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ABSTRACT

A 3D frequency domain electromagnetic numerical
solution has been implemented for sensing buried structures
in a lossy earth. Because some structures contain metal, it is
necessary to treat them as very good conductors residing in a
complicated lossy earth background. To model these
scenarios and to avoid excessive gridding in the numerical
solution, we assume the structures to be perfectly
conducting, which forces the total electric field to zero
within the conductor. This is accomplished by enforcing
internal boundary conditions on the numerical grid.

The numerical solution is based on a vector Helmholtz
equation for the scattered electric fields, which is
approximated using finite differences on a staggered grid.
After finite differencing, a complex-symmetric matrix
system of equations is assembled and preconditioned using
Jocobi scaling before it is iteratively solved using the quasi-
minimum residual (qmr) or bi-conjugate gradient (bicg)
methods. For frequencies approaching the static limit (<10
kHz), the scheme incorporates a static-divergence correction
to accelerate solution convergence. This is accomplished by
enforcing the divergence of the scattering current within the
earth as well as the divergence of the scattered electric field in
the air,

INTRODUCTION

An important application of electromagnetic (EM) sensing
involves detecting buried manmade structures. Because these
structures often include metal in their fabrication as well as
electrical wiring, they can sometimes be modeled as highly
conducting bodies and wires in a lossy earth. Sheet models
have been useful to model such cases, [1], but are limited in
their complexity and the complexity of the earth background
that can be incorporated in the model. To overcome these
limitations, finite element and difference solutions to the
EM field can be implemented. However because of the
highly conductive nature of the above mentioned structures it
appears that excessive gridding is needed. Still, this problem
can be avoided if we treat the structures as perfectly
conducting, and in effect replace them with an internal
boundary condition that enforces zero electric field.

In this paper we demonstrate how this idea can be
implemented using an iterative solution to the vector
Helmholtz equation based on finite difference
approximations. In addition we will show how this solution
can be accelerated at low frequencies by incorporating a
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divergence conditions on the fields. Fast low frequency
simulations are important because some ée q?ﬁciouried
at depths where lower frequencies are required for their
detection,

THEORETICAL FORMULATION
The Vector Helmholtz Equation
Assuming a time harmonic dependence of e!®t where i =

V=1 the vector Helmholtz equation for the scattered electric
field given by [2] is written here as

qu—:-VxEs+imup(c+icoe)Es = )]
—iCOHp[(O' - cp) + ico(e -€p )]Ep ~ i pV x [(” _u“p )Hp:,'

In this expression the electrical conductivity, magnetic
permeability and dielectric permittivity are denoted by o, 1
and €, respectively, where the subscripts "p" and "s"
designates background, or primary values, and scattered
values respectively. Given this definition of primary and
scattered fields, the total electric and magnetic fields are
determined from Ey = Ep+Es and Hy = Hp+HS. In addition
note that [(G-Gp) + ico(s—ep)]Ep and [(]J,-up)]Hp can be
thought of as equivalent source vectors of the background
medium. The primary fields and background values found in
these source vectors can be that of a whole space, a layered
half-space, or some previously run model for which results
were saved to be incorporated as a primary field. For all
examples presented here the primary field is assumed to arise
from impressed dipole sources in a whole space background.
When equation (1) is approximated with finite differences on
a staggered grid a sparse linear system results in which the
matrix is complex symmetric. This system can be efficiently
solved iteratively using Krylov sub-space methods, including
the quasi minimum residual (qmr) and bi-conjugate gradient
(bicg) solvers. The reader is referred to [2] and [3] for details
on how these solvers are implemented.

The Static-Divergence Correction

As has been demonstrated by [4], a staggered grid is a
natural grid to use in the numerical solution since it
implicitly enforces the auxiliary divergence conditions on the
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fields. With a scattered electric field formulation the critical
condition is

V-{(c+iwe)Eg}=-V- {[(0 - op)+ iw(s —ep)]Ep}. )

Even with the benefits of a staggered grid we have
observed that the time needed to solve for the fields greatly
increase with falling frequency as one approaches the static
limit. The reason can be traced to the fact that the numerical
solution poorly approximates equation (2). To overcome
this difficulty a correction can be implemented following a
procedure developed by [4] for a total field formulation. Here
we will modify the procedure for the scattered fields such that
equation (2) is enforced periodically during the iterative
solution. To accomplish this let us define an error where,

error =-V -{(c+iwe)Eg} )
—V-{[(G—GP)+ im(e—ap)]Ep}.

Ideally the error should be zero, but because of precision
problems it is not, particularly as frequency approaches the
static limit. Next we define a scalar potential, ¢, such that

error=V - {(0’ + ime)V({)} . @

Difficulties still arise with this equation when air is present
in the model because it cannot support electric currents in
the static limit. To overcome this difficulty, we redefine
equation (4) in the air to read

error =V -V, ©)

When the sources are buried in the earth we need to enforce
the condition that total electric field is divergence free in the
air, thus

error=-V.Es -~V Ep. (6)

On the other hand if the sources are in the air we force the
scattered electric field to be divergence free, hence

error' ==V - Eg. )

To enforce equation (2) and the divergence conditions on
the electric field in the air we solve equations (4) and (5) for
the potential on the staggered grid using a finite difference
approximation. The corrected version of the scattered electric
field is then given by

E =Eg+Vg. ®)

Solution to equations (4) and (5) take much less time than
solving equation (1) does. To obtain the potential solution
we assemble the scalar equations into a single system,
precondition it with simple Jocobi scaling and solve it using
a bi-conjugate gradient algorithm for non-symmetric
matrices. This correction procedure is alternated with a series
of gmr or bicg iterations on the vector Helmholtz equation.
At each correction step the scalar equations only need to be
solved very approximately to dramatically improve the
convergence of the Helmholtz equation at low frequency as
in Figure 1.

The number of sub iterations operating on the Helmholtz
system is critical for effective acceleration of the solution
when using the static-divergence correction. If too few sub
iterations are specified there is a possibility that the solution
will never converge to an acceptable error level. To
overcome this difficulty an adaptive scheme has been
implemented, which will continue to double the number of
sub iterations if the error has not been reduced by a factor of
two from the previous set of sub iterations. This procedure
is continued until convergence to a given error level is
achieved or a maximum number of iterations (including all
sub iterations) has been attained.

Simulations Involving Very Good Conductors

To model very good conductors and to avoid excessive
gridding in the numerical solution, we assume the structures
to be perfectly conducting. Large-scale good conductors can
be treated with this approach as well as wire conductors since
wires can easily be accommodated in a staggered grid.

With a perfectly conducting boundary condition, the total
electric field is forced to zero within the conductor as well as
on its surface. Instead of explicitly enforcing this condition,
we have designed it implicitly on internal portions of the
grid due to ease of implementation. At or inside a very good
conducting region, equation (1) can be written as

p . .
V><TPV><Es +iOR O] arg eBs = ~i0N O grgBp )

where conductivity property dominates over the dielectric and
magnetic permeability properties of the medium. Because the
medium is highly conducting the following inequality is
also true;

<< |®l~lp01arg Egl- (10)

quTpVxEs

Considering equation (10) with equation (9) numerically
yields

2-4



(Clarge)Es = - OlargeEp (11)

or effectively Eg = -Ep. Thus E¢ = 0 which is the condition
required in and on a perfect conductor.
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Fig. 1. Comparison between solution run times and
number of iterations needed to achieve convergence with and
without the static-divergence accelerator. The model consists
of 96 338 cells and simulates a 100 Qm half space with a
vertical dipole magnetic source positioned 20 m above the
surface and operating at a frequency of 90 Hz. The numerical
solution is assumed to have converged when a squared error
level of 10-8 is attained. Time gaps in the corrected version
of the solution correspond to the times needed to make the
static-divergence correction. Sixty sub iterations were used
with the corrected version.
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Through numerical experiments we have determined that
Olarge assigned a numerical value of about 10*8 appears to

work best. Larger values introduce numerical instability.
Figure 2 shows an excellent check on the technique for a
perfectly conducting layer. In Figure 3 we show a check
against a highly conducting sheet model, and although the
comparison is not as good as that of the layered model, the
shapes of the curves agree quite well. We believe that
discrepency between the two solutions occurs due to
discretization problems with the sheet model. The reasons
for this belief are 1) with increasing discretization of the
sheet the comparison continues to improve, and 2) the
excellent check against the layered model. Note, we could
not disretize the sheet model beyond 1600 cells due to
computer memory limitations.

While this technique works well for detecting buried
structures from the surface or from the air it is not ideal for
computing fields in the shadow zones of very good
conductors. This limitation is caused by subtractive
cancellation between the scattered and primary fields. For
problems of this sort a total field solution would appear to
work best. We are now in the progress of implementing
such a solution which could be of great use in mapping the
lateral extent of highly conducting ore bodies with crosswell
configurations.

CONCLUDING REMARKS

We have demonstrated several extensions to the solution
published by [2] on 3D wideband EM modeling. The
inclusion of a static divergence condition has been
demonstrated to cause significant speed up in solution run
times at low frequencies, and a novel technique, which is
implicit in nature yet simple to implement, for simulating
responses of perfectly conducting bodies has been
demonstrated.
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Fig. 2. Check on the perfectly conducting boundary
condition implemented implicitly on the internal portions of
the finite difference mesh. The model consists of a 10 m
thick perfectly conducting layer buried 10 m deep in a 100
Qm half-space. Checks we carried out for three different
frequencies 100, 1 000 and 10 000 Hz, where a vertical
magnetic dipole transmitter is deployed 10 m above the
surface and magnetic fields computed horizontally away from
the source point. Symbols depict the 3D solution with the
free space response removed, which uses 381 217 cells and
lines the results from a semi-analytic 1D Hankel transform
solution of Ki Ha Lee.
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Fig. 3. Check of the perfectly conducting boundary
condition against the sheet model of Weidelt [1]. The model
consists of a 20 m by 40m sheet buried at 15 m depthin a
100 Qm half-space. The conductance of the sheet is 1x1010
S and a frequency of 1 000 Hz is employed. The calculations
simulate measurements of the vertical and horizontal
magnetic fields at a distance of 10 from a VMD source.
Fifteen source positions were employed in the x direction
from -40m to +30m. Symbols depict the 3D solution with
the free space response removed, which uses 381 217 cells
and lines the sheet results. At x=0 the discrepency between
the real parts of the two solutions is about 24%.
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