye, and Esmeralda Counties, Nevada: Nevada Department Conservation and National Resources, Water Resources Bulletin 41, 83 p.

Rush, F. E., and Huxel, C. J., Jr., 1966, Ground-water appraisal of the Eldorado-Piute Valley area, Nevada and California: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 36, 30 p.

Rush, F. E., 1970, Regional ground-water systems in the Nevada Test Site area, Nye, Lincoln, and Clark Counties, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 54.

Rush, F. E., and Eakin, T. E., 1963, Ground-water appraisal of Lake Valley in Lincoln and White Pine Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 24, 29 p.

Rush, F. E., and Glancy, P. A., 1967, Ground-water appraisal of the Warm Springs-Lemmon Valley area, Washoe County, Nevada: Nevada Department Conservation and National Resources, Water Resources-Reconnaissance Series Report 43, 70 p.

Russell, I. C., 1885, Geological history of Lake Lahontan: U.S. Geological Survey Mon. 11, 288 p.

Rutledge, J. T., Albright, J. N., and Batra, R., 1985, Downhole seismic noise measurements in the Beowawe geothermal field, Nevada: Geothermal Resources Council Transactions, v. 9, part II, p. 49-54.

Ryall, A. S., and Vetter, U. R., 1982, Seismicity related to geothermal development in Dixie Valley, Nevada: United States Department of Energy, Division of Geothermal Energy, DOE/NV/10054-3, 102 p.

Sanders, J. W., and Miles, M. J., 1974, Mineral content of selected geothermal waters: Nevada University, Reno, Desert Research Institute, Center for Water Resources Research Project Report 26, 37 p.

Sass, J. H., Olmsted, F. H., Sorey, M. L., Wollenberg, H. A., Lachenbruch, A. H., Munroe, R. J., and Galanis, S. P., Jr., 1976, Geothermal data from test wells drilled in Grass Valley and Buffalo Valley, Nevada: U.S. Geological Survey Open-File Report 76-85, 45 p.

Sass, J. H., Wollenberg, H. A., di Somma, D. E., and Ziagos, J. P., 1976, Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada: U.S. Geological Survey Open-File Report 76-862, 18 p.

Sass, J. H., and Munroe, R. J., 1974, Basic heat-flow data from the United States: U.S. Geological Survey open-file report 74-9, 457 p.

Sass, J. H., Ziagos, J. P., Wollenberg, H. A., Munroe, R. J., di Somma, D. E., and Lachenbruch, A. H., 1977, Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada: U.S. Geological Survey Open-File Report 77-762, 133 p.

Sass, J. H., Blackwell, D. D., Chapman, D. S., Costain, J. K., Decker, E. R., Lawver, L. A., and Swanberg, C. A., 1981, Heat flow from the crust of the United States, chap. 13 of Toulioukian, Y. S., Judd, W. R., and Roy, R. F., eds., Physical properties of rocks and minerals: McGraw-Hill, p. 503-548.

Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses, T. H., Jr., 1971, Heat flow in the western United States: *Journal Geophys. Research*, v. 76, no. 26, p. 6376-6413.

Sass, J. H., Zoback, M. L., and Galanis, M. L., 1979, Heat flow in relation to hydrothermal activity in the southern Black Rock Desert, Nevada: U.S. Geological Survey open-file report 79-1467, 43 p.

Schaefer, D. H., 1988, Gravity, depth to consolidated rock, and soil temperature in the Elko area, northeastern Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-1900.

Schaefer, D. H., 1986 (1987), Bouger gravity anomalies, depth to bedrock, and shallow temperature in the Humboldt House geothermal area, Pershing County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-1701, 1 sheet.

Schaefer, D. H., Welch, A. H., and Maurer, D. K., 1981, Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada, Part I, Geology and Geophysics: 81-918, 41 p.

Schafer, D. H., 1982, Gravity survey of Dixie Valley, west-central Nevada: U.S. Geological Survey open-file report 82-111, 22 p.

Scheibach, R. B., 1975, Geothermal resources in Truckee Meadows, Washoe County, Nevada: MS thesis, University of Nevada, Reno, 74 p.

Schilling, J. H., ed., 1968, Nevada's geothermal resources: Nevada University, Reno, Bureau Business and Econ. Research, Nevada Business Review, p. 2, 4.

Schilling, J. H., ed., 1965a, A.I.M.E. Pacific Southwest mineral industry conference, field trip guidebook.

Schilling, J. H., ed., 1965b, Isotopic age determinations of Nevada rocks: Nevada Bureau of Mines and Geology Report 10.

Schilling, J. H., and Garside, L. J., 1968, Oil and gas developments in Nevada, 1953-1967: Nevada Bureau of Mines and Geology Report 18.

Schoen, Robert. and White, D. E., 1967, Hydrothermal alteration of basaltic andesite and other rocks in drill hole GS-6, Steamboat Springs, Nevada: U.S. Geological Survey Professional Paper 575-B, p. B110.

Schoen, Robert. and White, D. E., 1965, Hydrothermal alteration in GS-3 and GSA drill holes, Main Terrace, Steamboat Springs, Nevada: Econ. Geology, v. 60, p. 1411-1421.

Schoff, S. L., and Moore, J. E., 1964, Chemistry and movement of ground water, Nevada Test Site: U.S. Geological Survey Trace Element Inv. Report TEI-838, 75 p.

Schrader, F. C., 1947, Carson Sink area, Nevada: U.S. Geological Survey Open-File Report.

Scott, R. C., and Barker, F. B., 1962, Data on uranium and radium in ground water in the United States: U.S. Geological Survey Professional Paper 426, 115 p.

Senterfit, R. M., Hoover, D., and Tippens, C., 1976, Audiomagnetotelluric data log and station location map for the Dixie Valley Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 76-292, 12 p.

Senterfit, R. M., Hoover, D. B., and Christopherson, K., 1978, Telluric traverse location map and profiles for Double Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 78-106A, 3 p.

Senterfit, R. M., and Hoover, D. B., 1978, Audio-magnetotelluric station location map and data log for Double Hot Springs Known Geothermal Resource Area, Nevada: U.S. Geological Survey Open-File Report 78-105A, 6 p.

Sethi, D. K., and Fertl, W. H., 1979, Geophysical well logging operations and log analysis in geothermal well Desert Peak No. B-23-1: University of California, Los Alamos Scientific Laboratory, Informal Report LA-8254-MS, 74 p.

Sibbett, B. S., Zeisloft, J., and Bowers, R. L., 1982, Geology of MacFarlane's Spring thermal area, Nevada: Geothermal Resources Council Transactions, v. 6, p. 47-50.

Sibbett, B., 1983, Structural control and alteration at Beowawe KGRA, Nevada: Geothermal Resources Council Transactions, v. 7, p. 187-192.

Sibbett, B. S., and Blackett, R. E., 1982, Lithologic interpretation of the De Braga #2 and Richard Weishaupt #1 geothermal wells, Stillwater project, Churchill County, Nevada: unpublished report by Earth Science Laboratory, University of Utah Research Institute, Salt Lake City, Utah, for U. S. Department of Energy, Division of Geothermal Energy, February, 1982, 29 p.

Sidle, W. C., 1981, Geologic overview of the Cascade Range: Geo-heat Center Quarterly Bulletin, v. 6, no. 1, p. 3-9.

Sifford, A., 1985, Geothermal direct use pricing survey: Geothermal Resources Council Transactions, v. 9, part I, p. 57-62.

Sifford, A., 1984, Survey of geothermal direct use pricing terms in five western states: Geothermal Resources Council Transactions, v. 8, p. 169-172.

Sifford, A., 1988, Western states' market for geothermal power in the 1980's: Geothermal Resources Council Transactions, v. 12, p. 81-86.

Sifford, A., and Allen, E., 1982, A comparison of geothermal direct-use pricing terms in seven western states: Geothermal Resources Council Transactions, v. 6, p. 475-478.

Sigvaldason, G. E., and White, D. E., 1962, Hydrothermal alteration in drill holes GS-5 and GS-7, Steamboat Springs, Nevada: U.S. Geological Survey Professional Paper 450-D, p. D113.

Sigvaldason, G. E., and White, D. E., 1961, Hydrothermal alteration of rocks in two drill holes at Steamboat Springs, Washoe County, Nevada, article 331: U.S. Geological Survey Professional Paper 424-D, p. D116-D122.

Silberman, M. L., and White, D. E., 1975, Limits on the duration of hydrothermal activity at Steamboat Springs, Nevada, by K-Ar ages of spatially associated altered and unaltered volcanic rocks [abs.]: Geological Soc. America Abstract with Programs, v. 7, no. 7, p. 1272-1273.

Silberman, M. L., White, D. E., Keith, T. E. C., and Dockter, R. D., 1979, Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of spatially associated volcanic rocks: U.S. Geological Survey Professional Paper 458-D, 14 p.

Silberman, M. L., Bonham, H. F., Garside, L. J., and Ashley, R. P., 1978, Radiometric ages of volcanic and plutonic rocks and hydrothermal alteration-mineralization in the Tonopah Mining District and vicinity, Nye and Esmeralda Counties, Nevada: U.S. Geological Survey open-file report 78-841, 49 p.

Sinclair, W. C., 1963b, Ground-water appraisal of the Pueblo Valley Continental Lake region, Humboldt County, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources Reconnaissance Series Report 22, 25 p.

Sinclair, W. C., and Malchow, R. L., 1963, Ground-water appraisal of the Long Valley-Massacre Lake region: Nev. Department Conservation and National Resources, Ground-water Res.-Reconnaissance Series Report 15.

Sinclair, W. C., and Loeltz, O. J., 1963, Ground-water conditions in the Fernley-Wadsworth area, Churchill, Lyon, Storey, and Washoe Counties, Nevada: U.S. Geological Survey Water-Supply Paper 1619-AA; also, Nevada Department Conservation and National Resources, Water Resources Bulletin 17.

Sinclair, W. K., 1962c, Ground-water resources of Pine Forest Valley, Humboldt County: Nevada Department of Conservation and Natural Resources, Ground-water Resources - Reconnaissance Series Report 4, 23 p.

Sinclair, W. C., 1963b, Ground-water appraisal of the Pueblo Valley Continental Lake Region, Humboldt County, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Reconnaissance Series Report no. 22, 25 p.

Sinclair, W. C., 1962a, Ground-water resources of Desert Valley, Humboldt and Pershing Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 7, 23 p.

Sinclair, W. C., 1963a, Ground-water appraisal of the Black Rock Desert area, northwestern Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 20, 32 p.

Sinclair, W. C., 1962b, Ground-water resources of Haulapai Flat, Washoe, Pershing, and Humboldt Counties, Nevada: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 11, 16 p.

Slemon, D. B., 1964, Part 1, Seismology, in Seismology, hydrogeology and meterology of the proposed nuclear power plant in Mason Valley, Nevada: Nevada University, Reno, Desert Research Institute report.

Slossen, J. E., 1974, Surprise Valley fault: Calif. Geological, December 1974, p. 267-270.

Smith, A. M., 1958, Resources report, Lincoln County, Nevada: Report for the office of George W. Malone, U.S. Senate, Nevada.

Smith, A. M., 1956a, Resources report, Washoe County, Nevada: Report for the office of George W. Malone, U.S. Senate Nevada.

Smith, C., 1979, Interpretation of electrical resistivity and shallow seismic reflection profiles, Whirlwind Valley and Horse Heaven areas, Beowawe KGRA, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ET/28392-35, 78/1701.b.1.2.4, ESL-25, 43 p.

Smith, C., and Halpin, D., 1979, Magnetotellurics: applications to geothermal exploration: Geothermal Resources Council Transactions, v. 3, p. 663-666.

Smith, A. M., 1956b, The nonmetallic mineral resources of Nevada: unpublished report, Mackay School of Mines Library.

Smith, G. H., 1943, The history of the Comstock Lode, 1850-1920: Nevada Bureau of Mines and Geology Bulletin 37.

Smith, C., 1980, Delineation of an electrical resistivity anomaly, Malpais area, Beowawe KGRA, Eureka and Lander Counties, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-10, ESL-40, 25 p.

Smith, R. P., Hackett, W. R., Faulder, D. D., and Jackson, S. H., 1990, A new look at geothermal energy potential of the eastern Snake River Plain, Idaho: American Association of Petroleum Geologists Bulletin, v. 74, p. 1002.

Smith, A. M., 1957, Resources report, Elko County, Nevada: Report for the office of George W. Malone, U.S. Senate, Nevada.

Smith, C., Struhsacker, E. M., and Struhsacker, D. W., 1979, Structural inferences from geologic and geophysical data at the Beowawe KGRA, north-central Nevada: Geothermal Resources Council Transactions, v. 3, p. 659-662.

Smyth, F., 1972, The sad story of Beowawe's geysers: Nevada Highway News, May, 1972, p. 2-5.

Snyder, C. T., 1963, Hydrology of stock-water development in the Ely grazing district, Nevada: U.S. Geological Survey Water-Supply Paper 1475-L, 60 p.

Southern Pacific Company, 1963, Some known and potential geothermal areas, California and Nevada: Southern Pacific Company Land Department map, scale: 1 inch = 45 miles.

Sperandio, R. J., and Grose, L. T., 1976, Tectonic controls on the Ely Ranch hot-spring system, Hualapai Flat, northwest Nevada [abs.]: Geological Society America Abstract with Programs, v. 8, no. 6, p. 1116.

Spurr, J. E., 1903, Descriptive geology of Nevada south of the 40th parallel and adjacent parts of California: U.S. Geological Survey Bulletin 108.

Spurr, J. E., 1905, Geology of the Tonopah mining district, Nevada: U.S. Geological Survey Professional Paper 42.

Spurr, J. E., 1906, Ore deposits of the Silver Peak quadrangle, Nevada: U.S. Geological Survey Professional Paper 55.

St. John, Orestes, 1883, Report on the geology of the Wind River district, in Hayden, F. V., U.S. Geological and Geog. Survey Terr. 12th Annual Report, 1878, pt. 1, p. 173-269.

Staatz M. H., and Bauer, H. L., Jr., 1953, Uranium in the East Walker River area, Lyon County, Nevada: U.S. Geological Survey Bulletin 988-C, p. 29-43.

Stanley, W. D., Wahl, R. R., and Rosenbaum, J. G., 1976, A magnetotelluric study of the Stillwater-Soda Lakes, Nevada, geothermal area: U.S. Geological Survey Open-File Report 76-80, 40 p.

Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, p. 59-206.

Stevens, J. L., Garg, S. K., Luu, L., Barker, T. G., Pritchett, J. W., and Truesdell, A. H., 1992, Geosys: an x/motif-based system for analysis and management of geothermal data: Geothermal Resources Council Transactions, v. 16, p. 663-664.

Stewart, J. H., and Carlson, J. E., 1976a, Cenozoic rocks of Nevada: Nevada Bureau of Mines and Geology Map 52.

Stewart, J. H., and Carlson, J. E., 1974, Preliminary geologic map of Nevada: U.S. Geological Survey Mineral Inv. Field Studies Map MF609.

Stewart, J. H., and Carlson, J. E., 1976b, Geologic map of north-central Nevada: Nevada Bureau of Mines and Geology Map 50.

Struhsacker, E. M., 1980, The geology of the Beowawe system, Eureka and Lander Counties, Nevada: Earth Science Laboratory, (University of Utah Research Institute), DOE/ID/12079-7, ESL-37, 78 p.

Struhsacker, E. M., and Smith, C., 1980, Model for a deep conduit to the Beowawe system, Eureka and Lander Counties, Nevada: Geothermal Resources Council Transactions, v. 4, p. 249-252.

Subcommittee on Energy and Mineral Resources, 1984, Geothermal energy development in Nevada's Great Basin: report S. Hrg. 98-801 of hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, ninety-eighth Congress, second session, to examine the current status and future needs of Nevada's geothermal energy industry, Sparks, Nevada, April 17, 1984, 280 p.

Swanberg, C. A., Morgan, P., Stoyer, C. H., and Withch, J. C., 1977, An appraisal study of the geothermal resources of Arizona and adjacent areas in New Mexico and Utah and their value for desalination and other uses: New Mexico Energy Report no. 006, 76 P.

Swanberg, C. A., and Bowers, R. L., 1982, Downward continuation of temperature gradients at MacFarlane's Hot Spring, northern Nevada: Geothermal Resources Council Transactions, v. 6, p. 177-180.

Swanson, J. R., 1977, GEOTHERM data file: Geothermal Resources Council Transactions, v. 1, p. 285.

Swift, C. M., Jr., 1979, Geophysical data, Beowawe Geothermal Area, Nevada: Geothermal Resources Council Transactions, v. 3, p. 701-703.

Tabor, R. W., and Ellen, S., 1975, Geologic map, Washoe City Folio: Nevada Bureau of Mines and Geology.

Teshin, V. N., Swanson, J. R., and Orris, G. J., 1979, GEOTHERM -GEOTHERM resources file: Geothermal Resources Council Transactions, v. 3, p. 721-724.

The Ben Holt Company, 1992, Binary plant near Steamboat, Nevada: Geo-heat Center Quarterly Bulletin, v. 14 no. 1, p. 19.

Thompson, G. A., and White, D. E., 1964, Regional geology of the Steamboat Springs area, Washoe County, Nevada: U.S. Geological Survey Professional Paper 458-A, p. A1-A52.

Thompson, G. A., 1956, Geology of the Virginia City quadrangle, Nevada: U.S. Geological Survey Bulletin

1042-C.

Thompson, T. H., and West, A. A., 1881, History of Nevada (reprint., 1958): Berkeley, CA, Howell-North.

Tischler, M. S., Beers, A., and Bonham, H. F., Jr., 1960, Areal economic geology of T20N, R25 and 26E, M.D.M.: Southern Pacific Co., unpublished map.

Tower, C., 1982, Hydrogeology of a possible geothermal system near Deeth, Nevada: MS thesis, Colorado School of Mines, 101 p.

Trexler, D. T., Bruce, J. L., Cates, D., and Covington, C., 1982, Geothermal Assessment of the MX Deployment Area in Nevada: U.S. Department of Energy, Division of Geothermal Energy, DOE/NV/10187-1.

Trexler, D. T., Flynn, T., Koenig, B. A., and Bruce, J., 1980, Assessment of the geothermal resources of Carson-Eagle Valleys and Big Smoky Valley, Nevada: U.S. Department of Energy, Division of Geothermal Energy, DOE/NV/10039-2, 249 p.

Trexler, D. T., Bell, E. J., and Roquemore, G. R., 1978, Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada, final report for the period June 1976 - October 1978: U. S. Department of Energy, NVO/0671-2, 78 p.

Trexler, D. T., Flynn, T., and Koenig, B. A., 1979a, Assessment of low to moderate temperature resources of Nevada: U.S. Department of Energy NVO-01556-1, 32 p.

Trexler, D.T., Flynn, T., Koenig, B.A., and Ghusn, G., Jr., 1983, Geothermal Resources of Nevada: National Oceanic and Atmospheric Administration, 1:5,000,000-scale map.

Trexler, D. T., Koenig, B. A., Bell, E. J., and Ghusn, G., Jr., 1981, Area specific geothermal assessment, Nevada; Hawthorne, Paradise Valley, Carson Sink, and state wide assessment: Nevada Bureau of Mines and Geology, 203 p.

Trexler, D.T., Flynn, T., and Hendrix, J.L., 1990, Preliminary results of column leach experiments at two gold mines using geothermal fluids: Geothermal Resources Council Transactions, v. 14, Part I, p. 351-358.

Trexler, D. T., and Ghusn, G., Jr., 1983, Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada, final report, October 1, 1982 - December 31, 1983: U.S. Department of Energy, DOE/RA/50075-2, 148 p.

Trexler, D. T., Koenig, B. A., Ghusn, G., Jr., Flynn, T., and Bell, E. J., 1982, Low to moderate temperature geothermal resource assessment for Nevada: Area Specific Studies, Pumpernickel Valley, Carlin, and Moana: U.S. Department of Energy, Division of Geothermal Energy, DOE/NV/10220-1, 177 p.

Trexler, D.T., Flynn, T., Koenig, B.A., Bell, E.J., and Ghusn, G., Jr., 1982, Low-to-moderate-temperature geothermal resource assessment for Nevada: Area specific studies, Pumpernickel Valley, Carlin, and Moana; Final report, June 1, 1981 - July 31, 1982: U.S. Department of Energy, DOE/NV/10220-1 (DE82018598), 177 p.

Trexler, D. T., Koenig, B. A., Flynn, T., Bruce, J. L., and Ghusn, G., Jr., 1981, Low-to-moderate temperature geothermal resource assessment for Nevada, area specific studies, final report, June 1, 1980-August 30, 1981: U.S. Department of Energy, DOE/NV/10039-3, 203 p.

Trexler, D.T., Flynn, T., and Hendrix, J.L., 1990, Heap Leaching: Geothermal Resources Council Bulletin, v.

12, no. 4, p. 1-4.

Trexler, D. T., Bell, E. J., and Roquemore, 1978, Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada, final report for June, 1976-October, 1978: United States Department of Energy, Division of Geothermal Energy, NVO-0671-2, 78 p.

Trexler, D. T., Koenig, B. A., and Flynn, T. [1980?], Geothermal Resources of Nevada and their potential for direct utilization: Nevada Bureau of Mines and Geology, 1:5,000,000-scale map.

Trexler, D. T., Flynn, T., and Hendrix, J. L., 1990, Heap leaching: Geo-heat Center Quarterly Bulletin, v. 12, no. 4, p. 1-4. Trexler, D. T., Koenig, B. A., and Bruce, J. L., 1981, Nevada resource assessment program - 1980: paper presented at the State Assessment Meeting, Glenwood Springs, Colorado, May, 1981, p. 205-217.

Trexler, D. T., Flynn, T., and Ghusn, G., Jr., 1984, Geothermal resources of Nevada: a new map: Geothermal Resources Council Transactions, v. 8, p. 475-476.

Trexler, D. T., Flynn, T., Koenig, B. A., and Bruce, J., 1980, Assessment of geothermal resources of Caliente, Nevada: U.S. Department of Energy, Division of Geothermal Energy, DOE/NV/10039-1, 23 p.

Trexler, D. T., Flynn, T., and Koenig, B. A., 1979b, Geothermal resources of Nevada and their potential for direct utilization: Nevada Bureau of Mines and Geology, final report, U.S. Department of Energy Contract no. ET-78-S-08-1556, map, 4 p.

Trexler, D. T., 1977, Progress report for evaluation of lineament analysis as an exploration technique for geothermal energy: Nevada Bureau of Mines and Geology and Geological unpublished report to U.S. Energy Research and Devel. Admin., contract no. EY-76-5-08-0671.

Truesdell, A. H., 1975, Geochemical techniques in exploration: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proceedings., v. 1, table 1.

TRW Systems Group, 1976, Study of geothermal prospects in the western United States: TRW Systems Group contract 954243.

Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of Lincoln County, Nevada: Nevada Bureau of Mines and Geology Bulletin 73.

U. S. Bureau of Reclamation, 1972, An appraisal of geothermal resources in the mid-pacific region: U.S. Department of Interior, Bureau of Reclamation Report, 45 p.

U.S. Energy Resources and Development Administration, September 1976, Geothermal energy update: U.S. Dept. Commerce, U.S. Energy Res. and Development Administration, Technical Information Center Abstracts 1-300.

U.S. Geological Survey, 1977, WATSTORE water quality file (computer data bank).

U.S. Bureau of Reclamation, 1972, An appraisal of geothermal resources in the mid-Pacific region: unpublished report by U.S. Bureau of Reclamation, Mid-Pacific Region, Sacramento, California, August, 1972, 69 p.

U.S. Geological Survey, 1973, Aeromagnetic map of the Leach Hot Springs and Cherry Creek quadrangles, Pershing, Humboldt, and Lander Counties, Nevada: U.S. Geological Survey open-file report 73-301.

U.S. Bureau of Reclamation, 1972, An appraisal of geothermal resources in the Mid-Pacific region: U.S.

Department of Interior, Bureau of Reclamation Report.

U.S. Geological Survey, 1981, Total field aeromagnetic anomaly map, Steamboat Hills Known Geothermal Resource Area, Washoe County, Nevada: U.S. Geological Survey open-file report 81-996, 1:24,000 map.

U.S. Energy Resources and Development Administration, July 1976, A bibliography of geothermal resources-exploration and exploitation: U.S. Department Commerce, U.S. Energy Res. and Development Administration, Technical Information Center Abstracts 1-5476.

U.S. Geological Survey, 1975, Principal facts for gravity stations in Gerlach and San Emidio Known Geothermal Resource Areas (KGRA), Nevada: U.S. Geological Survey open-file report 75-668, 7 p.

U.S. Geological Survey, 1991, bibliography of selected water-resources publications on Nevada by the U.S. Geological Survey, 1885-1990: U.S. Geological Survey open-file report 90-595, 41 p.

U.S. Geological Survey, 1981, Total field aeromagnetic anomaly map, Wabuska Known Geothermal Resource Area, Nevada: U.S. Geological Survey open-file report 81-995, 1:24,000 map.

Urban, T. C., and Diment, W. H., 1982, An interpretation of precision temperature logs in a deep geothermal well near Desert Peak, Churchill County, Nevada: Geothermal Resources Council Transactions, v. 6, p. 317-320.

Van Denburgh, A. S., and Rush, F. E., 1974, Water resources appraisal of Railroad and Penoyer Valleys, east-central Nevada: Nevada Department Conserv. and Nat. Resources, Water Resources-Reconnaissance Series Report 60, 61 p.

Van Denburgh, A. S., and Glancy, P. A., 1970, Water resources appraisal of the Columbus Salt Marsh-Soda Spring Valley area, Mineral and Esmeralda Counties, Nevada: Nevada Department Conserv. and Nat. Resources, Water Resources-Reconnaissance Series Report 52, 66 p.

Vanderburg, W. O., 1940, Reconnaissance of mining districts in Churchill County, Nevada: U.S. Bureau of Mines Information Circular 7093.

Vanderburg, W. O., 1936, Reconnaissance of mining districts in Pershing County, Nevada: U.S. Bureau of Mines Information Circular, 6902.

Visher, F. N., 1957, Geology and ground-water resources of Quinn River Valley, Humboldt County, Nevada: State of Nevada, Office of the State Engineer Water Resources Bulletin 14, 56 p.

Voegly, N. E., 1981, Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada: U.S. Geological Survey open-file report 81-134, 12 p.

Waibel, A. F., 1987, An overview of the geology and secondary mineralogy of the high temperature geothermal system in Dixie Valley, Nevada: Geothermal Resources Council Transactions, v. 11, p. 479-486.

Waldron, H. H., 1969, Potential applications of nuclear explosives to the recovery of geothermal energy-Progress report for the fiscal year 1966: U.S. Geol. Survey Report 289-2, contract no. AT(04-3)-289, U.S. Department Commerce, U.S. Energy Res. and Development Administration, National Technical Information Service.

Walker, B. A., and Entingh, C. N., 1981, Status of U. S. direct utilization of geothermal energy: Geothermal

Resources Council Transactions, v. 5, p. 579-582.

Walker, G. E., and Eakin, T. E., 1963, Geology and ground-water of Amargosa Desert, Nevada and California: Nevada Department Conservation and National Resources, Ground-water Resources-Reconnaissance Series Report 14, 45 p.

Walstrom, R. E., 1976, Emerging potential for use of geothermal resources in Nevada: in Hill, V. R., Walstrom, R. E., Lofting, E. M., and Dugger, F. H., (editors), A series of related papers based upon the Nevada state water planning program; paper no. 3 in unpublished report in the Nevada State Engineer's Office, December, 1976, p. 43-66.

Ward, S. H., Ross, H. P., and Neilson, D. L., 1981, Exploration strategy for high-temperature hydrothermal systems in Basin and Range province: Association of American Petroleum Geologists Bulletin 65, p. 86-102.

Ward, S. H., 1983, Geophysical studies of active geothermal systems in the northern Basin and Range province: Geothermal Resources Council Special Report 13, p. 121-157.

Whelan, J., Halsey, C., and Jackson, B., 1980, Geothermal evaluation of range Bravo 19, Naval Air Station, Fallon, Nevada: Geothermal Resources Council Transactions, v. 4, p. 261-264.

Ward, S. H., 1983, Geophysical studies active geothermal systems in the northern Basin and Range: Geothermal Resources Council, Special Report No. 13, p. 121-157.

Waring, G. A., 1965, Thermal springs of the United States and other countries of the world: U.S. Geological Survey Professional Paper 492, 383 p.

Waring, G. A., 1918, Ground water in Reese River Basin and adjacent parts of Humboldt River Basin, Nevada: U.S. Geological Survey Water-Supply Paper 425-D, 129 p.

Waring, G. A., 1918, Ground water in Reese River basin and adjacent parts of the Humboldt River basin, Nevada: U.S. Geological Survey Water-Supply Paper 425-D, 129 p.

Waring, G. A., 1920, Ground water in Pahrump, Mesquite, and Ivanpah Valleys, Nevada and California: U.S. Geological Survey Water-Supply Paper 450-C, p. 51-86.

Warner, M. M., 1975, Special aspects of Cenozoic history of southern Idaho and their geothermal implications: 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 1, p. 653-663.

Warner, L. A., Holser, W. T., Wilmarth, V. R., and Cameron, E. N., 1959, Occurrence of nonpegmatite beryllium in the United States: U.S. Geological Survey Professional Paper 318.

Washington University, Seattle, Inst. for Environmental Studies, 1974, Seismicity report on Black Rock Desert project-northwest Nevada: National Technical Information Service Report PB-262674.

Wehlage, E. F., 1973, Beowawe still roars, in Meadows, K. F., ed., Geothermal world directory: Glendora, CA, K. F. Meadows, p. 182-192.

Welch, A. H., 1983, Geochemistry of the Bradys Hot Springs geothermal area, Churchill County, Nevada: U.S. Geological Survey Professional Paper 1375, 153 p.

Welch, A. H., 1985, Geothermal resources of the western Black Rock Desert, northwestern Nevada, hydrology

and aqueous geochemistry: PhD dissertation, University of Nevada, Reno, 150 p.

Welch, A. H., Sorey, M. L., and Olmsted, F. H., 1981, The hydrothermal system in southern Grass Valley, Pershing County, Nevada: U.S. Geological Survey open-file report 81-915, 200 p.

Welch, A. H., and Preissler, A. M., 1986, Aqueous geochemistry of the Bradys Hot Spring geothermal area, Churchill County, Nevada: in Subitzky, S., (editor), Selected papers in the hydrologic sciences: U.S. Geological Survey Water-Supply Paper 2290, p. 17-36.

Welch, A. H., and Preissler, A. M., 1990, Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada:--Part II, Aqueous geochemistry and hydrology: U.S. Geological Survey Water-Resources Investigations Report 87-4062, 91 p.

Welch, A. H., and Olmsted, F. H., 1984, Geothermal systems of western Nevada: in Lintz, J. Jr., (editor), Western geological excursions: in conjunction with the 1984 annual meeting of the Geological Society of America and affiliated societies: University of Nevada, Reno, Mackay School of Mines, v. 3, p. 145-146.

Wendell, W. G., 1970, The structure and stratigraphy of the Virgin Valley-McGee Mountain area, Humboldt County, Nevada: M.S. thesis, Oregon State University

Western Division Naval Facilities Engineering Command, 1981, Programmatic preliminary environmental assessment (PPEA) for the Fallon Naval Air Station geothermal development program, Fallon, Nevada: Naval Weapons Center Administration Publication, NWC AdPub 263, 151 p.

Whelan, J. A., 1980, Evaluation of geothermal potential of Range Bravo 20, naval air station, Fallon: Naval Weapons Center, NWC TP 6149, 12 p.

Whelan, J. A., Brown, J., Rodgers, C. R., and Neffew, J., 1980, Evaluation of geothermal potential of Range Bravo 17 and the Shoal site, naval air station, Fallon: Naval Weapons Center, NWC TP 6142, 34 p.

White, D. E., Thompson, G. A., and Brannock, W. W., 1949, Thermal springs and their possible significance in the future discovery of ore deposits [abs.]: Econ. Geology, v. 44, no. 1, p. 83.

White, D. E., 1952, Some recent results of investigations at Steamboat Springs, Nevada [abs.]: Geological Society America Bulletin, v. 63, pt. 2, no. 12, p. 1374.

White, D. E., and Craig, Harmon, 1959, Isotope geology of the Steamboat Springs area, Nevada [abs.]: Geological Society America Bulletin, v. 70, no. 12, pt. 2, p. 1696.

White, D. E., 1985, Summary of the Steamboat Springs geothermal area, Nevada, with attached road log commentary: U.S. Geological Survey Bulletin 1646, p. 79-87.

White, D. E., Craig, H., and Begemann, F., 1957, Isotope geology of water of the Steamboat Springs area, Nevada [abs.]: California University, Scripps Inst. Oceanog., Conference on New Research Methods in Hydrology, La Jolla. 1957, Craig, H. B., ed., Proceedings, p. 28-30.

White, D. E., Sandberg, C. H., and Brannock, W. W., 1953, Geochemical and geophysical approaches to the problems of utilization of hot-spring water and heat: 7th Pacific Science Association Cong., New Zealand, 1949, Pros., v. 2, p. 490-499.

White, D. E., and Williams, D. L., 1975, Assessment of geothermal resources of the United States - 1975: U. S. Geological Survey Circular 726, 155 p.

White, D. E., Heropoulos, C., and Fournier, R. O., 1992, Gold and other minor elements associated with the hot springs and geysers of Yellowstone National Park, Wyoming, supplemented with data from Steamboat Springs, Nevada: U.S. Geological Survey Bulletin 2001, 19 p.

White, D. E., Thompson, G. A., and Sandberg, C. H., 1964, Rocks, structure, and geologic history of Steamboat Springs thermal area, Washoe County, Nevada: U.S. Geological Survey Professional Paper 458-B.

White, D. E., 1983, Summary of Steamboat Springs geothermal area, Nevada, with attached road log: Geothermal Resources Council and American Association of Petroleum Geologists meeting field trip, 17 p.

White, D. E., and Heropoulos, C., 1983, Active and fossil hydrothermal convection systems of the Great Basin: Geothermal Resources Council Special Report 13, p. 41-53.

White, D. E., 1980, Steamboat Springs, geothermal area: Northern Nevada epithermal precious metal deposits, 1980 Society of Economic Geologists Field Trip, p. 44-51.

White, D. E., Hem, J. D., and Waring, G. A., 1963, Data of geochemistry, Sixth Cd.: U.S. Geological Survey Professional Paper 440-F, 67 p.

White, D. E., 1955b, Violent mud-volcano eruption of Lake City hot springs, northeastern California: Geological Society America Bulletin, v. 66, no. 9, p. 1109-1130.

White, D. E., 1973, Characteristics of geothermal resources, in Kruger, Paul and Otte, Carel (eds.), Geothermal energy-resources, production, stimulation: Stanford University Press, Stanford, CA.

White, D. E., 1957, Thermal waters of volcanic origin: Geological Society America Bulletin, v. 65, no. 12, p. 1637-58.

White, D. E., and Brannock, W. W., 1950a, Sources of heat, water supply, and mineral content of Steamboat Springs, Nevada: International Geol. Geophys. Union, Association Sci. Hydrology General Assembly, Oslo, 1948, v. 3, p. 168-176. Slightly revised, Am. Geophys. Union Trans., v. 31, no. 4, p. 566-574.

White, D. E., 1953, Three-dimensional picture of Steamboat Springs, Nevada [abs.]: Geological Society America Bulletin, v. 63, no. 12, pt. 2, p. 1311-1312, December 1952; also, Am. Mineralogist, v. 38, nos. 3-4, p. 364.

White, D. E., 1955a, Thermal springs and epithermal ore deposits: Econ. Geology, Fiftieth Anniv. Vol., p. 100-154.

White, D. E., Fix, P. F., Gianella, V. P., and Brannock, W. W., 1946, Preliminary results at Steamboat Springs, Washoe County, Nevada [abs.]: Geological Society America Bulletin, v. 57, no. 12, pt. 2, p. 1258-1259.

White, D. E., and Brannock, W. W., 1950b, Sources of heat and water supply of thermal springs with particular reference to Steamboat Springs, Nevada [abs.]: Geological Society America Bulletin, v. 61, no. 12, pt. 2, p. 1534.

White, D. E., The Beowawe Geysers, Nevada: before geothermal development: before development: U.S. Geological Survey Bulletin 1998, 25 p.

White, D. E., 1954, Hydrothermal alteration and other characteristics of five explored hot-spring systems [abs.]: Geological Society America Bulletin, v. 65, no. 12, pt. 2, p. 1325-1326.

White, D. E., 1974, Diverse origins of hydrothermal fluids: *Econ. Geology*, v. 69, p. 954-973.

White, D. E., 1964, Preliminary evaluation of geothermal areas by geochemistry, geology, and shallow drilling: U.N. Conference on New Sources of Energy, Rome, 1961, *Proceedings*, v. 2, p. 402-409.

White, D. E., 1965, Geothermal energy: U.S. Geological Survey Circular 519, 17 p.

White, D. E., 1968, Hydrology, activity, and heat flow of the Steam boat Springs thermal system, Washoe County, Nevada, geology and geochemistry of the Steamboat Springs area, Nevada: U.S. Geological Survey Professional Paper 458-C, 109 p.

White, D. E., 1947, Rock alteration associated with thermal springs [abs.]: *Geol. Soc. America Bulletin*, v. 58, no. 12, pt. 2, p. 1239; also [abs.], 1948, *Am. Mineralogist*, v. 33, nos. 3-4, p. 210-211.

Whitebread, D. H., and Sorensen, M. L., 1981, Preliminary geologic map of the Granite Mountain quadrangle, SE quarter Kyle Hot Springs quadrangle, Pershing County, Nevada: U.S. Geological Survey open-file report 80-715.

Whitebread, D. H., and Sorensen, M. L., 1983, Preliminary geologic map of the Kyle Hot Springs 7.5-minute quadrangle, Pershing County, Nevada: U.S. Geological Survey open-file report 83-393.

Willden, Ronald, and Speed, R. C., 1974, Geology and mineral deposits of Churchill County, Nevada: Nevada Bureau of Mines and Geology Bulletin 83, 95 p.

Willden, Ronald, 1964, Geology and mineral deposits of Humboldt County, Nevada: Nevada Bureau of Mines and Geology Bulletin 59, 154 p.

Williams, G., III, 1993, Hot springs of the eastern Sierra (2nd revised ed.): Dayton, NV, Tree By The River Publishing, 79 p.

Williams, F., Cohen, A., Pfundstein, R., and Pond, S., 1978, Site-specific analysis of geothermal development-data files of prospective sites, volume III: United States Department of Energy, Division of Geothermal Energy, p. 21-3 - 28-15.

Wilson, R. E., 1960a, Areal economic geology T28N, R49L, M.D.M.: Southern Pacific Co., unpublished map.

Wilson, R. E., 1960b, Areal geology map T29N, R49 and 50E, M.D.M.: Southern Pacific Co., unpublished map.

Wilson, R. E., 1960c, Areal economic geology T35N, R63 and 64E, M.D.M.: Southern Pacific Co., unpublished map.

Wilson, C. W., and Peterson, D. L., 1977, Principal facts for gravity stations in Clayton Valley, Nevada: U.S. Geological Survey Open-File Report 77-256.

Wilt, M. J., and Goldstein, N. E., 1985, Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada: *Geothermal Resources Council Transactions*, v. 9, part II, p. 75-80.

Wilt, M., Haught, R., and Goldstein, N. E., 1980, An electromagnetic (EM-60) survey of the McCoy geothermal prospect, Nevada: University of California System, Lawrence Berkeley Publication, LBL-12012, 115 p.

Winograd, I. J., 1963, Summary of ground-water hydrology of area between Las Vegas Valley and Amargosa Desert, Nevada, with special reference to effects of possible new withdrawals of ground water: U.S. Geological Survey Trace Element Inv. Report TEI-840, p. 197-227.

Winter, M., 1991, Environmental regulation and permitting of geothermal power development projects in Nevada: Geothermal Resources Council Transactions, v. 15, p. 163-167.

Wittkopp, R. W., 1991, Geology and exploration at Baltazar hot springs, Humboldt County, Nevada: Transactions Geothermal Resources Council, v. 15, p. 213-216.

Wollenberg, H. A., 1975b, Radioactivity of geothermal systems: 2nd United Nations Symposium on Development and Use of Geothermal Resources, San Francisco, 1975, Proceedings, v. 2, 1283-1292.

Wollenberg, H. A., Asaro, F., Bowman, H., McEvilly, T., Morrison, F., and Witherspoon, P., 1975, Geothermal energy resource assessment: California University, Lawrence Berkeley Laboratory Report UCID-3762, U.S. Energy Res. and Development Administration contract no. W-7405-ING-48, 92 p.

Wollenberg, H. A., 1974b, Radioactivity of Nevada hot-spring systems: Calif. University, Lawrence Berkeley Laboratory Report LBL-2482.

Wollenberg, H., Bowman, H., and Asaro, F., 1977, Geochemical studies at four northern Nevada hot-spring areas: California University, Lawrence Berkeley Laboratory Report 6808, 69 p.

Wollenberg, H. A., Asaro, F., Bowman, H., McEvilly, T., Morrison, F. and Witherspoon, P., 1975, Geothermal energy resource assessment: California University, Lawrence Berkeley Laboratory Report UCID3762, 92 p.

Wollenberg, H. A., 1974c, Radioactivity of Nevada hot-spring systems: Geophys. Res. Lett., v. 1, no. 8, p. 358-362.

Wollenberg, H. A., 1974a, Geothermal studies in north-central Nevada [abs.]: Geological Society America Abstract with Programs, v. 6, no. 7, p. 1609.

Wollenberg, H. A., 1975a, Radioactivity of geothermal systems: Calif. University, Lawrence Berkeley Laboratory Report 3232, U.S. Energy Res. and Development Administration contract no. W-7405-ENG-43.

Wollenberg, H. A., 1976, Geothermal studies in northern Nevada: Calif., University, Lawrence Berkeley Laboratory Report LBL-4451, U.S. Energy Res. and Development Administration contract no. W-7405-ENG-48.

Wonestolen, K. A., 1986, Geothermal heating: penetration of utility monopolies: Geothermal Resources Council Transactions, v. 10, p. 307-308.

Woods, M. C., 1974, Geothermal activity in Suprise Valley (California): California Geol., December 1974, p 271-273.

Work Projects Administration, 1940, Nevada, a guide to the Silver State: Portland, OR, Binfords and Mort.

Worts, F. G., Jr., and Malmberg, G. T., 1966, Hydrologic appraisal of Eagle Valley, Ormsby County, Nevada: Nevada Department Conserv. and National Resources, Water Resources-Reconnaissance Series Report 39, 55 p.

Wright, P. M., Ruth, K. A., Langton, D. R., and Bullett, 1990, Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute: Earth Science Laboratory, University of Utah Research Institute, Salt Lake City, Utah, REV 2.0, 30 March 1990, 117 p.

Wright, P. M., 1991, Geochemistry: Geo-heat Center Quarterly Bulletin, v. 13, no. 1, p. 8-12. Wright, P. M., 1992, Exploration potential for new hydrothermal resources for electrical power generation in the 48 contiguous United States: Geothermal Council Bulletin, vol. 21, no. 2, p. 31-43. Yanagida, F., 1983, Economic potential of geothermal energy usage in agriculture and aquaculture: the case of Nevada: Geothermal Resources Council Transactions, v. 7, p. 619-620.

Wright, P. M., 1991, Exploration potential for new hydrothermal resources for electrical power generation in the 48 contiguous United States: Geothermal Resources Council Transactions, v. 15, p. 217-228.

Yeamans, F., 1983, Hydrologic setting of geothermal systems in the northern Basin and Range province: Geothermal Resources Council Special Report 13, p. 159-175.

Young, H. H., and Lewis, R. E., 1982, Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada: U.S. Geological Survey Professional Paper 1044-J, p. J1-J20.

Young, H. H., and Lewis, R. E., 1980, Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada: U.S. Geological Survey open-file report 80-2043, 58 p.

Zeisloft, T. J., and Keller, G. V., 1978, Magnetotelluric survey across Black Rock Desert-Hualapai Flat area, Nevada: in Keller, G. V., and Grose, L. T., (editors), Studies of a geothermal system in northwestern Nevada - part 2, Colorado School of Mines Quarterly, v. 73, no. 4, p. 39-46.

Zimmerman, C., 1991, Gold mineralization and geothermal systems of the Carlin Trend area, northeastern Nevada: Geothermal Resources Council Transactions, v. 15, p. 53-59.

Zoback, M. L. C., 1979, A geologic and geophysical investigation of the Beowawe geothermal area, north-central Nevada: Stanford University Publications, Geological Sciences, v. 16, 79 p.

Zoback, M. L., and Anderson, R. E., 1983, Style of basin-range faulting as inferred from seismic reflection data in the Great Basin, Nevada, and Utah: Geothermal Resources Council, Special Report 13, p. 363-381.

Zones, C. P., 1961b, Ground-water potentialities in Crescent Valley, Eureka and Lander Counties, Nevada: U.S. Geological Survey Water Supply Paper 1581; also Nevada Department Conserv. and National Resources, Water Resources Bulletin 15.

Zones, C. P., 1963, Ground water in the alluvium of Kings River Valley, Humboldt County, Nevada: Nevada Department Conserv. and National Resources, Water Resources Bulletin 16; also U.S. Geological Survey Water-Supply Paper 1619-L, 38 p.

Zones, C. P., 1961, Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada: U.S. Geological Survey Water-Supply Paper 1581, 50 p. (Also Nevada Department of Conservation and Natural Resources, Water Resources Bulletin no. 15).

Zones, C. P., 1961a, Ground-water reconnaissance of Winnemucca Lake Valley, Pershing and Washoe Counties, Nevada: U.S. Geological Survey Water-Supply Paper 1539-C; also Nevada Department Conserv. and National Resources, Water Resources Bulletin 15.

APPENDIX 1

#	NAME	CO	T	R	SC	OSEC	NLAT	WLONG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE	USE
1	TWIN SPRING, YIA SPRING	W	42N	19E	04	NW	41.5933	118.8650	S	22	715	195/02/05/15	WARING, 1985		
	2 HILLS WARM SPRING	W	41N	20E	10	NE SE SW	41.7300	118.7067	S	20	190/10/03/08	TREXLER AND OTHERS, 1979			
3	UNNAMED SPRING	W	44N	19E	12	NE SW SW	41.7459	118.7919	S	23	19	194/02/21/11	SINCLAIR, 1983B		
4	VIRGIN VALLEY RANCH 10	HU					41.7005	118.1075	W	21	197/08/05	WATSTORE			
5	VIRGIN V CAMP GROUND 1	HU	45N	26E	02		41.6533	118.0008	W	32	197/08/05	WATSTORE			
6	ROADSIDE REST AREA 3	HU	46N	26E	31	C	41.6753	118.0475	W	18	197/04/05	WATSTORE			
7	Surprise Valley Hot Spring	WA					41.186	119.978	S	47	198/9	Flynn and Buchanan, 1990			
8	WARM SPRING	W	39N	19E	33		41.2160	119.8627	S	warm				WALL CANYON RESERVOIR 7.5' QUAD	
9	WARM SPRINGS	HU	41N	27E	12	NE SW SW	41.7503	118.6307	S	40		195/07/27	TREXLER AND OTHERS, 1979		
10	McGEE MOUNTAIN	HU	45N	27E			41.6163	118.5957	S	42.2	61	197/01/01	WENDELL, 1970		
11	BOG HOT WELL	HU	46N	29E	31		41.9763	118.7980	W	hol				BIG HOT SPRINGS 7.5' QUAD	
12	BOG HOT SPRINGS	HU	46N	28E	18	SW NE NW	41.9228	118.8050	S	55.8	3765	197/09/01	SINCLAIR, 1983B		
13	BALTAZOR HOT SPRING 9	HU	46N	29E	18	B	41.9217	118.7092	S	63		197/08/05	WATSTORE		
14	SOLDIER MEADOWS AREA HOT SPRING	HU	40N	24E	23		41.3597	118.2100	S	54	68	197/02/20	GROSE AND KELLER, 1975B		
15	SOLDIER MEADOW AREA - UNNAMED HOT SPRING	HU	40N	24E	23		41.3597	118.2100	S	54	50	195/06/13	MARINER AND OTHERS, 1974, 1975		
16	SOLDIER MEADOW AREA HOT SPRING	HU	40N	24E	23		41.3597	118.2100	S	48				GROSE AND KELLER, 1975B	
17	SOLDIER MEADOW 1	HU	40N	24E	23		41.3581	118.2178	S	54		197/01/01	WATSTORE		
18	CANE SPRING	HU	39N	27E	30	NE	41.2560	118.8362	S	23.3	19			SINCLAIR, 1983A	
19	WEST PINTO HOT SPRING	HU					41.3592	118.6138	S	92		197/01/01	GROSE AND KELLER, 1975B		
20	EAST PINTO HOT SPRING	HU	40N	28E	17	NE SE SE	41.325	118.7650	S	94		197/08/24	GROSE AND KELLER, 1975B		
21	WARM SPRING	W	37N	22E	35		41.0397	118.4658	S	warm		198/11/12/12	WATSTORE		
22	LEADVILLE SPRINGS	W	37N	23E			41.0327	118.3071	S	warm		198/11/12/12	WATSTORE		
23	CANE SPRINGS	HU	36N	24E	16	A	41.0133	118.2547	S	21		198/09/21	SINCLAIR, 1983A		
24	WHEELER RANCH WELL	HU	37N	25E	10	SE	41.1150	118.1083	S	36.1		198/09/21	SINCLAIR, 1983A		
25	DOUBLE HOT SPRING 2	HU	36N	20E	04	A	41.0492	118.0275	S	64.5		197/01/01	WATSTORE		
26	UNNAMED SPRING (D.H.2)	HU	36N	26E	16	SE NE	41.0150	118.0155	S	60.5		198/08/24	LEADVILLE 7.5' QUAD		
27	WV392211	HU	37N	24E	19	SW SE	41.4922	118.3192	S	21.1	19	197/01/01	SMITH, 1958		
28	TH SP HARDIN CITY SE CO	HU	37N	26E	10	DCA	41.1156	118.0008	S	50.8	101.9	198/07/09	WATSTORE		
29	MACFARLANE'S BATH HOUSE SPRING	HU	37N	20E	31		41.0507	118.1788	S	76.5	18.9	198/09/21	MALMBERG AND WORTS, 1988		
30	SPRING	HU	42N	30E	12	A	41.5284	118.6568	S	40		198/10/08	SINCLAIR, 1983A		
31	SPRING	HU	43N	30E	23	D	41.5675	118.5658	S	70		198/10/08	WATSTORE		
32	SPRING	HU	42N	33E	19	BB	41.4922	118.3192	S	21.1	19	197/05/16	SINCLAIR, 1982C		
33	SPRING	HU	42N	33E	32	SE NE	41.4717	118.2647	W	24.4		27	197/00/00	MALMBERG AND WORTS, 1988	
34	UNNAMED SPRING	HU	42N	33E	32	NE NE	41.4765	118.4759	W	24	107.3	198/10/08	WATSTORE		
35	U.S.G.S. TEST WELL NO. 21	HU	42N	31E	11	B	41.5285	118.4759	W	24	107.3	198/10/08	SINCLAIR, 1983A		
36	WELL	HU	42N	31E	04	SE NE NE	41.7200	118.5033	S	57.8	168	197/05/05	WATSTORE		
37	HOWARD HOT SPRING	HU	45N	33E	21	SE NE SW	41.7025	118.2763	S	27		197/04/21	TREXLER AND OTHERS, 1979		
38	FIVE MILE SPRING	HU	44N	33E	10	BB	41.7053	118.2633	S	26		195/08/22	WATSTORE		
39	SPRING	HU	39N	35E	07	DODA	41.2614	118.0858	W	19.5		198/10/20	SINCLAIR, 1982A		
40	JACKSON WELL	HU	41N	35E	20	NE	41.4200	118.0833	W	27		34	197/08/11/11	*WHITE, D., USGS, MENLO PARK	
41	SOO HOUSE RANCH WELL	HU	47N	37E	24	BAB	41.9476	117.7678	W	26.5		61.0	197/04/23	WATSTORE	
42	CORDERO MERCURY MINE, NORTH LOWER WELL	HU	47N	37E	24	NE NE SE	41.9555	117.7200	S	33.3		214	197/00/00	GARRELL AND SCHILLING, 1970	
43	MENTAREY'S WELL 1	HU	41N	41E	19	NE NE	41.4208	117.3867	S	51.2				LOELTZ AND OTHERS, 1949	
44	NOOCIE'S NEVADA WELL	HU	41N	41E	19	NE NE	41.9167	117.6000	W	53				MARINER AND OTHERS, 1974, 1975	
45	THE HOT SPRINGS	HU	41N	41E	19	NE NE	41.4208	117.3867	S	58				WARING, 1985	
46	THE HOT SPRING	HU	41N	43E	03	DC	41.4264	117.1436	S	hol				WATSTORE	
47	SPRING	HU	45N	41E	03	DC	41.1047	117.5739	W	69		16.6	198/04/26	WATSTORE	
48	WELL	HU	38N	41E	02	SW NE NE	41.7727	117.3452	S	hol				WARING, 1985	
49	SPRINGS, HEAD OF HOT CREEK	EL	38N	46E	11		41.1832	116.5014	S	21.1	95	195/00/00	COHEN, 1982		
50	UNNAMED SPRING	EL	37N	43E	24		41.0854	117.0702	S	warm	>757	197/00/00	HOSE AND TAYLOR, 1974		
51	SPRINGS	EL	43N	53E	06		41.6153	116.2079	S	warm				EAKIN, 1982B	
52	WARM SPRING NEAR DEEP CREEK RESERVOIR	EL	38N	46E	25		41.1800	116.7313	S	hol				CORACOPA RIDGE 7.5' QUAD	
53	HOT LAKE	EL	39N	45E	36		41.2137	116.6440	S	hol				SQUAW VALLEY RANCH 7.5' QUAD	
54	SPRING	EL	38N	46E	11		41.1832	117.3215	S	21.1	95	195/00/00	WATSTORE		
55	UNNAMED HOT SPRING (SEE PATSVILLE)	EL	39N	50E	11	SW NE SW	41.2571	116.3568	S	47.2		197/00/00	TREXLER AND OTHERS, 1979		
56	PETAINI (NIAGARA) SPRINGS	EL	40N	52E	08	NE	41.3437	116.0587	S	warm				*WHITE, D., USGS, MENLO PARK, CA	
57	ELLUSON HOT SPRINGS	EL	41N	52E	08	NE	41.4087	116.1533	S	93	3.8	197/12/30	MARINER AND OTHERS, 1974, 1975		
58	HOT SULPHUR SPRINGS	EL	45N	54E	20		41.4607	116.1460	S	90		195/05/24	MARINER AND OTHERS, 1974, 1975		
59	HOT UNNAMED HOT SPRING (SEE PATSVILLE)	EL	43N	55E	04	SE SE	41.6472	115.7757	S	54				MARINER AND OTHERS, 1974, 1975	
60	WILDFIRE HOT SPRING	EL	38N	50E	14	SE SW	41.1050	116.2650	W	30		194/05/16	TREXLER AND OTHERS, 1979		
61	ROWLAND HOT SPRINGS	EL	39N	50E	15	SE SW	41.2550	115.3050	S	52		197/12/13	TREXLER AND OTHERS, 1979		
62	DEVIL'S PUNCH BOWL	EL	42N	50E	34	SE SW NW	41.5762	115.1808	S	64.4	2271	194/04/09	WATSTORE		
63	SPRING	EL	39N	53E	03	SE SW NW	41.2980	115.9907	S	warm				MORGAN HILL 7.5' QUAD	
64	WARM SPRINGS	EL	37N	58E	26		41.0813	115.3038	S	hol				CESTERLING, 1980	
65	UNNAMED SPRING	EL	38N	50E	14	SE SW SE	41.1800	115.2917	S	35		195/00/29	TREXLER AND OTHERS, 1979		
66	UNNAMED WELL	EL	38N	50E	15		41.1810	115.2650	W	30				WATSTORE	
67	DEVIL'S PUNCH BOWL	EL	39N	50E	34		41.2550	115.3050	S	52				MARINER AND OTHERS, 1979	
68	H.D. RANCH SPRINGS	EL	42N	50E	20		41.5762	115.1808	S	64.4	2271	194/04/09	WATSTORE		
69	RAILROAD SPRING	EL	37N	58E	26		41.0801	114.9804	S	warm				MARINER AND OTHERS, 1974B	
70	UNNAMED HOT SPRING NEAR WELLS	EL	38N	62E	17	SE NW NE	41.1810	114.6695	S	61				HEAT PUMP	
71	UNNAMED HOT SP NEAR WELLS	EL	38N	62E	17	A	41.1810	114.6694	S	55		197/01/01	WATSTORE		

NAME	CO	I	R	SC	QSEC	NLAT	WLONG	T	TEMP	DEPTH	CDATE	REFERENCE	USE	
72 METROPOLIS (TWELVEMILE SPRINGS)	EL	39N	6E	27	NE NE	41.2459	114.0517	S	36.9	3033	1944/04/14	WARING, 1945		
73 WINE CUP RANCH WELL	EL	41N	84E	23	NW SE	41.0492	114.0742	W	58.9	20.7	1946/03/25	RUSH, 1948A		
74 PAN AMERICAN PETROLEUM-COBRE MINERALS WELL	EL	37N	61E	03	SW SE	41.1135	114.3342	W	76.7	1403	"	NEVADA BUREAU OF MINES AND GEOLOGY		
75 GAMBLE RANCH WELL NO. 4	EL	40N	69E	18	SW	41.3433	114.1717	W	20	64	"	RUSH, 1948		
76 THOUSAND SPRINGS (GAMBLE RANCH SPRING)	EL	40N	69E	08	SE NW NW	41.3698	114.1917	S	20.6	5110	"	MIFFLIN, 1958		
77 HOT SPRING	EL	40N	68E	04		41.3062	114.1844	S	hot			TWELVEMILE RANCH 7.5' QUAD		
78 WELL	EL	45N	78E	20	ACB	41.7731	114.7508	W	54	1979/04/28	WATSTORE			
79 MINERAL HOT SPRINGS	EL	45N	84E	18		41.7842	114.7293	S	60	1949/10/13	MARINER AND OTHERS, 1974, 1975			
80 SAN JACINTO RANCH SPRING	EL	40N	64E	23	NW NW	41.6883	114.6850	S	26	1924/07/26	MOORE AND EAKIN, 1948			
81 MINERAL HOT SPRING	EL	45N	65E	04	BBA	41.7938	114.6253	S	60	1974/01/01	WATSTORE			
82 W.D. RANCHING CO. FLOWING WELL	EL	47N	65E	18	NW SW	41.9653	114.6416	W	37.8	168.4	1979/12/15	MOORE AND EAKIN, 1948		
83 WHEELER (Y) RANCH WELL	EL	47N	65E	17	CBC	41.9558	114.6344	W	38	302.5	1979/12/07	WATSTORE		
84 WHEELER (Y) RANCH WELL	EL	47N	65E	15	DCCD	41.9547	114.5858	W	43.5	1961/04/23	WATSTORE			
85 SHOSHONE WARM SPRINGS	EL	47N	65E	11	NE SW SW	41.9717	114.5783	S	35	1982/08/25	TREXLER AND OTHERS, 1979			
86 UNNAMED HOT SPRING	EL	47N	67E	00	SE NW	41.9860	114.3770	S	30	1969/10/07	HOSE AND TAYLOR, 1974			
87 TROUT CREEK RANCH WELL, GOOSE CREEK AREA	EL	46N	69E	15	NW NE	41.8623	114.1188	W	43.3	75	1912/09/23	MOORE AND EAKIN, 1948		
88 GOOSE CREEK AREA, SPRING	EL	46N	69E	10	SE SW SE	41.8687	114.1200	S	32.9	1960/10/07	WATSTORE			
89 TROUT CREEK RANCH WELL	EL	46N	69E	02	SW SE	41.9027	114.0995	W	21	75	1972/02/13	MOORE AND EAKIN, 1948		
90 NILE SPRING	EL	47N	70E	30	SW SW S	41.9263	114.0847	S	43	"	MARINER AND OTHERS, 1974, 1975			
91 HOT SPRING	HU	35N	43E	11		40.9202	117.1091	S	hot		HOT POT 7.5' QUAD			
92 NEW SPRING	W	34N	22E	18		40.8317	116.9317	S	29	1952/05/18	GROSE AND KELLER, 1975B			
93 POODLE SPRING	W	34N	22E			40.8244	119.4847	S	29	1975/01/01	WATSTORE			
94 SPRING	WA					40.8711	119.8174	S	29.4	1975/	LAWRENCE LIVERMORE LABORATORY, 1976			
95 BUFFALO SPRING	W	31N	20E	06		40.5932	119.7742	S	warm	1961/04/23	WATSTORE			
96 BUCKBRUSH SPRING	W	29N	19E	11		40.3980	119.8250	S	warm	1962/08/25	WATSTORE			
97 JACK BUCKHAM RANCH WELL	W	26N	19E	12	NE	40.3150	119.7933	S	23	1963/04/16	GLANCY AND RUSH, 1949			
98.1 FISH SPRING	W	26N	19E	19	SE SE	40.1008	119.8850	S	23	1952/09/18	MARINER AND OTHERS, 1974, 1975			
98.2 FISH SPRING	WA					40.1024	119.8933	S	21	1975/	LAWRENCE LIVERMORE LABORATORY, 1976			
99 THE NEEDLES - WESTERN GEOTHERMAL WELL	WA					40.1500	119.8750	W	15.5	"	WHITE, D., USGS, MENLO PARK			
100 THE NEEDLES	WA					40.1490	119.8748	W	58	"	MARINER AND OTHERS, 1974, 1975			
101 SEVENMILE SPRING	W	25N	23E	10	BCD	40.0483	119.3875	S	18	1969/07/20	WATSTORE			
102 SPRING	W	26N	23E	10	DBA	40.1344	119.3769	S	18.5	1969/07/20	WATSTORE			
103 SPRING	W	27N	22E	16	ADA	40.2161	119.5056	S	23	1969/08/22	WATSTORE			
104 LOWER STONEHOUSE SPRING	PE	27N	25E	08	DD	40.2178	119.1997	S	23	1969/08/03	WATSTORE			
105.1 Amor II well 43-21	W	29N	23E	21		40.3092	119.4039	W	135	65.4	"	NEVADA BUREAU OF MINES AND GEOLOGY		
105.2 Amor II well 43-21	W	29N	23E	21		40.3692	119.4039	W	135	65.4	"	NEVADA BUREAU OF MINES AND GEOLOGY		
106 SAN EMIDIO DESERT - UNNAMED HOT SPRING	W	29N	23E	09.10		40.3917	119.1097	S	79	1953/02/22	MARINER AND OTHERS, 1974A			
107 GERLACH AREA - GREAT BOILING SPRING (GERLACH HOT S)	W	32N	23E	15	NW	40.6600	119.3633	S	65	"	MARINER AND OTHERS, 1974, 1975			
108 UNNAMED HOT SPRING NEAR GREAT BOILING SPRING	WA	32N	23E	10	NW NW	40.6650	119.3667	S	65	1960/01/26	WATSTORE			
109 GREAT BOILING SP ORIF 46	WA	34N	23E	23	C	40.7226	119.3443	S	26	1975/01/01	WATSTORE			
110 BOWEN	W	34N	23E	34	A	40.7939	119.3342	W	26	1981/12/13	WATSTORE			
111 GRANITE CREEK RANCH WELL	PE	34N	23E	10	B	40.7447	119.7131	S	30.5	1980/10/12	MARINER AND OTHERS, 1976A			
112 UNNAMED HOT SPRING NEAR TREGO	PE					40.7687	119.1197	S	64.5	150	"	MARINER AND OTHERS, 1976A		
114 FLY RANCH (WARDS HOT SPRING) - WELL	W	34N	23E	02		40.6633	119.3417	W	60	600	1968/08/00	MARINER AND OTHERS, 1974, 1975		
115 HUALAPAI FLAT SPRING 18	W	34N	23E	01		40.8600	119.3181	S	94	1975/01/01	WATSTORE			
116 BLACK ROCK HOT SPRINGS	HU	34N	20E	34	NW NW	40.9700	119.0100	S	57.8	715	1973/03/20	SINCLAIR, 1983A		
117 BLACK WELL	PE	29N	20E	06	D	40.4056	119.7675	W	20.5	1969/09/14	WATSTORE			
118 PORTER SPRING	PE	29N	20E	05	B	40.4176	119.6878	S	18	1969/11/20	WATSTORE			
119 COLORADO WELL NO. 1	PE	28N	32E	33	SE	40.2450	119.3850	W	60	1986/05/23	*MARINER, R., USGS, MENLO PARK			
120 SOUTHWEST DREDGING CO. WELL	PE	29N	34E	34	SE	40.3367	119.1397	W	24	42	1975/02/05	LOELTZ AND PHOENIX, 1955		
121 DRILL HOLE	PE	27N	35E	01	D	40.0613	117.9877	W	hot		GARIBOLDI AND SCHILLING, 1976			
122 HYDRO (HYDRA) HOT SPRINGS	PE	25N	39E	20	SW	40.0039	117.7181	S	70	102	1962/07/31	MARINER AND OTHERS, 1974		
123 SCU HOT SPRINGS (GILBERTS HOT SPRINGS)	PE	28N	36E	20	SE	40.0895	117.7247	S	73	65	1977/01/01	WATSTORE		
124 UNNAMED SPRING	PE	25N	39E	19	NW	40.0267	117.3493	S	23	189	1983/01/07	WATSTORE		
125 UNNAMED HOT SPRING (LOWER RANCH)	PE	25N	39E	10	NW	40.0350	117.6033	S	40	195	1978/08/16	MARINER AND OTHERS, 1974B		
126 SPRING, J.S. RANCH (MCCOY)	PE	26N	39E	33	SW	40.0767	117.7000	S	40.3	2538	1980/08/04	COHEN AND EVERETT, 1963		
127 JERSEY VALLEY AREA - UNNAMED HOT SPRING	PE	27N	40E	20	SW	40.1780	117.4900	S	20	20	1975/05/13	MARINER AND OTHERS, 1974, 1975		
128 PARIS WELL	PE	27N	39E	02	NW	40.2450	117.7073	W	22	38	118	1983/01/07	COHEN AND EVERETT, 1963	
129 J.S. RANCH WELL	CH	26N	39E	20	D	40.0453	117.6999	W	21	32.6	1983/01/23	WATSTORE		
130 KYLE HOT SPRINGS	PE	26N	36E	12	NW NW	40.4083	117.8050	S	95.6	"	SANDERS AND MILLES, 1974			
131 HOTTEST KYLE HOT SPRINGS	PE	26N	36E	01	C	40.4069	117.7431	S	65	1977/05/08	WATSTORE			
132 COYOTE SPRING	PE	30N	39E	30	DDD	40.4181	117.6397	S	22	1977/01/01	WATSTORE			
133 BUFFALO SPRINGS	PE	29N	41E	06	NE SW NW	40.4172	117.4158	S	65	"	WOLLENBERG AND OTHERS, 1977			
134 BUFFALO VALLEY HOT SPRINGS	LA	28N	41E	23	SE	40.3670	117.3255	S	65.5	7.6	1982/03/10	*WHITE, D., USGS, MENLO PARK		
135 OHIO WELL	PE	31N	34E	14	ABC	40.5617	117.5613	W	58.1	40.6	1976/09/15	WATSTORE		
136 SPRING SW GRASS VALLEY	PE	31N	38E	09	B	40.5658	117.7256	W	20	1977/01/01	WATSTORE			
137 LEACH HOT SPRINGS	PE	31N	38E	36	SE	40.8037	117.6457	W	92	200	MARINER AND OTHERS, 1974, 1975			
138 DH 13A ORIFICE	PE	32N	36E	36	DA	40.5636	117.6458	W	52.5	52.1	1978/08/23	WATSTORE		

#	NAME	CO	T	R	SC	GSEC	NLAT	WLONG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE
139	NORTHERN EAST RANGE AREA	HU	35N	30E	26	NEW NW	40.8550	117.9383	S	27.8				CCHEN, 1983
140	SPRING	PE	30N	33E	20	40.4568	116.2934	S	warm					CROFUTT, 1972
141	HUMBOLDT (RYE PATCH) AREA - PHILLIPS PETROL. CAMPB	PE	31N	33E	21	SE	40.5350	116.2683	W	162.6				GARSIDE AND SCHILLING, 1979
142	Florida Canyon Mine well	PE	31N	33E	03	40.5833	116.2542	W	114.4					Toppler and others, 1990
		PE	33N	35E		40.7050	116.0653	S	warm					HEAP LEACHING
143.1	SPRINGS	HU	36N	34E	23	C	40.9605	116.1292	W	87.8	227.1	137	1985/	WARING, 1995
143.2	BLUE MOUNTAIN DRILL HOLE	HU	36N	36E	30	NEW SW/SE	40.9690	117.7433	W	22.6	151	1970/10/07	PARR AND PERCIVAL, 1991	
144	CALIFORNIA PACIFIC UTILITIES CO. WELL	HU	36N	37E	13	SE NE SW	40.9926	117.7620	S	33.9				COHEN, 1982
145	UNNAMED SPRING	HU	36N	34E	26	SW NE SE	40.9642	117.8612	W	22.6				COHEN, 1982
146	BLM WELL	HU	36N	40E	20	SW SW SE	40.8610	117.4938	S	74	750			MARINER AND OTHERS, 1974, 1975
147	UNNAMED HOT SPRING NEAR SOLCONDA	HU	36N	40E	38	SW	40.9497	117.4238	W	61.7				GARSIDE AND SCHILLING, 1976
148	GOLCONDA TUNGSTEN MINE DRILL HOLE 302	HU	33N	40E	05	SE	40.7617	117.4922	S	85	100			MARINER AND OTHERS, 1974, 1975
149	UNNAMED HOT SPRING	PE	35N	41E	34		40.8643	117.3491	S	hot				KERR, 1940
150	SULPHUR SPRING	HU	34N	41E	13	NEW NW/NE	40.9317	117.3047	S	34				TREXLER AND OTHERS, 1979
151	BROCKS SPRING	HU	35N	43E	10	NE NE SE	40.9226	117.1100	S	58				
152	HOT POT SPRING	LA	28N	41E	07		40.3125	117.0895	S	32				1912/11/16 MARINER AND OTHERS, 1974, 1975
153	MOUND SPRING	EU	35N	51E	30	DDDD	40.8875	116.2794	S	16.5				*WHITE, D., USGS, MENLO PARK
154	UNN HOT SP/ VLY OF MOON	LA	27N	43E	23	BCC	40.1911	117.1056	S	53				1974/01/01 WATSTORE
155	IZZENHOOD RANCH SPRING	LA	35N	45E	10	SW NE NW	40.9287	116.8653	S	31				1982/07/05 TREXLER AND OTHERS, 1979
156	DEE 3 WELL	EL	34N	49E	03	CDD	41.0194	116.4247	W	45				1990/04/27 WATSTORE
157	BW2 WELL	EU	36N	50E	19	BCC	40.9931	116.3739	W	51.5				(SPACE HEATING)
158	BRAHMA SPRING3	EU	35N	51E	30	DDDD	40.8875	116.2794	S	16.5				1982/07/05 WATSTORE
159	NEWMAINT WELL MC2	EU	34N	51E	26	DDD	40.7981	116.2017	W	31.5				1989/04/11 WATSTORE
160	UNNAMED SPRING	EL	33N	53E	08	NW	40.7642	116.0408	S	64				1970/10/07 TREXLER AND OTHERS, 1979
161	UNNAMED SPRINGS NEAR CARLIN	EL	33N	52E	33	SE SW	40.8972	116.1333	S	79				MARINER AND OTHERS, 1974, 1975
162	TYROL SPRING	EL	32N	52E	05	COBIA	40.8644	116.1539	S	22				STONY POINT
163	SPRING	EU	33N	49E	10	ACDD	40.7494	116.4263	W	28				1980/06/13 WATSTORE
164	MACK CREEK FARM WELL	LA	33N	47E	08		40.7493	116.7011	S	warm				BRADBURY AND ASSOCIATES, 1984
165	WHITE ROCK SPRINGS	LA	32N	40E	06		40.8745	116.8415	S	hot				WATSTORE
166	HOT SPRING	LA	32N	45E	17	SW SW	40.8643	116.8342	W	23.3	946	221	1970/08/01 SCOTT AND BARKER, 1982	
167	BATTLE MOUNTAIN CITY WELL	EU	31N	46E	17	N 1/2	40.5683	116.2294	S	98				WHITE, DONALD, U.S.G.S.
168	BELOWAWAY - SPRING 51	EU	31N	40E	08	SE	40.5687	116.5867	S	99	100			MARINER AND OTHERS, 1974B, 1975
169	CARLOTTA RANCH SPRING, SULFUR SPRING	EU	32N	49E	33	SW	40.8017	116.4600	S	68	3.6			ROBERTS AND OTHERS, 1987
170	HORSESHOE RANCH HOT SPRINGS	EU	29N	40E	11	NE NE	40.4035	116.5167	S	54	125			MARINER AND OTHERS, 1974, 1975
171	HOT SPRINGS POINT	EU	28N	40E	11	NE NE	40.4033	116.5167	S	60				WHITE, DONALD, U.S.G.S.
172	HOT SPRINGS POINT	EU	28N	40E	10	NEW NW	40.3150	116.4317	S	65.5	9.5			1988/03/00 GARSIDE AND SCHILLING, 1976
173	SPRING	EL	26N	52E	24	SE	40.5687	116.0500	S	39	376.5			WATSTORE
174	CARLOTTA RANCH SPRING, SULFUR SPRING	EU	28N	52E	12	NW	40.3283	116.0717	S	28.1	6000			1972/06/00 MARINER AND OTHERS, 1974B
175	HOT CREEK SPRINGS AREA	EU	27N	52E	14	NE SE	40.2192	116.0563	S	65.5	169			ROBERTS AND OTHERS, 1987
176	BRUFFEY'S HOT SPRINGS	EU	25N	53E	08		40.0792	116.0350	S	28	38			1974/08/05 EVERETT AND RUSH, 1986
177	FLYNN RANCH SPRINGS	EL	34N	55E	21	NE	40.8185	115.7755	S	58	75			1972/06/00 WATSTORE
178	EIKO HOT COMPANY WELL	EL	34N	59E	31		40.7024	115.3828	S	warm				FLYNN AND BUCHANAN, 1990
179	HOT HOLE (ELKO HOT SPRINGS)	EL	31N	59E	11	NEW NW	40.5687	115.2647	S	93	75			SPACE HEATING
180	WARM SPRING	EL	26N	52E	02	NW	40.8285	115.7755	S	65				SOLDIER PEAK 7.5' QUAD
181	SULPHUR HOT SPRINGS (NOT SULPHUR SPRINGS)	EL	27N	50E	15	NE	40.1275	116.0653	S	22.2				MARINER AND OTHERS, 1974, 1975
182	UNNAMED HOT SPRING NEAR RUBY MARSH	LA	26N	43E	23	NE	40.1987	117.1008	S	53				MARINER AND OTHERS, 1974, 1975
183	UNNAMED SPRING	W	26N	65E	33		40.0035	114.9343	S	22				EVERETT AND RUSH, 1986
184	UNNAMED HOT SPRING (VALLEY OF THE MOON)	LA	27N	45E	25	NE	40.1933	116.8617	S	50				1980/05/25 MARINER AND OTHERS, 1974, 1975
185	UNNAMED HOT POOL	W	24N	22E	18		39.9463	118.3100	W	48.9				1987/03/10 *WHITE, D., USGS, MENLO PARK
186	UNNAMED SPRING	LA	27N	46E	20	NW	40.1657	116.8042	S	22.2				1975/08/00 EVERETT AND RUSH, 1986
187	THE PYRAMID HOT SPRING	EL	33N	61E	12		40.7505	115.0354	S	warm	7570			
188	WARM SPRINGS RANCH	EL	35N	64E	04	NW NE N	40.0517	114.7500	S	30	189			EARTH AND OTHERS, 1951
189	JOHNSON RANCH (BIG SPRINGS)	EL	36N	66E	28	SW SW SE	40.9700	114.5067	S	22.7	113.6			*WILSON, 1960
190	COTTONWOOD SPRING	W	23N	21E	29		39.8327	119.5917	S	warm				1949/10/12 WATSTORE
191	THE NEEDLE ROCKS - ANAHO ISLAND SPRING	W	24N	22E	03		39.9463	119.3100	W	48.9				1980/05/25 MARINER AND OTHERS, 1974, 1975
192	THE PYRAMID HOT SPRING	CH	22N	20E	11	ADA	39.7883	119.0233	S	53	0.0			*GARSIDE, L., NBMG
193	WARM SPRINGS	W	23N	20E	22		39.8462	119.7161	S	68.3				FLYNN AND BUCHANAN, 1990
194	MCULLOCH CORP. WELL	CH	22N	21E	07	SE NW	39.7600	119.8667	W	43.3				VEGETABLE DRYING
195	COTTONWOOD SPRING	W	23N	21E	35		39.7501	119.7501	W	119.0107	S			*WHITE, D., USGS, MENLO PARK
196	COLLAR AND ELBOW SPRING	CH	22N	20E	13		39.8375	119.0118	W	85.1				Adams, 1944
197	SPRING	CH	22N	20E	11	ADA	39.7883	119.0233	S	53	0.0			WATSTORE
198	BRADY HOT SPRINGS	W	19N	18E	12	NE NE SW	39.7683	119.0107	S	141				FLYNN AND BUCHANAN, 1990
199	BRADY HOT SPRINGS	CH	22N	21E	29		39.8327	119.5917	S	94				VEGETABLE DRYING
200	Eagle Salt Works Spring	CH	22N	21E	35		39.7501	119.7501	W	119.0347	S			(SPA)
201	HAZEN AREA (PATUA HOT SPRINGS)	LY	20N	20E	18	SW	39.5067	119.1033	S	85.1				COFFEE SPRINGS
202	Patua Hot Spring	LY	19N	18E	17		39.5977	119.1113	S	85				COFFEE SPRINGS
203	UNNAMED WELL	W	19N	18E	13	SW NE	39.6150	119.9850	W	28				COFFEE SPRINGS
204	LAVON HOT SPRINGS	W	19N	18E	17		39.6150	119.9017	S	46.9				COFFEE SPRINGS
205	MOANA AREA - PEPPER MILL MOTEL	W	19N	19E	24	NE NW	39.5017	119.7983	W	47.2				COFFEE SPRINGS

#	NAME	CO	T	R	SC	QSEC	NLAT	WLNG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE	USE
207	MOANA AREA - MOORE WELL	W	19N	19E	20	NE SE	39.4817	119.8100	W	80	60	1999	BATEMAN AND SCHEIBACH, 1975	BATEMAN AND SCHEIBACH, 1975	
208	Steamboat/Ormal Well	WA					39.3935	119.7115	W	113		1999	Flynn and Buchanan, 1990	ELECTRIC POWER	
209	WELL	W	16N	20E	34		39.3817	119.7233	W	30	36	1970/09/01	BATEMAN AND SCHEIBACH, 1975	SPACE HEATING	
210	STEAMBOAT SPRINGS - SPRING 25	W	18N	20E	33	NE	39.3833	119.7333	S	94	50	1970/09/01	MARINER AND OTHERS, 1974, 1975	SPACE HEATING	
211	UNNAMED WELL	W	17N	20E	07	SE	39.3500	119.7717	W	24	31	1970/09/01	GARSDIE AND SCHILLING, 1970		
212	SPRING 9	ST	18N	21E	15	CABD	39.4258	119.8111	S	19	1.7	1970/10/01	WATSTORE		
213	BOMERS MANSION (FRANKTOWN) HOT SPRING - MAIN SPRIN	W	16N	19E	03	NW	39.2643	119.8387	S	47.2	644	1974/02/04	WHITE AND OTHERS, 1963	SWIMMING POOL	
214	UNNAMED WELL	W	16N	20E	08		39.2750	119.7600	W	28	24	1974/02/00	"DESERT RESEARCH INSTITUTE, 1973		
215	COMSTOCK MINING DISTRICT-NEW YELLOW JACKET SHAFT	ST	17N	21E	32	SW SE	39.2600	119.8487	W	76.7		914	1984/04/05	BECKER, 1982	
216	SPRING 6	ST	17N	21E	14	DCBC	39.3342	119.8514	S	21	5.1	1970/09/30	WATSTORE		
217	SUTRO TUNNEL	LY	16N	21E	02	NE NE SE	39.2750	119.8580	S	27.2		1950/04/20	GLANCY AND KATZER, 1975		
218	UNNAMED	LY	16N	22E	07	NW SE NW	39.2663	119.8600	W	28.7		31	1953/05/11	GLANCY AND KATZER, 1975	
219	CARSON CITY WELL NO 7	CC	15N	20E	08	DAAC	39.0619	119.7514	W	28		1956/01/27	"NEVADA BUREAU OF MINES AND GEOLOGY		
220	CARSON CITY WELL NO 4	CC	15N	20E	17	DDDA	39.0550	119.8083	S	40	473	1929/05/20	WATSTORE	(AQUACULTURE)	
221	NOBLE MURRAY WELL	CC	15N	20E	23		39.0183	119.7119	W	21		1929/05/20	WATSTORE	(AQUACULTURE)	
222	CARSON HOT SPRING	CC	15N	20E	05	SE NE	39.1917	119.7517	S	50		1921/11/100	"NEVADA BUREAU OF MINES AND GEOLOGY	SPA, POOL	
223	SARATOGA HOT SPRING	CC	14N	20E	21	SW SE	39.0587	119.7400	S	50		1956/01/27	"NEVADA BUREAU OF MINES AND GEOLOGY	(AQUACULTURE)	
224	WETLANDS, WARM WELL	CC	14N	20E	20	DA	39.0619	119.7514	W	40	7.0	1956/01/25	WATSTORE	(AQUACULTURE)	
225	HOBRO HOT SPRINGS	DG	14N	19E	23	SE SE	39.0550	119.8083	S	40	473	1929/02/24	GLANCY AND KATZER, 1975	(AQUACULTURE)	
226	HASTIE WELL	DG	13N	20E	02	CBB	39.0183	119.7119	W	21		1929/05/20	WATSTORE	(AQUACULTURE)	
227	UNNAMED WELL	LY	14N	23E	25		39.0500	119.8587	W	27.7	1533	1979/11/15	SCOTT AND BARKER, 1982	ELECTRIC POWER	
228	NEVADA STATE PRISON SPRING	CC	15N	20E	16	SE SE	39.1600	119.7530	S	24		1997/07/25	"NEVADA BUREAU OF MINES AND GEOLOGY	(AQUACULTURE)	
229	WABUSKA AREA	LY	15N	25E	28	SE NE	39.1367	119.1617	W	30	57	1953/05/11	HUXEL, 1969	(ETHANOL PRODUCTION)	
230	WABUSKA HOT SPRINGS	LY	15N	25E	18	SE	39.1615	119.1827	S	97		1958/04/25	MARINER AND OTHERS, 1974, 1975	(AQUACULTURE)	
231	WABUSKA HOT SPRINGS - MAGMA POWER CO. NO. CB 1 WELL	LY	15N	25E	15	NW SW	39.1617	119.1767	W	97.2	5731	1965/11/02	HUXEL, 1969	ELECTRIC POWER	
232	DE WELL	CH	22N	27E	21	AACD	39.7642	116.9476	W	103		1907/06/08	WATSTORE	ELECTRIC POWER	
233	DAIRYLAND 86-21 WELL	CH	20N	26E	01	ABB	39.7558	116.9446	W	150		1959/01/01	Flynn and Buchanan, 1990	ELECTRIC POWER	
234	CHURCHILL DRILLING CORP.-TCID No. 1 WELL	CH	22N	30E	15		39.7791	116.8023	W	hol		1976/12/12	GARSDIE AND SCHILLING, 1970		
235	USBN HEAT FLOW HOLE	CH	22N	31E	10		39.7916	116.4903	W	25.0		1953/05/11	CLAMSTED AND OTHERS, 1975		
236	DIXIE COMSTOCK MINE	CH	23N	35E	14		39.6561	116.0165	M	hol		1956/01/25	VANDERBURG, 1940		
237	DIXIE HOT SPRINGS	CH	23N	35E	05	SE	39.7977	116.0673	S	72	200	1953/05/11	MARINER AND OTHERS, 1974, 1975		
238	KENNAMETAL WELL	CH	20N	26E	01	ABB	39.6350	116.7649	W	36		1911/12/12	WATSTORE		
239	CDDH-4B-AUSES	CH	21N	28E	30	DDC	39.6484	116.7803	W	26.3		31.4	1976/11/08	WATSTORE	
240	SHALLOW/RESEARCH WELL (SOO LAKE), 4	CH	20N	28E	29	SW	39.5633	116.8539	W	109		1956/01/25	MARINER AND OTHERS, 1975		
241	Soda Lake 33-14 Well	CH	20N	28E	14	DCC	39.5844	116.8559	W	183		1959/01/01	Flynn and Buchanan, 1980		
242	CDDH-4A	CH	20N	28E	12	ABAC	39.4450	116.7854	W	22.5		1976/05/20	WATSTORE	ELECTRIC POWER	
243	USGS CDR-21	CH	18N	29E	08	BOAD	39.3868	116.7854	W	25.5		4.6	1988/07/12	WATSTORE	
244	INDIAN HEALTH SERVICE WELL	CH	19N	29E	29	BACB	39.4853	116.7603	W	20.5		20.7	1999/03/01	WATSTORE	
245	FLOWING WELL IN STILLWATER	CH	19N	31E	07	SW	39.5215	116.8522	W	98		1987/01/18	MARINER AND OTHERS, 1974, 1975		
246	CDD-117A	CH	19N	31E	07	DOD	39.5211	116.8461	W	67		19.6	1974/04/11	WATSTORE	
247	CDPW-44A	CH	19N	30E	08	BCB	39.5433	116.8547	W	93.7		56.7	1976/04/21	WATSTORE	
248	USFS WELL 3 NR EAST CAN	CH	20N	32E	20	CAC	39.5625	116.4183	W	25	271.7	213.4	1999/04/03	WATSTORE	
249	DR-SWLY-8-1	CH	17N	28E	08		39.3868	116.7767	W	25.5		0.6	1985/08/20	WATSTORE	
250	CANAL LAKE CORRAL	CH	16N	30E	07	BACB	39.5361	116.8842	S	77		1997/07/08	WATSTORE		
251	EIGHTMILE FLAT, BORAX SPRING	CH	17N	30E	14	NE	39.3417	116.5763	S	61.1		2000	EDMISTON AND BENIGHT, 1984		
252	GEOTHERMAL WELL	CH	17N	30E	38		39.2935	116.5723	W	160.0		2000	EDMISTON AND BENIGHT, 1984		
253	SPRING	CH	16N	32E	08		39.2766	116.8432	S	hol		2000	EDMISTON AND BENIGHT, 1984		
254	LEE HOT SPRINGS	CH	16N	28E	34	SW	39.2982	116.7232	S	88	128	1988/11/00	MARINER AND OTHERS, 1974, 1975		
255	E.H. STARK WELL	CH	21N	34E	38	SW	39.6392	116.1063	W	22.0	3705	61	1973/03/09	COHEN AND EVERETT, 1983	
256	HATTON WELL NO. 1	LA	20N	40E	38	NW	39.6707	116.0817	W	21.7	151	40	1971/06/06	EDMISTON AND BENIGHT, 1984	
257	Sinking Spring	CH	15N	20	10	SW	39.1739	116.7333	S	28		3007	Katznelson and Danti, 1982		
258	Orbowl Geothermal Corp. No. 52-10	CH	17N	39E	11		39.9537	117.8597	W	231			"NEVADA BUREAU OF MINES AND GEOLOGY	ELECTRIC POWER	
259	JAMES LUTSTER WELL	LA	18N	43E	27	SW	39.9200	117.1250	W	36.0		4.6	1919/	WARING, 1918	
260	Spring	LY	18N	25E	17	NW SE	39.4224	119.1997	S	34	4		"GARSDIE L., NBMG		
261	TO MORMON CREEK	CH	20N	30E	06	SE	39.6223	117.7400	W	24.4	169	31	1958/11/21	EVERETT, 1984	
262	SMITH CREEK VALLEY WELL	LA	20N	40E	38	NW	39.5588	117.4278	W	29.4		1959/04/06	EDMISTON AND BENIGHT, 1984		
263	UNNAMED HOT SPRING	LA	17N	39E	11		39.3500	117.5583	S	86	75	1959/04/06	MARINER AND OTHERS, 1974, 1975		
264	HOT SPRINGS	EU	24N	48E	33	SW	39.5981	116.5897	S	72	300	1951/06/10	MARINER AND OTHERS, 1974, 1975		
265	MCLEOD & SPRINGS	EU	24N	52E	23	SE	39.0283	117.1397	S	87.9		22.2	1959/03/01	EAKIN, 1982A	
266	UNNAMED SPRING	EU	24N	53E	08	SW NE	39.3917	116.0450	W	35		1959/03/15	EDMISTON AND BENIGHT, 1984		
267	SILVER SPRINGS AREA	EU	23N	52E	38	NW	39.6350	116.0662	S	23.3	75.7	1959/02/11	HARRILL, 1988		
268	LITTLE HOT SPRINGS	EU	19N	50E	05	NE NE	39.5853	116.3817	S	44.3		1945/08/24	WARING, 1985		
269	WILTHORP SPRINGS	EU	19N	50E	17	NE	39.5282	116.3695	W	40.7		1951/06/10	GARSDIE AND SCHILLING, 1970		
270	SILVER RANCH SPRINGS, (WATER WELL)	EU	19N	50E	18		39.5282	116.1895	S	warm					
271	SILVER SPRINGS AREA	EU	19N	50E	18										
272	BARTINE HOT SPRINGS	EU	19N	50E	17										
273	BARTINE RANCH WATER WELL NO. 4	EU	19N	50E	18										
274	WARM SPRINGS	EU	19N	50E	18										

NAME	CO	1	R	SC	CSEC	NLAT	WLONG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE	USE
273 BARTHOLOMAE CORP. WATER WELL	EU	18N	51E	10	SW	38.43307	116.2792	W	23.3	S3	204	1972/00/00	RUSH AND EVERETT, 1984	
274 BARTHOLOMAE CORP. WATER WELL	EU	18N	51E	30	NW	38.4133	116.2758	W	22.2	757	1972/00/00	RUSH AND EVERETT, 1984		
275 BARTHOLOMAE HOT SPRINGS	EU	18N	50E	28	SE	38.4053	116.3463	S	54		1958/01/27	MARINER AND OTHERS, 1974, 1975		
276 UNNAMED WELL	LA	18N	47E	08	SW	38.4126	116.6900	W	21.7		1975/08/00	RUSH AND EVERETT, 1984		
277 MONITOR VALLEY WELL	LA	18N	47E	20	SE NE	39.3861	116.6994	W	21.7		1973/10/12	RUSH AND EVERETT, 1984		
278 SPENCER HOT SPRINGS	LA	17N	45.5E	11	NE NE	38.3299	116.8567	S	72	50	1982/04/28	MARINER AND OTHERS, 1974, 1975		
279 UNNAMED WELL	LA	17N	44E	24	NW	39.3237	116.9380	W	20.9	227	345	1971/07/10	FIER, 1960	
280 POOT'S RANCH HOT SPRING	NY	14N	47E	02	NE	39.0763	116.6100	S	45	125	1972/00/00	MARINER AND OTHERS, 1974, 1975		
281 DIANA'S PUNCH BOWL	NY	14N	47E	22	SE	39.0293	116.6847	S	59		1972/00/00	MARINER AND OTHERS, 1974, 1975		
282 FISH CREEK SPRINGS	EU	16N	53E	08	BCEB	38.2769	116.0353	S	19	15120.0		1981/07/17	WATSTORE	
283 THOMPSON RANCH SPRINGS	EU	16N	51E	03	BDB	39.9008			21	3800.0		1981/07/14	WATSTORE	
284 WARM SPRINGS RANCH	W	22N	50E	01	NE NE	39.6117	115.5093	S	22.6		1974/02/20	NEVADA BUREAU OF MINES AND GEOLOGY		
285 WELL AT ALLIGATOR RIDGE	W	22N	57E	25	CCCC	39.7408	115.5119	W	34	200.9	1984/04/24	WATSTORE		
286 BIG BLUE SPRING	W	14N	54E	23		39.0627	115.6112	S	warm		1984/06/28	WARING, 1985		
287 UNN HOT SP. CHERRY CREEK	W	23N	63E	06		39.6950	114.6906	S	61		1974/01/01	WATSTORE		
288 SHELL OIL CO. STEPTOE UNIT NO.1 WELL	W	24N	64E	19	NE NE	39.9433	114.7717	W	151.1		2582	GARNSIDE AND SCHILLING, 1979		
289 UNNAMED SPRING	W	24N	65E	31	NE	39.9168	114.6800	S	20	1703		SNYDER, 1963		
290 BORCHER JOHN (WARM) SPRING	WP					39.7778	114.8007	S	18		1978/08/23	WATSTORE		
291 SHELLBOURNE SPRINGS	W	22N	64E	12	SE NW	39.7933	114.6803	S	24.6		1972/00/00	NEVADA BUREAU OF MINES AND GEOLOGY		
292 UPPER SHELLBOURNE SPRING	W	22N	65E	08	SE NW	39.6000	114.6550	S	25	1703	1984/06/28	WATSTORE		
293 WELL	W	23N	64E	31	AB	39.6303	114.5550	W	25.2		1983/07/27	WATSTORE		
294 MELVIN HOT SPRING (MONTE NEVA)	W	21N	63E	24		38.6867	114.8050	S	70		1974/01/01	CLARK AND OTHERS, 1920		
295 SPRING, KERN MOUNTAINS	W	21N	70E			38.91691	114.0309	S	warm		1978/08/25	WATSTORE		
296 STEPTOE WARM SPRING	WP					38.5386	114.9144	S	24		1978/08/25	WATSTORE		
297 MCGILL WARM SPRINGS	W	18N	64E	21	SE NW	39.4150	114.7800	S	20	17034	1945/08/14	CLARK AND OTHERS, 1920		
298 SCHOOLHOUSE SPRING	W	16N	65E	03	DA	38.4537	114.7850	S	20	17320.0	1981/07/15	WATSTORE		
299 ELY-LACKAWANNA ZONE - LACKAWANNA HOT SPRINGS	W	16N	63E	03	NE	38.2850	114.6833	S	35		1945/08/14	CLARK AND OTHERS, 1920		
300 ELY WARM SPRINGS	W	16N	63E	10		38.2663	114.6867	S	20	63	1975/08/00	CLARK AND OTHERS, 1920		
301 WALLEYS HOT SPRINGS (GENOA HOT SPRINGS)	DG	13N	19E	22	SW NW NE	38.9812	119.6325	S	61	75	1945/08/14	CLARK AND OTHERS, 1920		
302 WALLEYS HOT SPRING	DG	13N	19E	22	SW NW NE	38.9812	119.6325	S	63	67	1934/01/20	*WHITE, D. USGS, MENLO PARK		
303 BENSON SPRING - SOUTH OR	DG	12N	10E	20	ACC	38.8747	119.6139	S	22		1981/06/10	WATSTORE		
304 DOUD SPRING	DG	11N	21E	20	SE SW	38.7950	119.6893	S	21.1	681.3	1982/07/23	GLANCY AND KATZER, 1975		
305 NEVADA HOT SPRINGS	LY	12N	23E	18	SE	38.6895	119.4117	S	61	200	1970/07/01	MARINER AND OTHERS, 1974, 1975		
306 AMBASSADOR WELL, ARTESIA LAKE AREA	LY	13N	23E	25	NW SW	38.9587	119.3617	W	27.8		195/08/09	SCOTT AND BARKER, 1962		
307 WELLINGTON WELL	LY	13N	23E	02	NW SE	38.7533	119.3767	W	47.2		61	1912/09/26	LOELITZ AND EAKIN, 1953	
308 WILSON HOT SPRINGS	LY	11N	25E	34		38.7072	119.1732	S	warm	0		GARNSIDE AND SCHILLING, 1979		
309 HOT SPRING	LY	12N	23E	34		38.6550	119.1749	S	hot			WILSON CANYON 7.5' QUAD		
310 GRANT VIEW HOT SPRINGS	MN					38.9800	118.9761	S	63		1977/05/11	WATSTORE		
311 DOUBLE SPRING	M	13N	20E	25		38.9547	118.8690	S	warm		1949/08/09	WARING, 1945		
312 Doodhoree Well (dry)	M	12N	32E	21		38.6959	118.3406	W	hot			MILLER and others, 1953		
313 WEDDELL SPRING NO.1	M	12N	34E	07	SW	38.9191	118.1053	S	62.2	659	1957/05/25	EAKIN, 1940C		
314 hot well	NY					38.9659	118.1763	W	hot			MOUNT ANNIE 7.5'		
315 hot drill hole	LY	07N	21E	04	SW SE	38.6333	118.2917	W	hot			*GARNSIDE, L., NBMG		
316 UNNAMED	MN					38.4917	116.9050	S	43.3		1968/10/13	DAVIS, 1954; WARING, 1965		
317 CITY OF HAWTHORNE WELL	M	08N	30E	27	SW	38.5200	116.6275	W	26.7		194/05/24/23	SCOTT AND BARKER, 1962		
318 WELL NO. 3	M	09N	31E	32		38.5067	116.5500	W	34		1971/12/29	*WHITE, D. USGS, MENLO PARK		
319 U. S. BUREAU OF LAND MANAGEMENT WELL	M	03N	31E	19	NE	38.2600	116.5067	W	43.3		105/10/02/16	EVERETT AND RUSH, 1967		
320 BUREAU OF LAND MANAGEMENT NO. 2 WELL	M	03N	31E	20	NE SW	38.1317	116.5842	W	25.6		20	1953/05/21	VANDENBURGH AND GLANCY, 1970	
321 SODAVILLE SPRINGS, SOCA SPRINGS	M	06N	35E	20	SE	38.3417	116.1017	S	35	100	1949/05/00	MARINER AND OTHERS, 1974, 1975		
322 GENE SAWYER WELL	NY	13N	30E	28	NE SW	38.3617	117.0383	W	54		1937/10/06	TREXLER AND OTHERS, 1979		
323 GABES AREA	NY	12N	34E	27	NW	38.6617	117.9200	W	47.8		1958/02/11	EAKIN, 1962B		
324 CHARNOCK (BIG BLUE) SPRINGS	NY	13N	44E	18		38.9914	117.0415	S	26.7	1703	1949/08/10	WATSTORE		
325 BIG BLUE, CHARNOCK, SPRING	NY	11N	40E	28	NE	38.9463	117.4050	S	32		1982/09/10	TREXLER AND OTHERS, 1979		
326 DARRROUGH'S WELL	NY	07N	34E	07		38.6200	117.1750	W	90.5		244	1956/01/27	NEVADA BUREAU OF MINES AND GEOLOGY	
327 DARRROUGH'S NORTH SPRING	NY	11N	40E	07		38.6250	117.1750	S	71.2		1956/05/06	WATSTORE		
328 WARM SPRING	NY	08N	34E	12	SW	38.5658	117.6835	S	warm		1967/06/03	BLACK SPRINGS 7.5' QUAD		
329 UNNAMED WELL	M	09N	36E	05		38.3333	117.9200	W	40		1968/09/00	TREXLER AND OTHERS, 1979		
330 hot drill hole	MN					38.4320	117.9700	W	hot			*GARNSIDE, L., NBMG		
331 STANLEY AT TANNER WELL	NY	03N	42E	34		38.4210	117.2498	S	warm			RUSH AND SCHROER, 1970		
332 INDIAN SPRINGS	NY	05N	42E	07		38.5063	117.2917	S	27.7		194/05/24/23	NEVADA BUREAU OF MINES AND GEOLOGY		
333 HALL MINE WELL, ANACONDA MOLYBDENUM PROJECT	NY	03N	42E	01	ACB	38.0450	117.1026	W	26		1957/05/06	WATSTORE		
334 WELL	NY	03N	42E	20		38.6704	116.7034	W	hot			MOSQUITO CREEK 7.5' QUAD		
335.1 WELLS	NY	03N	42E	36		38.0750	117.2217	W	37.2		457	1964/10/23	BASIN AND LANEY, 1916	
335.2 BELMONT MINE, 1500 FT LEVEL	NY	11N	47E	08	SE NE	38.6250	116.7207	S	31.6		194/07/03	WARING, 1985		
335.3 MOSQUITO RANCH SPRINGS	NY	11N	40E	22	CAB	38.6972	116.4381	W	40		1957/05/10	WATSTORE		
336 TEST HOLE UCE-10	NY	10N	49E	22	CAB	38.6876	116.4825	W	48		1967/06/03	WATSTORE		
337 SPRING	NY	08N	49E	21	CDC	38.5361	116.4556	S	35		1977/07/21	WATSTORE		
338 SPRING	NY	09N	49E	25	NW NE	38.5300	116.4050	S	36.1		1975/08/20	GARNSIDE AND SCHILLING, 1979		

NAME	CO	T	R	SC	OSEC	NLAT	WLONG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE	USE	
341 HOT CREEK RANCH SPRING	NY	08N	50E	29	SE	38.5200	116.3600	S	62.6	2888		1957/05/13	SANDERS AND MILES, 1974		
342 HOT CREEK VALLEY SPRING	NY	07N	51E	30	NE	38.4367	116.2767	S	61.1				WARING, 1945		
343 WARM SPRING	NY	08N	47E	36	NE	38.3383	116.8600	S	26.1	19		1948/01/28	FIERO, 1988		
344 SAUSBURG SPRING	NY	05N	48E	28	SW	38.2533	116.8227	S	30			1950/10/05	GARSIDE AND SCHILLING, 1979		
345 SPRING	NY	05N	46E	33	CD	38.2269	116.8306	S	21			1957/07/30	WATSTORE		
346 UPPER? MUD SPRING	NY	04N	49E	28	CA	38.1722	116.7917	S	23.5			1957/07/30	WATSTORE		
347 SPRING	NY	04N	47E	29	AC	38.0278	116.8806	S	20			1957/07/27	WATSTORE		
348 WARM SPRINGS	NY	02N	47E	14	AC	38.1867	116.3717	S	63	170		1957/07/28	*WHITE, D., USGS, MENLO PARK		
349 WARM SPRINGS	NY	04N	50E	20	SW	38.0267	116.1944	S	22			1957/06/03	WATSTORE		
350 SPRING	NY	02N	51E	02	D	38.0472	116.1944	S	22			1957/06/03	WATSTORE		
351 SPRING	NY	02N	50E	28	ACC	37.9944	116.3951	S	25			1957/06/02	WATSTORE		
352.1 DUCKWATER AREA	NY	13N	56E	32	NW	38.9500	115.7600	S	31.9			1950/04/28	GARSIDE AND SCHILLING, 1979	AQUACULTURE	
352.2 WILLIAMS HOT SPRINGS	W	13N	60E	33	NE	38.9533	115.2300	S	51.6			1976/11/10	*NEVADA BUREAU OF MINES AND GEOLOGY		
353 PRESTON SPRINGS	W	12N	61E	02	SW	38.9308	115.0425	S	22.7			1954/07/31	*NEVADA BUREAU OF MINES AND GEOLOGY		
354 BIG SPRING	NY	08N	55E	15	AC	38.5529	115.2722	S	38			1957/06/07	WATSTORE		
355 BLUE EAGLE SPRINGS	NY	08N	57E	11	DDB	38.5831	115.5275	S	29	7030.0		1981/07/17	WATSTORE		
356 MOORINGS SPRING	NY	08N	61E	32	DAIC	38.5947	115.1383	S	37	1204.0		1981/07/18	WATSTORE		
357 EMIGRANT SPRING	W	09N	62E	19	AC	39.0250	115.0476	S	19.5	5247.0		1981/07/18	WATSTORE		
358 FLAG SPRING NO 3	NY	07N	62E	33	BCCC	38.4214	115.0222	S	22.6			1984/01/17	WATSTORE		
359 BUTTERFIELD FLAG, SUNNYSIDE SPRINGS	NY	07N	62E	28	NE	39.4450	115.0067	S	23.9	7571		1960/09/26	WARING, 1945; MAXEY AND EAKIN, 1948; ADAMS, 1944		
360 HOT CREEK RANCH SPRINGS	NY	06N	61E	18		36.3817	115.1533	S	26.7			1950/11/08	EAKIN, 1946		
361 MOON RIVER SPRINGS	NY	08N	60E	25	ROAD	38.3557	115.1608	S	32.5			1952/04/27	WATSTORE		
362 BACON FLAT 24-17 oil well	NY	07N	57E	17		38.4600	116.5800	W	113			1953	Hulen and others, 1944		
363 CHIMNEY HOT SPRINGS	NY	07N	55E	18	DC	38.4633	115.7900	S	60			1957/06/07	WATSTORE		
364 SPRING	NY	06N	54E	11	C	38.3859	115.8684	S	45			1987/08/07	WATSTORE		
365 SPRING	NY	08N	54E	24	CA	38.6517	115.8617	S	46			1988/09/12	WATSTORE		
366 GEYSER RANCH SPRINGS	LI	09N	65E	01		39.6750	114.6233	S	16	169		1979/11/15	CARPENTER, 1915		
367 LOWER PONY SPRING	LI	09N	66E	03	CBC	38.3197	114.6072	S	20			1981/07/23	WATSTORE		
368 HAMMOND RANCH AREA	LI	09N	69E	17	SE	38.2987	114.2733	S	26.9			1987/10/16	CARPENTER, 1915; WARING, 1945		
369 SAND SPRING	ES	01N	34E	27	SE	37.9053	116.1732	S	23.3			1985/07/12	RUSH AND KATZER, 1973		
370 FISH LAKE VALLEY	ES	02N	34E	29	SW	38.9291	117.9940	S	27.2	4		1976/04/03	*NEVADA BUREAU OF MINES AND GEOLOGY		
371 GAP SPRING	ES	02N	38E	32	SW	37.9797	117.9927	S	23	36		1975/08/00	VANDENBURGH AND GLANCY, 1970		
372 EMIGRANT WELL	ES	01N	39E	06	NW	37.9777	117.9937	W	23			1970/10/07	TREXLER AND OTHERS, 1979		
373 FISH LAKE VALLEY WELL	ES	01N	36E	20	01S	37.9233	116.0058	W	25			1985/07/12	RUSH AND KATZER, 1973		
374 R.G. PENNBAKER WELL	ES	01S	35E	09	NW	37.8640	116.1015	W	23.3			01/1981/12/13	RUSH AND KATZER, 1973		
375 NEVADA OIL AND MINERALS VRS NO. 1 WELL	ES	01S	36E	18	SW	38.0667	117.9800	W	156.6			2707	GARSIDE AND SCHILLING, 1979		
376 FISH LAKE VALLEY	ES	01S	38E	19	NE	37.8425	116.0150	W	23			1981/07/20	*DESERT RESEARCH INSTITUTE, 1973		
377 FISH SPRING	ES	02S	35E	25	NW	37.7425	116.0457	S	24			RUSH AND KATZER, 1973			
378 Gradient well 42-7	ES	01S	38E	07		37.8720	116.0210	W	47.5	757	301		*NEVADA BUREAU OF MINES AND GEOLOGY		
379 SILVER HOT SPRINGS, WATERWORKS SPRINGS	ES	02S	39E	15	SE	37.7660	117.6397	S	34.2	1692		1985/04/15	WARING, 1945		
380 PEARL HOT SPRINGS	ES	01S	40E	25	SE	38.0058	117.4802	S	36.7			1983/04/15	*DESERT RESEARCH INSTITUTE, 1973		
381 ALKALI HOT SPRINGS	ES	01S	41E	20	NE	37.6267	117.3400	S	50.5	95		01/1981/12/13	RUSH AND KATZER, 1973		
382 SARCOBATUS FLAT AREA	ES	11S	44E	28	NW	37.2987	117.0517	W	22.2			01/1981/06/00	MALMBERG AND EAKIN, 1982		
383 NONE GIVEN	ES	11S	42E	05	NW	37.0102	117.2045	S	25			02	*DESERT RESEARCH INSTITUTE, 1973		
384 FISH LAKE LIVESTOCK CO. WELL	ES	01S	39E	05		37.6767	117.8674	W	hol			50.3	RUSH AND SCHROEDER, 1970		
385 CEDAR SPRING	NY	02S	51E	21	SE	37.7568	116.2400	S	25	9			VANDENBURGH AND RUSH, 1974		
386 CLIMAX SPRING	NY					37.2244	116.0561	W	41.5			1978/03/07	WATSTORE		
387 TIPPIAH SPRING NO 2	NY					37.0433	116.0433	W	22			1979/06/19	WATSTORE		
388 YUCCA FLAT TEST WELL #4-60, (TEST WELL E)	NY					37.0550	116.0133	W	42.2			1987/09/02	SCHOFF AND MOORE, 1984		
389 YUCCA FLAT WELL 70-09A, (TEST WELL C)	NY					38.9950	116.0250	W	37.2			01/10/10/10	SCHOFF AND MOORE, 1984		
390 SARCOBATUS FLAT-BEAUTY AREA	NY	00S	49E	35	NE	37.1142	116.7692	W	22.2			01/10/10/10	MALMBERG AND EAKIN, 1982		
391 SPRING	LI	02S	55E	25	NE	37.7617	115.7517	S	30	1		1988/09/14	VANDENBURGH AND RUSH, 1974		
392 SAND SPRING	LI	03S	55E	19	SE	37.6692	115.6223	W	26.3			73	1948/10/27	VANDENBURGH AND RUSH, 1974	
393 N. J. GUNDERSON WELL	LI	04S	55E	08		37.6188	115.8217	W	warm			76.3	VANDENBURGH AND RUSH, 1974		
394 G.C. ENGLEMAN WELL	LI	04S	60E	14		37.5975	115.2117	S	26.7	11167		1950/04/26	EAKIN, 1963B		
395 HIKKO SPRING AREA	LI	05S	60E	10		37.5300	115.2333	S	27.2			1954/04/04	COHEN, 1968		
396 CRYSTAL SPRINGS AREA	LI	04S	61E	08	NW	37.4860	115.1867	S	31.1	32894		1954/09/04	COHEN, 1968	(SPA)	
397 ASH (ALAMO) SPRINGS AREA	LI	04S	61E	07	CD	37.7642	114.5221	S	24			1955/04/10	EAKIN, 1963B		
398 LIME SPRING	U	01N	69E	35	CC	37.8081	114.2258	S	25			1955/04/07	WATSTORE		
399 FLATNOSE SPRING	U	01S	68E	13	NE	37.6558	114.3217	S	21.1	757		1955/04/06	WATSTORE		
400 DELMUE'S SPRINGS AREA, TWO SPRINGS,	U	02S	68E	04		37.6988	114.3800	S	25.5	1872		1949/06/00	RUSH, 1944		
401 PANAMA WARM SPRINGS AREA	U	02S	67E	07		37.7642	114.5221	S	24			1955/04/10	WATSTORE		
402 BENNETT SPRING	U	04S	67E	08	NE	37.8217	114.5033	S	47.6			1955/07/29	SANDERS AND MILES, 1974	(SPACE HEATING)	
403 CALIENTE MINERAL SPRING, CALIENTE HOT SPRINGS	U	04S	67E	09	NW	37.6283	114.5100	W	67	5299	27	1970/10/07	TREXLER AND OTHERS, 1979	SPA	
404 AQUA CALIENTE WELL NO. 3	U	01S	31E	21		38.9887	116.7233	S	38	19		1978/08/18	*WHITE, D., USGS, MENLO PARK		
405 HICKS (BURRELL) HOT SPRINGS	NY	12S	47E	05	NW	38.9167	116.7500	S	24.4	379		1904/07/15	SCOTT AND BARKER, 1982		
406 BEAUTY MINERAL SPRINGS S	NY	14S	52E			38.7594	116.1164	W	64	683.0	1036.0	1950/03/12	WATSTORE		
408 WELL	NY	15S	50E	25	BD	38.6208	116.4125	W	46			32.0	1973/04/03	WATSTORE	

NAME	CO	I	R	SC	CSEC	NLAT	WLONG	T	TEMP	FLOW	DEPTH	CDATE	REFERENCE	USE	
409 COOKS EAST WELL	NY	16S	50E	07	CABB	36.5744	116.3984	W	32		91.4	1990/09/25	WATSTORE		
410 FAIRBANKS SPRINGS	NY	17S	50E	09	SE NE	36.4933	116.3433	S	27.2		1934/02/18	NAFF, 1973			
411 RODGERS SPRINGS	NY	17S	50E	15	NW NE	36.4763	116.3233	S	27.4		1959/10/19	NAFF, 1973			
412 LONGSTREET SPRING	NY	17S	50E	22	NE NW NE	36.4667	116.3250	S	27.6		1986/08/01	DUDLEY AND LARSON, 1976			
413 UNNAMED SPRING	NY	17S	50E	28	SW NE NW	36.4483	116.3193	S	27		1959/08/12	NAFF, 1973			
414 SCRUGGS SPRING	NY	17S	50E	35	SE SW NE	36.4317	116.3067	S	30		1986/08/03	NAFF, 1973			
415 DEVILS HOLE	NY	17S	50E	38	SW SE	36.4267	116.2883	S	33		1959/08/17	NAFF, 1973			
416 POINT OF ROCK (KING) SPRING	NY	16S	51E	07	NW SE	36.4017	116.2717	S	32	4399	1986/04/13	HUGHES, 1986; MIFFLIN, 1968			
417 JACK RABBIT SPRING	NY	16S	51E	18	SE NW SE	36.3867	116.2717	S	28		1986/08/26	NAFF, 1973			
418 BIG SPRING; ASH MEADOWS SPRING; DEEP SPRING	NY	16S	51E	19	SW NE	36.3767	116.2717	S	28		1976/02/00	DUDLEY AND LARSON, 1976			
419 CRYSTAL SPRING	NY	16S	50E	03	NE SE NW	36.4183	116.3000	S	30		1979/12/15	NAFF, 1973			
420 USGS TRACER WELL 2	NY	16S	51E	27	NE NE NW	36.5263	116.2317	W	30.4		1962/08/23	DUDLEY AND LARSON, 1976			
421 CHERRY PATCH WELL	NY	17S	52E	08	CDB	36.4914	116.1492	W	27.5		65.5	1980/08/24	WATSTORE		
422 INDIAN SPRING	CL	16S	50E	03	SE NE	36.5817	115.6693	S	28.1	5975	1546	1961/11/10	CARPENTER, 1915		
423 MANSE RANCH SPRINGS	NY	21S	54E	03	SE SE	36.1557	115.6886	S	25	4542	1978/08/16	HARDMAN AND MILLER, 1934			
424 FAHRUMPS SPRINGS	NY	20S	53E	14	SE SE	36.2075	115.9763	S	25	1810	1960/03/31	HARDMAN AND MILLER, 1934			
425 FAHRUMPS COMMUNITY CHURCH WELL	NY	20S	53E			36.2117	115.9853	W	27		1976/01/09	WATSTORE			
426 WHITE ROCK SPRING	CL	20S	53E			36.1742	115.4786	S	25		1985/08/28	WATSTORE			
427 PAGO PAGO BAR WELL	CL	20S	61E	31		36.2361	115.0531	W	28	61.0	1985/05/16	WATSTORE			
428 Las Vegas Springs	CL	22S	61E	03	NE NE SW	36.1045	116.1659	S	28.1	5015	Scott and Barker, 1982				
429 H. NICKERSON WELL	CL	22S	61E	10	NE SE NW	36.0233	115.1456	S	29	644	120	1972/02/13	MAYKEY AND JAMESON, 1946		
430 GLADSTONE CORPORATION WELL	CL	22S	62E	01	SW NW S	36.0600	115.1483	W	33.3	1609	99	1973/03/00	MAYKEY AND JAMESON, 1946		
431 T.A. WELLS WELL	LI	12S	63E	20	DABB	36.0868	115.0043	W	32.4		346	1973/03/00	MAYKEY AND JAMESON, 1946		
432 VF-2 WELL	LI	12S	63E	23	DD	36.0750	114.9458	W	34		1884/02/05	WATSTORE			
433 FUGRO COYOTE V DEEP WELL	CL	13S	63E	23		36.7958	116.8922	W	35.5	203.9	1981/07/22	WATSTORE			
434 USGS/AM CED-10	CL	13S	64E	35	ACAA	36.7670	114.7669	W	33.5	284.7	1984/09/26	WATSTORE			
435 CSV-3	CL	14S	63E	26	ACDC	36.6808	114.9250	W	41		231.7	1981/10/07	WATSTORE		
436 WARM SPRING	CL	14S	65E	16	NW SW NE	36.7222	114.7152	S	32.2		12250	1950/08/27	EAKIN, 1984; MIFFLIN, 1960		
437 IVERSON SPRING	CL	14S	65E	21	NW NE NE	36.7097	114.7142	S	31.6	3810	1958/05/19	EAKIN, 1984			
438 JUANITA SPRING	CL	15S	69E	14	BAA	36.6369	114.2475	S	28		1985/08/25	WATSTORE			
439 OBY LAKE	CL	17S	64E	21	CB	36.4550	114.6139	S	20		1985/07/01	WATSTORE			
440 WATER FOUNTAIN VALLEY OF FIRE, NEV.	CL	17S	67E	30	NW SW	36.4233	114.5463	S	35.1		1977/03/15	SWANBERG AND OTHERS, 1977			
441 BLUE POINT SPRING	CL	16S	69E	06	DCC	36.3697	114.4326	S	20	4075.0	1977/05/04	WATSTORE			
442 ROGERS SPRING	CL	16S	67E	12	DDA	36.3755	114.4143	S	30		1977/05/04	WATSTORE			
443 G.P. APEX WELL	CL	16S	63E	33	DBB	36.3411	114.9267	W	31		1986/09/30	WATSTORE			
444 NATL PARK SERVICE, CALVILLE BAY CAMPGROUND WELL	CL	21S	65E	09	NW SE	36.1442	114.7220	W	28.9	114	61	RUSH, 1968B			
445 HOOVERT DAM HOT SPRING	CL	22S	65E	29	SW	36.0100	114.7450	S	42.2		1986/07/27	SWANBERG AND OTHERS, 1977			
446 BLACK CANYON AREA	CL	23S	65E	05	SE NW SW	35.9600	114.7467	S	30	848	1980/09/00	*WATSTORE			
447 BLACK CANYON AREA SPRING	CL	23S	65E	21	NE SW NW	35.9407	114.7323	S	25.6	19	1976/08/16	*WATSTORE			
448 MONITOR WELL 116	CL	23S	60E	14	DBDB	35.1563	114.5864	W	20	91.4	1981/08/06	WATSTORE			
449 SUNDANCE SHORES WELL	CL	23S	60E	24	BBA	35.1497	114.5863	W	32	146.3	1974/08/14	WATSTORE			

APPENDIX 2

#	pH	Na	K	Ca	Mg	Fe	SiO ₂	B	Li	HC ₀₃	CO ₃	SO ₄	Cl	F	TD _{Sm}	TD _{Sc}	Chg _{Bal}	delD	delO ₁₈	
1							5.8													
2	8.90	58	3.9	5.8	0.34	41		106		23	23					207	1.03			
3																				
4	21	4	3.2	0.3	53	0.08	0.01	50	0	11	5.9	0.6					124	0.96		
5	29	0.4	3.7	0.1	32	0.08	0.03	64	0	12	4.7	1.8					115	0.96		
6	31	2.8	2.1	0.1	57	0.07	0.02	74	0	9	5	0.9				144	0.97			
7	9.1	110	1	4	0	51	1	0	63	119	39	4.6	362	393	1.03	-127	-15.4			
8																				
9	7.70	32	6.3	1.4	0.1	67		0.46	68		13	7				160	1.03			
10																				
11																				
12	8.40	78	0.6	0.4	51	0.66		113	6	41	15	2	262	250	1.00					
13	180	8.6	14	0.2	130	2	0.2	163	0	220	48	6.6				690	0.98			
14	8.60	74	1	3.5	1.1	63	0.6	0.667	90	3	35	18	12	275	255	1.02				
15	8.60	74	1.1	3.1	<0.02	63	0.64		92	3	41	18	12			261	0.94	-129.9	-16.56	
16	7.60	76	1.3	2.6	1.4	65	1		96	N	39	21	10	272	265	1.02				
17	8.5	74	1	4	1	63	0.6		90	3	35	18	12			256	1.02			
18	8.20	55	0.6	6.4	0.2	34	0.32		120	N	15	11	0.3	186	182	1.05				
19	7.65	320	25	4.6	0.1	0.06	160	6.9	0.45	436	2	130	160	14		1038	0.98	-128.2	-14.13	
20	7.20	325	26	19	0.3	155	7		500	1	120	160	14			1073	0.99			
21																				
22																				
23	74	10	23	8.4		74	0		107		22	32	0.1	256	296	1.70				
24	7.80	78	11	9.6	2.8	79		165		28	28	1.8				319	1.05			
25	7.1	230	5	17	0.1	130	2.1		280	0	120	110	10			762	1.03			
26	7.60	230	4.5	17	0.1	130	2.1		280	N	120	110	10			761	1.02			
27	8.86	150	8.7	2.7	0.2	0.01	80	0.64	0.03	224	8	49	52	2.3		464	1.05	-123	-15.8	
28	8.8	210	4.4	1.5	0.04	0.01	64		0.032	280	9	120	76	0.1		623	0.98	-131	-16.1	
29																				
30																				
31																				
32	210	6.2	3.2	1.5		125	2.9		358	7	67	54	14	660	667	0.98				
33	146	3.7	3.2	0	83	0.41		218	16		76	6	8.9	470	450	1.04				
34	8.10	455	9.9	30	6.3	51	1.3	0.5	948	N	204	69	9.8	1290	1303	0.99				
35	416	11	32	5.2	0.04	39	1.7	0.36	885	N	184	59	0.9	1180	1184	1.02				
36	34	4.8	18	2.4		65	0.11	104		25	15	0.6	244	216	1.01					
37	9.30	91	2	2.4	0.5	84	0.26		52	39	64	14	7.9	324	331	0.97				
38	7.30	28	6.3	14	2.8	53		0.03	94	14	15			179	1.02					
39	27	6.3	25		54	0.1		117		20	22	0.1				212	0.87			
40	146	12	46	9.7		63	0.87		204		94	157	0.3	640	629	1.00				
41	9.00	197	18	2.2	0.8	4.8		1.5	211	36	70	106	1.4	541	540	1.00				
42	7.30	123	3.5	6.4	0.5	65	0.78		182	N	61	27	10	387	387	1.05				
43	89	3.4	7.8	1.8		56	0.35	178		49	19	5.3				319	0.95			
44	58	12	5.8	0.2	N	110	0.37	0.4	119		26	14	2.6	322	288	1.04				
45	334	26	8.5			2.5			920		34	26		930	884	1.00				
46	8.00	296	36	10	8	55		881		36	26			900	0.94	-134.6	-16.44			

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDScm	TDSc	ChgBal	delD	delO18	
47																				
48	4.52	26	26	11		1.4		1230		71	16				1209	1.02				
49																				
50	9.20	620	3.5	2	N	N	34	4.6		1080	143	98	.	46	16	1500	1498	1.02		
51																				
52																				
53																				
54																				
55																				
56																				
57																				
58	8.10	157	16	13	0.2	N	166	0.81		338	N	75	9	9.4	631	613	1.01			
59	7.00	390	41	49	13		84	0.77		1180		18	40	7.2		1224	1.01	-134.9	-16.78	
60	7.40	110	8.3	29	7.7		23	0.22		380		36	4.4	3.4		409	0.97	-140.8	-18.21	
61	7.20	130	22	48	12		40	0.67		482		40	14	5.2		549	1.02	-140.2	-17.85	
62	7.60	134	4	8.4	N	0.04	96	0.41	N	260	N	46	11	14	442	442	1.01			
63																				
64																				
65	8.00	450	36	3.1	0.45		151			1149		2	31	21		1260	0.99			
66	7.70	358	33	6.5	0.8		132			959		2	25			1029	1.02			
67	6.70	236	43	41	14		38			867		10	20			829	0.97			
68																				
69																				
70	7.30	300	31	75	37		105			1135		32	27	7.2		1173	1.01			
71	6.6	370	46	48	13	0.02	86	0.73		0.72	1135	12	37	7.4		1179	1.02	-136.6	-16.95	
72																				
73	8.40																			
74																				
75	8.20																			
76																				
77																				
78	8.8	78	2.4	2.4	0.6		75	0.53	0.16	78	17	49	11	8.8		283	1.00			
79	9.10	75	2.2	1.6	<0.01		83	0.47		108		45	15	8.9		284	0.94	-139	-17.61	
80	8.10	13	3.9	25	8.6	N	18			132	N	11	3.9	0.5	149	149	1.04			
81	9.1	75	2.2	1.6	0.01		83	0.47	0.2	108		45	15	8.9		285	0.94	-139	-17.61	
82	7.90	17	8.4	37	8.6		20	N	0.205	184	N	20	1.8	0.7	205	204	1.00			
83	7.3	18	8.9	38	9.2		20	0.03	0.06	180	0	22	2.5	0.7		208	1.04			
84	7.8	8	4.8	34	10		20	0	0.02	160	0	23	2.1	0.4		181	0.94			
85	8.00	19	6.6	35	11		21			190		19	2			207	1.02			
86																				
87	8.30	24	5.6	16	5.7	0.18	21			118	1	22	2	0.6	157	156	0.98			
88	7.20	9.6	4.6	29	8.1		23			144	N	13	3.3	0.4	162	162	0.97			
89	7.90	8.5	5.4	30	8	0.06	27			142	N	13	3.5	0.4	166	166	0.98			
90	7.20	10	5.6	40	11.5		31	<0.02		149		37	8.7	0.4		218	1.01	-139.1	-18.24	

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	del018
91																			
92	7.80	25	7	32			86	5.7		N		28			178	3.63			
93	7.8	25	7	32	0.2		86		0	240	0	15	28		311	0.57			
94	8.4	113	N	2						98	24	49	60		296	0.98			
95																			
96																			
97	8.00																		
98.1	8.00																		
98.2	9	83	N	3	1	0.004	25			170	48	18	0.01		262	0.81			
99	8.50	1050	29	245	N		97	7.2		11	6	293	1830		3870	3563	1.01		
100	8.40	1100	160	260	0.1	<0.02	110	6.1	0.04	26		340	1900	3	3892	1.06	-106.5	-6.33	
101										200	21	19			177	0.51			
102										206	18	16			144	0.13			
103										277	70	34			318	0.66			
104										286	132	126			513	0.60			
105.1	1400	120	148	0.17	0.34		208	5.85		49	3	220	2320	5.2	4455	1.00			
105.2	1298	110	140	0.17	0.01		203	5.85		22	17	211	2225	5.2	4226	0.97			
106	6.70	1400	110	140	1.5	0.13	240	6.3		92		230	2300	5	4478	0.99	-105.3	-11.54	
107	7.20	1400	130	68	1.2	0.02	165	9.9		83	<1	400	2200	4.5	4419	0.94	-100.5	-10.83	
108	7.60	1400	86	58	1	<0.02	145	7.1		68		350	2050	4.8	4135	0.99	-106.5	-11.65	
109	7.3	1400	120	70	1.1	0.04	210	8.2	1.7	96		380	2100	5.1	4343	0.98	-105	-10.4	
110	9.1	152	21	1	4		45	1.8		230	0	52	192		582	0.73			
111	7.5	18	3.5	19	3.8		18	0.1		284	0	9	21	0.1	232	0.39			
112										93	0	156	278	2.8	871	1.00			
113	7.90	430	8.6	11	0.2	<0.02	79	5		162		180	500	4.1	1298	0.94	-127.6	-14.87	
114	7.90	340	17	31	4.2	0.13	82	1.9		464		45	240	7	997	1.09	-120.7	-14.72	
115	7.2	405	17	22	0.2		90	0.5		455	0	205	250		1214	1.02			
116	7.90	486	13	18	1.9		62	2.8		902	N	130	155	8.9	1330	1.01			
117										99		61	38	0.3	305	1.02			
118										110		26	38		153	0.62			
119	7.56	1450	120	110	6.5	<0.02	85	8.7		197	<1	120	2400	4.6	4402	0.98	-125.5	-14.01	
120	7.40	33	1.3	50	9.3	0.05	20	0.18		210		23	29	0.1	271	269	1.00		
121																			
122	6.80	390	20	41	10	<0.02	63	4.1				120	45	8.6	702	4.82			
123	8.10	165	26	110	22		65	0.08		312		370	75		987	1.01	-130	-16.24	
124																			
125	8.10	143	12	31	15		42	1.2		456		63	29		559	0.97			
126																			
127	7.10	180	20	36	4.4	0.08	110	1.9	1.3	375		150	40	7.8	735	0.97	-129.5	-15.58	
128	7.90	101	6.4	46	19	0.04	39	0.3		205	N	69	124	0.5	503	506	1.01		
129										58	1.1	407	154	127	1.9	826	831	1.00	
130	7.00	518	80	97	20	0.02	155			544	N	48	775	6.3	1968	1967	0.97		
131	6.9	540	82	95	22	0.03	110			490	0	66	790	5.7	1952	1.00			
132	6.97	130	8.2	73	17		40	0.63		480		65	70	1.4	551	642	0.97		

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	delO18	
133	277	27	28	<0.25	81										26		439	19.27		
134	7.50	304	33	7.6	20		74	3		818		93	20	5.5		963	0.99			
135	8.1	180	12	13	2.1		8.3	0.54	0.24	457	3	26	23	4.3		497	0.99			
136	7.64	110	4.7	91	32		26	0.36	0.06	180	0	190	180	0.7	734	723	1.00	-124.4	-15.15	
137	7.40	160	13	8.8	0.5	<0.02	135	1.2		368		53	29	7.8		589	0.93	-128.6	-15.7	
138	8.6	270	14	8.5	2		17	1.8	0.81	365	8	110	140	6.2		758	0.99	-134	-16.4	
139	8.90	920	94	17	40	0.01	50	15		1940	41	121	381	12	2650	2645	0.99			
140																				
141																				
142	1350	240	120	4			340					202	18	2250	6	4530	4427	1.05		
143	1.1																			
143.2																				
144	7.90	60	6.5	56	19	N	51	0.4		260	N	72	58	0.3	452	451	0.96			
145	7.70	74	2	179	58	N	25	0.4		211	N	390	191	0.3	1040	1024	1.00			
146	8.00	42	3.5	102	30	0.04	10	0.1		166	N	85	178	0.3	536	533	0.99			
147	6.50	130	22	33	6.8	0.22	66	1.1	0.08	429	1	56	18	1.8		547	0.95	-125.5	-15.65	
148																				
149	8.40	200	18	16	0.9	0.18	125	2.6		385		140	41			733	0.97	-131.4	-15.74	
150																				
151	7.00	157	15	58	16		44			533		84	34	1.7		672	0.99			
152	8.00	288	33	29	5		80			823		60	28			928	0.98			
153	7.10	105	28	70	27		40	2	5	507	N	94	17	2.5		635	1.01			
154	8	118	21	20	9		40			333		64	21			457	1.00	-127.8	-16.28	
155	7.10	38	5.6	33	4.1		51			136		36	25	1.9		262	1.00			
156	6.4	77	22	100	25	0.18	34			0.33	537		64	14	1.1	582	602	1.04		
157	6.2	80	23	96	22	0.37	41			0.35	548		67	14	1.2	589	615	0.99		
158	6.6	10	2.3	8.5	1.9	0.12	26			0.004	51		5.7	3.9	0.1	96	84	1.01		
159	7.4	39	11	59	20	0.069	28			0.19	318	0	50	14	0.6		378	0.98	-128	-16.9
160	6.90	231	27	15	5.9		52				690		25	10			705	0.99		
161	7.60	45	16	60	15		70				335		52	12			435	0.95	-132.7	-16.64
162	7.51	27	7.6	43	8.8	0.004	67			0.028	180		38	17	0.5		297	1.00		
163																				
164	7.3	47	13	56	11	0.009	51			0.088	234		84	19	0.5	379	397	0.99		
165																				
166																				
167	8.00	50	8	26	5.8	N	85			164	N	37	22	0.4	318	315	1.01			
168	9.50	230	16	0.8	N	0.04	373	2		116	149	89	30	15	1000	962	1.01			
169	8.90	230	16	1	<0.1	<0.02	320	2.1		321	32	130	69	17		975	0.88	-130	-14.76	
170	7.00	136	17	22	5.8		58	0.81		378	N	62	27	5	526	520	0.93			
171	6.60	230	58	53	35	<0.02	67	2.1		915	<1	7	1	6.6		910	1.10	-136.1	-15.97	
172	6.90	285	56	46	40		70	2.9		949		116	48	7		1138	0.99			
173																				
174																				
175	7.30	10	2.1	46	23.5												246	1.06		

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delID	delO18
176	7.00	39	8.7	52	16	0.58	0.25		287	N	27	14	0.7	380	299	1.02			
177							0.75												
178	6.6	110	35	63	12.3	65	0.9	0.3	493		70	15	2	582	867	0.98	-149	-18.1	
179	7.20	120	39	60	15.5	<0.02	65	0.7	488	1	72	16	1.9		631	1.04	-144.7	-15.31	
180																			
181	8.50	135	8.9	1	0.03	<0.02	210	0.2		224	15	40	23	17.7		561	0.93	-130.1	-16.09
182	8.00	58	14	45	12	50		1.8	377		24	6.5			395	0.89	-132.8	-16.24	
183	7.90			54	18				396	N	95	18				380	0.47		
184	8.00	118	21	20	9	<0.02	40		0.113	333		64	21			457	1.00	-127.8	-16.28
185	7.00	114	22	41	22.4	39	2.4	0.08	443		68	20	4.5			551	0.99		
186	7.80			141	61				540	N	315	332				1115	0.49		
187				52	20			35	0.8	334	39	23	1	398	335	0.61			
188																			
189																			
190	7.74	8.4	4	49	17		24		1	226		20	5.1	0.334		239	1.01		
191									0.1										
192																			
193																			
194	8.90			16	1					56	8	168	114	3	788	338	0.11		
195																			
196																			
197	8.01	780	42	56	2.6	0.037	110	4.3	2	170	1	67	1100	2.9		2251	1.07	-126	-14.3
198	7.2	694	53	35	0.2		210	4.4	1.5	112		323	872	5.5	2120	2311	1.00	-127	-14.2
199	7.10	730	62	22	N	N	226	4.7		67	N	315	910	7.3	2360	2310	1.02		
200				32	2		259			31	19	334	955		2495	1616	0.05		
201	7.10	620	38	70	1.5	0.02	150	5.6		100		400	820	4.2		2159	0.95	-121.5	-13.3
202	7.6	656	52	52	0.6		198	6.1	1.7	93		405	829	4.7	2100	2298	0.97	-121	-12.4
203	7.00													5		5	0.00		
204	9.00	117	5.4	6.2	0.1	N	46	193		12	20	144	57	2.5	361	597	0.99		
205	8.10	139	4.7	5.2	0.3		85	0.76		136		171	20	0.81	567	494	1.01		
206	8.1	277	8	27	0		126	2	0.2	93		528	55	4.1	950	1120	0.95	-126	-15.9
207	7.50	248	7.1	20	0.3		104	1.7		95		419	53	4.9	959	905	1.00		
208	6.3	611	58	15	0.3		278	41.8	6.9	369		120	790	2	2056	2292	0.93	-121	-12.4
209	7.70	679	32	8				361		234		750	1.2	2056	1882	0.99			
210	7.20	680	66	16	0.7	<0.02	270	47		368		73	837	2.1		2173	1.03	-116.7	-12.16
211	8.00	19		24	9				151	N	3	5		211	134	1.03			
212	7.9		37	19					212		47	13	0.1	281	220	0.71			
213	9.30	49	0.4	2.8	1		44	0.2	0.667	34	26	35	5.4		181	1.03			
214	8.40		13		0.27				1.4	120	6	7	7	253	92	0.24			
215																			
216	7.7		47	14						232		5	7	0.1	249	187	0.85		
217	7.60	67	4.6	267	53	3.3	34	0.03		312	N	732	8.2	0.6	1320	1323	1.01		
218	7.70		102	1	0.13					8.4	149	N	192	21	583	389	0.74		
219	8.21	25	1.4	17	0.9	0.003	33	0.04	0.011	107	0	8.6	3	0.3	142	1.01	-109	-14.8	

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	delO18
220	8.06	28	0.9	15	1.1	0.11	27	0.06	0.004	93	0	16	4.7	0.6	139	1.03	-112	-14.9	
221	7.26	173	5.9	270	0.14	0.116	44	1.4		26	843	34	4.1		1402	1.08	-130	-16.2	
222	8.84	99	1.6	2.2	<0.05	0.03	60	1.5		57	13	89	27	7.5		329	1.02	-127	-14.9
223	8.55	161	5	166	0.1		33	1.4		4.5	11	617	39	3.3		1039	1.06	-130	-16.2
224	7.3	170	3.9	66	0.74	5.6	35	1		39	0	470	38	5.1	798	815	0.94		
225	8.90	125	1.7	6	0.7	0.03	47	1.5		51	17	109	74	7.1	408	414	0.95		
226	8	58	4.4	9.5	2.9	0.006	78	0.16		140	0	36	9.5	1.6	271	269	0.99		
227	8.50	69	3.4	2	0.2	0.03	36		0.309	146	4	23	6.2	1	244	217	0.99		
228	8.80	82	2	14	0.33		33			48		148	21	5.8		330	0.91		
229	8.20			7.2	1.7					7.1	159	128	29			244	0.08		
230	8.50	277	15	38	0.2		115			70		580	46			1106	0.99	-131.5	-16.01
231	8.60	313	13	40	1	0.06	109	1		52	12	642	49	8.2	1210	1214	0.98		
232	4.83	1200		55	0.07	0.015	190	9.4				2000	0.7			3455	0.97		
233	8	2230	249	87	0.2		319	15.6	3	36		70	3740	4.3	7570	6754	1.00	-114	-2.1
234																			
235																			
236																			
237	8.60	190	6.5	3.6	0.02	<0.02	115	0.89	0.04	111	11	111	126	16	635	0.97	-126.1	-15.89	
238	7.41	1900	120	80	23		83	0.58	1.7	348	0	240	3000	1.3	5621	0.96	-101	-11.5	
239	8.1	680	25	11	4.2		49	7.2	0.44	388	2	110	820	0.5	1900	0.98	-110	-13.9	
240	7.86	1000	48	82	2.1	0.05	160	5.7	1.5	144		360	1500	0.6	3229	0.94	-109.3	-13.46	
241	5.7	2000	232	109	0.4		284	13.4	3.8	108		48	3400	1	6140	6200	1.00	-105	-10.8
242	7.50	60	18	5			70	5.1	1.1	312	3	39	1300	1.1	2406	0.83	-110.6	-13.3	
243	7.34	42	2.8	63	15	0.007	40	0.41	0.055	243	0	65	14	0.5	362	1.09	-95	-11.7	
244	9.27	220	7.6	1.7	0.79	0.022	28	1.1	0.012	230	38	89	100	0.8	600	1.02	-111	-14.1	
245	7.57	1480	42	108	1.7		170	15		90	<1	190	2200	5	4256	1.05	-110.2	-12.36	
246	8.5	1600	57	71	1.1		80	17	2	120	15	180	2300	3.3	4385	1.05			
247	8.2	1700	48	75	0.9		120	17	2.1	140	0	210	2400	5.5	4647	1.06			
248	7.86	3100	45	27	32	0.18	63	13	0.32	839	0	6.8	4700	0.7	8490	8401	0.96	-97	-10.5
249	7.65	370	0.9	33	5.8	0.0055	53	1.5		788		250	15	1.9	1119	0.98			
250	6.56	1400	32	70	2.9	0.054	120	14				62	2200	0.5	3901	1.03	-107	-11.7	
251																			
252																			
253																			
254	7.40	450	26	44	0.6	<0.02	180	2.4	0.1	114	<1	470	380	7.9	1617	0.99	-125.8	-13.21	
255	7.60	68	3	16	2.2	0.01	54	0.3		86	N	80	26	6	297	298	0.97		
256	8.20	72	2	12	0.9	0.04	63	0.08		98	N	60	21	6.9	287	286	1.01		
257	9.9	4400	87	5.7	6.2	0.25	24	4.8	0.3	575	256	1700	4843	7.8	11919	11618	1.02		
258	8.9	363	34.6	3	1.1		342	7.4		279	13.5	118	321	5.8	1347	1.00			
259										768	N	77	34		863	600	0.24		
260																			
261																			
262	8.40		42	20						180	8	74	19		252	0.71			
263	7.70	170	8.4	4.8	0.06	<0.02	110	0.66	0.04	256	5	102	22	8.9	558	1.04	-130.4	-16.68	

#	ph	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSc	ChgBal	delD	delO18	
264.1	8.59	525	38	10	2.5	0.14	107	3.5		1380	40	65	48	12	1530	0.90	-132	-17.7	
264.2	7.7	156	8	6.2	0.14		116			243	108	24	8.8		547	0.99			
265.1																			
265.2																			
266																			
267	6.50	44	14	56	12	<0.02	68	0.12		264	<1	64	12	2.5	403	0.99	-129.8	-16.87	
268	7.20	29	5.9	57	21	0.01	40	0.26		279	N	35	21	0.2	346	347	1.01		
269.1	8.00	15	3.4	51	20	N	25	0.5		255	N	25	10	0.4	276	275	0.99		
269.2																			
270	7.47	37	12	69	17		37			334		25	9	0.889	371	1.07			
271																			
272																			
273																			
274	8.70	36		24	7.8					135	12	28	7		181	1.00			
275	9.30	64	0.7	1	<0.1		85		N	144		18	6.3		246	0.98	-127.9	-16.28	
276																			
277	7.80	36		62	12					0.76	160	N	88	43		320	1.00		
278	6.50	200	36	43	9.4	0.06	77	2.6		673	51	22	4.7		777	0.97	-135.8	-16.01	
279																			
280	6.60	47	13	52	11	<0.02	36	0.17		249	<1	57	10	2	230	3.58	-127.5	-16.28	
281	7.10	55	15	50	11	<0.02	46	0.21		278	59	8	2.8		384	1.00	-124.9	-16.24	
282	6.72	27	7.5	65	28	0.01	24	0.1		0.063	370	31	8.3	0.5	374	0.99	-120.5	-15.6	
283	6.85	21	4.6	69	22	0.01	21	0.07		0.083	320	53	6.9	0.4	356	0.96	-122	-15.9	
284	8.65	18	6.7	42	20		20			0.527	217	6.5	35	6.7	0.319	262	1.00		
285	7.2	19	6.5	60	23	0.006	26	0.083		286	52	6.7	1		335	0.98	-127	-16.6	
286																			
287	7.8	150	4.8	12	0.3	0.02	105	0.35	0.65		1	16	1.2		291	13.58	-127.8	-16.2	
288																			
289																			
290	7.8	4.8	1	49	21	0.01	11			180	0	17	4	0.1	196	1.29			
291	8.29	4.3	1.4	56	17		23			232	19	3.6	0.265		239	1.02			
292										0.008									
293	8	20	9.5	26	8.7	0.007	71	0.019		130	9	21	0.4		230	1.07	-126	-16.5	
294	162	13	1.1	0.12	100					375	7.7	17	17	0.75	518	503	1.07		
295																			
296	7.3	9.3	3.4	51	21	0.01	19			250	0	18	4.4	0.4	250	1.03			
297										267	N	21	4.3		266	264	0.90		
298	6.8	8.2	2.3	51	16	0.01	21	0.03	0.017	220	19	3.2	0.2		229	1.04	-121.5	-16.2	
299	8.00		32	25						148	N	83	10		223	0.82			
300		51	23	0.22	37					222	N	68	7.5	0.67	314	297	0.84		
301	8.70	145	3.6	10	0.01	<0.02	58	1.2		50	9	235	44	4.9	535	0.92	-119.5	-15.55	
302	9.10	137	2.9	9.6	0.5	0.01	61			12	24	200	46	5	499	492	0.98		
303												1.2		1	0.00	-116	-15.6		

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	delO18
305	8.7	102	2.5	4.5	0.01	0.06	52	0.19	0.07	54	7	169	17	3.1	384	0.90	-123.2	-16.01	
306	8.50	69	3.4	2	0.2	0.03	36	7.1	146	4	23	6.2	1	217	0.99				
307							62	1	41	22	157	28	3.5	294	0.00				
308																			
309																			
310	8.5	200	2.2	26	0.1	0.02	34			38	0	380	49	8.4	718	0.97			
311																			
312		70		48	13					88	10	190	43		417	0.94			
313		262		16	N					210	315	78			776	1.00			
314																			
315																			
316																			
317	7.40	148	6.4	82	14	0.01	25	75	82	N	403	79	0.7	810	798	0.99			
318	8.00	245	10	32	6.1	0.86	54	2.3	118		374	102	6.8	891	891	1.01			
319										37	0.22	47	9	109	64	4.8	370	254	
320	7.70										6.1	144	N	23	11	139	0.62		
321	7.60	305	16	40	3.3	0.07	46	2.3	112	<1	597	87	7.4	1159	0.93	-130.3	-16.13		
322	8.70	160	2.7	7	<0.25		63			68		238	33	11	548	0.97			
323											0.8								
324											5								
325	7.50	74	13	23	0.95		94			0.18	202	38	12	4	358	1.03			
326	8.77	99	3.3	1.1	<0.05		0.03	122	0.7		119	21	47	12	14	379	0.95	-131	
327	8.72	94	2.7	1.4	<0.05		0.04	112	0.575		126	17	53	12	14	369	0.88	-130	
328																	-6.7		
329	7.60	55	4.8	26	13		28			239		41	1	0.31	287	1.01			
330																			
331																			
332																			
333	8.23	57	13	15	0.924		108			130		44	12	0.738	315	1.06			
334												0.04	147	0	34	21	0.7	300	
335.1															367	382	0.97		
335.2																			
336	9.12	43	1.9	7.2	0.512		68			83	9.3	18	7.7	0.889	197	1.00			
337	7.9	13	4.2	37	12	0.008	28	0.01	0.01	168	0	36	3.7	0.6	221	217	0.96		
338	7.8	17	5.8	45	11	0.15	31	0.045	0.02	158	0	64	4.8	0.4	269	257	0.99		
339	7.6	38	0.8	4.7	0.1	0.01	46	0.1	0	80	0	19	7	0.4	148	155	1.00		
340	7.70	49	6.8	70	22	0.007	32	0.33	2.1	358	N	55	19	1	444	431	1.00		
341	8.00	197	13	51	15	0.04	135			N	545	86	42	8	823	815	1.03		
342																			
343															N				
344	8.10	65	2.5	1.6	0.1	0.014	76	0.16	7.6	132	N	26	10	1.2	229	248	0.98		
345	7.8	66	3.5	25	3.4	0.01	70	0.3	0.03	184	0	42	18	1.2	313	320	1.01		
346	7.4	46	4.4	17	2	0.027	46	0.2	0.04	124	0	27	15	0.5	208	219	1.03		
347	7.4	41	7.9	25	2.6	0.009	72	0.34	0.05	156	0	21	12	0.8	261	259	1.02		

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delID	delO18		
348	7.8	276	27	58	18	0.015	25	0.61	0.95	702	0	222	36	6.2	945	1015	0.98				
349	7.20	194	24	76	22		53	0.44		702	N	99	31	3	833	848	1.00				
350	7.7	45	1.1	68	6	0.005	42	0.19	0.03	284	0	31	22	0.2	376	355	0.99				
351	7.7	36	0.3	5.8	1	0.002	40	0.01	0.04	94	0	9.5	6.3	0.3	143	146	1.01				
352.1	8.00	28	6.5	62	22	0.06	25	0.12		321	N	47	8.6	0.6	380	358	0.97				
352.2	9.98	52	1.5	0.723	0.06		70		43	29	14	10	4.8		203	203	0.94				
353	8.06	12	3.3	40	18		22	1.5	185		38	16	0.22		241	241	0.95				
354	8.1	54	12	57	17	0.008	32	0.44	0.25	368	0	17	14	2.8	380	388	1.00				
355	6.88	36	5.5	71	23	0.01	24	0.13	0.11	380		29	9.5	0.9	386	1.00	-114	-15			
356	7.03	24	5.9	58	19	0.01	27	0.14	0.075	290		47	9.9	1.3	335	0.93	-119	-15.7			
357	7.14	5.3	1.6	67	24	0.01	13	0.03	0.018	300		14	2.9	0.2	276	1.05	-108	-14.5			
358	7.5	10	3.4	50	21	0.003	26		0.022	270		12	6.6	0.2	262	0.97	-105	-14.3			
359				40	23		46		10	178		27	18		283	242	0.98				
360	7.60	24	5.1	60	24	0.01	28	0.1	0.85	300		43	9	1	343	342	1.00				
361	7.38	22	4.4	55	22	0.009	25	0.11	0.053	260	0	44	9.3	1.2	311	1.02	-119.5	-15.8			
362	9	1680	18	7.1	5.4		20	18.4	0.95	1590	200	425	937	7.68	4920	4101	1.09				
363	7.8	68	17	56	17	0.008	51	0.4	0.24	350	0	47	26	2	405	457	1.00				
364	8	123	25	91	31	0.1	37	0.8	0.33	698	0	59	9.8	2.4	700	723	1.00				
365	7.6	120	22	100	26	0.002	27	0.62	0.3	673	0	51	15	2.7	732	696	1.02				
366				44	37	0.1	11		0.324	124	N	11	2		132	166	2.26				
367															-101	-101	-13.2				
368																					
369	7.20		1.1	0.6				0.02			50	N	22	2	0.2	51	0.08				
370															578	578	0.00				
371	7.90	792	60	38	38	0.8	23	9.8		720	N	323	860	3.2	2500	2502	0.96				
372	8.40	875	2.5	71	2		48			56		1120	625	5.6	2777	2777	0.99				
373	7.10			48	7.4			1.7		60	N	98	70	4.2		259	259	0.58			
374	7.90		17.	2.7			0.06		128	N	12	3	0.2		98	98	0.44				
375																					
376	7.00		49	9.6	0.17					614	N	120	74	4.3	940	559	0.22				
377	8.30		13	4		0.42			158	1	38	7	1.5		143	143	0.26				
378	8.3	430	45	37	4		140	9.4		224	0	80	460	3.1	1494	1319	1.19				
379															47	59	0.51				
380																					
381	7.10	334	16	47	2.7	0.12	62	1.4		328	N	487	7	1180	1119	1.10					
382	7.90		48	4.9	N					266		106	54	2.7	560	346	0.34				
383															47	59	0.51				
384																					
385	7.70	47	2.5	62	5.9	0.03	38	0.18		240	N	48	23	0.8	346	345	1.01				
386	7.75	240	0.4	220	0.4		17		0.25	110	0	890	49	0.8	1600	1472	0.99				
387	7.05	49	0.9	21	1.3	0.06	55		0.02	160	0	21	7.8	0.3	229	235	1.00				
388	9.00	81	2.6	1.6	N		61			N	187	N	16	6	0.6	287	261	1.02			
389	7.00	142	15	74	27	1	30			577	N	71	34	0.9	624	679	1.05				
390	8.20		11	5.8	N				0.65			155	N	24	55	4.5	427	177	0.21		

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	delD18	
391	7.7	45	2.8	57	7.7	37	0.05	281	0	48	23	0.6	396	335	101					
392	8.00			36	22			357	N	25	5			264	0.55					
393																				
394																				
395	8.00	29	7.2	44	23	33	0.1		260	N	36	11	0.5		312	1.03				
396	8.40	23	5.2	45	23	N	28	0.2	N	272	N	27	8	0.5	295	294	1.00			
397	8.10	32	6.8	39	18	31	0.1	5.6	281	N	34	9.7	0.5	286	285	1.04				
398	8.3	3.8	0.9	55	31	0.006	14	0.013	289		8.9	4.1	0.1		260	1.09	-97	-12.9		
399	8	34	5.6	26	3.5	0.009	55	0.057	146		18	10	1.3		225	1.03	-101	-13.4		
400																				
401	8.10	38	6.8	31	9.8	N	51	0.1	189		29	15	1.6	271	275	0.99				
402	7.5	6.5	1.5	56	26	0.042	14	0.016			6.9	7.9	0.1		119	14.14	-103	-13.7		
403	8.20	46	15	43	6.2	<0.01	91		239	N	42	12	1.4	380	374	0.97				
404	7.20	39	14	34	4.8		106		200		30	8	1.4		336	0.99				
405	7.90	169	3	18	1.5		69	0.4		254		127	45	5	564	563	1.01			
406	8.20	106	5.8	14	1.9	0.12	68		194	N	69	27	4	368	391	1.01				
407	7.35	64	9.7	44	16	0.023	38	0.11		75		20	3	372	270	2.87				
408	8	50	2.2	22	1	0.05	22	0.05	147	0	40	7.6	0.9	210	218	0.97				
409	7.6	120	11	44	16	0.006	28		270		150	27	3.8	537	533	1.06				
410	7.30	71	8	51	18	N	20	0.51		300	N	80	22	2.2	552	420	1.00			
411	69	7.8	47	21	23	0.31	0.11		302	N	78	21	1.5	547	417	1.00				
412	69	7.8	48	19	22	0.26	0.0958		300	N	75	17	1.7	419	407	1.02				
413	7.90	69	6.8	45	20	29	0.6		285	N	81	21	1.3	528	413	1.01				
414	7.60	71	7.8	46	19	28	0.0419		283	N	80	22	1.2	529	414	1.02				
415	65	7.6	50	24	N	22	0.32		310	N	76	20	1.6	555	419	1.02				
416	7.20	69	7.7	49	21	0.02	23	0.1		310		80	21	1.4	425	425	0.99			
417	68	7.8	45	21	22	0.38		300		78		20	1.5	541	411	0.99				
418	97	8.6	44	19	28	0.44		318	N	105	25	1.3	480	485	1.00					
419	7.40	80	8.8	48	20	26	0.0463		311	N	92	32	1.4	593	461	0.97				
420	62	7.8	45	18	22	0.27		284	N	64	21	2.1	400	382	0.99					
421	7.3	300	9.5	76	39	0.006	26		346		500	130	1.7	1260	1252	1.02				
422	21	9.7	48	15	0.16	17		239	N	28	5			330	261	1.03				
423				55	29		18		239	N	42	4.9		268	266	1.04				
424	8.2	50.3	22.2						243.8	N	32.9	0.7		358.1	234	1.00				
425	5.7	1.2	47	23	0.02	13		235		35	4.5	0.2		245	0.96					
426	7.03	8.4	1.8	94	29	0.007	13	0.013	201		180	16	0.2	441	1.00	-91	-12.5			
427	7.35	29	3.7	26.7	44.2	0.01	29.1	0.2	280		91	27	0.44	409	389	0.87				
428	7.4	8.1	3.6	48	25	0.05	14		222	0	51	6.5	0.2	266	266	1.00				
429				150	44	21			171	N	453	22		863	774	0.86				
430				155	50	30		1.2	205	N	405	35		857	776	0.93				
431				106	20				84	N	1027	112		1785	1306	0.27				
432	7.4	81	11	47	21	0.006	34	0.11	303		90	34	1.7	469	1.00	-101	-12.95			
433	7.15	78	11	46	20	0.01	33	0.31	0.13	300		100	34	1.9	472	0.95	-100	-12.9		
434	7.16	88	11	58	25	0.006	30	0.14	272		160	53	2.1	561	0.96	-97	-12.95			

#	pH	Na	K	Ca	Mg	Fe	SiO2	B	Li	HCO3	CO3	SO4	Cl	F	TDSm	TDSc	ChgBal	delD	delO18
435	7.35	38	10	51	25	0.01	24	0.11	239	54	26	1.2	347	1.12	-75	-10.35			
436	99	10	65	28			31	0.3	288	N	174	60	2.4	614	611	0.99			
437	101	11	70	26			29	0.3	0.6	274	N	179	64	2.3	620	617	1.02		
438	7.3	25	5.3	130	43	0.08	29	0.039		370	15	1		618	1.38	-87	-11.65		
439	7.27	120	13	110	48	0.043	21	0.19	210		360	170	2.1		948	0.95	-97.5	-13.3	
440	9.60	36	2.7	5	0.7	<0.15	0.64	0.57		37	N	64	8.1	0.1	160	136	0.89		
441	8.1	340	26	500	170	0.01	17	1.3	0.66	160	0	1900	380	1.5		3415	1.03		
442	7.9	300	20	450	140	0.03	17	1.1	0.6	160	0	1600	340	1.4		2949	1.04		
443	6.96	130	13	120	47	0.004	23		0.21	226		380	200	1.4		1026	0.91	-94	
444	7.00			298	113	N	38			98		1200	1190	1.5	3720	2889	0.40	-13.45	
445	8.12	271	7.4	62.7	2.7	<0.15	38.94	0.58		113.8	N	431.3	143.6	4.05	1040	1018	1.01		
446	7.90	680	17	290	4.8	0.01	40	1.4	41	N	730	1000	3.9	2790	2787	1.01			
447	7.60	160	3.1	37	6.9	0.01	25	0.7		79	N	180	180	1.4		633	0.93		
448	7.3	350	8.3	220	75	0.02	28	0.82		203		570	600	1	2090	1953	1.01		
449	7.9	160	4	58	16	27			156	0	190	180			712	0.97			

Nevada Geothermal Resource Use – 1993 Update

by

Larry J. Garside and Ronald H. Hess
 Nevada Bureau of Mines and Geology
 University of Nevada, Reno

Geology

Nevada is well-endowed with both high- and low-temperature geothermal resources. Over 40 percent of the state is believed to have potential for the discovery of high-temperature ($>90^{\circ}\text{C}$) geothermal resources, and another 50 percent has potential for low- to moderate-temperature ($<90^{\circ}\text{C}$) resources (see Figure 1). Surface and subsurface indications of these resources are the more than 1,000 thermal springs and wells in the state. Realistically, this number of individual springs and wells represents several hundred resource areas.

Geothermal reservoirs in the northwestern part of the state have generally higher temperatures; these reservoirs are usually interpreted as being related to circulation of groundwater along faults to deep levels in a region of higher-than-average heat flow. In east-central and southern Nevada, the low- to moderate-temperature geothermal resources are generally believed to be related to regional groundwater circulation in fractured carbonate-rock aquifers. Discharge areas (for example, warm springs) may be up to several hundred kilometers from the area of recharge, and the waters may have circulated for dozens to hundreds of years to depths of several kilometers. Maximum temperatures attained during this journey could be 100°C or higher, but spring temperatures at discharge points are generally less than 65°C .

Exploration and Development

Two hundred and eighteen geothermal well permits were issued from 1988 through 1993 by the Nevada Division of Minerals. They include 58 industrial-class production wells, 30 domestic class, 88 observation or gradient wells, 10 commercial-class, and 25 injection wells. During this same period 109 geothermal wells are reported to have been drilled, with a total amount drilled of approximately 86,500 m. Forty-five of the wells drilled were production wells, with a total amount drilled of approximately 44,800 m. Figure 2 and Table 1 illustrate the number of power generating wells and pace of drilling since 1980.

From 1989 through 1992 noncompetitive and competitive federal geothermal leases in Nevada generated \$1,699,282 in

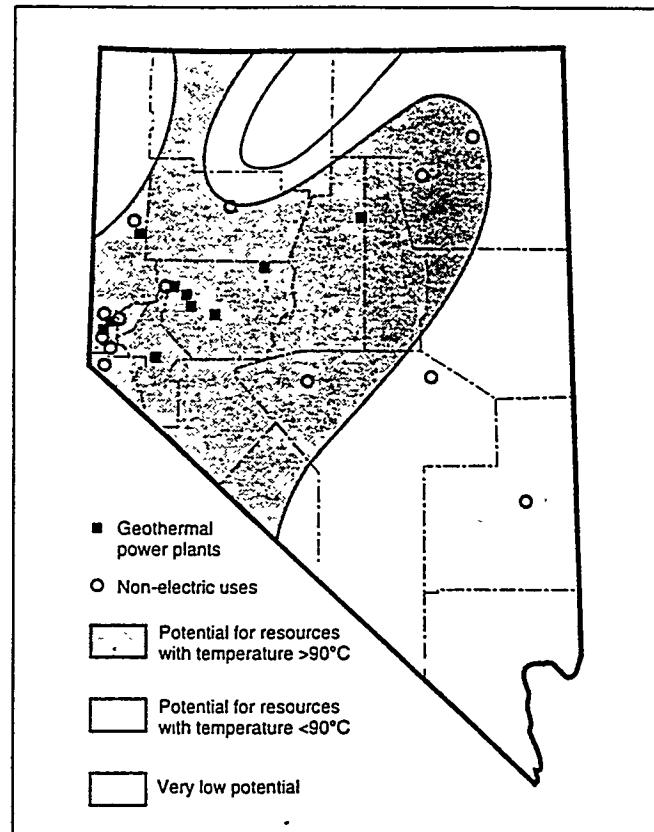


Figure 1. Generalized locations for Nevada's geothermal resources.

rental fees, \$849,641 of which was returned to the State of Nevada. Federal production royalties during the same period generated \$7,485,000, of which \$3,742,500 was returned to the State. Geothermal lease returns (\$849,641) and royalty returns (\$3,742,500) to Nevada totaled \$4,592,141. By regulation, half of all funds collected by the Bureau of Land Management from federal geothermal leases and production royalties is returned to the state.

Geothermal Electric Power Generation

Electric power is generated using geothermal resources at 10 plants in northern Nevada (Table 2, Figure 1). The state's

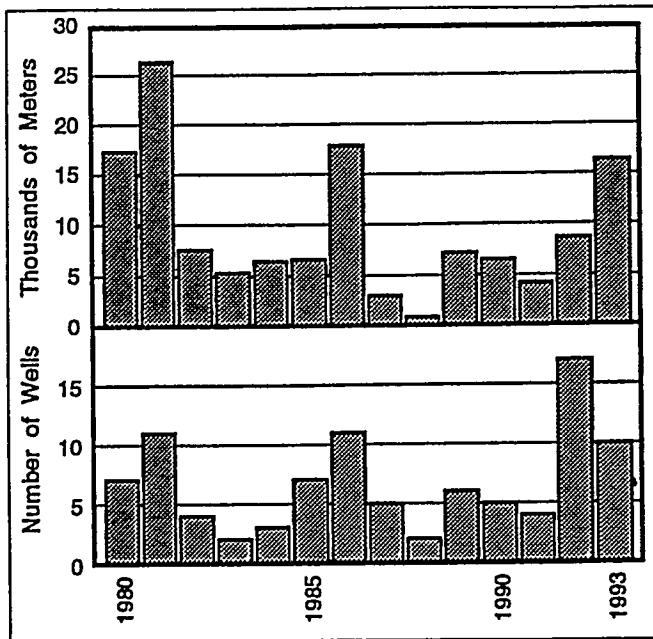


Figure 2. Industrial-class (power generating) wells drilled in Nevada, 1980-1993.

total installed geothermal generating capacity is second only to California.

In 1993 the state-wide peak power demand was 3,755 MW; the total installed generating capacity of Nevada's two major utilities (which supply most of the state's customers) is nearly 2,600 MW (Public Service Commission of Nevada). Thus, geothermal energy provides about 7 percent of the total electricity generated within Nevada (although only about 3 percent of the peak load). Over 40 percent of Nevada's geothermal electric power is exported to California.

From 1989 to 1992, total Nevada geothermal electrical production was 4,076,616 megawatt-hours with an approximate sales value of \$307,410,000. Production capacity in 1988 from eight geothermal power plants was 115.8 MW (gross) while current power production from 10 existing geothermal power plants in Nevada is 191.7 MW gross (Table 1). These values represent a 17 percent increase in sales value of the power sold from 1988 to 1992 and an increase in installed gross power production capacity of 60 percent over 1988.

It is important to note that in 1988 Nevada had nearly a threefold increase over 1987 in the amount of online geothermal generating capacity (Figure 3). The primary reason for this increase was the Dixie Valley 60 MW Oxbow Geothermal plant being put online. The OESI plants at Empire (4.8 MW) and Soda Lake No. 1 (3.6 MW) were also brought online during this period.

According to a 1991 Department of Energy estimate, under stable market conditions and with continuing technologic advancements in the geothermal industry, Nevada's projected electrical production capacity from known geothermal resources by the year 2010 should be at least 600 MW (Energy Information Administration, 1991). It is esti-

Table 1. 1992 directory of Nevada geothermal power plants.

Year	Total # drilled	Total depth(m)	No. industrial wells drilled	Total depth(m)
1988	11	4,268	3	1,098
1989	15	14,817	6	7,317
1990	12	11,280	5	6,707
1991	14	12,561	4	4,268
1992	36	17,988	17	8,841
1993	21	25,596	10	16,686
TOTAL	109	86,510	45	44,917

mated that, for the Basin and Range province as a whole, aggressive exploration activity and continued rapid geothermal technologic advancements could add up to 2,000 MW of production capacity from known resources and new discoveries over the next 10 to 20 years (Wright, 1992). These relatively optimistic future scenarios should be tempered by today's reality of low-priced natural gas, increases in efficiency of fossil fuel generating equipment, and anticipated changes in power sales contracts. The future is bright for Nevada's high-temperature resources, but the pace of development will depend on many factors not related to the viability of the geothermal resource.

Beowawe

The Oxbow/Beowawe Geothermal Power Co., Beowawe plant came online in 1988. It is a 16 MW (gross), dual-flash plant, which uses geothermal fluids from three wells with a resource temperature of 221°C.

Brady Hot Springs

The Brady Hot Springs geothermal power plant (Figure 4) came online in July 1992. Plant operation and maintenance is being performed by Oxbow Power Services, Inc.

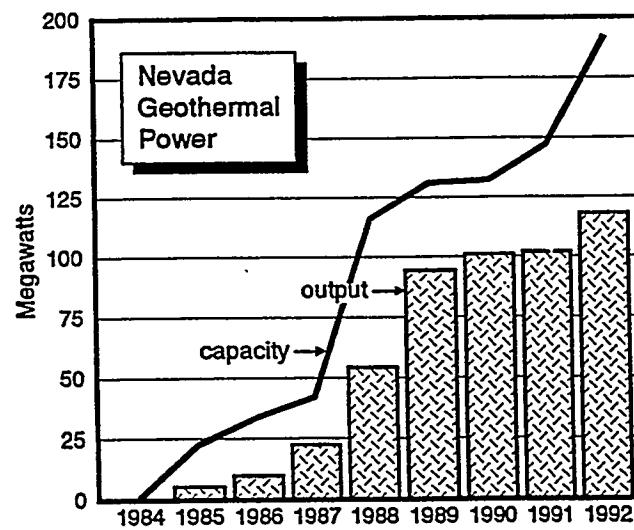


Figure 3. Rated capacity and average net output of Nevada geothermal plants, 1984-1992. Average net output is annual sales in megawatt-hours divided by the number of hours in a year (8,760).

Figure 4. Steam separators and power house at Brady Hot Springs plant (Brady Power Partners), Churchill County, NV. Larry Green photo.

Table 2. Total number of all classes of geothermal wells drilled and number of industrial-class geothermal wells drilled by year, 1988 through 1993. Source: Hess, 1993; Nevada Division of Minerals, 1993.

Plant name (year on line)	Production capacity ¹ (MW)	1992 Production (MWh)		Location	Operator
		Gross	Net (sales)		
Beowawe (1985)	16.0	138,196	104,415	S13,T31N,R47E	Oxbow/Beowawe Geothermal Power Co. P.O. Box 6 Beowawe, NV 89821
Brady's Hot Springs (1992)	21.1	69,999	54,563	S12,T22N,R26E	Oxbow Power Services, Inc. P.O. Box 649 Fernley, NV 89408
Desert Peak (1985)	8.7	85,364	76,906	S21,T22N,R27E	Western States Geothermal Co. P.O. Box 2627 Sparks, NV 89432-2627
Dixie Valley ² (1988)	66.0	535,220	483,307	S7,T24N,R37E S33,T25N,R37E	Oxbow Geothermal Corp. 5250 South Virginia St. Suite 304 Reno, NV 89502
Empire (1987)	3.6	17,783	12,752	S21,T29N,R23E	OESI/AMOR II P.O. Box 1650 Fallon, NV 89407
Soda Lake No. 1 (1987) and Soda Lake No. 2 (1991)	16.6	107,315	84,419	S33,T20N,R28E	OESI/AMOR III P.O. Box 1650 Fallon, NV 89407
Steamboat I, I-A (1986) and Steamboat II, III (1992)	31.1	104,574	79,790	S29,T18N,R20E	S.B. Geo, Inc. P.O. Box 18087 Reno, NV 89511
Stillwater (1989)	13.0	72,707	59,692	S1,T19N,R30E S6,T19N,R31E	OESI/AMOR IV P.O. Box 1650 Fallon, NV 89407
Wabuska (1984)	1.2	6,262	3,860	S15,16,T15N, R25E	Tad's 10 Julian Lane Yerington, NV 89447
Yankee Caithness (1988)	14.4	82,280	76,096	S5,6,T17N,R20E	Yankee Caithness J.V.L.P. P.O. Box 18160 Reno, NV 89511
TOTAL	191.7	1,219,700	1,035,800		

¹Production capacity from currently developed geothermal resources.

²Gross output of the Dixie Valley plant occasionally exceeds 66 MW.

Source: Hess (1993).

The plant uses 5.4 million pounds of brine per hour produced from six of eight production wells. The production zone is 300 to 425 m deep with a resource temperature of between 172 and 182°C. The wells supply two high pressure turbines and one low pressure turbine in a two stage system that produces 21.1 MW gross output. Geothermal fluids are injected into three of five available injection wells (Ettinger and Brugman, 1992; GRC BULLETIN, v. 21, no.1).

Desert Peak

The Western States Geothermal Co., Desert Peak plant went online in 1985. It was designed by Phillips Petroleum Co. and uses a biphasic turbine built by TransAmerica Corp. Production capacity from the currently developed resource is 8.7 MW. The resource temperature is approximately 205°C and wellhead temperature is 165°C.

Dixie Valley

The largest single geothermal power plant in Nevada, Oxbow Geothermal Corp. Dixie Valley plant, came online in 1988 producing 55-59 MW (net). (Gross output sometimes exceeds 66 MW, as listed on Table 2.) The power is produced in a double-flash turbine generator and purchased by Southern California Edison Co. Oxbow estimates a geothermal energy reserve in Dixie Valley sufficient to supply 200 MW for 30 to 60 years (GRC BULLETIN, June 1987; Reno Gazette-Journal, August 6, 1988).

Empire/San Emidio Desert

The OESI/AMOR II Empire plant came online in 1987 and consists of four Ormat Energy Converter Modules with a gross output of 3.6 MW from currently developed geothermal resources. Production is from a liquid-dominated geothermal source at 129 to 137°C. San Emidio Resources continued their geothermal program in the San Emidio Desert near Gerlach, Nevada. Early in 1991 San Emidio Resources signed a 5 MW, 30-year geothermal power supply contract, effective 1992, and a 20 MW, 30-year geothermal power supply contract, effective 1995, both with Sierra Pacific Power Co. (GRC BULLETIN, February 1991). The initial price paid for produced electricity under the long-term contracts is reported to be approximately 5 cents per kWh. At that time plans called for construction of a 6.5 MW binary plant to be online by November 1992. Since then San Emidio Resources requested and was granted a suspension of the 5 MW project in order for Sierra Pacific Power Co. and San Emidio Resources to determine the feasibility of combining the 5 and 20 MW projects into one project. In July 1993, Sierra Pacific Power Co. executed an amendment to the long-term power purchase agreement with San Emidio Resources. The agreement now calls for a 30 MW geothermal power plant to be online by November 1, 1995 (Public Service Commission of Nevada).

Fallon

In early 1992 the U.S. Navy issued a request for proposal to construct an 80 to 90 MW geothermal power plant at the Fallon Naval Air Station. If this plant is constructed, it will be Phase I of the Navy's geothermal program. Phase II will consist of a second 80 to 90 MW facility to be constructed within 10 years of completion of the Phase I project. The Navy estimates that the potential geothermal resource in the area will be able to produce 300 to 500 MW. The exploration drilling and reservoir testing performed during the initial phase of this project will be used to better define the geothermal potential of this area. Based on previous exploration information it is expected that the resource will be in the 175 to 205°C range.

Fish Lake Valley

Fish Lake Power Co. continued their extensive drilling efforts to develop a geothermal resource in the Fish Lake Valley area of Esmeralda County. If a geothermal generating facility is built, the electricity would be delivered to California under a Standard Offer No. 4 Contract.

Hot Sulfur Springs

Earth Power Energy and Minerals has requested an avoided-cost purchase contract agreement with Idaho Power Co. If a contract were obtained, a 9.9 MW geothermal power plant could be constructed at Hot Sulfur Springs, Elko County, Nevada (Reno Gazette-Journal, October 10, 1993).

Rye Patch

The Rye Patch Limited Partnership (OESI) is currently nearing completion of a 12.5 MW binary generating plant at their site near Rye Patch reservoir. The company has a signed purchase agreement with Sierra Pacific Power Company with an anticipated plant online date of November 30, 1993. This has been delayed while the company continues to develop sufficient and continuous geothermal resources to fuel the plant.

Soda Lake

On August 19, 1991, the 13 MW OESI/AMOR III Soda Lake No. 2 geothermal power plant completed commercial operations testing and went online. This plant is adjacent to the 3.6 MW OESI Soda Lake No. 1 plant that came online during 1987 (GRC BULLETIN, October 1991). Both plants are producing from a liquid-dominated geothermal source at 160°C.

Steamboat Springs

Two 12 MW, air-cooled, binary geothermal power plants, Steamboat II and III, operated by S.B. Geo, Inc., were brought online in December 1992, adding 24 MW of produc-

tion to the existing 7.1 MW S.B. Geo Steamboat plant, for a combined gross production capacity of 31.1 MW.

The geothermal fluid cycle at the new plants is completely contained and the fluids are injected back into the ground (closed binary-cycle system). The existing resource is expected to last 30 years or more and can support an additional 36 MW of production capacity. Based on this, plans are currently being formulated to determine the feasibility of installing an additional 24 MW facility in the near future. In December 1993, S.B.Geo, Inc. received a \$7.2 million grant from the U.S. Department of Energy to develop a pilot project known as the Kalina Pilot Plant. The purpose of the project is to increase the efficiency of extracting heat from hot geothermal fluids.

Yankee Caithness J.V.L.P. operates a 14.4 MW (gross) flash turbine system producing from a 170°C resource. The **Yankee Caithness Steamboat** plant came online in 1988, and the produced power is purchased by Sierra Pacific Power Co. on a 30 year contract.

Stillwater

OESI/AMOR IV, Stillwater Geothermal plant came online in April 1989. Total project cost was \$36 million. The air-cooled plant consists of 14 Ormat Energy Converters that have a combined gross generating capacity of 13 MW. The plant uses a liquid-dominated geothermal source ranging in temperature from 155 to 170°C. The plant operates on a closed system; all geothermal liquids are injected (Ormat Fact Sheet, 1989; Geo-Heat Center, Fall 1989).

Wabuska

Tad's **Wabuska** plant came online in 1984. Current production capacity is 1.2 MW produced from two Ormat Energy Converter modules. The plant operates on fluids at 107°C. produced from a depth of 107 m (GRC *BULLETIN*, July, 1987).

Non-Electric Low- and Moderate-Temperature Applications

The majority of Nevada's population is concentrated in two areas, Reno-Carson City and Las Vegas. Many of the state's geothermal resources are remote from any population centers, thus limiting some potential applications. Although 50 or more small-to-large communities are located within 8 km of geothermal resources, only a few of these areas have been able to use these resources effectively. The reasons for this under-utilization are varied. Although some reasons relate to technical and engineering problems (resource size and temperature, heat loss during transport, etc.), many more are economic (high capital outlays, long payout, under-capitalization of projects) and perceptual (unconventional *vs.* conventional technology, short *vs.* long-term cost evaluations, uncertainties about long-term economic risks).

There have been attempts to use Nevada's low- and moderate-temperature geothermal resources in more than 20 areas, mainly in the past 5-10 years. Additionally, economic and/or technical appraisals of more areas have been conducted, but for a variety of reasons projects were not completed.

Moana Geothermal Area

Moana Hot Springs, located in the southwestern part of Reno, have not flowed at the surface for at least 15 years. The springs were the discharge point for an area of thermal groundwater that has been used for a spa, swimming pool, and home heating for nearly 100 years. Recent use for home space heating began in the 1960s. The area today is predominantly residential. We estimate that the area of thermal groundwater encompasses at least 9 km². In this area there are more than 300 homes that use geothermal fluids for space heating. One hundred and thirty of these homes are part of a district heating system, while most of the rest use downhole heat exchangers in individual wells. A smaller district heating system has retrofitted 12 homes for geothermal heat, and plans to add another four in the spring of 1994. A large hotel, a motel, about three apartment or townhouse complexes, five churches, and a county swimming pool also use the resource. The Veterans Administration Hospital, located about 2 km northeast of the geothermal area, drilled a deep well several years ago and encountered approximately 43°C water. The well was plugged and abandoned.

Steamboat Hot Springs

The Steamboat geothermal area consists of a deep, high-temperature (215 to 240°C) geothermal system, a shallower, moderate-temperature (160 to 180°C) system, and a number of shallow, low-temperature (30 to 80°C) subsystems (Goranson and others, 1991). The higher temperature systems are used for electric-power generation (see the preceding section). A number of low-temperature thermal groundwater anomalies are in an area of approximately 30 km² centered on the hot spring area (Goranson and others, 1991), but these thermal areas are not well known and are little used. A few homes in the Steamboat area have used low-temperature fluids for over 40 years, and one or more spas have been active in the springs area since the 1860s. Presently probably less than a dozen homes use the low-temperature geothermal fluids for space heating or domestic hot water (including swimming pools). About one domestic geothermal well permit has been issued per year over the last 5 to 7 years.

Bower's Hot Springs

A large outdoor swimming pool and smaller children's pool at the Washoe County Park at Bower's Mansion (lo-

cated between Reno and Carson City), are supplied with warm water from a geothermal well located near the spring.

Carson City Area

Water from a well at the site of Carson Hot Springs in northern Carson City is used directly in a swimming pool. In southeast Carson City, thermal groundwater is found in the State Prison/Pinyon Hills area. In the past, there have been a few attempts to use the thermal groundwater from domestic wells in that area for space heating. Geothermal space heating has been considered, but not implemented, for at least two schools in the area.

Saratoga Hot Springs

A California company, Lobsters West, has proposed raising lobsters near the warm springs located about 15 km southeast of Carson City. The geothermal fluids would be used to heat tanks in which the lobsters would grow to full size. The experimental study is proposed to last 4 years; live lobsters would be shipped twice a month to local markets (*Reno Gazette-Journal*, November 4, 1993).

Hobo Hot Springs

These hot springs, located about 15 km south of Carson City, were used to raise tropical fish and Malaysian prawns in the late 1980s. Lobster raising was also considered. The water temperature is slightly over 40°C. The site is presently inactive.

Walley's Hot Springs

Walley's Hot Springs, located near Genoa, about 20 km south of Carson City, was the site of a large spa in the late 1800s and early 1900s (Garside and Schilling, 1979). A modern spa was built on the site in the early 1980s. In addition to use of the geothermal fluids for bathing and domestic hot water, the buildings are heated with geothermal energy (Lienau and others, 1988).

Gerlach

Hot springs located just west of the town of Gerlach (Great Boiling Springs) have been used for bathing for many years. The Gerlach General Improvement District built a bath house using geothermal fluids in 1989. The facility was planned for use by tourists and local residents. The facility has been unable to obtain a permit from the health department because sediment from the well plugged water filters. Future plans are for a geothermal heat exchanger system to heat city water for the spa. Geothermal groundwater apparently extends under at least part of the town, as at least two Gerlach homes use geothermal wells for space heating. The water in one well is reported to be 35 to 36°C (unpublished data, Nevada Division of Minerals).

San Emidio Desert

A vegetable dehydration plant is under construction in the San Emidio Desert area southwest of Gerlach (Figure 5). The plant is a few kilometers north of the Empire (OESI/AMOR II) Electric-Power plant. Integrated Ingredients (Spice Islands, Fleischmann's, and other brands), part of international food manufacturer Burns Philp, is contracting for the construction of the facility, which will employ about 25 persons when completed in early 1994. The number of employees may increase to about 65 after 18 months. Onions and garlic will be dehydrated and stored at the plant (*Reno Gazette-Journal*, August 31 1993). The plant will use approximately 150°C geothermal fluid.

Brady Hot Springs

A geothermal vegetable dehydration plant has been operated at this site, about 80 km northeast of Reno, since 1978. The facility uses a moderate-temperature (132°C) geothermal well on site. Since 1993, additional geothermal fluid has been supplied by the nearby Brady Power Partners electric power generation plant, operated by Oxbow Power Services, Inc.

Wabuska Hot Springs

In addition to the rather low-temperature electric-power generation plant operated at Wabuska by Tad's Enterprises, several non-electric applications have been located in the area, but none are active today. A hydroponic geothermal greenhouse operation (tomatoes, cucumbers, etc.) was built on the site in the early 1970s, but few vegetables were grown. Tad's Enterprises has in the past operated a geothermal ethanol facility, a plant to grow algae (*Spirulina*) for human consumption, and facilities to raise Malaysian prawns, catfish, and tropical aquarium fish. Some of these were pilot facilities, rather than actual production facilities.

Rye Patch Geothermal Area

Florida Canyon Mining Co. operates a large open-pit gold mine and heap-leach gold recovery facility about 50 km northeast of Lovelock, and 7 km north of the area presently under development by Rye Patch Limited Partnership for geothermal electric power production. A 180 m well produces fluids at approximately 100°C; these fluids provide makeup water for the cyanide extraction solutions. Heat from heat exchangers is also extracted to heat the solutions. The heating of cyanide solutions aids extraction during cold weather, and may somewhat enhance total gold recovery.

Darrough's Hot Springs Area

Round Mountain Gold Corp. operates a large open-pit gold mine and heap-leach gold recovery facility near the Darrough's Hot Springs geothermal area in Nye County. Geothermal fluids from shallow (approximately 300 m)

Figure 5. Vegetable-dehydration plant under construction in the San Emidio Desert. *Larry Green photo.*

wells are used in a heat exchanger to transfer heat to cyanide heap-leach solutions (Trexler and others, 1990).

Carlin

Carlin Hot Springs, located near the Humboldt River southwest of the town, have a reported temperature of 80°C (Trexler and others, 1982). The Carlin High School used 31°C geothermal fluid from 280 m well from 1986 to 1992 in a closed-loop space heating system. The well was abandoned in 1992, apparently in part because of scaling problems with iron and manganese.

Elko Area

Hot springs south of the town of Elko were first used in a bath house in the 1860s (Garside and Schilling, 1979). Thermal groundwater was known to exist to the north of the springs under a part of the town, but no use was made of it until the Elko Heat Company began supplying geothermal fluid for space heating to several downtown buildings in 1982 (Rafferty, 1988). The company has continued to grow; in 1993 it served 16 commercial customers and two residential customers (Mike Lattin, oral commun., 1994).

The Elko County School District, in conjunction with the Elko General Hospital, developed a district geothermal heating system in 1986. The system supplies heat to eight buildings (two schools, a municipal swimming pool complex, a gym, a convention center, a hospital, a city hall, and a school administration building). In 1988 the estimated combined savings to all users was \$300,000 per year (Rafferty, 1988; Richard Harris, oral communication, 1994).

Jackpot Area

Two wells drilled in 1988 at the Y3 Ranch about 7 km southeast of Jackpot, were used for raising catfish. The maxi-

mum reported well temperature was 40°C (Lund and others, 1990). The catfish-raising operation was not active in late 1993, reportedly due to insufficient geothermal fluid.

Wells Area

Warm springs about 1.5 km north of the present town of Wells were referred to by travelers on the emigrant trail in the 1850s as Humboldt Wells (from which the town name is derived). Thermal (32 to 34°C) groundwater is used by an elementary school and the Wells Rural Electric Co. in heat pump applications for space heating.

Duckwater (Big Warm) Springs

A geothermal catfish-growing facility has been operated at this site since 1982. The facility was purchased in 1992 by Robert and Jeff King (Valley Fish) of Preston, Idaho. The facility, located about 110 km west of Ely, produces over 300,000 pounds of prime 8-ounce catfish filets per year that are shipped to Idaho for sale (*Geo-Heat Center Quarterly Bulletin*, December 1992).

Caliente Hot Springs

The town of Caliente in Lincoln County derives its name from the local hot springs. A number of wells in the area have reported temperatures from 40 to 80°C (Garside and Schilling, 1979; Lienau and others, 1988). A motel supplies geothermal well water to bathing pools and individual room whirlpool baths, and a trailer park supplies hot water to individual mobile homes. The Lincoln County Hospital (20 beds) was heated using 39°C water from a well on the site, but reduced temperatures (to 28°C) forced reliance on electric resistance heating. The hospital plans to use the lower-temperature fluids from its well for heating and cooling using heat-pump technology. The city swimming pool used

geothermal heat in the past, but was damaged during the winter of 1992 and will probably be replaced. The City of Caliente has a grant from the Rural Development Administration to use the local geothermal resources. A nearby perlite processing plant may be the first user of plant process heat. If more funding is found, the city plans to provide heat to the hospital, swimming pool, and eventually an elementary school and youth training facility (Glen Van Roekel, oral communication, 1994).

Ash Springs

Thermal waters (31 to 36°C) at Ash Springs, located about 10 km north of Alamo, in Lincoln County, have been used in the past at a spa on the site. The facility is presently closed.

REFERENCES

Energy Information Administration, 1991. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies: U.S. Department of Energy, DOE/EIA-0544, 70 p.

Ettinger, T. and Brugman, J. Brady Hot Springs geothermal power plant: Geothermal Resources Council *BULLETIN*, v. 21, no. 8, p. 259-264.

Garside, L. J. and Schilling, J. H., 1979. Thermal waters of Nevada: Nevada Bureau of Mines and Geology Bulletin 91, 163 p.

Goranson, C., van de Kamp, P. and Cali, E., 1991. Summary and interpretation of six years of groundwater monitoring data at the SB GEO, Inc., geothermal power plant, Steamboat Springs, NV: Underground Injection Practices Council, Reno, NV meeting, July 28-31, 1991.

Hess, R.H., 1993. Geothermal energy, in The Nevada mineral industry, 1992: Nevada Bureau of Mines and Geology Special Publication MI-1992, p. 49-52.

Lienau, P.J., Culver, G. and Lund, J.W., 1988. Geothermal direct use developments in the United States, Report prepared for the U.S. Department of Energy under contract No. DE-FG07-87ID 12693: Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, 104 p.

Lund, J.W., Lienau, P.J. and Culver, G.G., 1990. The current status of geothermal direct use in the United States, Update: 1985-1990: Geothermal Resources Council Transactions, v. 14, part I, p. 277-291.

Rafferty, K., 1988. Elko, Nevada — showcase of geothermal district heating: Geo-Heat Center Quarterly Bulletin, v. 11, no. 1.

Trexler, D.T., Flynn, T., Koenig, B.A., Bell, E.J. and Ghusn, G., Jr., 1982. Low- to moderate-temperature geothermal resource assessment for Nevada: Area specific studies, Pumpernickel Valley, Carlin, and Moana; Final report, June 1, 1981 - July 31, 1982: U.S. Department of Energy, DOE/NV/10220-1 (DE82018598), 177 p.

Trexler, D.T., Flynn, T. and Hendrix, J.L., 1990. Heap Leaching: Geothermal Resources Council Bulletin, v. 12, no. 4, p. 1-4.

Wright, P.M., 1992. Exploration potential for new hydrothermal resources for electric power generation in the 48 contiguous United States: Geothermal Resources *BULLETIN*, v. 21, no. 1, p. 31-43.