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Abstract—The Summit system at Oak Ridge National Lab-
oratory (ORNL) has been the world’s top AI for science su-
percomputer for several years, ranked world’s fastest computer
at its 2018 launch and currently top system in the US and #2
on the TOP500 list. Summit’s purposeful design to handle both
conventional modeling and simulation science and emerging AI
workloads has made it a leading destination for AI-powered
computational science. We report here on AI for science usage on
Summit near the midpoint of its lifespan. We review AI usage
across the many science projects that have used Summit. We
then examine in detail a set of applications scaling AI to full
system as well as projects implementing AI-coordinated science
discovery workflows on Summit. Finally, we offer some observa-
tions regarding the future of advancing scientific knowledge and
understanding via AI, especially in the context of leadership-class
scientific computing.

Index Terms—HPC, high performance computing, AI, artificial
intelligence, machine learning

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML)
methods are bringing revolutionary changes across many as-
pects of daily life, fueled by advancements in image clas-
sification, speech recognition, natural language processing
and robotics, to name a few. The impacts are also being
felt in scientific discovery, and computational scientists are
incorporating AI methods and techniques throughout their
workflows. Accordingly, AI is increasingly a focus of public-
sector science funding [1]. The US Department of Energy
(DOE) has hosted multiple white papers and town halls on AI
for science, particularly in connection with high performance
computing (HPC) [2]–[5].

Because of the remarkable success of AI and ML in many
applications, there has been an explosion of optimism that
these techniques will, in fact, supplant other methodologies in
computational science. For example, much attention accrued
to the recent use of AlphaFold to make a large step forward in
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the protein folding problem [6]. But, AlphaFold also serves as
a striking example of how AI successes can be overstated.
AlphaFold did not “solve” the problem of protein folding:
roughly a third of the model’s predictions were found to
be not accurate enough and, more importantly, it does not
provide insight into the relationship between protein structure
and function. Nevertheless, the predictive power of AlphaFold
and many other AI models is considerable. This fact alone
makes their possible use very attractive for a wide variety
of computationally intensive problems like those attacked by
leadership computing.

AI/ML projects have long been active at the Oak Ridge
Leadership Computing Facility (OLCF). Many-node machine
learning jobs ran on Titan at least as early as 2015 ([7]; cf. [8]).
Summit [9] was designed to handle AI workloads, supported
by an Infiniband fat-tree interconnect with adaptive routing,
on-node burst buffers, and NVIDIA Volta graphics processing
units (GPUs) with Tensor Cores providing over 3 AI-ExaOps
mixed precision peak performance. Summit debuted at #1 on
the TOP500 list [10] in June 2018 and remains one of the
top two computing systems in the world and most powerful
system in the United States.

Since its deployment, Summit has provided over 90% of
the compute cycles for DOE Office of Science allocation
programs, in support of many science domains. Now near the
midpoint of its lifespan, Summit’s history provides a wealth
of information on how scientists use AI/ML methods at scale.

Our purpose is to survey AI/ML usage on Summit from
mid- to late-2018 to the present. Our interest is to understand
the varieties of AI/ML usage by examining all projects across
all allocation programs, with particular attention to AI/ML
methods that scale-out to large portions of Summit.

This paper is organized as follows. After reviewing sys-
tems and allocation programs to be studied, we outline the
study methodology. We then analyze AI/ML usage across all
projects, years and allocation programs. After this we look
more deeply at AI/ML scale-out projects at large numbers of
Summit nodes. This is followed by case studies of projects
using AI to coordinate science discovery workflows on Sum-
mit. Finally we summarize findings and discuss requirements
for future use of AI/ML methods in future scientific projects
using HPC.
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II. SCOPE AND METHODOLOGY

A. Systems

The OLCF Summit system consists of over 4600 IBM
Power System AC922 nodes [9]. Each of Summit’s compute
nodes contains six NVIDIA Tesla V100 GPUs and two 22-
core IBM POWER9 processors, connected using NVIDIA’s
high performance NVLINK connections within the node. (One
POWER9 core of each processor is reserved for the system,
leaving 42 cores per node to run user processes.) All Summit
nodes are interconnected with a dual-rail EDR InfiniBand
fabric with a non-blocking fat tree topology. Each of Summit’s
original 4,608 compute nodes contains an aggregate of 96 GB
of high bandwidth memory (HBM2) on the GPUs, 512 GB
of DDR host memory, and 1.6 TB of non-volatile memory. In
Summer 2020, the OLCF added 54 “high memory nodes,”
each with 192 GB of HBM2 memory, 2 TB of DDR4
memory, and 6.4 TB of non-volatile memory. The hardware
configuration and queue policies of these high memory nodes
were crafted for even better support of AI/ML workloads than
in the original system.

Scientific workflows often include pre- or post-processing
steps that do not require the extreme capability of Summit. To
support these workflow steps, the OLCF fields a companion
commodity Linux cluster with access to the same file systems
as Summit. When Summit was first deployed this role was
served by Rhea, a cluster with a 512-node CPU partition and
9-node GPU partition. Each CPU partition node contained
two 8-core Intel Xeon processors and 128 GB of memory.
Each GPU partition node contained two 14-core Intel Xeon
processors, 1 TB of host memory, and two NVIDIA K80
GPUs. In late 2020, the OLCF replaced Rhea with the 704-
node Andes cluster. Most Andes nodes contain two 16-core
AMD EPYC processors with 256 GB memory, but the nine
GPU nodes from Rhea have also been incorporated into Andes.

B. Allocation Programs

The OLCF allocates time on leadership resources through
three primary allocation programs: the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE)
program, the Advanced Scientific Computing Research Lead-
ership Computing Challenge (ALCC) program, and the Cen-
ter’s Director’s Discretionary (DD) Program. The OLCF seeks
to enable scientific productivity via capability computing
through all of these programs. Accordingly, a set of criteria
is considered in making allocations, including the strategic
impact of the expected scientific results and the degree to
which awardees can effectively use leadership resources. The
INCITE program, co-managed by the LCF sites at Oak Ridge
and Argonne, is allotted roughly 60% of the available compute
hours at OLCF in a given allocation year. INCITE review
and selection incorporate a rigorous computational readiness
review separate from the scientific merit review that is per-
formed later. The ability and need to take advantage of the
full capability afforded by leadership resources are the primary
criteria for this review. ALCC—accounting for roughly 20%

of the allocable cycles per year—has no formal computational
readiness review, but the proposals are assessed by the DOE
Office of Advanced Scientific Computing Research (ASCR)
for their appropriateness for leadership resources. The DD
program allocates the remaining 20% of resources per year.
The goals of the DD program include enabling users to prepare
for leadership computing competitions, such as INCITE and
ALCC, and broadening the community of researchers capable
of using leadership computing. Included in this mix are
projects that come to the OLCF through the Accelerating
Competitiveness through Computational Excellence (ACCEL)
Industrial HPC Partnerships outreach, which encourages op-
portunities for industrial researchers to access the leadership
systems to perform research that would not otherwise be
possible. In addition, for the years examined here, the DD
program allocated up to half of the available time (i.e., 10%
of the total) to Exascale Computing Project (ECP) teams to
enable GPU porting and scalability testing.

C. Study Methodology

We consider INCITE (2019-2022), ALCC (mid-2019 thru
mid-2022) and DD (2019-2021) projects. We also consider
projects from the ECP [11], the COVID-19 HPC Consor-
tium [12] (some of which are also DD projects), and Associ-
ation for Computing Machinery (ACM) Gordon Bell compe-
tition finalists (2018-2021) [13], treated here separately.

Our primary information source is the set of project propos-
als submitted by each principal investigator (PI) and project
team. INCITE and ALCC proposals each typically contain
about ten pages of narrative, while DD proposals are generally
about a page long. In some cases we use other artifacts such
as referenced publications or discussions with project compu-
tational liaisons in the OLCF Science Engagement section.

Though we only consider Summit-based projects, some
projects also use Andes or Rhea for supportive AI/ML an-
alytics work, in a way not always clearly differentiated in
proposals. Because of this, we include usage of these systems
also when considering whether a project uses AI/ML.

We measure AI/ML usage either by number of projects
or by total allocation hours summed across relevant projects.
“Allocation hours” refers to the number of Summit node-
hours granted to the project at the onset of the project period.
Alternatively, one could consider actual hours used or some
measure of compute cycles devoted to AI/ML, though this
is beyond the scope of this study. Furthermore, this could
be misrepresentative, as it could undercount the importance
of an ML method that greatly reduces runtime for a science
calculation but itself actually requires very little compute time.

A fundamental question is, what constitutes the use of
AI/ML in a project? A poorly chosen criterion could distort
the results by being too inclusive. As an extreme example, an
application could use a vendor linear algebra library which
has been, unknown to project members, autotuned using ML
methods, and thus be classified as using AI. Or a project could
use potentials in a molecular dynamics library that are trained
with ML, either unknown to project personnel or so routinized
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TABLE I
SCIENCE APPLICATION AI MOTIFS

Motif Definition Example
fault detection detect algorithmic or other failure in execution, send signal for auto-

matic or manual remediation
detect simulation defect caused by execution error

math/cs algorithm ML is used to enhance some mathematical (non-science-proper) com-
putation

solver’s linear system dimension is reduced based
on machine-learned parameter

submodel a (proper) subset of a science computation is replaced by an ML model.
molecular dynamics (MD) potentials as special case

physics-based radiation model in a climate code
replaced by ML model

steering automatic steering of the direction of a computation for some internal
process

ML method to guide Monte Carlo sampling to in-
clude undersampled regions

surrogate model full science model replaced by ML approximation that captures impor-
tant aspects, used for speed or science understanding

data from tokamak simulation runs used to train
surrogate model

analysis results from modeling and simulation (modsim) runs are analyzed by
a human using ML methods

use graph neural networks to analyze results of MD
simulation

ML + modsim loop both ML and traditional modsim, coupled MD in loop used to refine deep learning model via
active learning

classification “pure” ML with little or no modsim used to classify some phe-
nomenon; includes some other methods like reinforcement learning

deep neural network inference to detect rare astro-
physical event

various umbrella project with multiple unrelated subprojects using possibly
different kinds of AI/ML

CAAR/ESP/NESAP application readiness

undetermined manner of AI/ML use is undetermined project is exploring AI/ML use but gives no details

as to have become standard community practice. To avoid such
cases, we consider a project to use AI/ML if project personnel
have made a conscious decision to implement or use AI/ML
and have explicitly indicated this choice.

For AI/ML usage or adoption status, we consider three
cases. First, “active” refers to actual usage of AI/ML in the
project and given project year. Second, “inactive” refers to
usage in a previous project year, planned or possible future
use, exploring possibility of use, or usage in a closely-
linked companion project. Finally, “none” refers to no serious
mention of or interest in AI/ML methods.

Various attempts have been made to categorize the ways
AI/ML methods can be used for science, for example “in-the-
loop,” “on-the-loop” or “around-the-loop” configurations [14].
To add slightly more granularity to this, we define “AI
motifs,” derived directly from review of the many projects
(see Table I). The aim is to enable at-a-glance visibility into
what ways scientists incorporate ML methods into their codes.
It is recognized that this categorization, though necessary, is
inherently somewhat approximate. A project’s use of AI/ML
could be interpreted to reflect more than one category, or (less
commonly) the project could use AI/ML in multiple different
ways. In such cases, we select the most prominent category.
For example, a project using analysis of results to build a
submodel would be classed as “submodel” not “analysis” if
the only purpose of the analysis is to build the submodel. It
should be emphasized that this taxonomy is tentative and is
subject to refinement in the future.

Finally, we study AI/ML usage with respect to science
domain. Every OLCF project initially receives one of 48 dif-
ferent 3-letter codes to denote its science subdomain. These are
sometimes grouped into a shorter list of nine science domains.
Sometimes the subdomain is selected by the project PIs, in
other cases OLCF personnel. Science subdomains and domains
can refer either to the science problem being solved (e.g.,
turbulence) or the application area (e.g., engineering). Some
projects could conceivably be given multiple designations; for
example, a single project could have aspects of turbulence,

chemistry, combustion and engineering. For consistency and
clarity, in this study we have adjusted the science domain
categories and subdomain assignments for OLCF projects in
a few cases, to better represent the most prominent scientific
theme of each project. Our list is shown in Table II.

TABLE II
SCIENCE DOMAINS AND SUBDOMAINS

Domain Subdomains
Biology Bioinfomatics, Biophysics, Life Sciences, Medical

Science, Neuroscience, Proteomics, Systems Biology
Chemistry Chemistry, Physical Chemistry
Computer
Science

Computer Science, Machine Learning

Earth Science Atmospheric Science, Climate, Geosciences, Geographic
Information Systems

Engineering Aerodynamics, Bioenergy, Combustion, Engineering,
Fluid Dynamics, Turbulence

Fusion and
Plasma

Fusion Energy, Plasma Physics

Materials Materials Science, Nanoelectronics, Nanomechanics,
Nanophotonics, Nanoscience,

Nuclear Energy Nuclear Fission, Nuclear Fuel Cycle
Physics Accelerator Physics, Astrophysics, Cosmology,

Atomic/Molecular Physics, Condensed Matter Physics,
High Energy Physics, Lattice Gauge Theory, Nuclear
Physics, Physics, Solar/Space Physics

III. SUMMIT AI/ML USAGE ACROSS PROGRAMS

We now examine AI/ML usage across all projects, totaling
662 project-years (INCITE 147, ALCC 72, DD 352, COVID
non-DD 12, ECP 62, Gordon Bell finalist 17). Gordon Bell
finalist projects are analyzed separately in Section IV.

A. Overall AI/ML usage

Figure 1 shows overall adoption of AI/ML for Summit
projects. For this and following subsections we examine usage
across all INCITE, ALCC and DD years as well as ECP
projects and also COVID projects that do not overlap with DD,
to avoid double-counting. Here we see a substantial number
of projects, 1/3 over Summit’s lifespan, have actively used
AI/ML methods, with another 8% indirect use.

3



Fig. 1. Overall AI/ML usage, percentage of projects.

B. AI/ML usage by program and year

Figure 2 breaks down this usage by allocation program
and year. AI/ML adoption in INCITE, the largest allocation
program, has grown steadily from 20% in 2019. ALCC usage
has been significant, especially in 2019-20 when a large
subset of a smaller number of projects used AI/ML. Note
ALCC projects tend to make use of long-established codes
and methods, since the program is designed to support specific
aims of DOE-supported researchers, unlike INCITE which
is more adaptable over time to new communities. DD for
every year has a very large number of projects, many using
AI/ML. ECP projects understandably use AI/ML less, being
more constrained by project goals set early in the program.
COVID-19 projects use AI/ML heavily for drug discovery and
others.

Fig. 2. AI/ML usage by program and year, percentage of projects.

C. AI/ML usage by ML method

Figure 3 shows ML method used, whether deep learning
(DL, DNN) or other neural network, or otherwise. We ag-
gregate active and inactive projects. For some projects, such
as those only planning to use ML, it was not possible to
determine the method used.

Note DL/NN methods are much more prevalent than others.
Of the latter, many methods are used, such as SVM, isola-
tion forests, PCA, weighted least squares linear regression,
Bayesian regularized regression, multiparameter regression or

Fig. 3. Usage by AI/ML method, percentage of projects.

boosted decision tree regression. DL methods are attractive for
their versatility and scalability.

D. AI/ML usage by science domain

Figure 4 shows results from Figure 1 broken down by
science domain. Usage is highly domain-specific. Computer
Science has many ML-proper projects, thus high adoption.
Biology is a heavy ML user for drug discovery, genomics,
COVID-19 research and others. Engineering, Earth Science
and Fusion/Plasma, commonly using grids, have significant
adoption as well as notable “inactive” use, often reflecting
efforts to validate ML models. Materials projects commonly
use ML methods to model atomic interactions. Chemistry is
represented indirectly under Biology and Materials.

E. AI/ML usage by AI motif

Figure 3 shows AI/ML usage broken down by AI motif. For
this and the next subsection we aggregate active and inactive
projects and consider only INCITE, ALCC and ECP, for which
abundant information is available. The top motif is Submodels,
reflecting incorporation of ML models into simulation codes.
This with Classification, Analysis, Surrogate Models and MD
Potentials account for over 3/4 of usage. AI coordination
methods like Steering and ML+Modsim Loop are expected
to increase going forward.

F. AI motif vs. science domain

Figure 6 gives breakdown by science domain. Conclusions
should be drawn cautiously here on account of small sample
size per category. The most prominent usage is Submodels
by Engineering. Submodels are also used in other domains
like Earth Science often making use of grids. Notably, these
domains, often having complex models with CFD, use very
little Classification, showing these simulations not presently
tractable by fully ML-based methodologies. Biology uses no
Submodels (other than MD Potentials), since they generally do
not use grids or have spatial resolution issues per se; this points
out the highly domain-specific nature of how AI/ML is used.
Machine-learned MD Potentials are heavily used in Materials
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Fig. 4. AI/ML usage by science domain, project counts.

Fig. 5. AI/ML usage by AI motif, percentage of projects.

projects; they are used in Fusion/Plasma for plasma/surface
interactions. Some Biology projects use MD Potentials but are
otherwise classed, e.g., Steering. Computer Science contains
many Classification projects; they have no Math/CS Algorithm
components since categories like Classification and Various
capture the use of such algorithms. Overall, we believe this
line of analysis provides rich material for understanding how
AI/ML methods can be applied to different science domains.

IV. HIGH SCALABILITY AI/ML ON SUMMIT

A. AI/ML-powered Gordon Bell Finalist Projects

We review Gordon Bell award finalists using AI/ML meth-
ods on Summit. These well-documented projects all scale to
large Summit node counts. Table III summarizes numbers
of Summit finalists for both standard and COVID-19 special
Gordon Bell competitions. Following is a short overview of
the projects and how they use AI/ML methods for science.

1. Ichimura et al., GB/2018 (math/cs algorithm motif)
earthquake modeling using a neural network to form the
preconditioner for a conjugate gradient solver (scalability to
4096 nodes) [15].

Fig. 6. AI motif vs. science domain, project counts.

TABLE III
GORDON BELL AWARD FINALIST PROJECT COUNTS

year 2018 2019 2020 2020 2021 2021
category std std std COVID-19 std COVID-19
Summit 5 2 4 2 1 3

Summit AI/ML 3 0 1 2 1 3

2. Patton et al., GB/2018 (classification motif) hyperparam-
eter tuning for DNNs to find defect structures in microscopy
images (scalability to 4200 nodes, measured 152.5 PF mixed
precision) [16].

3. Kurth et al., GB/2018 (classification motif) detection
of extreme weather patterns from imagery using adapted
Tiramisu, DeepLabv3 DNNs (scalability to 4560 nodes, peak
1.13 EF mixed precision) [17].

4. Jia et al., GB/2020 (MD potentials motif) MD simu-
lations of water and of copper using DeePMD-kit machine-
learned potentials (scalability to 4560 nodes) [18].

5. Casalino et al., GB/2020/COVID-19 (steering motif)
MD modeling of virus spike dynamics with sampling guided
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by 3D PointNet-based adversarial autoencoder (scalability to
4096 nodes) [19].

6. Glaser et al., GB/2020/COVID-19 (surrogate model
motif) structure-based chemical screening for drug discovery,
binding affinity scoring function represented by random forests
(scalability to 4602 nodes) [20].

7. Nguyen-Cong et al., GB/2021 (MD potentials motif)
MD modeling of carbon atoms in high pressure/temperature
environments using machine-learned SNAP MD potentials
(scalability to 4650 nodes) [21].

8. Blanchard et al., GB/2021/COVID-19 (classification
motif) promising drug candidates found using genetic al-
gorithm search of cross-attention network trained on BERT
compound model embedding and transformer protein sequence
model embedding (scalability to 4032 nodes, 603 PF mixed
precision) [22].

9. Amaro et al., GB/2021/COVID-19 (steering motif)
MD simulation guided by DeepDriveMD; also analysis motifs
using OrbNet and ANCA-AE (scalability to 4096 nodes) [23].

10. Trifan et al., GB/2021/COVID-19 (steering motif)
graph neural operator network, ANCA-AE and CVAE methods
used to orchestrate joint MD and finite element simulations to
model virus replication-transcription process (Summit scala-
bility to 256 nodes) [24].

It is evident that AI/ML usage at scale is much more
variegated than the case of scale-up of a single deep learning
model. Benchmark suites like MLPerf [25] composed of pure
ML models scaled to many nodes do not fully represent the
multitude of ways scientists actually use AI/ML methods in
practice. Most uses of ML are as components of a complex
application code or workflow, for which the ML method
provides meaningful benefits in performance or accuracy. This
parallels the broader adoption of AI in the product space,
whether as whole device or a component that enhances an
existing device.

While the trend is to incorporate AI/ML increasingly into
science workflows, this transition will take time. One re-
search group is pursuing a 10-year plan to make ML-only
weather forecasting as accurate as conventional modeling and
simulation [26], while research in the area is proceeding
apace [27], [28]. As will be discussed below, verification,
validation, reproducibility and uncertainty quantification must
be addressed for ML-powered scientific simulations [29].

B. AI/ML Methods at Extreme Scale

As just shown, AI/ML-powered scale-out projects use AI
in different ways, for example a highly scalable science
application with in-the-loop AI/ML, or conventional modeling
and simulation on many nodes directed by AI/ML on few
nodes. Here we consider cases where the AI/ML method itself
is scaled up. We consider Gordon Bell finalist projects and
several others. Some other OLCF projects are also engaged in
scale-out of AI/ML however have not yet made results public.

1. Kurth et al. [17] analyzes image data from climate simu-
lations to detect extreme weather events. Modified DeepLab3+
and Tiramisu networks are trained with LARC learning rate

control and gradient lag with data parallelism. Training data
input performance is optimized by use of node-local SSDs
and MPI transfers of input data between nodes. Scaling to
4560 nodes results in peak 1.13 mixed precision Exaflops and
parallel efficiency of 90.7%.

2. Yang et al. [30] models subsurface flow to study nuclear
waste remediation. A physics-informed generative adversarial
network (PI-GAN) solves the uncertainty quantification prob-
lem associated with the relevant stochastic partial differential
equation with a network architecture constrained by the prob-
lem physics. Batch size limitations for GAN training requires
use of a novel model parallelism scheme in addition to data
parallelism. The code achieved over 1.2 mixed precision Ex-
aflops performance on 4584 Summit nodes at 93% efficiency.

3. Laanait et al. [31] solves an inverse problem to recon-
struct electron density from electron microscopy imagery. An
adapted FC-DenseNET network is trained with a LARS/Adam
optimizer, global batch size 27,600 and data parallelism. Novel
optimizations for gradient reduction enable scalability to 4600
nodes and peak 2.15 mixed precision ExaFlops performance.

4. Khan et al. [32] uses ML to infer the astrophysical
parameters of black hole mergers. A modified Wavenet ar-
chitecture is trained with data parallelism using the LAMB
optimizer, achieving 80% scaling efficiency from 8 to 1024
nodes of Summit.

5. Blanchard et al. [22] finds drug candidates using a
workflow composed of multiple AI components. The most ex-
pensive is a BERT model architecture pretrained on SMILES-
represented compound data with a custom model vocabulary.
Pretraining uses the LAMB optimizer, data parallelism, gradi-
ent accumulation and global batch size up to 5.8 million while
maintaining convergence rate. Parallel scaling from 1 to 4032
nodes is 68%; without I/O costs the figure is 83.3%. Peak
performance is 603 mixed precision PF at 4032 nodes.

Clearly many kinds of deep learning model scale to a
large fraction of Summit, representing diverse science areas
(climate, materials, astrophysics, drug discovery). Performance
and scaling characteristics depend heavily on model architec-
ture, training settings and input data characteristics. Runtime
components such as I/O (cf. [33]) and interconnect can be
performance-critical, imposing requirements on system hard-
ware components; for detailed discussion see Subsection VI-B

High floating point rates for model training requires large
matrix sizes; this may not be practical for the fastest and most
accurate models. Increasing use of sparsity may make this
situation more complicated.

We expect the ability to train very large AI/ML models
at leadership scale will continue to be a requirement into the
future. A clear example of this is the transformer-based models
of [22]. In the commercial world, transformer-based language
models have scaled past the trillion parameter mark and require
tightly integrated HPC systems of similar scale to those at na-
tional laboratories [34]. The trend of growing the model size to
improve accuracy is expected to continue [35]. Our experience
at the OLCF is that every field of science and engineering
making use of high-performance computing features some
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number of projects requiring simulation on a leadership system
at full scale to answer important (often fundamental) questions.
Importantly, the investigators undertaking these simulations
fashion their approximations, implementations, and resolutions
based on the available hardware. Current evidence indicates
that the same will be true for emerging AI for science
workloads.

V. AI-COORDINATED WORKFLOWS: CASE STUDIES

AI methods provide opportunities to orchestrate HPC sci-
ence workflows in ways not previously possible. One of
these is autonomous science discovery workflows. This might
involve AI as a replacement of human judgment and control
at decision points between the steps in a scientific campaign
(e.g., observation, experiment, simulation, or AI training or
inference step). AI methods can also enforce consistency
between different simulation components, or combine results
from other simulations or AI/ML models to generate new
science. The “steering” motif described earlier is in some sense
an example of this, insofar as a judgment protocol is learned by
ML training and applied to guide some part of the simulation.

Below are case studies showing how AI methods are being
used for coordinating workflow components on Summit.

A. Materials

An important issue in materials sciences and condensed
matter physics that is increasingly being addressed using
machine learning workflows is the problem of spanning the
gap between models that are capable to address increasing
length- and time-scales while maintaining the maximum of the
physical accuracy of the more fundamental, higher accurate,
yet more expensive, models. The most prevalent use of AI
techniques in materials sciences has been in accelerating the
exploration of the large search space of possible structures and
compositions to achieve desired properties. [36] Yet, in most
cases, these approaches have been based on the extraction of
succinct feature set from materials databases of sizes that do
not require the capabilities of high performance computing.
Thus, most materials calculations at scale on Summit to date
have followed a traditional modelling and simulation approach
with minimal use of AI and machine learning incorporated into
their workflow.

One example of applying machine learning techniques to
high performance material simulations can be found in [37].
In this work ML is used to achieve high fidelity simulations of
the statistical mechanics of multi-component alloys to obtain
the finite temperature behavior of these concentrated solid-
solution alloys. Previous work on investigating the statistical
mechanics of materials resorted to constructing simple models
using physical intuition from either experimental observations
of a few first principles calculations. To achieve fully first prin-
ciples accuracy for statistical mechanics calculations of either
magnetic or chemical ordering in alloys, attempts were made
to directly link scalable, real space density functional theory
calculations with classical Monte-Carlo drivers. [38], [39]

Machine learning allows a combination of these approaches
by training classical models on expensive first principles data
and reducing the time to solution compared to this fully
density functional theory based approach while retaining most
of its fidelity in capturing the quantitative physics. Thus the
combination of highly scalable large scale density functional
calculations of many materials configurations [40], which
provides a sufficiently rich data set for machine learning,
together with the use of physics inspired multitasking learning
[41] and the use of a Bayesian information criterion [42] to
avoid overfitting while still extracting the maximal information
from the available data set, allowed Liu et al. [37] to formulate
an integrated workflow that makes use of the HPC resources
available with Summit to refine the ML derived model with
new information obtained during the Monte-Carlo simulation
to refine the model for high entropy alloys to obtain qualitative
predictions of phase transitions in high entropy alloys.

B. Biology

In [24] an AI-enabled workflow models the replication
transcription complex of COVID-19. The centerpiece is a
combination of AI/ML components that iteratively couple
a mesoscale simulation employing fluctuating finite element
analysis (FFEA) and an atomistic-scale simulation based on
all atom molecular dynamics (AAMD). The interposed AI/ML
methods serve to impose consistency between the two vastly
different kinds of simulation. The FFEA model takes 3D
Cryo-EM data as input, while conformal changes from the
FFEA model are captured by anharmonic conformational
analysis enabled autoencoders (ANCA-AE). Conformational
changes from the AAMD simulation are in turn captured by a
convolution variational autoencoder (CVAE). The simulations
are coupled by a graph neural operator (GNO) network.

A novelty of the project is use of AI to coordinate the
science campaign across multiple facilities. The AAMD sim-
ulation is run using the NAMD code on the full Perlmutter
system at NERSC and also the ThetaGPU system at the
Argonne Leadership Computing Facility (ALCF). The CVAE
model is trained offline on Summit on up to 256 nodes;
alternatively it is trained on a Cerebras CS-2 system at the
ALCF. The FFEA, ANCA-AE and GNO components are run
on ThetaGPU. Balsam used for workflow orchestration.

C. Drug Design

[43] presents a drug lead discovery workflow as an iterative
loop infused with AI/ML methods. Two key parts are an
MD simulation and a surrogate ML model used for the
compound ranking function. MD simulations are performed
by OpenMM and NAMD on Summit and are themselves
directed by DeepDriveMD using a CVAE to guide sampling.
The surrogate model is based on a ResNet-50 network trained
on 2D images generated from ligand SMILES strings. The
surrogate model computes docking scores to downselect the
set of compounds to evaluate by the more precise but more
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expensive MD simulations. The workflow is managed by the
RAdical-Pilot Task OveRlay (RAPTOR) system.

VI. DISCUSSION

A. AI/ML Method Needs

AI/ML for science discovery has certain distinctive techni-
cal requirements pertaining to the AI/ML methods themselves
and how they are applied to science problems.

1) Accuracy: Scientists seek confidence that the value
inferred from a machine learning model is sufficiently accurate
compared to the result from a principles-based modeling and
simulation code. As one Summit INCITE PI put it succinctly,
“The field of big data and machine learning has become
extremely influential but without big theory it remains dogged
by a lack of firm theoretical underpinning ensuring its results
are reliable.” [29]. Indeed, some methods such as neural
networks under assumptions possess uniform approximation
properties [44], though the bounds may not be adequate for the
problem in hand. Properties like consistency and PAC learn-
ability may be inadequate due to applying only in the limit or
only probabilistically. Machine learning methods commonly
lack the level of theory to give the kind of approximation
guarantees available from other tools such as finite element
theory. This being said, it must be admitted that some complex
multiphysics codes or coupled application simulations also
lack a priori approximation guarantees yet are reliably run
in practice and produce verifiable results.

Some argue it is acceptable for practice to precede theory
in use of deep learning [45]. Indeed, effective but unproven
methods in the past have fallen out of favor for a period of
time, some might argue needlessly, until convergence theory
was developed (an example is the conjugate gradient method).
Also, some machine learning methods whose approximation
behaviors are not fully understood are nonetheless being
applied today, even in mission-critical situations [46].

Our experience at the OLCF is that different projects have
different validation requirements. Some simulations run at the
OLCF have very demanding validation requirements, such as
climate simulations supporting IPCC reports. One differentiat-
ing factor seems to be whether an ML-computed result can be
confirmed by other means, such as conventional simulation or
experiment; an example is the generation of drug candidates
for evaluation and testing. We are aware of multiple projects
using OLCF resources, currently actively integrating machine
learning methods into workflows on multiple fronts (e.g., [26]),
but not yet ready for production—limited in some cases by the
need to assure confidence in the methods. Some have in fact
already developed theory [47] to support accuracy guarantees,
for example [48], Summit 2020 Gordon Bell awardee.

Researchers are actively studying approximation proper-
ties of machine learning methods for science applications
(e.g., [49]). Progress could enable AI/ML adoption by more
OLCF projects. However, this research must be problem-
centric rather than method-centric. Results in the literature
may be inapplicable for various reasons, for example from not
answering the right questions or only solving “toy” problems.

Though these are not entirely without value, the need here
is for results that are actually applicable for production-grade
simulations at leadership scale.

2) Generalizability: One aspect of accuracy is out-of-
distribution generalization, a model’s ability to generalize to
input regimes unseen at training time, the failure of which can
cause inaccurate simulations. As noted by one Summit Gordon
Bell awardee, “In spite of the remarkable success of these ML
methods, there is no guarantee for the quality of ML models
when they are used to predict the properties of a configuration
that is far from the training data set.” [47]. This can be
caused by required training data being unavailable or too
expensive to generate, or the inherent need for more data than
is practical [50]. The problem can be acute since exploratory
simulations can by nature generate data with characteristics
previously unseen. Though misclassified inputs to a network
can often be contrived synthetically [51], the problem is not
merely academic but in fact can cause failures in physical
simulations [52]. Techniques to ensure generalizability or
detect out-of-distribution data would be worthwhile.

3) Satisfaction of Constraints: Another facet of accuracy is
the need for ML methods to satisfy certain constraints. This
takes the form of conserving physical quantities, imposing
other physical constraints [53] or preserving symmetries or
other invariants. This is sometimes an essential requirement
for correctness [52]. As one Summit INCITE climate scientist
stated, “If networks are applied iteratively, it will be important
to satisfy fundamental conservation properties and to stabilise
simulations.” [54] Constraints can be imposed exactly (up to
roundoff) by choice of network architecture, enforced approx-
imately by loss term, or imposed by a final correction. An
example at the OLCF is [48] in which symmetries in molecular
dynamics potentials are enforced exactly.

4) Explainability: Some OLCF-hosted projects require ex-
plainable AI (cf. [55], [56]). As stated by one Summit INCITE
PI, “The inner workings and decision processes of these
AIs are opaque. Results can be seen but an understanding
why a decision was made is lacking. Therefore, while AI
has been a powerful tool for prediction and classification,
it has not yet been a tool for knowledge distillation.” [57].
Unlike some other AI application domains, scientific inquiry
as a collaborative effort requires not only “answers” but also
“insight.” An ML method with human-level proficiency but
no human-level ability to explain its reasoning to a domain
scientist can be a “dead-end,” providing little guidance toward
the next steps of discovery. While some phenomena may
be only modelable as a black box, the ability of models
to “show their work” yields significant benefit for human-
in-the-loop science exploration. It should also be noted that
some forms of physical theory are formulated and used to
provide fundamental understanding while others are designed
to provide predictive power for classes of phenomena. Even an
explainable AI rooted in complete theory would not be helpful
for the aims of fundamental theory. On the other hand, AI
models of this ilk could be quite effective in replacing or, at
least, augmenting phenomenology.
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B. Hardware and Software Requirements

A distinctive characteristic of learning applications is that
most developers interact with high-level frameworks (typically
in the Python language), such as TensorFlow and PyTorch,
providing nearly all essential building blocks for modeling.
Beneath the frameworks, vendors provide full stack support
and hence shield underlying hardware and software complex-
ities from the developers. Since most AI/ML workloads boil
down to 3 basic types of operations, i.e., convolution, recurrent
operations and matrix multiplication, and can take advantage
of mixed precision arithmetic, these applications are typically
computational bound at the device level. At scale, however,
they can be limited by I/O or communication as the trend of
ever-growing data and model size continues.

I/O considerations: The I/O pattern of AI/ML workloads
follows iterative random access. The aggregated read band-
width needed to sustain full Summit data-parallel training is
roughly estimated from single device training throughput on
in-memory synthetic data, multiplying by input data size and
number of devices. For the standard ResNet50 on ImageNet
benchmark, a total of 20 TB/s is required for ideal scaling.
This cannot be achieved on current shared file systems such
as GPFS, the read bandwidth of which is only 2.5 TB/s. On the
other hand, node-local NVMe has aggregate read bandwidth
over 27 TB/s, satisfying needs of typical AI/ML applications.
However, the training data of a large-scale scientific appli-
cation can easily outsize single NVMe volume, hence data
partitioning is needed. This can be expensive if per-epoch data
shuffling is enforced. Since data on NVMe is not persistent
between jobs, data staging is also required, with costs adding
up as well (e.g., hundreds of TBs at the start of each training
job for hyperparameter search). A high-performance shared
file system or NVMe-based caching layer is highly desirable.

Communication considerations: The most common commu-
nication pattern for AI/ML workloads is allreduce. Even when
highly optimized with GPUDirect for inter-GPU communica-
tion, with exploding model size it becomes a common bottle-
neck. For example, the per device allreduce message size for
the ResNet50 and BERT-large models is about 100MB and 1.4
GB, respectively. Given Summit network bandwidth, 25 GB/s,
and the algorithm (ring-based allreduce) bandwidth being half
of network bandwidth, i.e., 12.5 GB/s, communication time is
roughly 8 ms and 110 ms. The latter is close to the time
of per-batch forward and backward propagation and hence
hard to hide with computation-communication overlap. Thus
models larger than BERT-large become communication-bound
for the widely used data-parallel training on Summit. High-
performance interconnect and/or generic model parallelization
is essential for good scaling efficiency on future platforms.

VII. CONCLUSIONS

Since its launch in 2018, AI/ML adoption by projects
on Summit has risen significantly and stands now at about
31% of INCITE projects actively using AI/ML and another
28% planning, exploring, previously using or indirectly using

AI/ML. It is impossible from our vantage point to tell whether
the other 1/3 of projects do not use AI/ML due to not having
need or from lack expertise or resources.

Deep learning and other neural network methods are most
commonly used, though other projects have reasons to use
various other ML methods.

AI/ML adoption is highly differentiated by science domain,
with Biology, Computer Science and Materials being top
categories. Others like Engineering, Physics and Earth Science
show significant current usage as well as planning for future
use.

AI usage motifs are highly variegated across projects, with
use of submodels being most popular—this unsurprising since
modern simulations typically rely on many submodels, e.g.,
turbulence. The pattern of AI motif usage by science domain
shows very distinctive patterns underscoring the very domain-
specific nature of how projects use AI/ML methods.

Many AI/ML-powered codes scale up effectively. Multiple
deep learning training codes scale to full Summit, using
increasingly sophisticated models such as transformers. Bi-
ologists are substantial users of at-scale ML, the latter well-
suited to modeling combinatorial interactions e.g., for protein
folding. Reductions and I/O are stress points for scalability.

AI methods are enabling new science workflows, coor-
dinating simulation and ML components, sometimes across
systems. We expect use of autonomous workflows to increase.

ML theorists must provide better solutions to problems of
accuracy, interpretability and generalization. Computational
scientists will need to deeply understand both domain science
and ML to evaluate appropriateness and applicability of AI
methods for science.

Future use of AI for science will need large systems
with good interconnects and file systems with excellent read
characteristics and reasonable semantics.

We have presented an early-stage analysis of AI for science
at scale. New methods and applications are being developed
that were not even imagined several years ago. We expect
many new developments in AI for science in coming years.
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