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Shallow Infiltration Processes at

Yucca Mountain, Nevada—

Neutron Logging Data 1984-93

By Lorraine E. Flint and Alan L. Flint

Abstract

To determine site suitability of Yucca
Mountain, Nevada, as a potential high-level radio-
active waste repository, a study was devised to
characterize net infiltration. This study involves a
detailed data set produced from 99 neutron bore-
holes that consisted of volumetric water-content
readings with depth from 1984 through 1993 at
Yucca Mountain. Boreholes were drilled with
minimal disturbance to the surrounding soil or
rock in order to best represent field conditions.
Boreholes were located in topographic positions
representing infiltration zones identified as ridge-
tops, sideslopes, terraces, and active channels.
Through careful field calibration, neutron mois-
ture logs, collected on a monthly basis and repre-
senting most of the areal locations at Yucca
Mountain, illustrated that the depth of penetration
of seasonal moisture, important for escaping loss
to evapotranspiration, was influenced by several
factors. It was increased (1) by thin soil cover,
especially in locations where thin soil is underlain
by fractured bedrock; (2) on ridgetops; and
(3) during the winter when evapotranspiration is
low and runoff'is less frequent. This data set helps
to provide a seasonal and areal distribution of -
changes in volumetric water content with which to
assess hydrologic processes contributing to net
infiltration.

INTRODUCTION

Net infiltration, that component of precipitation
that percolates downward beyond the influences of
evapotranspiration (ET) to recharge the ground-water
system, is an important boundary condition for hydro-
logic flow models designed to calculate flux through
the thick unsaturated zone at Yucca Mountain
(Winograd and Thordarson, 1975). Determining net
infiltration in arid lands often becomes a qualitative

endeavor of characterizing processes and mechanisms,
as there are many errors associated with measuring or
estimating upward and downward flux (De Bruin,
1988; Dreiss and Anderson, 1985). For example, low
rainfall results in measurement and mass-balance cal-
culation errors; heterogeneous, rocky, and shallow
surficial material (soil) also makes it difficult to deter-
mine values of infiltration in arid lands. One way to
approach the characterization of infiltration is through
a systematic monitoring program to measure volumet-
ric water content in boreholes. A data set has been
developed consisting of volumetric water-content read-
ings in 99 neutron-access boreholes (neutron holes)
monitored from 1984 (or when they were drilled)
through 1993. The preliminary analysis of this data set
has contributed to an understanding of the mechanisms
and processes by which precipitation becomes net infil-
tration in a variety of topographic locations and surface
materials. The purpose of this report is to provide data
users with preliminary interpretations and descriptions
of the environment and methodologies under which the
data were collected.

The depth of infiltration of water into the soil/
rock profile fluctuates on a seasonal basis, but estimates
can be made of long-term trends, and an average depth
of penetration can be established (Flint and others,
1994). Examination of borehole core samples and sur-
face excavations has indicated that most of the frac-
tures in the shallow soil or bedrock are filled with
calcium carbonate minerals precipitated as a result of
repeated wetting and drying. This fracture filling
occurs to varying depths in different locations but com-
monly ranges from about 3 to 15 m. The depth of sea-
sonal water pulses, observed by geophysical logging of
a network of boreholes, corresponds approximately to
the depth of the calcium carbonate materials, which
identifies a conceptual zone of evapotranspiration and
a depth beyond which net infiltration is likely to occur.

The presence of fractures affects, and usually
increases, the penetration of water into the profile
because of an increase in storage capacity, which is due
to more porous fracture fill, open fractures at the
surface, or open fractures at depth. Theoretically,
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under unsaturated conditions, fracture flow will not be
initiated if the surrounding matrix has smaller pores
than the aperture of the unfilled fractures, and the
matrix must be nearly saturated to initiate fracture flow.
However, if pulses of water do flow into fractures, the
much higher conductivity of the fractures, along with
the smaller volume, will conduct the water to greater
depths.

This paper addresses the mechanics involved in
collecting this large data set, as well as the caveats
associated with the data. Preliminary interpretations
provide insights into mechanisms and processes of
shallow infiltration at Yucca Mountain.
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SITE DESCRIPTION

Yucca Mountain is in the northern Mojave
Desert in southern Nevada (fig. 1). It is a faulted ridge
consisting of a series of layered, nonwelded and
welded, variably fractured and saturated pyroclastic
rocks (fig. 2). The topography of the mountain has
been defined by erosional processes on the eastern
sloping ridge and along faults and fault scarps that have
created a series of washes that are downcut to varying
degrees into different bedrock layers. The washes are
primarily east-west and northwest trending, with gentle
to steep slopes, and have available energy loads that
vary greatly for much of the year. The bedrock
exposed at the surface or directly underlying alluvial
cover ranges from nonwelded, unfractured rock that

has 40-percent porosity, to densely welded, highly frac-
tured rock that has less than 10-percent porosity. The
alluvial/colluvial surficial deposits have varying
degrees of soil development and thickness and have a
gravelly texture; rock fragments (greater than 2 mm)
constitute between 20 and 80 percent of the total vol-
ume. More stable surfaces, generally on the flat upland
ridges, have higher clay contents. Deeper soils in the
center of many washes have developed cemented cal-
cium carbonate layers. In this report, all unconsoli-
dated surficial materials will be referred to as soil.
Because of the high variability and range of properties
and surface features, descriptions are qualitative in
terms of slope, aspect, and depth. General descriptions
are for the purpose of identifying processes and mech-
anisms of surface and subsurface flow in relatively dis-
tinctive topographic positions, but they necessarily
overlap in areas.

Average annual precipitation at the site is about
170 mm (Hevesi and others, 1992). Precipitation
occurs as localized thunderstorms in the summer when
the evapotranspiration (ET) demand is very high. Most
of the water is lost to ET processes within several days,
unless there is enough rainfall to produce runoff or if
subsequent storms provide additional water for deeper
penetration. Thunderstorms in the area can create run-
off in one wash while an adjacent wash receives no rain
at all. Precipitation in the winter occurs in large strati-
form storm patterns as snow or rain. ET is low at this
time of year, and lower precipitation rates or slowly
melting snow may penetrate deeper into the soil profile.

TOPOGRAPHIC POSITIONS OF WHICH
INFILTRATION PROCESSES WERE
EXAMINED

In this study, infiltration processes and mecha-
nisms are examined for four topographic positions—
ridgetop, sideslope, terrace, and channel (fig. 3). Over
an area within the boundaries of the site-scale model
(Wittwer and others, 1992), the ridgetop locations
encompass about 14 percent of the total area, the side-
slopes 62 percent, the terraces 22 percent, and the
active channels 2 percent. The ridgetop locations are
generally fiat to gently sloping and are higher in alti-
tude than the other areas. They have relatively thin to
no surficial deposits but are relatively stable morpho-
logically. Existing soils are fairly well developed, and
thin calcium carbonate layers are fairly common.
Some perennial channels have somewhat thicker soils,
and some concentrated surface runoff occurs. Bedrock
at ridgetop locations is moderately to densely welded
(5 to 25 percent porosity) and moderately to highly
fractured. Vegetation consists of well-established, rel-
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Figure 1. Map of study area with potential repository boundary and neutron hole lacations. Contours
indicate bedrock/alluvium boundary according to Scott and Bonk (1984).
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) _ Stratigraphic Nomen-
Stratigraphic Nomenclature | ¢|ature modified from
Sawyer and others, 1994 | gcott and Bonk. 1984
ccr - caprock
cuc - upper cliff
cul - upper lithophysal
Tiva ks - clinkst
Canyon cks - clinkstone
Tuff cll - lower lithophysal
ch - hackly
cc - columnar
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o Yucca Mountain Tuff
8 Pah Canyon Tuff
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tm - mottled
tv - basal vitrophyre
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Figure 2. Stratigraphic column for Yucca Mountain showing nomen-
clature (Sawyer and others, 1994; and Scott and Bonk, 1984).
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atively shallow-rooted, blackbrush/desert thorn associ-
ations (O’Farrell and Collins, 1983). The slope and
elevation in this position tend to retain snowfall in the
winter for several weeks at a time.

Because of the difficulty of drilling boreholes at
steep sideslope locations, field data for this position are
limited to sites on the lower sideslopes of washes. This
location is distinguished from the terrace and channel
locations by depth of soils and slope. Soil cover is thin
to nonexistent, and in most locations, bedrock is
densely welded and highly fractured. The side slopes
are approximately north or south facing and, therefore,
have different seasonal solar radiation loads. In some
locations, side channels concentrate runoff water. In
general, sideslopes tend to be more sparsely vegetated
than the other topographic positions.

Terraces and channels are located at lower eleva-
tions in the main washes and have thin soil cover in the
upper washes and thick soils farther down. A very
small percentage of exposed bedrock exists in the
washes, and almost all of that is nonwelded, highly
porous tuff. The soil has varying degrees of calcium-
carbonate cementation, that commonly is quite exten-
sive. The porosity of the soil ranges from 15 to
50 percent. The surface is relatively flat and dissected
by old alluvial channels and active channels. Channels
are distinguished from terraces by periodic runoff in
the channels under extreme precipitation conditions.
The terraces generally are well vegetated, having
deeply rooted creosote and other smaller plants. The
channels occupy a very small surface area of the wash
and are more sparsely vegetated than the terraces.

DATA SET AND STUDY METHODS

Boreholes were drilled using dry-drilling tech-
nology and the ODEX 115 drilling and casing system
(Hammermeister and others, 1985). This method uses
simultaneous advancement of the casing with the deep-
ening of the hole to minimize the effects of drilling
medium (in this case, air) on the borehole walls. The
steel casing used for the Yucca Mountain boreholes has
a 130-mm inside diameter. Formation-volumetric
water content is minimally disturbed, and some of the
cuttings produced from drilling fill the small annular
spaces between the casing and formation, minimizing
the void space. This type of drilling also provided con-
tinuous core sampling of the last 24 boreholes drilled.
These samples were used to measure field-volumetric
water contents in different types of lithologies in order
to develop field calibration equations.

Volumetric water-content profiles were mea-

sured in the boreholes using neutron moisture meters
(Model 503, Campbell Pacific Nuclear, Pacheco,

Calif.), with an ' Am-Be, 50 mCi source and *He
detector. This meter detects an area surrounding the
probe of approximately 0.7-m vertically and 175-mm
radius horizontally (Klenke and Flint, 1991). Despite
the unconventional casing for neutron logging, which
commonly uses 50-mm inside diameter casing (Tyler,
1986), the neutron probes were successfully calibrated
using field samples collected during the drilling of sev-
eral boreholes. The calibration holes were drilled
through alluvium, welded and nonwelded tuff with
samples collected every 0.7 m and preserved onsite to
maintain field moisture conditions. These samples
were then processed in the lab to determine volumetric
water content. The calibration equations were devel-
oped relating neutron counts from the boreholes lin-
early to volumetric water content of the samples
(table 1). Five tanks were constructed to maintain
known water conditions. They are 1.5 m in diameter
and provide a continuous measurement medium
(Klenke and Flint, 1991). These tanks were used to
assess long-term drift of the meters so that corrections
of neutron decay could be made over time. They also
were used to develop transfer equations for meters that
were not used to measure field moisture conditions at
the time the samples were collected for field calibra-
tion.

The first phase of borehole drilling was between
May 15, 1984, and February 26, 1986, when 74 neutron
holes were drilled, extending in depth from 4.6 m to
30 m, with one borehole extended to 36.6 m to reach
the water table in upper Fortymile Canyon, 22 km
north of Yucca Mountain. An additional borehole,
USW UZ-7, was drilled to 63.1 m, but the casing was
pulled back up to 6.7 m. The primary consideration for
borehole location was spatial distribution over the
mountain with an emphasis on the washes. Boreholes
in the washes penetrated through the entire alluvial
thickness and extended about | m into the underlying
tuff, This distribution of boreholes provided excellent
coverage of many of the washes in the form of cross
sections of the channels, with many boreholes fairly
closely spaced. Drilling was halted from March 1986
to September 1991.

The second phase of drilling included 24 addi-
tional boreholes. These boreholes were located to
emphasize an improved coverage of topographic posi-
tions, especially sideslope and ridgetop positions to the
north of the potential repository location, as well as
providing deeper penetration, from 18.3 to 78 m. Bore-
holes were located to penetrate through and collect
core samples from the nonwelded Paintbrush Group
and into the densely welded vitric caprock of the
Topopah Spring Tuff (fig. 2). One series of boreholes
(USW UZN-57, USW UZN-58, USW UZN-59, and

6 Shallow Infiltration Processes at Yucca Mountain, Nevada—Neutron Logging Data 1984-93



Table 1. Calibration equations for all neutron moisture meters used from

May 1984 through December 1993

Meter Calibration equation
0 Volumetric water content = 5.316 x 105 * counts — 7.074 x 102
1 Volumetric water content = 4.362 x 10~ * counts ~ 8.015 x 102
2 Volumetric water content = 5.143 x 10~ * counts — 6.819 x 102
3 Volumetric water content = 5.128 x 10~ * counts — 7.314 x 102
4 Volumetric water content = 7.935 x 105 * counts — 7.159 x10-2
5 Volumetric water content = 8.301 x 105 * counts ~ 7.086 x 102
6 Volumetric water content = 5.333 x 10~ * counts — 6.551 x 102
7 Volumetric water content = 7.484 x 10 * counts — 7.623 x 10?2
8 Volumetric water content = 8.242 x 10 * counts — 7.665 x 102
9 Volumetric water content = 7.590 x 10" * counts — 7.053 x 102

USW UZN-61) extended across a wash and was drilled
directly into the caprock of the Topopah Spring Tuff,
which was poorly represented in the boreholes drilled
in the first phase. One borehole was drilled into the
Ghost Dance fault (USW UZN-35), reaching fault
breccia at approximately 34 m. Boreholes were contin-
uously cored and samples were preserved for labora-
tory measurement approximately every 0.8 m. Three
boreholes (USW UZN-55, USW UZN-54, and

USW UZN-27) were used to provide field volumetric
water contents for calibration of the neutron moisture
meters. A list of all boreholes, drilling dates, borehole
and casing depths, and a description of each borehole is
included in table 2. Official borehole designations are
listed in table 2 but will be referred to in the text by the
letter “N” and corresponding borehole number 1
through 98. The additional borehole, USW UZ-7, not
designated as a neutron borehole, is referred to as
UZ-7. Locations of all boreholes are plotted on
figure 1, except for N91 and N92, which are located
about 25 km north of Yucca Mountain, N39, which is
located in Jackass Flats about 25 km east of Yucca
Mountain, and N85, which is located on the western
edge of Fortymile Wash just east of Fran Ridge.

With some exceptions, the data were collected on
a monthly basis. Boreholes deeper than 30 m are only
logged to 19.4 m monthly, and to total depth ona
6-month basis. The upper S m of each borehole are
logged at 0.1-m-depth intervals, and the remaining
depth is logged at 0.3-m intervals.

The period for data reported in this study
extended from July 1984, when the boreholes were first
logged, to December 1993, and had varying climatic
conditions. Several runoff-producing storms were
recorded in 1984, but the following 4 years, 198589,
experienced drought conditions that averaged about

50 to 75 percent less than normal rainfall, which is
130 to 180 mm/yr. This resulted in gradual declines in
the volumetric water contents of the shallow subsur-
face. By 1990, the volumetric water content in the
boreholes had stabilized atbetween 2 and 5 percent, the
lowest measured volumetric water content recorded
since the boreholes were drilled. There was some relief
from the drought in 1990, and precipitation during the
winters of 1991-92 and 1992-93 was well above nor-
mal (total rainfall of 280 and 370 mm, respectively).
Several storms produced runoff in 1990-93.

Examples of moisture logs are presented, as well
as changes in water content with depth over time. To
evaluate these changes in the various boreholes and to
identify ongoing processes contributing to net infiltra-
tion relative to the four topographic locations, moisture
profiles atselected sites were analyzed in several ways.
Profiles of volumetric water content were compared to
assess the change in the water-content volume and
depth of penetration (maximum depth of water-content
change) over a winter season. The average change in
volumetric water content is presented in figure 6 for
depth intervals 0f0.3to I m, 1 to 2 m, 2 to 5 m, and
5 to 10 m during a 3.3-year period. The change in vol-
umetric water content of the upper 1 m of tuff over a
single season was compared to overlying alluvial
depth. Finally, the depth of penetration of seasonal
pulses of water was assessed by estimating the depth at
which changes of volumetric water content over time
were minimal. This depth is compared to the topo-
graphic position of boreholes to assess the influence of
borehole position on the depth of moisture penetration
and, potentially, net infiltration.

DATA SET AND STUDY METHODS 7
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EVALUATION OF INFILTRATION
PROCESSES

Moisture Profiles

The winter of 1991 produced enough precipita-
tion to end the drought of the previous 6 years. Volu-
metric water content before this time was low
throughout the borehole profiles, as low as they ever
were during the study period, and are shown as exam-
ples in boreholes N7, N14, and N71 (fig. 4). By
October 1992, an increase in soil or bedrock volumetric
water content was apparent. The water content contin-
ued to generally increase in all boreholes over the next
18 months. The extent of the increase in water content
varied among boreholes in different topographic posi-
tions, as measured by the volume of water and by the
depth of the infiltrating pulses. The moisture profiles in
the channel and terrace boreholes (figs. 4a and 4b) are
similar. The water did not penetrate very deeply (about
2-3 m) over this time period, and most of the water was
held close to the surface in the soils that have large stor-
age capacities. These topographic positions are similar
during this period, because borehole N7, in the chan-
nel, was not exposed to any runoff events. The bore-
holes in sideslope positions that have shallow soils
(figs. 4c and 4d) exhibit deeper penetration of the
water. Smaller volumes of water are held in the upper
portions of these profiles because of the lower bedrock
porosity, and the penetration of water is especially deep
(about 13 m) in the north-facing slope at N53, possibly
due to lower ET, which is a function of the low avail-
able solar radiation load for much of the winter. Infil-
tration of water in the ridgetop boreholes (figs. 4e and
4f), regardless of whether or not the boreholes have soil
cover, is greater in volume than for all the other loca-
tions, and especially in N71 at the surface and at depth
inN15, a borehole located in a small ridgetop channel.
In the boreholes that have thick soils and large storage
capacity, the volume of water may be the same as for
boreholes located along the ridgetops, but it is stored -
higher in the profile in the former. Where there is little
storage capacity near the surface, water is generally
observed to infiltrate deeper. In addition, the shallower
infiltration in the washes may be due, in large part, to
the presence of low-porosity restricting layers. For
example, boreholes N7 and N15 (figs. 4a and 4f) are
both in channels, but the much deeper penetration of
water in N15 can be attributed to its thinner soil cover,
relatively high-porosity bedrock, and high-
conductivity fractures, as well as having greater runoff
from winter snowmelt. In contrast, N7 generally
receives less snow than does the ridgetop, and the infil-

tration in N7 is stored at shallower depths because of
subsurface- restricting layers that have porosities of
less than 15 percent.

The difference between channel and terrace
boreholes can be secn following a runoff event in
August 1984, in the channel at N13 adjacent to terrace
borehole N14 (figs. 5a and b). The boreholes were ini-
tially logged August 15 and 16, 1984. A rainfall event
occurred August 20 and the boreholes were logged
again August 20 and 21 and several times over the next
few months. N14 shows typical terrace behavior with
the surface wetting up to, but not penetrating below
about 2 m, due to ET processes and possibly some lat-
eral diversion due to restrictive caliche layers. N13, on
the other hand, shows evidence of'a pulse of water pen-
etrating throughout the depth of the borehole from
between August and the following May.

Change in Volumetric Water Content

A time series of water-content changes in bore-
holes in different positions provides information
regarding rate and timing of infiltration for a 3.3-year
period (fig. 6). Changes in volumetric water content in
the uppermost 1 m occur with precipitation cycles, wet-
ting in the winter and drying out in the summer. The
second-meter depth lags behind the top meter in the
channel borehole by a few months, whereas there is no
increase in volumetric water content deeper than 2 m.
In the sideslope borehole, the same result is noted in the
upper 1-m depth interval and in the second-meter-
depth interval and, after 3.3 years, is beginning to be
recorded in the lower-depth intervals. The ridgetop
borehole shows no increase in moisture until 1992,
when the entire profile responds to the annual precipi-
tation and indicates relatively deep and fast infiltration.
These changes with time and depth indicate different
rates of infiltration for these three boreholes: water in
the channel borehole penetrates more slowly than in
the other two, and the ridgetop borehole increases in
volumetric water content throughout its whole profile
with no time lag.

Depth of Moisture Penetration

Depth of penetration of water can be estimated
from long-term records of volumetric water content
and can be used to suggest a depth of infiltration. If an
estimate can be made of a depth below which infiltra-
tion becomes net infiltration, then this depth of penetra-
tion is a useful characteristic. This depth is generally
assumed to be the depth below that in which ET pro-
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Figure 5. Volumetric water content with depth for (a) terrace and (b) channel neutron holes at Yucca Mountain before and
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cesses occur and will, therefore, vary with plant species
of different rooting depth, as well as with radiation
load. If, however, the pulses of water penetrate below
the alluvium and into the bedrock where few or no
plant roots occur, then the likelihood for infiltration to
become net infiltration increases.

The depth of infiltration was estimated for logs
from 34 boreholes located in two washes, Pagany Wash
to the north of the potential repository location, and
WT-2 Wash to the south. Both washes include ridge-
top, sideslope, terrace, and channel topographic posi-
tions. Estimates of infiltration depth are shown for data
collected in boreholes from January 1990 though
December, with the corresponding thickness of allu-
vium for each borehole (fig. 7). In general, the depth of
infiltration in the channels does not exceed the depth of
alluvium. In several boreholes, the downward compo-
nent of infiltration halts at the tuff/alluvium interface
(for example, channel boreholes N31 and N33), indi-
cating a barrier due to the lower conductivity and lower
storage capacity in the lower porosity bedrock. Chan-
nel boreholes N91 and N92 are located about 20 km to
the north in Fortymile Canyon, which has a different
climatic regime with a shallow water table and much
higher recharge rate. These boreholes are not included
in any analysis that follows but are shown only for ref-
erence.

Means and standard deviations were calculated
for the depth of infiltration and the depth of alluvium
for the boreholes in the four topographic positions and
are shown in table 3. In the table, the depth of infiltra-
tion in the terrace boreholes is only slightly less at
2.8 m than in the channel boreholes at 3.4 m. The side-
slope and ridgetop boreholes have much shallower
alluvial cover, both with a mean of 0.5 m, yet have
depths of infiltration to about 5.5 and 5.4 m, respec-
tively, probably deeper than the zone in which ET pro-
cesses occur. The volumes of water at this depth are
probably small, however, as suggested by most of the
sideslope and ridgetop holes in the Supplemental Data
section. For example, N2 (2.5 m), N17 (7 m), and N23
(4.8 m), all have changes in volumetric water content at
depth of no more than 0.05 cm®/cm?.

SUMMARY AND CONCLUSIONS

The analysis of moisture profiles in 99 boreholes
from four topographic positions at Yucca Mountain
included both quantitative and subjective methods and
represented a large areal coverage over a 9-year period
of time. Analyses of the measured profiles indicated
that the thinner the soil cover, that is, storage capacity,
the deeper the measured increase in volumetric water
content, indicating greater net infiltration, which is

especially evident when surface flow concentrates run-
off at locations underlain by fractured bedrock. The
more deeply the water penetrates, the less likely that it
will be lost to evapotranspiration. When surface flow
is negligible, the deepest infiltration was on the ridge-
tops and the shallowest infiltration was in the washes,
although there is little difference in infiltration charac-
teristics between the terrace and channel boreholes.
Exceptions were noted following appreciable runoff
events. For these cases, large volumes of water often
infiltrated more than 5 m into the soil in the washes,
which is below the estimated root zone. At these sites,
however, conditions causing significant channel runoff
occurred episodically and only in a few washes during
any single event. In addition, the active channels
where runoff occurs comprise less than 2 percent of the
surface area of the watersheds, and therefore, are not
considered to contribute significantly to overall net
infiltration in the watershed. More precipitation infil-
trates during the winter when the evapotranspiration is
low and runoff is rare, due to lower intensity storms
and to slowly melting snow on the ridgetops for several
weeks each winter. This slow rate of input over long
periods allows for larger volumes of water to penetrate
below the root zone and thereby escape the high evapo-
transpiration demands of the following summer.

A conceptual model of shallow infiltration pro-
cesses at Yucca Mountain was developed to categorize
the site into four zones that generally can be identified
on the basis of the manner in which volumetric water
contents change with depth and time. The zones are
described as follows: (1) The ridgetop is flat to gently
sloping, higher in elevation, exposed to climatic
effects, and has thin soils mostly developed in place
with clays and higher water-holding capacity that
reduces rapid evaporation. The ridgetops generally are
located where the bedrock is moderately to densely
welded and fractured. These conditions lead to deeper
penetration than in the other topographic positions, and
to smaller volumes of water. In some locations, how-
ever, where runoff is channeled, large volumes of water
can infiltrate; (2) sideslopes are steep and commonly °
have thin to no soil cover and usually developed in
welded, fractured tuff, which creates conditions condu-
cive to rapid runoff. The low storage capacity of the
thin soil cover and the exposure of fractures at the sur-
face may enable small volumes of water to infiltrate to
greater depths, especially on slopes with north-facing
exposures and, therefore, lower evapotranspiration
demands. Shallow alluvium at the bases of the slopes
can easily become saturated and initiate flow into the
underlying fractures; (3) alluvial terraces are flat, broad
deposits of layered rock fragments and fine soil with a
large storage capacity. There is, therefore, little runoff
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Table 3. Mean and standard deviation for the depth of alluvium and estimated depth of
penetration of seasonal infiltrating water in all boreholes, except in N91 and N92, in
channels, terraces, sideslopes, and ridgetops, at Yucca Mountain, Nevada

Depth of alluvium, Depth of infiltration,

Topographic in meters in meters Number of

position Mean Standard Mean Standard boreholes

deviation deviation

Channel 72 5.6 34 1.5 43
Terrace 79 64 2.8 1.2 20
Sideslope 0.5 0.7 5.5 4.7 17
Ridgetop 0.5 0.5 54 3.2 17
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and little movement of water to any depth in the profile
before evapotranspiration removes it. Consequently,
this zone contributes the least to net infiltration in the
watershed; and (4) active channels differ little from the
terraces but are located in a position to collect and con-
centrate runoff which, although it occurs infrequently,
can then penetrate deeply. However, this mechanism is
not considered to be a major contributor to net infiltra-
tion because of the infrequency of precipitation result-
ing in runoff and because the channels encompass a
very small percentage of the watershed area.

There are numerous heterogeneities and excep-
tions to this categorization. In general, however,
changes in moisture profiles over time measured at a
borehole tend to be characterized by the conceptual
model zone in which the site is located. These loca-
tions can be used to identify the infiltration mecha-
nisms and to aid in the estimation of upper boundary
conditions, necessary for the development of large-
scale watershed models. In an environment that has a
high evaporative demand, it is more important to assess
the depth-of-water penetration than the volume of
water entering the profile in order to estimate net infil-
tration. This penetration is influenced by the potential
for surface storage (depth of soils, layering and caliche,
slope and aspect), the timing of the precipitation
(winter or summer), the presence of fractures, and the
relative saturation of the wetting front when it reaches
fractured bedrock.
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Discussion and Use of Moisture Profiles

The entire data set from May 1984 through
December 1993, about 14 megabytes of disk space, can
be obtained from the Department of Energy in ASCII
format.

Figures 8106 in this supplemental data section
includes a graphical representation of all data collected
from January 1990 through December 1993. Inclusion
of the entire data set would have resulted in graphics
that were difficult to visualize. January 1990 was cho-
sen as a beginning date, because 1990 was near the end
of the drought and that summer included the driest
measurements ever collected for the boreholes. Above
normal rainfall in 1991-92 included most of the wettest
measurements ever collected. These graphs, therefore,
represent the range of moisture conditions encountered
in the boreholes. All data are represented as volumetric
water content versus depth of borehole, and all graphs
are scaled to 0.40 cm*/cm? volumetric water content,
although the depth scale differs for each hole. The
depth of alluvium, or the alluvium/tuff contact, is noted
by a dotted line on each graph; if no line is shown, then
the borehole has no alluvial cover or is alluvium to total
depth. The borehole designation, general site location,
and topographic position (designated as infiltration
zone in table 2) also are included on each graph. No
topographic position is indicated for N93, N94, and
NO95, which are located on a drill pad on Yucca Crest.
Graphs are generally organized by wash and proximity
of boreholes to each other.

Data points include all individual measurements
over the 3-yr. period (January 1990 through December
1993). This representation shows the range in volu-
metric water content, the depth where changes in water
content were the greatest, and approximately how deep
water penetrated. Points that are high outliers at the
bottom of many of the holes are probably readings that
were taken when the neutron probe was slightly below
the bottom of the cased interval. This is not always the
case, however; for example, water was observed in the
bottom of N2 on several occasions and would account
for the indicated high-water content. Even though the
calibration equations were developed for calculating
water content of the formation through a casing wall,
there was no assurance that some of those points were
not real increases in water content, so none of them
were omitted. Several graphs indicate negative water
content, probably because the linear calibration equa-
tions do not adequately represent conditions at very
low-water content. Alternatively, washout zones
behind the casing can show up as fewer counts and are
interpreted as low, or occasionally negative, water con-
tent. These issues are currently being investigated

more thoroughly by using other types of borehole geo-
physical measurements, developing regression equa-
tions for different lithologies, developing non-linear
equations, and measuring capture cross sections for
various lithologies. The calibration equations will be
updated.

Several of the graphs are noteworthy and deserve
comment. N10 (fig. 17) has several measurements
below 19.4 meters that represent only a single set of
measurements to the total depth of this borehole. N15
(fig. 22) shows considerable scatter to almost 10 m.
This borehole is in a small channel at the headwaters of
Pagany Wash, where runoff from melting snow was
observed for several weeks during the spring of 1992.
NO91 (fig. 98) is located in a channel and was drilled to
the water table, which is at approximately 20 m. This
location in upper Fortymile Wash has regular runoff in
the wash, with about twice the rainfall each year as
Yucca Mountain receives. N92 (fig. 99) is not in the
main channel and does not receive as much runoff as
N91, which is in the main channel. N28 (fig. 35) and
NO97 (fig. 104) are located in Split Wash in a terrace
location and are about 1.5 m apart. Even given their
proximity, when scaled to the same depth, their profiles
are a little different, especially at 2.5 m. This may be
due to a washout zone in N97, or the proximity of a
large boulder in N28. NS50 (fig. 57), UZ7 (fig. 107),
N51 (fig. 58), and N52 (fig. 59) are located in WT-2
Wash, and all reflect relatively large changes in water
content to about 3 or 4 m due to several runoff events
in that wash. Two boreholes, N55 (fig. 62) and N73
(fig. 80), have points that stand out that can be
explained by seasonal flow through fractures or faults
that intersect these boreholes below the alluvium.
These points occur repeatedly, usually during the win-
ter high-rainfall months. Several boreholes, most
noticeably N64 (fig. 71), show a large difference
between water contents in the winter months and those
in the drier months. This contrast is attributed to the
highly-fractured, low-porosity bedrock. Water is
retained in the matrix throughout the summer. The
fractures hold larger volumes of water during the wet
season but, due to their large apertures, drain rapidly
rather than dry out slowly. Consequently, the moisture
profiles do not show a continuum. This shows up in
the graph as matrix water content (at 4 m, about
0.04 cm’/cm?) in the summer and matrix plus fracture
water content (at 4 m, about 0.10 cm*/cm?) in the win-
ter.
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Figures 40—43. Volumetric water content with depth for boreholes USW UZ-N33, USW UZ-N34, USW UZ-N35,
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Figures 44-47. Volumetric water content with depth for boreholes USW UZ-N37, USW UZ-N38,
UE-25 UZN #39, and USW UZ-N40. All points measured from 1/1/30 through 12/31/93 are shown.
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Figures 48-51. Volumetric water content with depth for boreholes USW UZ-N41, USW UZ-N42, USW UZ-N43,
and USW UZ-N44. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 52-65. Volumetric water content with depth for boreholes USW UZ-N45, USW UZ-N46, USW UZ-N47,
and USW UZ-N48. All points measured from 1/1/90 through 12/31/93 are shown.

SUPPLEMENTAL DATA




10

20

30

40

50

60

DEPTH, IN METERS

20

Alluvium

USW UZ-N37
Wren Wash
Channel

Alluvium

USW UZ-N39
Jackass Flats
Terrace

0.2 0.3

0.4

12

Tuff

USW UZ-N38
Wren Wash
Terrace

USW UZ-N40

Coyote Wash
Sidelslope

2
0

0.1

0.2 0.3 0.4

VOLUMETRIC WATER CONTENT

Figures 56-69. Volumetric water content with depth for boreholes USW UZ-N49, USW UZ-N50, USW UZ-N51,
and USW UZ-N52. All points measured from 1/1/30 through 12/31/93 are shown.

34 Shallow Infiltration Processes at Yucca Mountain, Nevada—Neutron Logging Data 1984-93



0
D)
I 5 Tuff
2 -
4
6 -
USW UZ-N41 8r USW UZ-N42
Coyote Wash - Coyote Wash
(é) Channel ok Channel
LLI Qi)
l—
LLl
E 12 : 1 . ! : 1 : 12 . ! . 1 : )
=
- 0
~ Tuff
LL
) 2r
4 =
6 =
Alluvium
Tuff
8 =
USW UZ-N43 USW UZ-N44
Coyote Wash ok Coyote Wash
Terrace Channel
! L 1 1 12 1 ! 3 ! L ] :
02 03 0.4 0 0.1 0.2 0.3 0.4

VOLUMETRIC WATER CONTENT

Figures 60-63. Volumetric water content with depth for boreholes USW UZ-N53, USW UZ-N54, USW UZ-N55,
and UE-25 UZN #56. All paints measured from 1/1/90 through 12/31/93 are shown.
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and UE-25 UZN #60. All points measured from 1/1/30 through 12/31/93 are shown.
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Figures 64-67. Volumetric water content with depth for boreholes USW UZ-N57, USW UZ-N58, USW UZ-N59,
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Figures 68-71. Volumetric water content with depth for boreholes USW UZ-N61, USW UZ-N62,
UE-25 UZN #63, and USW UZ-N64. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 72-75. Volumetric water content with depth for boreholes USW UZ-N65, USW UZ-N66, USW UZ-N67,
and USW UZ-N68. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 76-79. Volumetric wa'ter content with depth for boreholes USW UZ-N69, USW UZ-N70, USW UZ-N71,
and USW UZ-N72. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 80-83. Volumetric water content with depth for boreholes USW UZ-N73, USW UZ-N74, USW UZ-N75,
and USW UZ-N76. All points measured from 1/1/90 through 12/31/93 are shown.

40 Shallow Infiltration Processes at Yucca Mountain, Nevada—Neutron Logging Data 1984-93



0 0
Alluvium
Tuff sl
4
4t
8
S gy Alluvium
Tuff
8 .
12
USW UZ-N81 10 |
Solitario Canyon I
o 19 Channel USW UZ-N82
o 12 Solitario Canyon
E i Channel
LLl
2 20 L i L ! L ! L 14 ! ] ) !
=
T
o
i Tuff
O
Alluvium |
Tuff
8
USW UZ-N83 o i USW UZ-N84
Solitario Canyon Solitario Canyon
Sideslope | Terrace
12
! Il ! 1 14 L ! . ! 3 ! 1
0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

VOLUMETRIC WATER CONTENT

Figures 84-87. Volumetric water content with depth for boreholes USW UZ-N77, USW UZ-N78, USW UZ-N79,
and USW UZ-N80. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 88-91. Volumstric water content with depth for boreholes USW UZ-N81, USW UZ-N82, USW UZ-N83,
and USW UZ-N84. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 92-95. Volumetric water content with depth for boreholes UE-25 UZN #85, USW UZ-N86,
USW UZ-N87, and USW UZ-N88. All points measured from 1/1/30 through 12/31/93 are shown.
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Figures 96—99. Volumetric water content with depth for boreholes USW UZ-N89, USW UZ-N90,
UE-25 UZN #91, and UE-25 UZN #92. All points measured from 1/1/90 through 12/31/93 are shown.
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Flgures 100-103. Volumetric water content with depth for boreholes USW UZ-N93, USW UZ-N94,
USW UZ-N95, and USW UZ-N96. All points measured from 1/1/90 through 12/31/93 are shown.
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Figures 104—106. Volumetric water content with depth for boreholes USW UZ-N97, USW UZ-N88, and
USW UZ-7. All points measured from 1/1/90 through 12/31/93 are shown.
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