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1. INTRODUCTION

Spatially accurate data of critical infrastructures are essential to effective disaster preparedness, response,
and recovery. Precise location and building outlines provide the most accurate data for characterizing
impacts of hazards and effectively serve response, recovery, and mitigation efforts, as well as the people
affected by the disaster. Since 2017, Oak Ridge National Laboratory (ORNL) has partnered with the
Federal Emergency Management Agency (FEMA) to establish a comprehensive and open source national
database of building footprints called USA Structures. Several key attributions have been added to the
dataset to support rapid disaster response. In the most recent update to the dataset, ORNL developed two
additional attributions to the structures, leveraging several authoritative data sources.

2. STRUCTURE OCCUPANCY CLASSIFICATION

The use of a structure is a critical attribute for a wide variety of analyses. For example, emergency
response, population modeling, and risk assessments all benefit from knowing the general use of a
structure. ORNL aims to meet the needs of the emergency response, national security, and scientific
communities by filling two attributes in the USA Structures schema: OCC_CLS and PRIM_OCC.

The metadata of USA Structures provides the following description of OCC_CLS: “This attribution
identifies the top-level building occupancy class as defined by Locations: Building Occupancy
Classification; FEMA Data Standard; July 31, 2018 [16]. The metadata also provides this description of
PRIM_OCC: “This attribution identifies the primary descriptor for a building’s usage for each top level
building . . .” Overall, there are 10 OCC_CLS attribute domains that are further partitioned into 49 domain
values within PRIM_OCC. Table 1 lays out the relationship of these two attributes and their domains. The
following sections describe the conflation process and overall strategy ORNL uses to generate an
occupancy classification for each structure in USA Structures dataset.

Table 1. OCC_CLS and PRIM_OCC domains

OCC_CLS PRIM_OCC

Single Family Dwelling, Mobile Home, Multifamily Dwelling*,
Temporary Lodging, Institutional Dormitory, Nursing Home
Retail Trade, Wholesale Trade, Personal and Repair Services,
Professional/Technical Services, Banks, Hospitals,

Residential

Commercial Medical Office/Clinic, Entertainment/Recreation,
Theaters, Parking, Veterinary/Pet

Industrial Heavy, Light, Food/Drugs/Chemicals.

" Metal/Minerals Processing, High Technology, Construction
Agriculture No Sub-classes
Assembly Arena, Stadium, Convention Center, Religious, Social
Non-Profit General Offices, Emergency Operation Centers
Government General Services, Military, Emergency Services
Education Pre-K - 12 Schools, Colleges/Universities, Libraries, Museums

Utility and Miscellaneous  Aviation, Ground, Marine, Rail, Power, Water Treatment

* denotes multiple subcategories



2.1 OCCUPANCY CLASSIFICATION AND CONFLATION

To be able to maximize the overall coverage of the occupancy attributes, the occupancy workflow
incorporates a multitude of authoritative data sources, including 57 Homeland Infrastructure Foundation
Level Data (HIFLD) data layers, Lightbox smart parcels, US Census housing unit data, Department of
Housing and Urban Development (HUD), and Federal Aviation Administration (FAA) layers. The first
three sources were used to determine the vast majority of structures’ occupancy attribution. For some
geographies, namely the Northern Mariana Islands and Puerto Rico, we also obtained local parcel
coverage. Lastly, a binary classification model, named ResType, was developed and used to fill in data gaps
where no coverage of the aforementioned sources exists.

With the complexity brought from the large number of various sources, both point and polygon feature
representations, and the heterogeneous nature of the polygonal structure representations (e.g., a single
polygon presentation can often encompass an entire row of buildings in a dense urban area), we elected to
leverage a modeling framework described by Moehl [19] that allows for the precise modeling of the myriad
data relationships. By splitting all of the structure polygons by all of polygons of the input data and then
joining back attributions from those sources, we can precisely describe precisely the counts and amounts of
overlaps and intersections among the sources and structures. This enables a rich description of the
interactions among the various data sources, such as when one source labels a structure as a hospital but
another classifies it as a nursing home. This highlights a limitation in our overall framework, which seeks to
choose a single occupancy for each structure when some structures can equally be described by either label.

The order of the prioritized data layers considered in the overall occupancy classification is HIFLD,
Lightbox smart parcels, and Census housing units. In general, if a structure intersects with HIFLD layer,
then the structure occupancy will be determined by the type or theme of the HIFLD layer. If no intersection
occurs, the next data source is used, which is the LightBox smart parcels. If the structure falls within a
parcel that has a land use type appropriate for the USA Structure schema, then the parcel is used to
determine the occupancy. If no occupancy has been determined by this step, the next source used is the
Census housing unit data. Finally, if a structure remains unclassified, the ResType model evaluation, which
exploits the building morphology of the structure, provides a final determination of the structures
occupancy. There are exceptions to this overall process that will be covered in more detail in later sections.
Figure 1 lays out the overall process.
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Figure 1. Occupancy Classification Workflow

2.2 DATA SOURCE EXTRACT TRANSFORM AND LOAD AND CONFLATION

The following sources are listed in order of preference for determining building occupancy. We have a brief
description and notes about the implementation. For full descriptions, please see the source metadata
where available.

2.2.1 Department of Housing and Urban Development

We are using two point datasets from the US Department of Housing and Urban Development (HUD) open
data platform. These points represent addresses of properties that are assisted or insured through HUD
[31], [32]. We currently use all 23,000 assisted and 17,000 insured property locations for analysis;
however, in the future, we could filter based on geolocation accuracy. We are using this to designate
structures within an intersecting parcel as “Multi-Family Dwelling” in the PRIM_OCC attribute. These



layers were acquired using the provided application programming interface (API) and loaded into our
PostgreSQL database using Python and GeoPandas.

2.2.2 Federal Aviation Administration

We are using a polygon dataset that designates airport runways from the US FAA’s open data platform.
These polygons represent takeoff and landing areas [1]. Attribution is available for runway composition
and length. For our analysis, we limit the 23,000 available records to a subset of 6,756 records by limiting
to compositions of asphalt and/or concrete with a minimum length of 1,000 ft. We use the resulting subset
to select intersecting Lightbox smart parcels that are then classified as “Aviation” in the PRIM_OCC
attribute. These layers were downloaded from the open platform and loaded using Python and GeoPandas.

2.2.3 OpenStreetMap

We are using a polygon dataset from OpenStreetMap (OSM) that is a selection of all the polygons with the
key “aeroway.” This key is used for many features relating to airport structures [21], [20]. We use these
polygons to select Lightbox smart parcels that are fully within, classifying them as “Aviation” in the
PRIM_OCC attribute. We restored an OSM Planet file from February 25th using osm2pgsql to load into a
PostgresSQL database and created a subset of features with the key “aeroway” for our osm_aeroways layer.

2.24 HIFLD

HIFLD is a foundational dataset related to domestic national security and emergency response. This
collection of national geospatial datasets focus on mapping the nation’s critical infrastructure and include
standardization of schemas and attribution.

The HIFLD Extract Transform and Load (ETL) workflow includes the following steps:

1. Pull the data from the HIFLD API—Step one of the HIFLD ETL workflow is performed by a single
Python script. The script calls the HIFLD REST API using the links provided in the data catalog on the
HIFLD website. This script first reads the headers of the REST API to determine the maximum record pull.
Each layer is pulled within partitions of the maximum record pull allowed. Each pull is received as a
geoJSON object that is converted into a GeoPandas DataFrame. Code listing 1 highlights the procedure.

2. Ingest raw data into the PostgreSQL database—Each DataFrame from an API request is concatenated
into a single data frame, projected to WGS 84, and ingested into a PostgreSQL database.

3. Transform all layers into a single production layer—Step three takes advantage of the PostgreSQL
geometry data type, which can hold any geometry type in one field. This allows the users to call a single
table for all HIFLD sources of each geometry type, reducing the complexity of the overall data integration
process.

Table 2 lays out this crosswalk table mapping HIFLD layers to the USA Structure schema. This mapping
was conducted by team members who heuristically mapped each layer to the most appropriate
classification in the schema. Team members first matched each individually and then discussed where there
was disagreement.

Table 2. Mapping HIFLD to PRIM_OCC and OCC_CLS



HIFLD Layer Name OCC_CLS ‘ PRIM_OCC

Agricultural Minerals Operations Industrial Food/Drugs/Chemicals

All Places of Worship Assembly Religious

Bio Diesel Plants Industrial Food/Drugs/Chemicals
Child Care Centers Education Other Educational Buildings
Colleges and Universities Education Colleges/Universities
Colleges and Universities campuses Education Colleges/Universities
Convention Centers and State Fairgrounds Assembly Convention Center
Courthouses Government General Services

DOD Sites Boundaries Public Government Non-Civilian Structures
DOD Sites Points Public Government Non-Civilian Structures
EPA Emergency Response Facilities Government General Services

Ethanol plants Industrial Food/Drugs/Chemicals
Ethanol trans loading facilities Commercial Wholesale Trade

FDIC Insured Banks Commercial Banks

Fedex Facilities Commercial Wholesale Trade

Ferrous Metal Mines Industrial Metals/Minerals Processing
Ferrous Metal Process Plants Industrial Metals/Minerals Processing
Fire Station Government Emergency Response

FDA Office Facilities Government General Services

Fortune 500 Corporate Headquarters Commercial Professional/Technical Services
General Manufacturing Facilities Industrial Light

Government Financial Processing Centers Government General Services
Governors Mansions Government General Services

Hospitals Commercial Hospital

Liquified Natural Gas Import Exports and Terminals | Commercial Wholesale Trade

Local Emergency Operations Centers Government Emergency Response
Local Law Enforcement Locations Government Emergency Response
Major Sport Venues Assembly Indoor Arena

Major State Government Buildings Government General Services

Mines and Mineral Resources Industrial Metals/Minerals Processing
Miscellaneous Industrial Mineral Operations Industrial Metals/Minerals Processing
Natural Gas Processing Plants Industrial Food/Drugs/Chemicals
NCUA Insured Credit Unions Commercial Banks

Nonferrous Metal Mines Industrial Metals/Minerals Processing
Nonferrous Metal Processing Plants Industrial Metals/Minerals Processing
Nursing Homes Residential Nursing Home

Oil and Natural Gas Platforms Industrial Food/Drugs/Chemicals

Oil Refinery Polygon Industrial Food/Drugs/Chemicals

Oil Refineries Industrial Food/Drugs/Chemicals
Petroleum Ports Commercial Wholesale Trade
Petroleum Terminals Commercial Wholesale Trade

Pumping Stations Commercial Wholesale Trade

Power Plants Utility and Misc Energy Control Monitoring
Prison Boundaries Residential Institutional Dormitory
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Private Non-Retail Shipping Facilities
Private Schools

Public Health Departments

Public Refrigerated Warehouses
Public Schools

Sand and Gravel Operations

Solid Waste Landfill Facilities

State Capitol Buildings

Supplemental Colleges

Truck Driving Schools

UPS Facilities

Urgent Care Facilities

Veterans Health Administration Medical Facilities

Commercial
Education
Government
Commercial
Education
Industrial
Utility and Misc
Government
Education
Education
Government
Commercial
Government

Wholesale Trade

Pre-K - 12 Schools

General Services
Wholesale Trade

Pre-K - 12 Schools
Metals/Minerals Processing
Ground

General Services
Colleges/Universities

Other Educational Buildings
General Services

Medical Office/Clinic
General Services

def getData(baseURL, tableName,b schema):

fields = "«"

urlstring = f’{baseURL}?f=json’

j = urllib.request.urlopen(urlstring)
js = json.load(j)

maxrcn = int(js["maxRecordCount"])
where = "1=1"

urlstring = f’{baseURL }/query?where={where}&returnldsOnly=true&f=json’

j = urllib.request.urlopen(urlstring)
js = json.load(j)

idfield = js["objectIdFieldName"]
idlist = js["objectlds"]
idlist.sort()

numrec = len(idlist)

fslist = []

for i in range (0, numrec, maxrcn):

torec = i + (maxrcn — 1)
if torec > numrec:

torec = numrec — 1
fromid = idlist[i]
toid = idlist[torec]

where = "{} >= {} and {} <= {}".format(idfield , fromid, idfield , toid)

urlstring = f’{baseURL }/query?where={where}&returnGeometry=true&outFields={fields}&f=geojson’
resp = requests.get(urlstring , verify = False)

data = resp.json ()

gdf = gpd.GeoDataFrame.from_features (data[’ features’])
fslist.append(gdf)

final_gdf = pd.concat(fslist)
final_gdf= final_gdf.rename(columns=str.lower)

final_gdf [’ layername’] = tableName
final_gdf = final_gdf.set_crs (4326, allow_override=True)
usadb.load_gdf_to_db(final_gdf , schema, tableName)

Listing 1. getData() function

2.2.5 PR Parcels

The parcel data used for Puerto Rico was developed by the Puerto Rico Planning Board. This dataset was
published on November 5, 2021, and has 96 land use classifications that were aggregated specifically for
the USA Structures schema. Google Translate was used, and those results were verified by bilingual staff at

ORNL.




2.2.6 Lightbox Smart Parcels

The Lightbox smart parcels are provided through HIFLD licensed via a data agreement for federal use
cases [8], [30]. The data are provided in several thousand layers and ESRI file geodatabases (per county
and per res/nonres/unclassified combination). We use Python and OGR2OGR to load and append these
into a single layer of Lightbox parcels. The data have more than 300 standardized land use attribute values
and more than 180,000 nonstandardized land use attribute values. The standardized land use values were
translated by FEMA, and a crosswalk table was provided to ORNL on September 29, 2021. This table
describes how to aggregate specific land use codes into the the schema defined for USA Structures.

Tables 3 and 4 describe the number of parcel land use codes that fall within each FEMA-defined domain.

Table 3. OCC_CLS landuse composition

OCC_CLS Count of Landuses
Agriculture 30
Assembly 8
Commercial 102
Education 6
Government 24
Industrial 46
Residential 44
Unclassified 48

Utility and Misc 19




Table 4. PRIM_OCC landuse composition

PRIM_OCC Count
Agriculture 30
Aviation 3
Colleges/Universities 2
Community Center 4
Construction 1
Emergency Response 1
Entertainment and Recreation 35
Food/Drugs/Chemicals 9
General Services 22
Ground 10
Heavy 4
High Technology 1
Hospital 2
Indoor Arena 2
Institutional Dormitory 4
Light 20
Manufactured Home 3
Marine 3
Medical Office/Clinic 4

Metals/Minerals Processing

Multi - Family Dwelling

Non-Civilian Structures 1
Nursing Home 1
Other Educational Buildings 1
Parking 3
Personal and Repair Services 8
Pre-K - 12 Schools 3

Professional/Technical Services 18
Rail 3
Religious 1
Retail Trade 26
Single Family Dwelling 12
Stadium 1
Temporary Lodging 8
Theaters 2
Unclassified 48
Veterinary/Pet 2
Wholesale Trade 2




2.2.7 US Census Bureau

The US Census Bureau provided a special tabulation of housing unit percentages at the block level from the
2010 census. These data are joined to the Tiger Census Block shapefiles. The dataset included five fields:

geoid: Block level identification number

percent_sfr: The percent of households within a block as single family residential single family
residential

percent_mfr: The percent of households within a block as multifamily residential

percent_mh: The percent of households within a block as manufactured homes

percent_unassigned: The percent of households within a block as unassigned buildings

2.3 SPATIAL CONFLATION

The vector analytical framework described in Figure 2.1 allows us to precisely define spatial relationships
among the structure footprints and the attribution sources. We can also walk between and among indirect
spatial relationships, such as from point to parcel to structure, to apply attribution. Each of these
mechanisms and their applicable data sources will be described below.

2.3.1 Selection by Piece

The vector framework results in a table of polygon fragments with attribution for each input attribution
layer. Sometimes, a structure will have more than one parcel polygon intersecting all or one of the vector
framework fractions. For structures with multiple parcels that overlap a fragment of the structure, we select
the land use of the parcel with the smallest area based on the assumption that a smaller parcel is more
specific to the intersecting structure. This results in a table holding a record for each structure where
multiple land uses are present with the land use of the smallest parcel denoted. We use this method for
Lightbox and the Puerto Rico parcel datasets.

This process is represented in the Figure 1 flowchart by the Intersect?, Multiple Intersects? diamonds,
the LightBox Smart Parcels and Spatial Join box.

2.3.2 Selection by Structure

For HIFLD points and polygons and parcel polygons, we construct tables denoting a land use for each
structure Universally Unique [Dentifier (UUID). The HIFLD data are often co-located on a single
structure. To pick among the options, we first remove structures with only one point or polygon feature
from HIFLD, HUD, and FAA, and assign an occupancy. Then, for structures with more than one point, we
implement the logic that the point with the larger structure type will be preferred. To achieve this goal, we
first calculate the average area for each occupancy class and sort the resulting table from largest to smallest
area. We then assign an occupancy class with the largest area to a given structure.

This process is represented in the Figure 1 flowchart by the Multiple Intersects? diamond.



2.3.3 Selection by Parcel

In some situations, the direct intersection of source data layer with a structure is insufficient. For FAA
runways, OSM aeroways, HUD points, and the HIFLD child care centers, colleges and universities, nursing
homes, private schools, public schools, and supplemental colleges point layers, we calculate when a feature
intersects or contains a parcel in the Lightbox smart parcel layer. We first generate a lookup for each parcel
ID and source layer combination, and then we assign that occupancy class to the structure using the parcel
ID. For accelerated intersecting operations, we employ a preprocessed parcel dataset in which geometries
have been split to contain no more than 32 vertices. This allows for much faster polygon-to-polygon
relation calculations.

This process is represented in the Figure 1 flowchart by the ORNL point intersect parcel diamond.

2.3.4 Selection by Census Block

To select Census housing unit data by Census block, we create a lookup for Census blocks based on a
special tabulation. For each 2010 Census block, the tabulation has the percentage of housing units that are
single family, multifamily, mobile home, or unassigned. We assign the entire block to a category if at least
95% of the units are any one of these types and the remaining units are unclassified. We then assign any
structure in that block that is labeled “multifamily” as multifamily. Because there are often single
structures such as churches or schools in a Census block that is otherwise single family, we attempt to
prevent these structures being missclassified as residential by first calculating the mean size of a structure
for each block and then calculating the standard deviation of these means, which is used to establish a large
area threshold: the average mean plus two standard deviations. Structures that are under this area threshold
in blocks that are classified as single family are then assigned to single family.

This process is represented in the Figure 1 flowchart by the Intersect block with majority HU class
diamond.

24 GAUNTLET

GAUNTLET is a tool that has been developed alongside the USA Structures dataset since 2016. This tool
generates building morphologies for each structure within the USA Structure dataset. GAUNTLET was
originally designed to identify false positives in the raw building detection output from convolutional neural
networks. The premise was that a false positive would have inherently different building morphologies than
a true positive building object. We further expand the use of GAUNTLET in other scenarios that building
morphologies are critical. A relevant use case for the GAUNTLET feature set was to model the difference
between residential and nonresidential structures. We named a machine learning model that leverages
GAUNTLET derived features as ResType model, which will be discussed in a later section.

The development of GAUNTLET was motivated by three main priorities: (1) finding and encoding useful
features, (2) calculating those features as fast as possible, (3) and storing those features in an accessible and
efficient manner. Table 5 shows the technical progress of GAUNTLET made to address these
considerations.

2.4.1 Features

The 25 features that GAUNTLET generates fall into three main categories: geometric, engineered, and
contextual measurements. Geometric measures are the common measurements of a geometry. For

10



Table 5. Gauntlet Technical Progression

Year Features Records/hour Environment
2016 10 50,000 python/esri
2017 13 200,000 python/esri
2018 13 500,000 python/esri
2019 13 1,000,000 python/esri
2020-21 25 8,000,000 python/esri
2022 25 24,000,000 python/docker
2023 25 66,000,000 python/docker

example, area, perimeter length, and the vertex count are all geometric measures. Engineered measures are
more sophisticated measurements based on geometric measurements. Complexity ratio and compactness
index are two examples of engineered features. The last category of features are contextual measures, these
measures come from scale analysis (SA) [4] and spatial point pattern analysis (SPPA) [7, 14] and describe
a structure’s relationship to its neighbors. We describe details of these three categories of features in the
following subsections. Table 6 provides a brief descriptions of the morphology features generated by
GAUNTLET.

2.4.2 Geometric Features

The four geometric features are area, perimeter, vertex count, and geom count. Geom count is the count of
the number of geometries that are used to describe the structure detection. An example of this would be a
structure detection with a courtyard within a structure, which causes a hole within the polygon. Two
geometries, inner and outer, would be used to describe such a structure, so the geom count of this detection
would be two.

2.4.3 Engineered Features

The next group of features is engineered features, which are vital for data exploration and often for
machine learning success [9]. Feature engineering has proven successful in studies ranging from sentiment
analysis [22] to text mining [6]. Among many possible engineered features in the literature, we selected
several for consideration. The complexity ratio was first introduced by Ritter in 1822 [10, 15] and is the
ratio of perimeter to the area. In 1978, Osserman proposed the IPQ [25], which is considered a more
effective measure of compactness than the complexity ratio [15]. Despite the multitude of compactness
measures proposed [2], Osserman’s measure was used for its simplicity and low computational expense.
IPQ is calculated in the following manner:

4

IPQ = 6]
IPQ, also known as circularity [3], generates a value ranging from O to 1. The closer to 1 a geometry’s IPQ
is, the more circular the shape is. Certain shapes have specific IPQ values; for example, a perfect square
has an IPQ of 0.785. Very inefficient shapes (i.e., shapes that do not maximize the area given a set
perimeter length) typically have very low IPQ values. A geometry with a large hole or an L-shaped
geometry are typical examples of these inefficient shapes. IPQ has been used in other fields to act as a
measure of gerrymandering of voting districts [24]. Another engineered feature used is the Inverse Average
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Table 6. Gauntlet Feature Set

Feature Description

shape_area Area of polygon in unprojected units

shape_length Perimeter length in unprojected units

sqft Area in square feet

lat_dif The max latitude minus the min latitude in unprojected units
long_dif The max longitude minus the min longitude in unprojected units
envel_area The area of the bounding box of the geometry in unprojected units

vertex_count
geom_count
complexity_ratio
iasl

vpa
complexity_ps
ipq

sqmeters
n_count

omd

emd

nnd

nni

intensity
n_size_mean
n_size_std
n_size_min
n_size_max
n_size_cv

The count of vertices in the geometry

The count of polygons in the geometry

Shape_length/shape_area, a measure of how complex the shape is

Inverse average segment length

Vertices per area

Complexity per segment, describes the average complexity within each segment
Isoperimetric quotient, describes how well a shape maximizes its area for the given perimeter
Area in square meters

Number of building centroids within 100 meters (min = 1 itself is included)

Observed mean distance, the average distance of centroids within 100 meters

Expected mean distance, the average distance if all centroids were uniformly spaced and equidistant
Distance between the centroid of a geometry to its nearest neighbor

Nearest Neighbor Index, The overall pattern of points in the 100 meter buffer

The amount of nni occurring within the 100 meter buffer

The average size of buildings within the 100 meter buffer

The standard deviation of building sizes within the 100 meter buffer

The smallest building size within the 100 meter buffer

The largest building sizes within with in the 100 meter buffer

The Coefficient of variation of building sizes with in the 100 meter buffer

Segment Length (IASL), which is the vertex count divided by perimeter. The last engineered feature is the
average complexity per segment, which is the complexity ratio divided by the vertex count.

2.4.4 Contextual Features

Contextual features are measures of various spatial relationships between the detection and the surrounding
detections. All of these measures take place within a scan window that is centered at the detection’s
centroid. This scan window does not move across the detections at set increments but instead is centered on
each detection before generating the following measures described below. The scan window is set as a
fixed 100 meter radius circular buffer. There are two sets of contextual features: point pattern features,
which measures spatial relationship of structure centroids; detection scale features, which ; and another that
measures sizes of the detections within the scan window. Many of these features are well documented [4,
3] and have been used successfully in other classification problems [17, 13, 14].

2.4.4.1 Point Pattern Features

The neighborhood count is the count of all the structure centroids within the scan window. The nearest
neighbor distance (NND) is the measured distance from one centroid of a detection the nearest neighboring
detection’s centroid. Both of these features are calculated using cKDtree from SciPy [36], which was
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originally proposed by Maneewongvatana and Mount [18], and are used to derive more complex measures
of spatial relationships [5].

The observed mean distance (OMD) is the sum of the nearest neighbor distances of all centroids within the
scan window divided by the population of scan window [5]. The equation is as follows:

d:
omp = 2% 2)
n
EMD is the average distance of the closest centroid pairs if the centroids were at complete spatial
randomness within the scan window [5]. Expected mean distance is calculated using the following

equation:

1
2% 4p

The Nearest Neighbor Index (NNI) is OMD/EMD and has a range of 0-2.1491 [5]. In NNI, O represents a
highly clustered pattern within the scan window, 1 represents a random distribution, and 2 or greater
represents a pattern close to even dispersion within the scan window where all distances are close to equal
[5]. The following equation presents the full formula for NNI:

EMD = 3)

2di

n

NNI = 05 5 7 @
Intensity is the measure of how much NNI is happening within the window. For example, if two windows
have the same NNI of 0.07, both windows have highly clustered events. However, if one of the windows
has a higher intensity, more clusters or more members in the clusters are present in one scan window.
Intensity is calculated using distances from the sample point (i.e., center of the scan window) to each
individual point in the scan window [7]. The KDtree demonstrates its usefulness once again as we
leveraged it to generate this metric. The formula for intensity is described in the equation below.

mx Y d?
Intensity = — (®))

2.4.4.2 Detection Scale Features

The detection scale features are summary statistics of the detection sizes that are within the scan window.
Most are straightforward and will be listed here. The smallest (NSmin) and largest (NSmax) structure sizes
within the scan window are recorded as features for the structure whose centriod is being centered on by
the scan window. Additionally, the mean (NSm) and standard deviation (NSs) of structure sizes within the
window are captured the same way.

The coefficient of variation is the ratio of standard deviation to the mean. In this case, the coefficient is
NSs/NSm and is abbreviated NScv. This number describes the homogeneity of detection sizes within the
window. An NScv closer to 0 describes a scan window with similarly sized detections. Typically, an NScv
of 1.3 or higher describes the presence of a single large detection surrounded by many smaller detections
within the scan window.
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2.5 RESTYPE MODEL

The ResType model is a supervised machine learning binary classification model. The purpose of this
decision tree model is to fill data gaps for occupancy when a structure has no source information to provide
a structure use. These gaps occur in the following situations:

e When a structure does not intersect a parcel
e When a parcel has no land use classification

o When a parcel has no land use classification that fits within the OCC_CLS or PRIM_OCC domains
as defined by FEMA

e For structures labeled by Census Block type, if a structure was more than two standard deviations of
the mean size, then the Census Block label is ignored

e We can optionally ignore a source classification of Unclassified and instead rely on ResType

The model’s output is a residential probability that ranges from 0 to 100 per structure. The closer the
inference is to either extreme, the more agreement the model’s ensemble of decision trees has in its
classification. The threshold we used in this work is 50. That is, the probability provided by ResType
model greater than 50 is considered residential, but if the probability is less than 50, it is considered
nonresidential. Since nonresidential does not fit within the schema of USA Structures, those structures will
have an OCC_CLS domain value of “Unclassified.”

2.5.1 Creation of Labels

To create training labels for binary classification ResType models, the parcel land use codes were
aggregated into two categories: “residential” and “nonresidential.” The structure geometries were spatially
joined to the parcels. Structures that intersected more than one parcel had the area of each partial structure
piece measured. The structure was then labeled according to the parcel with the largest coverage of the
structure area. If the structure was joined to parcels with an equal area of coverage and those parcels had
different land use classifications, they were excluded from the training set. This occurs when the parcels
are duplicates. These aggregated land uses for each structure were added to the corresponding
GAUNTLET feature set.

2.5.2 Detecting Bad Labels

We hypothesize that by removing anomalous records from our training datasets, we can expect to observe
more accurate performance in subsequent classification models. Therefore, we developed an anomaly
detection approach to identify less informative labels.

The rationale behind this approach is twofold. First, we attempt to aggregate all building use types into two
broad categories: residential and nonresidential. At this high level of classification schema, there are
structure instances that do not reasonably fit into the assigned labels. These instances can adversely
influence the accuracy of the models to classify structures. Second, the provided labeled data is an
engineered dataset, which is subject to curation by other parties and varying source sampling techniques.
As such, some degree of incremental error creep is assumed as we receive the data for building ResType
modeling.
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A controlled experiment was conducted to determine a suitable anomaly detection treatment for the data.
During the experiment, three unsupervised learning algorithms—I.ocal Outlier Factor (LOF), Isolation
Forest (ISO), and Stochastic Gradient Descent One-Class Support Vector Machine (SGDOSVM)—were
applied to the data. The resulting inlier data identified were used to create training datasets for a baseline
decision tree classifier. The performance of these three experimentally trained classifiers was compared
against a classifier trained on untreated data. If a classifier subjected to treatment outperforms the control
classifier, it can be inferred that the treatment received is the most effective at removing anomalous records
from the data.

As shown in Table 7, the SGDOSVM approach outperformed the other three experimental classifiers,
including the control classifier. As such, the feature dataset filtered on inliers from the SGDOSVM was
used to create a training dataset for our robust occupancy type model. The output from the SGDOSVM
results in two new attributes to filter by anomaly label and anomaly score. The anomaly label is binary and
indicates if the data record is an inlier or outlier. The anomaly score provides a confidence value, where the
higher the absolute value of the score, the greater the confidence in the anomalous nature of any given data
record.

A key factor in anomaly detection is determining an optimal contamination rate for the ISO and LOF
algorithms. For SGDOSVM, this parameter is known as v. The most significant improvement in model
performance was observed when setting the contamination rate between 32% and 35%, depending on the
given sample. Note, anomaly detection was conducted on each individual binary class, implying that
unique contamination rates per class should be determined and specified for future work.

A v value of 0.35 was used for both classes. Future work should include determining the optimal v value
for each occupancy type class and work toward reducing the total amount of data being determined as
anomalous.

Table 7. Accuracy Reports for Baseline Classifiers Assessing the Effects of Anomaly Detection

Precision Recall F1-Score
ClassO0 Class1 ClassO Class1 ClassO Class 1
Control 0.70 0.77 0.80 0.66 0.75 0.71
ISO 0.72 0.86 0.89 0.66 0.80 0.74
LOF 0.69 0.80 0.85 0.62 0.76 0.70
SGDOSVM 091 0.94 0.94 091 0.92 0.92
Accuracy Training Testing
Macro Avg Weighted Avg  Score Score
Control 0.73 0.73 0.7342  0.7290
ISO 0.77 0.78 0.7793  0.7750
LOF 0.73 0.73 0.7410  0.7338
SGDOSVM 0.92 0.92 0.9273  0.9233

2.5.3 Training and Sampling

The ResType model consists of a submodel for each FEMA region. Each submodel was trained on a
balanced class composition of nonanomalous residential and nonresidential labeled structures. As an
example, Table ?? describes the class composition for Region 1 training data after identifying the
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anomalous samples from the label set. The Anomalous and Count columns indicates the number of
samples for anomalous (YES) samples and the samples (NO) will be used for the ResType model training.

Table 8. Region 1 Training Data

Class Anomalous Count
Residential Yes 1,602,074
Residential No 2,443,319
Nonresidential Yes 201,356
Nonresidential No 275,662

To create balanced classes the largest class was randomly downsampled to the smallest class. For Region 1,
we randomly down sampled 2,443,319 residential labels to 275,662 to match the total of nonresidential
labels. A gradient-boosted model was trained on 70% of the data and then tested on the remaining 30% of
the data. Table 9 show the performance (precision, recall, and F1-score) of the Region 1 ResType model on
the test set. We used the macro average and weighted average to capture the metrics in class imbalances in
the test set. The Support column shows the number of samples counted as Residential or Nonresidential
in the final classification result.

Table 9. Region 1 Classification Report

Class Precision Recall Fl-score Support
Residential 92 95 93 82624
Nonresidential 94 92 93 82662
Accuracy N/A N/A 93 165286
Macro Average 93 93 93 165286
Weighted Average 93 93 93 165286

2.6 LESSONS LEARNED AND FUTURE WORKS

e Anomaly detection of labels
During the creation of the training data, we observed a spike in model accuracy performance near the
identified v value of 0.35. Assuming that 35% of our data is anomalous and should be removed is a
naive assumption. Doing this would not only remove anomalous data records, but it would also
remove a significant portion of complex building features. Consequently, this could make our model
less generalizable. Therefore, future work should focus on reducing the v value to a more
conservative estimate in the aim of preserving complex building features and removing the highest
likelihood anomalous instances. The controlled experiment approach is useful for observing the
effects of anomaly detection methods and selection when curating a training dataset; however, the
results can be misleading when using it as an approach for estimating a contamination rate or v
value. For future work, we should identify an estimate that allows for adequate coverage of possible
anomalous records while minimizing the risk of removing truthful complex records.

e Developing regional ResType models
The use of FEMA Regions extent to develop ResType models was our first attempt and a rather
convenient choice. In the future, we might need to revisit this decision. For example, it likely that an
island territory model that includes territories from different FEMA Regions will have better
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performance rather than being a part of a model that included with a model where most of its training
data comes from the states. Additionally, there is a need in the future to create the third class to
capture to type of multifamily residential. For example, apartments are often quite different in
morphology from single family residences and nonresidential buildings.

3. ADDRESS ASSIGNMENT

This update to USA Structures also includes address attribution, a key datum for the emergency
preparedness and response community. After an event, for example, FEMA receives many requests for
assistance from those affected by the disaster, but the validity of each request must be confirmed before
relief funds can be granted. Including address information in the USA Structures dataset allows FEMA to
more quickly and effectively search for the address listed in a relief request and verify the impact by the
event. More generally, addresses are the most common means of identifying structures, so by including
these information, USA Structures can be easily leveraged along with other datasets and thereby serve a
wider variety of applications. However, accurately conflating structure polygons with open source address
information presented numerous challenges. We outline our solutions to those issues below.

3.1 ADDRESS SOURCES AND ETL

The address data included in USA Structures were derived from publicly available, open source data.
Although we identified some open sources published by individual states, the primary source for addresses
was the National Address Database (NAD), a US Department of Transportation—led effort to collate and
distribute a standardized geospatial dataset of addresses in the United States [26]. As of March 2023, the
US Department of Transportation had partnered with state and local governments in 45 states to deliver
address data covering most of the United States, though some partners have yet to provide data. In those
areas without NAD coverage, we identified available state sources; however, some states either have no
open address data or do not make them available to the public, so gaps in address information are present in
some areas of USA Structures.

The source address data were loaded into our PostgreSQL database using a variety of Python functions that
utilize the ogr2ogr package [11], depending on the source format.

3.2 ADDRESS PROCESSING AND RANKING

Although address data schema vary by source, most address data conforms to a similar structure that we
accounted for in our address processing script. Before execution, we reviewed each source, identified the
target fields, and tailored the script to capture the street address, city name, postal code, state, and
geometry. In some sources, these data were stored in six fields, but in others, such as the NAD, the target
data were segmented into numerous address components (e.g., address number prefix, address number,
address number suffix, street name premodifier, street name predirectional, street name pretype, street
name, street name post-type).

Once the target fields were identified, our processing script separated the address number from the address
street name; alternatively, if already separated, as was the case with the NAD, the associated components of
address number (e.g., address number prefix, address number, and address number suffix) and street name
(e.g., street name premodifier, street name predirectional, street name pretype, street name, street name
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post-type) were combined into two elements, respectively. The script then performed a series of cleaning
steps and logical tests on each element.

Address number:
e Removed leading and trailing white space

e Removed invalid special characters (excluding “-” and */,” which are valid characters in some
address numbers)

e Verified that the element contained a number
Street name:
e Removed leading and trailing white space
o Converted text to uppercase
e Verified that the name contained only alphanumeric characters

e Concatenated name element with number element and verified that the resulting string contained two
or more valid elements (i.e., an address number and street name)

City name:

e Removed leading and trailing white space

Converted text to uppercase

Removed special characters

Verified that the element contained no numeric characters

Verified that the element contained three or more characters
Postal code:
e Removed leading and trailing white space
o Verified that the element contained only numeric characters
e Verified that the element contained five characters

Rather than using state information provided by the source directly, we performed a spatial join of all data
with state geometry data from the US Census. This ensured that the state field was fully populated and
standardized.

As an additional measure of quality control, we cross-referenced all city name, postal codes, and state
pairings in the address source data with verified combinations of those data from authoritative sources
including the US Postal Service, US Geologic Survey, US Census Bureau, open source data, and HERE
geospatial data [34, 35, 33, 29, 28, 27, 23, 12]. Address elements that were not found in these reference
tables were excluded from the final processed address table as a verification and validation step.

Finally, each record was assigned a rank based on the validity of its street address, city name, and postal
code information, as determined by the criteria above. In the early stages of developing an address
conflation workflow, in areas where address data from different sources overlapped, we identified the need
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to assess the quality of each address record so as to make a more informed decision when selecting a final
address and assigning it to a given structure. To that end, each record was assigned a rank of 10 and then
for each valid address element—street address, city name, and postal code—the rank was improved. The
amount of improvement was weighted differently by element, such that a valid street address improved a
record’s rank by 4, city name by 2, and postal code by 1. In this way, we could ensure that records with
more specific address information were weighted more heavily in the final address conflation. Table 10
provides examples of address records and how they would be ranked according to our methodology. As
shown in those examples, records with more complete and valid data are ranked better than records with
less complete and valid data, and more complete records are more likely to be selected as the final address
during address conflation, which is described in the next section.

Table 10. Address rankings with examples

Address Example Rank

101 Smith Rd, Unit B, Pleasantville, VT, 05231 1
101 Smith Rd, Pleasantville, VT, 05231 2
101 Smith Rd, Pleasantville, 05231 3
101 Smith Rd, Pleasantville 4
101 Smith Rd, 05321 5
6
7
8
9

101 Smith Rd

Pleasantville, 05321

Pleasantville

05321

No valid data 10

3.3 ADDRESS CONFLATION
3.3.1 Priority Attributions

After the address datasets have been cleaned and ranked, we can then begin the process of associating them
with structures. First, we have ranked the addresses to allow us to select the best address in terms of
attribution when multiple options from within or among sources are available. We have also listed address
sources in order of priority for each state. Texas and Florida have local address sources that are prioritized,
otherwise we defer to NAD over OA. However, we prioritize first on the completeness of the address rank,
then the source. For example, we have an address from both the National Address Database and Open
Addresses, we would choose the more complete address from Open Addresses, even if this were farther
away than the NAD point. Similarly, although we prefer state sources (i.e., Texas HAND address data in
Texas and Florida Parcel Data Statewide in Florida), if a structure has a more complete address from NAD
within the geolocation threshold, we will take the NAD address over the Texas HAND. If multiple points
have the same rank, we defer to the higher priority source. Our code is designed to flexibly allow or
exclude datasets depending on redistribution restrictions. This allows us to assess and report the impact of
restrictions on the address attribution process.

3.3.2 Geospatial Linkages

We use the known characteristics of the address data to determine the best geolocation mapping for
selection. Some address points are on an entity, or rooftop, therefore we can assume that if an address point
intersects a structure, that address can be assigned to that structure. Intersection can also be used in the
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opposite direction if the address source is polygonal, such as is the case with Florida’s parcel dataset. If a
structure centroid intersects a parcel, we assume the address can be assigned to this structure.

After assigning structure addressed based on intersections, we select the structures that did not get an
address from intersection or that have a rank higher than 6. We then calculate the nearest addresses by
intersecting the addresses and structures with parcels. A structure can only be assigned an address if it is
within the same parcel and within 350 ft of the address point.

For structures that do not get an address from either of the above workflows, we then select addresses from
Lightbox parcels where the structure intersects a parcel. These are done in a separate query so that
selections can be limited when there is a redistribution restriction in place. This allows us to easily provide
Lightbox parcel information for internal FEMA use and only non-Lightbox for external distribution.

Structures Assigned Addresses, by Source
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Figure 2. Percentage of addresses by source, by state.

3.4 LESSONS LEARNED AND FUTURE WORKS

Based on our testing and observations, we found that the methodology outlined above is a reliable means of
conflating many valid addresses to our structure polygons. However, there are also some limitations and
opportunities for improvement.
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Firstly, missing addresses in our structure data often reflect gaps in the availability of open source address
data. Secondly, the steps we took to perform QA/QC checks, rank address records based on validity and
completeness, and leverage ancillary datasets to guide the conflation process cannot compensate for poor
data quality. For example, imprecise geolocations, such as those derived from linear referencing along
street network centerlines, as well as invalid address elements, resulted in poor address conflation results in
some areas. Some of these issues could be mitigated through improvements to our methodology, but
artifacts of these issues will be present in the data until the quality of the source data improves.

We would also like to mention that our methodology has some notable limitations. Firstly, it was primarily
designed to process addresses that are typical for structures in the continental United States. However,
addresses found in the US territories can be very different. While we took steps to tweak our address
ranking process to account for some of these differences, further refinement is needed to more accurately
capture addresses in those areas.

Likewise, our methodology currently does not account for multiaddress structures, such as townhouses,
urban city blocks, and strip malls. Unlike many apartment buildings, which typically have a single street
address with varying unit numbers, the aforementioned structures could have multiple street addresses with
varying street numbers for a single contiguous structure. According to our approach, only one of those
addresses would be captured for the structure. Future work would focus on a more comprehensive
approach to account for multiaddress structures.

Finally, although our interpretation of the results suggest that many of the structure-address pairings are
reliable, the overall accuracy of our conflation methodology is uncertain and is a priority for future work.
Measuring accuracy presents numerous challenges. Most notably, we will need an authoritative address
source with which to compare our results. While we consider the NAD to be the best available public
source for address data, we have found some errors therein, which were inherited from their data
participants. Ideally, these data would be obtained from the US Postal Service, but the availability of that
data is unknown.

4. END USER PORTAL

A web-based repository has been created to allow sponsors to retrieve the latest data or reacquire
previously released data. The web application leverages the content management system (CMS) Drupal,
making it easy to publish data products without additional code. The Drupal CMS also allows for
comprehensive user management to allow access to the website and provides download privileges. The
FileBrowser extension was added to this deployment of Drupal to add file explorer-like functionality. The
web application is patched regularly using Lando, a DevOps tool built on Docker’s containerization
platform. This allows for continuous integration and continuous deployment, which adds automation to the
application development process

Users are added to the platform by a site administrator based on requests from the sponsor. A username
and password is provided to the new end user in a series of two emails. User name and login information is
sent to sponsors and ORNL project members. A password email is only sent to the requesting user.
Deliverables are logically grouped to allow end users to quickly navigate the folder structures to locate the
desired download. Figure 3 shows the grouping, and Figure 4 shows an example of folder name and
description of the folders contents. Clicking on a folder will show the available downloads. Selecting a
download option from the list will start the download process of a compressed deliverable. The naming
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convention followed for deliverables is the text deliverable, the data of the deliverable (YYYYMMDD),
and the 2 character state abbreviation (e.g., Deliverable20230331CT).

Myaccount  Log out

CR)?DKGE USA Structure Detection

- Deliverable Repository

Home | Downloads

Downloads

Event_Response
Phase_1

Phase 2.
Phase 2 Prototype

Phase 3 Prototype

pooooao

Pre_Phase_1

6 folders

Figure 3. The overview of end user data portal
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SIAI;{GE USA Structure Detection

e e

Home | Downloads

Downloads
[ Jeme. fcee |pescpion |

- Goup

(s} Deliverable20230502AZ.zip 06/01/2023 - 14:27
B Deliverable20230502CT.zip 06/01/2023 - 14:27
B Deliverable20230502DC.zip 06/01/2023 - 14:27
[i5] Deliverable202305021A.zip 06/01/2023 - 14:27
(i3] Deliverable20230502IN.zip 06/01/2023 - 14:27
(s} Deliverable20230502MA.zip 06/01/2023 - 14:27
(i3] Deliverable20230502ME.zip 06/01/2023 - 14:27
B Deliverable20230502MT.zip 06/01/2023 - 14:27
(i3] Deliverable20230502NC.zip 06/01/2023 - 14:46
B Deliverable20230502N).zip 06/01/2023 - 14:46
(s} Deliverable20230502NM.zip 06/01/2023 - 14:46
0 Deliverable20230502NY.zip 06/01/2023 - 14:46
(s} Deliverable202305020H.zip 06/01/2023 - 14:46
0 Deliverable20230502R1.zip 06/01/2023 - 14:56
D Deliverable20230502TN.zip 06/01/2023 - 14:56
0 Deliverable20230502UT.zip 06/01/2023 - 14:56
0 Deliverable20230502VA.zip 06/01/2023 - 14:56
(s} Deliverable20230502VT.zip 06/01/2023 - 14:56
B Deliverable20230526AL.zip 05/30/2023 - 12:24
D Deliverable20230526GA.zip 05/30/2023 - 12:24
0 Deliverable20230526GU.zip 05/30/2023 - 12:24
(i3] Deliverable20230526HL.zip 05/30/2023 - 12:24
(s} Deliverable20230526ID.zip 05/30/2023 - 12:24
B Deliverable20230526MI.zip 05/30/2023 - 12:24
B Deliverable20230526NH.zip 05/30/2023 - 12:24
[i5] Deliverable20230526NV.zip 05/30/2023 - 12:24
(i3] Deliverable202305260R.zip 05/30/2023 - 12:24

Figure 4. An example of filenames and folders for downloading.
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