
F-AREA ACID/CAUSTIC BASIN GROUNDWATER MONITORING REPORT (U)

RECEIVED

NOV - 3 1995

OSTI

SECOND QUARTER 1995

Publication Date: September 1995

Authorized Derivative Classifier
and Reviewing Official:

UNCLASSIFIED
Does Not Contain Unclassified
Controlled Nuclear Information

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

F-AREA ACID/CAUSTIC BASIN GROUNDWATER MONITORING REPORT (U)

SECOND QUARTER 1995

Publication Date: September 1995

Key Words

aluminum
gross alpha
iron
manganese
radium-226

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

MASTER

10
Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

THIS PAGE LEFT BLANK INTENTIONALLY.

Abstract

During second quarter 1995, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were completed in the Barnwell/McBean aquifer and were sampled for the first time during third quarter 1994 (second quarter 1995 is the fourth of four quarters of data required to support the closure of the basin).

Analytical results that exceeded final Primary Drinking Water Standards (PDWS) or Savannah River Site (SRS) Flag 2 criteria such as the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and radium-226 exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard (50 NTU) in well FAC 3.

Groundwater flow direction in the water table beneath the F-Area Acid/Caustic Basin was to the west at a rate of 1300 feet per year. Groundwater flow in the Barnwell/McBean was to the northeast at a rate of 50 feet per year.

THIS PAGE LEFT BLANK INTENTIONALLY.

Contents

	Page
Abstract	iii
List of Figures	vi
List of Tables	vi
Executive Summary	1
Introduction	3
Discussion	5
Groundwater Monitoring Data.....	5
Analytical Results Exceeding Standards.....	5
Turbidity Results Exceeding Standards	6
Water Elevations, Flow Directions, and Flow Rates.....	6
Results for Upgradient vs. Downgradient Wells.....	8
Conclusions	9
References Cited	10
Errata	11
Appendix A—Final Primary Drinking Water Standards	A-1
Appendix B—Flagging Criteria	B-1
Appendix C—Figures	C-1
Appendix D—Groundwater Monitoring Results Tables	D-1
Appendix E—Data Quality/Usability Assessment	E-1

List of Figures

	Page
1. Location of the F-Area Acid/Caustic Basin at the Savannah River Site	C-3
2. Location of Groundwater Monitoring Wells and Piezometer Wells in the Water Table at the F-Area Acid/Caustic Basin.....	C-4
3. Location of Groundwater Monitoring Wells in the Barnwell/McBean at the F-Area Acid/Caustic Basin	C-5
4. Piezometric Surface Map of the Water Table at the F-Area Acid/Caustic Basin, Monitoring Well Data	C-6
5. Water-Elevation Contour Map of the Water Table at the F-Area Acid/Caustic Basin, Piezometer Data	C-7
6. Potentiometric Surface Map of the Barnwell/McBean at the F-Area Acid/Caustic Basin, Monitoring Well Data	C-8

List of Tables

	Page
1. Maximum Results for Constituents Exceeding Final Primary Drinking Water Standards..	D-6
2. Maximum Results for Constituents Exceeding Other Flag 2 Criteria or the SRS Turbidity Standard.....	D-6
3. Groundwater Monitoring Results for Individual Wells	D-7

Executive Summary

The ten monitoring wells and piezometer FAC 5P at the F-Area Acid/Caustic Basin are scheduled for quarterly sampling as part of the Savannah River Site (SRS) Groundwater Monitoring Program and to comply with South Carolina Hazardous Waste Management Regulations.

During second quarter 1995, groundwater from monitoring wells, which were sampled successfully, was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P was dry and monitoring well FAC 6 went dry during purging; these wells were not sampled. Groundwater from new monitoring wells FAC 9C, 10C, 11C, and 12C, completed in the Barnwell/McBean aquifer, was analyzed for the fourth time during second quarter 1995. Monitoring results that exceeded final Primary Drinking Water Standards (PDWS), other SRS Flag 2 criteria, or the SRS turbidity standard are the focus of this report.

Gross alpha was elevated in three wells, FAC 3 (27.8 pCi/L), FAC 4 (86.5 pCi/L), and FAC 5 (36.1 pCi/L). Nitrate as nitrogen (11,600 $\mu\text{g}/\text{L}$) was also elevated in well FAC 4. Aluminum, iron, manganese, radium-226, total organic halogens, and specific conductance exceeded SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS turbidity standard in well FAC 3. Aluminum and iron were elevated in the upgradient wells FAC 3 and 5. Aluminum (265 $\mu\text{g}/\text{L}$, FAC 10C and 2560 $\mu\text{g}/\text{L}$, FAC 11C) and specific conductance (536 $\mu\text{S}/\text{cm}$) were the only parameters elevated above Level 2 Flagging Criteria in the Barnwell/McBean wells.

The groundwater flow direction derived from the FAC water table aquifer water elevations is west for second quarter 1995 at a rate of 1300 ft/year. This interpretation may be compromised by the lack of data from 5P which was dry during the second quarter 1995 monitoring event and the anomalously low water level recorded in well FAC 6 which was dry in the first quarter of 1995 and pumped dry during purging without yielding a measurable amount of water (the well may never have recovered completely from being dry in the first quarter of 1995). The groundwater flow direction could not be derived from FAC piezometers due to the lack of water elevation data for second quarter 1995. The groundwater flow direction in the Barnwell/McBean aquifer was northeast at a rate of about 50 feet/year under the same assumptions as are used for the water table aquifer.

THIS PAGE LEFT BLANK INTENTIONALLY.

Introduction

The F-Area Acid/Caustic Basin is located east of F-Area at the Savannah River Site (SRS) (Figure 1, Appendix C) on a slope that leads to an unnamed tributary of Upper Three Runs Creek. The following description outlines important events in the history of the F-Area Acid/Caustic Basin.

- The F-Area Acid/Caustic Basin, constructed in the early 1950s, is an unlined earthen pit that received dilute sulfuric acid and sodium hydroxide solutions and other wastes from several areas within SRS. The basin provided mixing and neutralization of the dilute solutions before their discharge to nearby streams (Heffner and Exploration Resources, 1991).
- The basin remained in service until new neutralization facilities became operational in 1982 (Heffner and Exploration Resources, 1991).
- Wells FAC 1, 2, 3, and 4 were installed at the basin between August 1983 and July 1984 (EPD/EMS, 1994).
- Under the terms of a consent decree signed May 26, 1988, by the U.S. District Court (Civil Action 1:85-2583-6, District of South Carolina, Aiken Division), the basin became subject to requirements of Subtitle C of the Resource Conservation and Recovery Act (RCRA), the South Carolina Hazardous Waste Management Regulations (SCHWMR), and associated regulations on June 1, 1988.
- The FAC monitoring wells were reevaluated during the summer of 1988 to ensure compliance with SCHWMR. As part of this compliance effort, wells FAC 5, 6, 7, and 8 were installed at the basin during third quarter 1988 (EPD/EMS, 1994).
- Wells FAC 1 and 2 were abandoned in March 1989 (EPD/EMS, 1994) because they were dry and were not included in the RCRA monitoring program.
- The revised Groundwater Quality Assessment Plan for the F-Area Acid/Caustic Basin (WSRC, 1991), submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) on April 30, 1991, proposed the installation of six permanent piezometers to provide additional water elevation data that would help define the groundwater flow direction and assess the current monitoring well network as required by SCHWMR.
- The six piezometers were installed in early 1992 (EPD/EMS, 1994) (Figure 2, Appendix C).
- During first quarter 1993, piezometer FAC 5P was added to the sampling schedule.
- New monitoring wells FAC 9C, 10C, 11C, and 12C (Barnwell/McBean aquifer) were installed during second quarter 1994 and were monitored for the first time during third quarter 1994. The second quarter 1995 data supplied in this report satisfy the four quarter monitoring agreement between SRS and SCDHEC.

Currently, the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) samples monitoring wells FAC 3, 4, 5, 6, 7, 8, 9C, 10C, 11C, and 12C and piezometer FAC 5P (Figures 2 and 3, Appendix C) each quarter as part of the SRS Groundwater Monitoring Program. The Environmental Restoration Department provides a quarterly report describing the monitoring results to SCDHEC in compliance with SCHWMR.

Discussion

Groundwater Monitoring Data

The EPD/EMS groundwater sampling procedure (EPD/EMS, 1992) requires evacuation of a minimum of two well volumes and stabilization of pH, specific conductance, and turbidity prior to sample collection. Stability is established when a minimum of three successive measurements, taken within a given time period, are within a specified tolerance range. If a well pumps dry before two well volumes are purged or before stabilization is achieved, it must be revisited within 24 hours for the data to be considered the result of a single sampling event. On the second-visit within 24 hours, samples are taken without purging or measuring stability; thus, these samples may not be representative of the groundwater quality.

During second quarter 1995, samples from the nine successfully sampled monitoring wells at the F-Area Acid/Caustic Basin were analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. The new monitoring wells in F-Area are scheduled for comprehensive analyses through second quarter 1995 (the current quarter). This report describes results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or drinking water screening levels, as established by the U.S. Environmental Protection Agency (EPA) (Appendix A); the South Carolina final PDWS for lead (Appendix A); SRS flagging criteria that are based on final and proposed PDWS, Secondary Drinking Water Standards, and method detection limits (Appendix B); or the SRS turbidity standard. Constituent levels that equaled or exceeded the final PDWS, screening levels, or other Flag 2 criteria are described as *exceeding* standards, *above* standards, or as *elevated*.

The final PDWS for individual analytes presented in Appendix A may not always match the SRS flagging criteria presented in Appendix B. The final PDWS generally are used in this compliance report as guidelines to meet regulatory requirements; the flagging criteria are used by EPD/EMS to identify relative levels of constituents in the groundwater and as guides for scheduling groundwater monitoring.

Analytical Results Exceeding Standards

Results for analytes that exceeded the final PDWS (Appendix A) during second quarter 1995 are summarized in Table 1 (Appendix D). None of the analyzed constituents exceeded PDWS in the Barnwell/McBean samples. Gross alpha activity exceeded the final PDWS in wells FAC 3, 4, and 5, with a maximum activity of 8.65E+01 pCi/L in monitoring well FAC 4.

Constituents that exceeded other flagging criteria (Appendix B) during second quarter 1995 are summarized in Table 2 (Appendix D). Aluminum exceeded its Flag 2 criterion in five of the FAC wells sampled this quarter, with a maximum concentration of 2560 $\mu\text{g}/\text{L}$ in well FAC 11C; the highest aluminum concentration in the water table aquifer wells was 763 $\mu\text{g}/\text{L}$ in well FAC 3. Iron exceeded its Flag 2 criterion in wells FAC 3, 5, 7, and 8, with a maximum concentration of 1140 $\mu\text{g}/\text{L}$ in well FAC 5; the highest iron concentration

observed in the Barnwell/McBean aquifer wells was 173 $\mu\text{g/L}$ (less than the Level 2 Flag Criteria, 300 $\mu\text{g/L}$) in well FAC 11C. Manganese exceeded its Flag 2 criterion in well FAC 4, at 399 $\mu\text{g/L}$. Radium-226 was elevated in well FAC 4, with a concentration of 2.4E+01 pCi/L. The total organic halogens observed in well FAC 3 were 105 $\mu\text{g/L}$, exceeding the Level 2 Flag; this value carried a "J" modifier because quantitation in the sample did not meet specifications (analytical detection limits for total organic halogens in the other FAC samples are 161 $\mu\text{g/L}$).

Table 3 (Appendix D) presents all of the results for individual wells and indicates the analytical laboratories that conducted the analyses, the dilution factors used in the analyses, and the analyses that received modifiers (which help identify laboratory accuracy and precision) or that exceeded the EPA-approved holding times during second quarter 1995. Constituent results in Table 3 that appear to equal the final PDWS but are not marked in the ST column (exceeded final PDWS or screening level) are below the final PDWS in the database. Database results, the results that are compared to the final PDWS, are entered with more significant digits than the results given in this report. Apparent discrepancies are the result of the rounding of reported results.

Table 3 also lists the number of well volumes purged from each well during second quarter 1995 and provides a statement that describes incomplete or unsuccessful sampling events. Well FAC 5P was dry before any field data were collected. Well FAC 6 went dry during purging and did not recover within 24 hours. Wells FAC 5, 7, and 8 went dry during purging and the samples were collected after the well recovered; thus, these wells may not have produced representative groundwater samples.

Appendix D provides definitions of the abbreviations and the modifiers used in the results tables as well as descriptions of holding times, data rounding, and data qualification practices.

Appendix E provides a general assessment of the quality and usability of the data provided by EPD/EMS.

Turbidity Results Exceeding Standards

A value of 5 nephelometric turbidity units (NTU), established by EPA (1986) as a general standard for acceptability of groundwater samples, is considered unrealistic for monitoring wells at SRS. Gass (1989) has documented turbidity measurements as high as 5,000 NTU from properly designed wells screened in poorly productive formations. During the 1989 RCRA Compliance Monitoring Evaluation Inspection, officials from EPA Region IV indicated that the SRS turbidity standard of 50 NTU is conservative. These officials also agreed that water-table wells in this area often screen nonaquifer formations, rendering development of these wells more difficult due to the low yield and high proportion of mobile fines typical of these formations (Bergren and Bennett, 1989).

During second quarter 1995, the laboratory-determined turbidity of samples from wells FAC 4, 8, 9C, 10C, and 12C was less than or equal to 5 NTU. Well FAC 3 exceeded the SRS turbidity standard (50 NTU) with a value of 225 NTU (Tables 2 and 3 in Appendix D). The highest turbidity value reported from the Barnwell/McBean wells was 29 NTU from well FAC 11C. Wells FAC 5P and 6 were dry or did not yield sufficient water volumes to permit turbidity measurements.

Water Elevations, Flow Directions, and Flow Rates

Because most of the FAC monitoring wells are screened into and through a clay-confining layer (the tan clay) beneath the F-Area Acid/Caustic Basin, water-level measurements from the FAC monitoring wells do not provide a clear groundwater flow pattern and thus have made flow rate estimates uncertain. Piezometers screened above this clay layer were installed during 1992 to provide additional water elevations for more accurate estimates of groundwater flow direction and rate within the water table. Monitoring data for the piezometers in second quarter 1995 are not available.

Figure 4 (Appendix C) was generated using only water elevations from the FAC monitoring wells. Using universal transverse Mercator coordinates, the groundwater flow direction derived from FAC water table aquifer wells water elevations is west. The groundwater flow rate in the water table (Aquifer Zone IIB₂) beneath the F-Area Acid/Caustic Basin is estimated using the following equation:

$$\text{Flow (ft/day)} = \frac{\text{Hydraulic Conductivity (ft/day)} \times \frac{dh \text{ (ft)}}{dl \text{ (ft)}}}{\text{Porosity (unitless)}}$$

A hydraulic conductivity constant of 10 ft/day (Geraghty & Miller, Inc., 1990) is a conservative estimate (i.e., the actual hydraulic conductivity should be somewhat less than 10 ft/day). The effective porosity value is estimated at 20 percent (Killian et al., 1987); dh is the difference in head, and dl is the length of the flow path to the nearest 10 ft. Flow rate estimates vary depending on the vertical gradient between wells, the size of the area under consideration, and the number of data points. For this reason, the estimation of flow rate should be considered accurate only to an order of magnitude.

Flow rate estimates are calculated as follows: flow rate per day is calculated to two significant figures using the above equation. This value is then multiplied by 365 and rounded to two significant figures for the flow rate per year.

The flow rate estimate for groundwater in the water table beneath the F-Area Acid/Caustic Basin using water-level data from the FAC monitoring wells (see Figure 4, Appendix C) is at best an approximation due to the near-linear arrangement of the wells.

The flow rate estimate for groundwater in the water table beneath the F-Area Acid/Caustic Basin using water-level data from the FAC piezometers (see Figure 5, Appendix C) is as follows:

$$\frac{10}{.2} \times \frac{3}{42} = 3.6 \text{ ft/day}$$

$$3.6 \text{ ft/day} \times 365 \text{ days} \approx 1300 \text{ ft/year}$$

Water elevations for the FAC piezometers probably represent fully unconfined conditions, while water elevations for FAC monitoring wells intersecting the clay layer may have equilibrated with the hydrostatic head below the clay layer. As a result, water-table conditions determined by piezometer water elevations are more representative of true water-table conditions than those determined by water elevations obtained at monitoring wells when these data are available.

The water table aquifer monitoring wells display a greater gradient (7 feet per 100 feet) than do either the piezometers (4Q94, 0.5 feet per 100 feet, calculated flow rate was 99 ft/yr) or the

Barnwell/McBean wells (0.27 feet per 100 feet). This difference may be due to the variation in screening of the water table aquifer wells through and into the tan clay. The monitoring wells essentially depict a variation in head resulting from different pressure gradients.

Results for Upgradient vs. Downgradient Wells

Based on the groundwater flow direction determined from the water table aquifer data, wells FAC 3 and 5 are upgradient at the F-Area Acid/Caustic Basin, while well FAC 6 is downgradient.

During second quarter 1995, upgradient wells FAC 3 and 5 contained gross alpha above the final PDWS. Aluminum and iron exceeded SRS Flag 2 criteria in both upgradient wells. Also, turbidity was elevated in upgradient well FAC 3.

Downgradient well FAC 6 went dry and could not be sampled.

During the second quarter 1995, the groundwater flow direction determined from the Barnwell/McBean aquifer data was northeast; the calculated flow rate was 50 feet per year, using the same hydraulic conductivity and effective porosity as those used for the water table aquifer. The only Barnwell/McBean constituents which exceeded Level 2 Flagging Criteria were aluminum (265 $\mu\text{g/L}$ in well FAC 10C and 2560 $\mu\text{g/L}$ in well FAC 11C) and Specific conductance (536 $\mu\text{S/cm}$ in well FAC 11C). Wells FAC 11C and 12C are upgradient of the basin.

Conclusions

During second quarter 1995, aluminum, nitrate as nitrogen, gross alpha, iron, manganese, and radium-226 exceeded final PDWS or other Flag 2 criteria in FAC wells at the F-Area Acid/Caustic Basin. The SRS turbidity standard was exceeded in groundwater from water table wells FAC 3 at 225 NTU. Samples from well FAC 3 have consistently exceeded the turbidity standard in previous quarters.

During second quarter 1995, one or both of the upgradient wells, FAC 3 and 5; contained elevated levels of aluminum, gross alpha, iron, and turbidity. Downgradient well FAC 6 went dry and could not be sampled.

Because historical records indicate that no radionuclides were disposed at this waste management unit (Heffner and Exploration Resources, 1991), the elevated levels of radioactive constituents in the FAC wells are not considered to be due to seepage from the F-Area Acid/Caustic Basin.

Water table elevations from the FAC water table wells at the F-Area Acid/Caustic Basin indicate a westerly flow direction at a rate of approximately 1300 ft/year. When available, the groundwater flow depicted from the piezometers is generally considered to be a more reliable indication of flow conditions in the water table than the flow rate and direction obtained from monitoring well data. The groundwater flow direction indicated by the piezometers is generally toward the northwest and the flow rate averages about 130 feet per year (Closure Plan for the F-, H-, K-, and P-Area Acid/Caustic Basins (U) Revision 6, June 19, 1995, page 4.4-56). Groundwater flow in the Barnwell/McBean aquifer is toward the northeast at about 50 feet per year.

References Cited

Bergren, C. L., and C. B. Bennett, 1989. **Assessment of SRS Groundwater Monitoring Wells Impacted by Turbidity**, WSRC-RP-89-891. Westinghouse Savannah River Company, Aiken, SC.

EPA (U.S. Environmental Protection Agency), 1986. **RCRA Ground Water Monitoring Technical Enforcement Guidance Document**, OSWER-9950.1. Washington, DC.

EPD/EMS (Environmental Protection Department/Environmental Monitoring Section), 1992. **Hydrogeologic Data Collection Procedures and Specifications: Sampling Groundwater Monitoring Wells**, Manual 3Q5, Chapter 14, Revision 0. Environmental Protection Department, Environmental Monitoring Section, Savannah River Site, Aiken, SC.

EPD/EMS (Environmental Protection Department/Environmental Monitoring Section), 1994. **Environmental Protection Department's Well Inventory (through the second quarter of 1994)**, ESH-EMS-940518. Westinghouse Savannah River Company, Savannah River Site, Aiken, SC.

Gass, T. E., 1989. *Monitoring Wells in Non-Aquifer Formations*. **Water Well Journal** 43(2):27-29.

Geraghty & Miller, Inc., 1990. **Evaluation of Integrated Waste Facility Closure Capping on Ground-Water Flow and Solute Transport in General Separations Area, Savannah River Site: Flow Model and Particle-Tracking Analysis, Final Report**. Prepared by Geraghty & Miller Modeling Group for Westinghouse Savannah River Company, Waste Management Technology, Savannah River Site, Aiken, SC.

Heffner, J.D., and Exploration Resources, Inc., 1991. **Technical Summary of Groundwater Quality Protection Program at the Savannah River Site (1952-1986), Volume I—Site Geohydrology and Waste Sites**, DPSP-88-1002. Westinghouse Savannah River Company, Aiken, SC.

Killian, T. H., N. L. Kolb, P. Corbo, and I. W. Marine, 1987. **F-Area Seepage Basins**, DPST-85-704. Savannah River Laboratory, E.I. duPont de Nemours & Company, Aiken, SC.

WSRC (Westinghouse Savannah River Company), 1991. **F-, H-, K-, and P-Area Acid/Caustic Basins Groundwater Quality Assessment Plan**, WSRC-TR-91-178, Revision 1.0. Westinghouse Savannah River Company, Aiken, SC.

WSRC, 1995. **Closure Plan for the F-, H-, K-, and P-Area Acid/Caustic Basins (U)**, WSRC-RP-94-1259, Revision 6. Westinghouse Savannah River Company, Aiken, SC.

Errata

In tables with four quarters of data, some values for earlier quarters may differ from values for those same quarters presented in earlier reports because some reanalyses may have been performed by the laboratories after the reports were printed.

Second Quarter 1995:

- No errata have been reported.

THIS PAGE LEFT BLANK INTENTIONALLY.

Appendix A

Final Primary Drinking Water Standards

THIS PAGE LEFT BLANK INTENTIONALLY.

Final Primary Drinking Water Standards

<u>Analyte</u>	<u>Unit</u>	<u>Level</u>	<u>Status</u>	<u>Source</u>
Alachlor	µg/L	2	Final	EPA, 1993
Aldicarb ^a	µg/L	3	Final	EPA, 1993
Aldicarb sulfone ^a	µg/L	2	Final	EPA, 1993
Aldicarb sulfoxide ^a	µg/L	4	Final	EPA, 1993
Antimony	µg/L	6	Final	EPA, 1993
Arsenic	µg/L	50	Final	EPA, 1993
Asbestos	Fibers/L	7,000,000	Final	EPA, 1993
Atrazine	µg/L	3	Final	EPA, 1993
Barium	µg/L	2,000	Final	EPA, 1993
Benzene	µg/L	5	Final	EPA, 1993
Benzo[a]pyrene	µg/L	0.2	Final	EPA, 1993
Beryllium	µg/L	4	Final	EPA, 1993
Bis(2-ethylhexyl) phthalate	µg/L	6	Final	EPA, 1993
Bromodichloromethane	µg/L	100	Final	EPA, 1993
Bromoform	µg/L	100	Final	EPA, 1993
2-sec-Bütyl-4,6-dinitrophenol	µg/L	7	Final	EPA, 1993
Cadmium	µg/L	5	Final	EPA, 1993
Carbofuran	µg/L	40	Final	EPA, 1993
Carbon tetrachloride	µg/L	5	Final	EPA, 1993
Chlordane	µg/L	2	Final	EPA, 1993
Chlorobenzene	µg/L	100	Final	EPA, 1993
Chloroethene (Vinyl chloride)	µg/L	2	Final	EPA, 1993
Chloroform	µg/L	100	Final	EPA, 1993
Chromium	µg/L	100	Final	EPA, 1993
Copper	µg/L	1,300	Final	EPA, 1993
Cyanide	µg/L	200	Final	EPA, 1993
Dalapon ^a	µg/L	200	Final	EPA, 1993
Dibromochloromethane	µg/L	100	Final	EPA, 1993
1,2-Dibromo-3-chloropropane	µg/L	0.2	Final	EPA, 1993
1,2-Dibromoethane	µg/L	0.05	Final	EPA, 1993
1,2-Dichlorobenzene	µg/L	600	Final	EPA, 1993
1,4-Dichlorobenzene	µg/L	75	Final	EPA, 1993
1,2-Dichloroethane	µg/L	5	Final	EPA, 1993
1,1-Dichloroethylene	µg/L	7	Final	EPA, 1993
1,2-Dichloroethylene	µg/L	50	Final	EPA, 1993
cis-1,2-Dichloroethylene	µg/L	70	Final	EPA, 1993
trans-1,2-Dichloroethylene	µg/L	100	Final	EPA, 1993
Dichloromethane (Methylene chloride)	µg/L	5	Final	EPA, 1993
2,4-Dichlorophenoxyacetic acid	µg/L	70	Final	EPA, 1993
1,2-Dichloropropane	µg/L	5	Final	EPA, 1993
Di(2-ethylhexyl) adipate ^a	µg/L	400	Final	EPA, 1993
Diquat dibromide ^a	µg/L	20	Final	EPA, 1993
Endothall ^a	µg/L	100	Final	EPA, 1993
Endrin	µg/L	2	Final	EPA, 1993
Ethylbenzene	µg/L	700	Final	EPA, 1993
Fluoride	µg/L	4,000	Final	EPA, 1993
Glyphosate ^a	µg/L	700	Final	EPA, 1993
Gross alpha ^b	pCi/L	1.5E+01	Final	EPA, 1993
Heptachlor	µg/L	0.4	Final	EPA, 1993

Heptachlor epoxide	µg/L	0.2	Final	EPA, 1993
Hexachlorobenzene	µg/L	1	Final	EPA, 1993
Hexachlorocyclopentadiene	µg/L	50	Final	EPA, 1993
Lead	µg/L	50	Final	SCDHEC, 1981
Lindane	µg/L	0.2	Final	EPA, 1993
Mercury	µg/L	2	Final	EPA, 1993
Methoxychlor	µg/L	40	Final	EPA, 1993
Nickel	µg/L	100	Final	EPA, 1993
Nitrate as nitrogen	µg/L	10,000	Final	EPA, 1993
Nitrate-nitrite as nitrogen	µg/L	10,000	Final	EPA, 1993
Nitrite as nitrogen	µg/L	1,000	Final	EPA, 1993
Nonvolatile beta	pCi/L	5E+01	Interim Final	EPA, 1977
Oxamyl ^a	µg/L	200	Final	EPA, 1993
PCB 1016	µg/L	0.5	Final	EPA, 1993
PCB 1221	µg/L	0.5	Final	EPA, 1993
PCB 1232	µg/L	0.5	Final	EPA, 1993
PCB 1242	µg/L	0.5	Final	EPA, 1993
PCB 1248	µg/L	0.5	Final	EPA, 1993
PCB 1254	µg/L	0.5	Final	EPA, 1993
PCB 1260	µg/L	0.5	Final	EPA, 1993
PCB 1262	µg/L	0.5	Final	EPA, 1993
Pentachlorophenol	µg/L	1	Final	EPA, 1993
Piclorama	µg/L	500	Final	EPA, 1993
Selenium	µg/L	50	Final	EPA, 1993
Simazine ^a	µg/L	4	Final	EPA, 1993
Strontium-89/90 ^c	pCi/L	8E+00	Final	EPA, 1993
Strontium-90	pCi/L	8E+00	Final	EPA, 1993
Styrene	µg/L	100	Final	EPA, 1993
2,3,7,8-TCDD	µg/L	0.00003	Final	EPA, 1993
Tetrachloroethylene	µg/L	5	Final	EPA, 1993
Thallium	µg/L	2	Final	EPA, 1993
Toluene	µg/L	1,000	Final	EPA, 1993
Toxaphene	µg/L	3	Final	EPA, 1993
2,4,5-TP (Silvex)	µg/L	50	Final	EPA, 1993
1,2,4-Trichlorobenzene	µg/L	70	Final	EPA, 1993
1,1,1-Trichloroethane	µg/L	200	Final	EPA, 1993
1,1,2-Trichloroethane	µg/L	5	Final	EPA, 1993
Trichloroethylene	µg/L	5	Final	EPA, 1993
Tritium	pCi/mL	2E+01	Final	EPA, 1993
Xylenes	µg/L	10,000	Final	EPA, 1993

Note: Final PDWS were assigned to alachlor, aldicarb, aldicarb sulfone, aldicarb sulfoxide, atrazine, carbofuran, dalapon, di(2-ethylhexyl) adipate, diquat dibromide, endothall, glyphosate, oxamyl, picloram, and simazine in the SRS Groundwater Monitoring Program for the first time beginning first quarter 1994.

- ^a At present, EMS does not perform this analysis because the constituent is not in the current contract.
- ^b The standard given is for gross alpha including radium-226 but excluding radon and uranium.
- ^c For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.

References

EPA (U.S. Environmental Protection Agency), 1977. **National Interim Primary Drinking Water Regulations**, EPA-570/9-76-003. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1993. *National Primary Drinking Water Regulations, Code of Federal Regulations*, Title 40, Part 141, pp. 592-732. Washington, DC.

SCDHEC (South Carolina Department of Health and Environmental Control), 1981. **State Primary Drinking Water Regulations**, R.61-58.5. Columbia, SC.

THIS PAGE LEFT BLANK INTENTIONALLY.

Appendix B

Flagging Criteria

THIS PAGE LEFT BLANK INTENTIONALLY.

Flagging Criteria

The Savannah River Site Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) flagging criteria are as follows:

- Flag 2 criteria for constituents equal the Safe Drinking Water Act (SDWA) final Primary Drinking Water Standards (PDWS), the SDWA proposed PDWS, or the SDWA Secondary Drinking Water Standards (SDWS). If a constituent does not have a drinking water standard, the Flag 2 criterion equals 10 times the method detection limit (MDL) calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.
- Flag 1 criteria for constituents equal one-half of the final PDWS, one-half the proposed PDWS, or one-half the SDWS. If a constituent does not have a drinking water standard, the Flag 1 criterion equals 5 times the MDL calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.
- Flag 0 criteria are assigned to constituent levels below Flag 1 criteria, constituent levels below the sample detection limits, or constituents having no flagging criteria.

The following parameters are exceptions to the flagging rules:

- EPD/EMS sets flagging criteria for pH and specific conductance. No flags are set for alkalinity, calcium, carbonate, magnesium, potassium, silica, sodium, total dissolved solids, total phosphates (as P), and total phosphorus. Analyses for these parameters are conducted as part of the biennial comprehensive analyses or by special request.
- Aesthetic parameters such as color, corrosivity, Eh, odor, surfactants, and turbidity are not assigned flagging criteria but are analyzed by special request.
- Common laboratory contaminants and cleaners such as dichloromethane (methylene chloride), ketones, phthalates, and toluene are not assigned flagging criteria unless they have primary drinking water standards. These constituents are analyzed by special request.

Analyte	Unit	Flag 1	Flag 2	Source ^a
Acenaphthene	µg/L	50	100	EPA Method 8270
Acenaphthylene	µg/L	50	100	EPA Method 8270
Acetone	µg/L	500	1,000	EPA Method 8240
Acetonitrile (Methyl cyanide)	µg/L	500	1,000	EPA Method 8240
Acetophenone	µg/L	50	100	EPA Method 8270
2-Acetylaminofluorene	µg/L	50	100	EPA Method 8270
Acrolein	µg/L	100	200	EPA Method 8240
Acrylonitrile	µg/L	100	200	EPA Method 8240
Actinium-228	pCi/L	1.64E+03	3.27E+03	Proposed PDWS (EPA, 1991)
Alachlor	µg/L	1	2	Final PDWS (EPA, 1993a)
Aldicarb ^b	µg/L	1.5	3	Final PDWS (EPA, 1993a)
Aldicarb sulfone ^b	µg/L	1	2	Final PDWS (EPA, 1993a)
Aldicarb sulfoxide ^b	µg/L	2	4	Final PDWS (EPA, 1993a)
Aldrin	µg/L	0.25	0.5	EPA Method 8080
Alkalinity (as CaCO ₃)		No flag	No flag	Set by EPD/EMS
Allyl chloride	µg/L	250	500	EPA Method 8240
Aluminum	µg/L	25	50	SDWS (EPA, 1993b)
Aluminum, dissolved	µg/L	25	50	SDWS (EPA, 1993b)
Aluminum, total recoverable	µg/L	25	50	SDWS (EPA, 1993b)

Americium-241	pCi/L	3.17E+00	6.34E+00	Proposed PDWS (EPA, 1991)
Americium-243	pCi/L	3.19E+00	6.37E+00	Proposed PDWS (EPA, 1991)
4-Aminobiphenyl	µg/L	50	100	EPA Method 8270
Ammonia	µg/L	500	1,000	APHA Method 417B
Ammonia nitrogen	µg/L	500	1,000	EPA Method 350.1
Aniline	µg/L	50	100	EPA Method 8270
Anthracene	µg/L	50	100	EPA Method 8270
Antimony	µg/L	3	6	Final PDWS (EPA, 1993a)
Antimony, dissolved	µg/L	3	6	Final PDWS (EPA, 1993a)
Antimony, total recoverable	µg/L	3	6	Final PDWS (EPA, 1993a)
Antimony-125	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Aramite	µg/L	50	100	EPA Method 8270
Arsenic	µg/L	25	50	Final PDWS (EPA, 1993a)
Arsenic, dissolved	µg/L	25	50	Final PDWS (EPA, 1993a)
Arsenic, total recoverable	µg/L	25	50	Final PDWS (EPA, 1993a)
Asbestos	Fibers/L	3,500,000	7,000,000	Final PDWS (EPA, 1993a)
Atrazine	µg/L	1.5	3	Final PDWS (EPA, 1993a)
Azobenzene	µg/L	50	100	EPA Method 625
Barium	µg/L	1,000	2,000	Final PDWS (EPA, 1993a)
Barium, dissolved	µg/L	1,000	2,000	Final PDWS (EPA, 1993a)
Barium, total recoverable	µg/L	1,000	2,000	Final PDWS (EPA, 1993a)
Barium-140 ^c	pCi/L	4.5E+01	9E+01	Interim Final PDWS (EPA, 1977)
Benzene	µg/L	2.5	5	Final PDWS (EPA, 1993a)
alpha-Benzene hexachloride	µg/L	0.25	0.5	EPA Method 8080
beta-Benzene hexachloride	µg/L	0.25	0.5	EPA Method 8080
delta-Benzene hexachloride	µg/L	0.25	0.5	EPA Method 8080
Benzidine	µg/L	250	500	EPA Method 8270
Benzo[a]anthracene	µg/L	0.05	0.1	Proposed PDWS (EPA, 1990)
Benzo[b]fluoranthene	µg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Benzo[k]fluoranthene	µg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Benzoic acid	µg/L	250	500	EPA Method 8270
Benzo[g,h,i]perylene	µg/L	50	100	EPA Method 8270
Benzo[a]pyrene	µg/L	0.1	0.2	Final PDWS (EPA, 1993a)
1,4-Benzoquinone	µg/L	50	100	EPA Method 8270
Benzyl alcohol	µg/L	50	100	EPA Method 8270
Beryllium	µg/L	2	4	Final PDWS (EPA, 1993a)
Beryllium, dissolved	µg/L	2	4	Final PDWS (EPA, 1993a)
Beryllium, total recoverable	µg/L	2	4	Final PDWS (EPA, 1993a)
Beryllium-7	pCi/L	3E+03	6E+03	Interim Final PDWS (EPA, 1977)
Bis(2-chloroethoxy) methane	µg/L	50	100	EPA Method 8270
Bis(2-chloroethyl) ether	µg/L	50	100	EPA Method 8270
Bis(2-chloroisopropyl) ether	µg/L	50	100	EPA Method 8270
Bis(chloromethyl) ether	µg/L	50	100	EPA Method 8270
Bis(2-ethylhexyl) phthalate	µg/L	3	6	Final PDWS (EPA, 1993a)
Bismuth-214	pCi/L	9.4E+03	1.89E+04	Proposed PDWS (EPA, 1991)
Boron	µg/L	150	300	EPA Method 6010
Boron, dissolved	µg/L	150	300	EPA Method 6010
Boron, total recoverable	µg/L	150	300	EPA Method 6010
Bromide	µg/L	5,000	10,000	EPA Method 300.0
Bromodichloromethane	µg/L	50	100	Final PDWS (EPA, 1993a)
Bromoform	µg/L	50	100	Final PDWS (EPA, 1993a)
Bromomethane (Methyl bromide)	µg/L	5	10	EPA Method 8240
4-Bromophenyl phenyl ether	µg/L	50	100	EPA Method 8270
Butylbenzyl phthalate		No flag	No flag	Set by EPD/EMS

2-sec-Butyl-4,6-dinitrophenol	µg/L	3.5	7	Final PDWS (EPA, 1993a)
Cadmium	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Cadmium, dissolved	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Cadmium, total recoverable	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Calcium		No flag	No flag	Set by EPD/EMS
Calcium, dissolved		No flag	No flag	Set by EPD/EMS
Calcium, total recoverable		No flag	No flag	Set by EPD/EMS
Carbofuran	µg/L	20	40	Final PDWS (EPA, 1993a)
Carbon-14	pCi/L	1E+03	2E+03	Interim Final PDWS (EPA, 1977)
Carbonate		No flag	No flag	Set by EPD/EMS
Carbon disulfide	µg/L	5	10	EPA Method 8240
Carbon tetrachloride	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Cerium-141 ^c	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Cerium-144	pCi/L	1.31E+02	2.61E+02	Proposed PDWS (EPA, 1991)
Cesium-134 ^d	pCi/L	4.07E+01	8.13E+01	Proposed PDWS (EPA, 1991)
Cesium-137	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)
Chlordane	µg/L	1	2	Final PDWS (EPA, 1993a)
Chloride	µg/L	125,000	250,000	SDWS (EPA, 1993b)
4-Chloroaniline	µg/L	50	100	EPA Method 8270
Chlorobenzene	µg/L	50	100	Final PDWS (EPA, 1993a)
Chlorobenzilate	µg/L	50	100	EPA Method 8270
4-Chloro-m-cresol	µg/L	50	100	EPA Method 8270
Chloroethane	µg/L	5	10	EPA Method 8240
Chloroethylene (Vinyl chloride)	µg/L	1	2	Final PDWS (EPA, 1993a)
Chloroethyl vinyl ether	µg/L	5	10	EPA Method 8240
2-Chloroethyl vinyl ether	µg/L	5	10	EPA Method 8240
Chloroform	µg/L	50	100	Final PDWS (EPA, 1993a)
Chloromethane (Methyl chloride)	µg/L	5	10	EPA Method 8240
2-Chloronaphthalene	µg/L	50	100	EPA Method 8240
2-Chlorophenol	µg/L	50	100	EPA Method 8270
4-Chlorophenyl phenyl ether	µg/L	50	100	EPA Method 8270
Chloroprene	µg/L	1,000	2,000	EPA Method 8240
Chromium	µg/L	50	100	Final PDWS (EPA, 1993a)
Chromium, dissolved	µg/L	50	100	Final PDWS (EPA, 1993a)
Chromium, total recoverable	µg/L	50	100	Final PDWS (EPA, 1993a)
Chromium-51 ^c	pCi/L	3E+03	6E+03	Interim Final PDWS (EPA, 1977)
Chrysene	µg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Cobalt	µg/L	20	40	EPA Method 6010
Cobalt, dissolved	µg/L	20	40	EPA Method 6010
Cobalt, total recoverable	µg/L	20	40	EPA Method 6010
Cobalt-57	pCi/L	5E+02	1E+03	Interim Final PDWS (EPA, 1977)
Cobalt-58 ^d	pCi/L	4.5E+03	9E+03	Interim Final PDWS (EPA, 1977)
Cobalt-60	pCi/L	5E+01	1E+02	Interim Final PDWS (EPA, 1977)
Color		No flag	No flag	Set by EPD/EMS
Copper	µg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Copper, dissolved	µg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Copper, total recoverable	µg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Corrosivity		No flag	No flag	Set by EPD/EMS
m-Cresol (3-Methylphenol)	µg/L	50	100	EPA Method 8270
o-Cresol (2-Methylphenol)	µg/L	50	100	EPA Method 8270
p-Cresol (4-Methylphenol)	µg/L	50	100	EPA Method 8270
Curium-242	pCi/L	6.65E+01	1.33E+02	Proposed PDWS (EPA, 1991)
Curium-243	pCi/L	4.15E+00	8.3E+00	Proposed PDWS (EPA, 1991)
Curium-243/244 ^e	pCi/L	4.15E+00	8.3E+00	Proposed PDWS (EPA, 1991)
Curium-244	pCi/L	4.92E+00	9.84E+00	Proposed PDWS (EPA, 1991)

Curium-245/246 ^e	pCi/L	3.12E+00	6.23E+00	Proposed PDWS (EPA, 1991)
Curium-246	pCi/L	3.14E+00	6.27E+00	Proposed PDWS (EPA, 1991)
Cyanide	µg/L	100	200	Final PDWS (EPA, 1993a)
Dalapon ^b	µg/L	100	200	Final PDWS (EPA, 1993a)
p,p'-DDD	µg/L	0.5	1	EPA Method 8080
p,p'-DDE	µg/L	0.5	1	EPA Method 8080
p,p'-DDT	µg/L	0.5	1	EPA Method 8080
Diallate	µg/L	50	100	EPA Method 8270
Dibenz[a,h]anthracene	µg/L	0.15	0.3	Proposed PDWS (EPA, 1990)
Dibenzofuran	µg/L	50	100	EPA Method 8270
Dibromochloromethane	µg/L	50	100	Final PDWS (EPA, 1993a)
1,2-Dibromo-3-chloropropane	µg/L	0.1	0.2	Final PDWS (EPA, 1993a)
1,2-Dibromoethane	µg/L	0.025	0.05	Final PDWS (EPA, 1993a)
Dibromomethane (Methylene bromide)	µg/L	5	10	EPA Method 8240
Di-n-butyl phthalate		No flag	No flag	Set by EPD/EMS
1,2-Dichlorobenzene	µg/L	300	600	Final PDWS (EPA, 1993a)
1,3-Dichlorobenzene	µg/L	50	100	EPA Method 8270
1,4-Dichlorobenzene	µg/L	37.5	75	Final PDWS (EPA, 1993a)
3,3'-Dichlorobenzidine	µg/L	50	100	EPA Method 8270
trans-1,4-Dichloro-2-butene	µg/L	150	300	EPA Method 8240
Dichlorodifluoromethane	µg/L	5	10	EPA Method 8240
1,1-Dichloroethane	µg/L	5	10	EPA Method 8240
1,2-Dichloroethane	µg/L	2.5	5	Final PDWS (EPA, 1993a)
1,1-Dichloroethylene	µg/L	3.5	7	Final PDWS (EPA, 1993a)
1,2-Dichloroethylene	µg/L	25	50	Final PDWS (EPA, 1993a)
cis-1,2-Dichloroethylene	µg/L	35	70	Final PDWS (EPA, 1993a)
trans-1,2-Dichloroethylene	µg/L	50	100	Final PDWS (EPA, 1993a)
Dichloromethane (Methylene chloride)	µg/L	2.5	5	Final PDWS (EPA, 1993a)
2,4-Dichlorophenol	µg/L	50	100	EPA Method 8270
2,6-Dichlorophenol	µg/L	50	100	EPA Method 8270
2,4-Dichlorophenoxyacetic acid	µg/L	35	70	Final PDWS (EPA, 1993a)
1,2-Dichloropropane	µg/L	2.5	5	Final PDWS (EPA, 1993a)
cis-1,3-Dichloropropene	µg/L	5	10	EPA Method 8240
trans-1,3-Dichloropropene	µg/L	5	10	EPA Method 8240
Dieldrin	µg/L	2.5	5	EPA Method 8080
Di(2-ethylhexyl) adipate	µg/L	200	400	Final PDWS (EPA, 1993a)
Diethyl phthalate		No flag	No flag	Set by EPD/EMS
Dimethoate	µg/L	50	100	EPA Method 8270
p-Dimethylaminoazobenzene	µg/L	50	100	EPA Method 8270
p-(Dimethylamino)ethylbenzene	µg/L	50	100	EPA Method 8270
7,12-Dimethylbenz[a]anthracene	µg/L	50	100	EPA Method 8270
3,3'-Dimethylbenzidine	µg/L	50	100	EPA Method 8270
a,a-Dimethylphenethylamine	µg/L	50	100	EPA Method 8270
2,4-Dimethyl phenol	µg/L	50	100	EPA Method 8270
Dimethyl phthalate		No flag	No flag	Set by EPD/EMS
1,3-Dinitrobenzene	µg/L	50	100	EPA Method 8270
2,4-Dinitrophenol	µg/L	250	500	EPA Method 8270
2,4-Dinitrotoluene	µg/L	50	100	EPA Method 8270
2,6-Dinitrotoluene	µg/L	50	100	EPA Method 8270
Di-n-octyl phthalate		No flag	No flag	Set by EPD/EMS
1,4-Dioxane	µg/L	50	100	EPA Method 8270
Diphenylamine	µg/L	50	100	EPA Method 8270
1,2-Diphenylhydrazine	µg/L	50	100	EPA Method 8270

Diquat dibromide ^b	µg/L	10	20	Final PDWS (EPA, 1993a)
Dissolved organic carbon	µg/L	5,000	10,000	EPA Method 9060
Disulfoton	µg/L	50	100	EPA Method 8270
Eh		No flag	No flag	Set by EPD/EMS
Endosulfan I	µg/L	0.5	1	EPA Method 8080
Endosulfan II	µg/L	0.5	1	EPA Method 8080
Endosulfan sulfate	µg/L	0.5	1	EPA Method 8080
Endothall ^b	µg/L	50	100	Final PDWS (EPA, 1993a)
Endrin	µg/L	1	2	Final PDWS (EPA, 1993a)
Endrin aldehyde	µg/L	0.5	1	EPA Method 8080
Endrin ketone		No flag	No flag	Set by EPD/EMS
Ethylbenzene	µg/L	350	700	Final PDWS (EPA, 1993a)
Ethyl methacrylate	µg/L	50	100	EPA Method 8270
Ethyl methanesulfonate	µg/L	50	100	EPA Method 8270
Europium-152	pCi/L	3E+01	6E+01	Interim Final PDWS (EPA, 1977)
Europium-154	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)
Europium-155	pCi/L	3E+02	6E+02	Interim Final PDWS (EPA, 1977)
Famphur	µg/L	50	100	EPA Method 8270
Fluoranthene	µg/L	50	100	EPA Method 8270
Fluorene	µg/L	50	100	EPA Method 8270
Fluoride	µg/L	2,000	4,000	Final PDWS (EPA, 1993a)
Glyphosate ^b	µg/L	350	700	Final PDWS (EPA, 1993a)
Gross alpha	pCi/L	7.5E+00	1.5E+01	Final PDWS (EPA, 1993a)
Heptachlor	µg/L	0.2	0.4	Final PDWS (EPA, 1993a)
Heptachlor epoxide	µg/L	0.1	0.2	Final PDWS (EPA, 1993a)
Heptachlorodibenzo-p-dioxin isomers	µg/L	0.00325	0.0065	EPA Method 8280
1,2,3,4,6,7,8-HPCDD	µg/L	0.00325	0.0065	EPA Method 8280
Heptachlorodibenzo-p-furan isomers	µg/L	0.00225	0.0045	EPA Method 8280
1,2,3,4,6,7,8-HPCDF	µg/L	0.00225	0.0045	EPA Method 8280
Hexachlorobenzene	µg/L	0.5	1	Final PDWS (EPA, 1993a)
Hexachlorobutadiene	µg/L	50	100	EPA Method 8270
Hexachlorocyclopentadiene	µg/L	25	50	Final PDWS (EPA, 1993a)
Hexachlorodibenzo-p-dioxin isomers	µg/L	0.00225	0.0045	EPA Method 8280
1,2,3,4,7,8-HXCDD	µg/L	0.00225	0.0045	EPA Method 8280
Hexachlorodibenzo-p-furan isomers	µg/L	0.002	0.004	EPA Method 8280
1,2,3,4,7,8-HXCDF	µg/L	0.002	0.004	EPA Method 8280
Hexachloroethane	µg/L	50	100	EPA Method 8270
Hexachlorophene	µg/L	250	500	EPA Method 8270
Hexachloropropene	µg/L	50	100	EPA Method 8270
2-Hexanone	µg/L	50	100	EPA Method 8240
Indeno[1,2,3-c,d]pyrene	µg/L	50	100	EPA Method 8270
Iodine	µg/L	250	500	APHA Method 415A
Iodine-129	pCi/L	5E-01	1E+00	Interim Final PDWS (EPA, 1977)
Iodine-131 ^c	pCi/L	1.5E+00	3E+00	Interim Final PDWS (EPA, 1977)
Iodomethane (Methyl iodide)	µg/L	75	150	EPA Method 8240
Iron	µg/L	150	300	SDWS (EPA, 1993b)
Iron, dissolved	µg/L	150	300	SDWS (EPA, 1993b)
Iron, total recoverable	µg/L	150	300	SDWS (EPA, 1993b)
Iron-55 ^c	pCi/L	1E+03	2E+03	Interim Final PDWS (EPA, 1977)
Iron-59 ^c	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)
Isobutyl alcohol	µg/L	500	1,000	EPA Method 8240

Isodrin	µg/L	50	100	EPA Method 8270
Isophorone	µg/L	50	100	EPA Method 8270
Isosafrole	µg/L	50	100	EPA Method 8270
Kepone	µg/L	50	100	EPA Method 8270
Lanthanum-140 ^c	pCi/L	3E+01	6E+01	Interim Final PDWS (EPA, 1977)
Lead	µg/L	25	50	Final PDWS (SCDHEC, 1981)
Lead, dissolved	µg/L	25	50	Final PDWS (SCDHEC, 1981)
Lead, total recoverable	µg/L	25	50	Final PDWS (SCDHEC, 1981)
Lead-212	pCi/L	6.2E+01	1.23E+02	Proposed PDWS (EPA, 1991)
Lindane	µg/L	0.1	0.2	Final PDWS (EPA, 1993a)
Lithium	µg/L	25	50	EPA Method 6010
Lithium, dissolved	µg/L	25	50	EPA Method 6010
Lithium, total recoverable	µg/L	25	50	EPA Method 6010
Magnesium		No flag	No flag	Set by EPD/EMS
Magnesium, dissolved		No flag	No flag	Set by EPD/EMS
Magnesium, total recoverable		No flag	No flag	Set by EPD/EMS
Manganese	µg/L	25	50	SDWS (EPA, 1993b)
Manganese, dissolved	µg/L	25	50	SDWS (EPA, 1993b)
Manganese, total recoverable	µg/L	25	50	SDWS (EPA, 1993b)
Manganese-54	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Mercury	µg/L	1	2	Final PDWS (EPA, 1993a)
Mercury, dissolved	µg/L	1	2	Final PDWS (EPA, 1993a)
Mercury, total recoverable	µg/L	1	2	Final PDWS (EPA, 1993a)
Methacrylonitrile	µg/L	250	500	EPA Method 8240
Methapyrilen	µg/L	50	100	EPA Method 8270
Methoxychlor	µg/L	20	40	Final PDWS (EPA, 1993a)
3-Methylcholanthrene	µg/L	50	100	EPA Method 8270
2-Methyl-4,6-dinitrophenol	µg/L	250	500	EPA Method 8270
Methyl ethyl ketone		No flag	No flag	Set by EPD/EMS
Methyl isobutyl ketone		No flag	No flag	Set by EPD/EMS
Methyl methacrylate	µg/L	50	100	EPA Method 8270
Methyl methanesulfonate	µg/L	50	100	EPA Method 8270
2-Methylnaphthalene	µg/L	50	100	EPA Method 8270
Molybdenum	µg/L	250	500	EPA Method 6010
Molybdenum, dissolved	µg/L	250	500	EPA Method 6010
Molybdenum, total recoverable	µg/L	250	500	EPA Method 6010
Naphthalene	µg/L	50	100	EPA Method 8270
1,4-Naphthoquinone	µg/L	50	100	EPA Method 8270
1-Naphthylamine	µg/L	50	100	EPA Method 8270
2-Naphthylamine	µg/L	50	100	EPA Method 8270
Neptunium-237	pCi/L	3.53E+00	7.06E+00	Proposed PDWS (EPA, 1991)
Nickel	µg/L	50	100	Final PDWS (EPA, 1993a)
Nickel, dissolved	µg/L	50	100	Final PDWS (EPA, 1993a)
Nickel, total recoverable	µg/L	50	100	Final PDWS (EPA, 1993a)
Nickel-59 ^c	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Nickel-63 ^c	pCi/L	2.5E+01	5E+01	Interim Final PDWS (EPA, 1977)
Niobium-95 ^c	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Nitrate as nitrogen	µg/L	5,000	10,000	Final PDWS (EPA, 1993a)
Nitrate-nitrite as nitrogen	µg/L	5,000	10,000	Final PDWS (EPA, 1993a)
Nitrite as nitrogen	µg/L	500	1,000	Final PDWS (EPA, 1993a)
m-Nitroaniline	µg/L	50	100	EPA Method 8270
o-Nitroaniline	µg/L	50	100	EPA Method 8270
p-Nitroaniline	µg/L	50	100	EPA Method 8270
Nitrobenzene	µg/L	50	100	EPA Method 8270
Nitrogen by Kjeldahl method	µg/L	500	1,000	EPA Method 351.2

2-Nitrophenol	µg/L	50	100	EPA Method 8270
4-Nitrophenol	µg/L	50	100	EPA Method 8270
4-Nitroquinoline-1-oxide	µg/L	50	100	EPA Method 8270
N-Nitrosodi-n-butylamine	µg/L	50	100	EPA Method 8270
N-Nitrosodiethylamine	µg/L	50	100	EPA Method 8270
N-Nitrosodimethylamine	µg/L	50	100	EPA Method 8270
N-Nitrosodiphenylamine	µg/L	50	100	EPA Method 8270
N-Nitrosodipropylamine	µg/L	50	100	EPA Method 8270
N-Nitrosomethylethylamine	µg/L	50	100	EPA Method 8270
N-Nitrosomorpholine	µg/L	50	100	EPA Method 8270
N-Nitrosopiperidine	µg/L	50	100	EPA Method 8270
N-Nitrosopyrrolidine	µg/L	50	100	EPA Method 8270
5-Nitro-o-toluidine	µg/L	50	100	EPA Method 8270
Nonvolatile beta	pCi/L	2.5E+01	5E+01	Interim Final PDWS (EPA, 1977)
Octachlorodibenzo-p-dioxin isomers	µg/L	0.005	0.01	EPA Method 8280
Octachlorodibenzo-p-furan isomers	µg/L	0.005	0.01	EPA Method 8280
Odor		No flag	No flag	Set by EPD/EMS
Oil & Grease	µg/L	5,000	10,000	EPA Method 413.1
Oxamyl ^b	µg/L	100	200	Final PDWS (EPA, 1993a)
Parathion	µg/L	0.25	0.5	EPA Method 8080
Parathion methyl	µg/L	0.25	0.5	EPA Method 8080
PCB 1016	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1221	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1232	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1242	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1248	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1254	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1260	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
PCB 1262	µg/L	0.25	0.5	Final PDWS (EPA, 1993a)
Pentachlorobenzene	µg/L	50	100	EPA Method 8270
Pentachlorodibenzo-p-dioxin isomers	µg/L	0.00275	0.0055	EPA Method 8280
1,2,3,7,8-PCDD	µg/L	0.00275	0.0055	EPA Method 8280
Pentachlorodibenzo-p-furan isomers	µg/L	0.00275	0.0055	EPA Method 8280
1,2,3,7,8-PCDF	µg/L	0.00275	0.0055	EPA Method 8280
Pentachloroethane	µg/L	50	100	EPA Method 8270
Pentachloronitrobenzene	µg/L	50	100	EPA Method 8270
Pentachlorophenol	µg/L	0.5	1	Final PDWS (EPA, 1993a)
pH	pH	8	10	Set by EPD/EMS
pH	pH	4	3	Set by EPD/EMS
Phenacetin	µg/L	50	100	EPA Method 8270
Phenanthrene	µg/L	50	100	EPA Method 8270
Phenol	µg/L	50	100	EPA Method 8270
Phenols	µg/L	25	50	EPA Method 420.1
p-Phenylenediamine	µg/L	50	100	EPA Method 8270
Phorate	µg/L	0.5	1	EPA Method 8080
Picloram ^b	µg/L	250	500	Final PDWS (EPA, 1993a)
2-Picoline	µg/L	50	100	EPA Method 8270
Plutonium-238	pCi/L	3.51E+00	7.02E+00	Proposed PDWS (EPA, 1991)
Plutonium-239	pCi/L	3.11E+01	6.21E+01	Proposed PDWS (EPA, 1991)
Plutonium-239/240 ^e	pCi/L	3.11E+01	6.21E+01	Proposed PDWS (EPA, 1991)
Plutonium-240	pCi/L	3.11E+01	6.22E+01	Proposed PDWS (EPA, 1991)

Plutonium-241 ^c	pCi/L	3.13E+01	6.26E+01	Proposed PDWS (EPA, 1991)
Plutonium-242 ^c	pCi/L	3.27E+01	6.54E+01	Proposed PDWS (EPA, 1991)
Potassium		No flag	No flag	Set by EPD/EMS
Potassium, dissolved		No flag	No flag	Set by EPD/EMS
Potassium, total recoverable		No flag	No flag	Set by EPD/EMS
Potassium-40	pCi/L	1.5E+02	3E+02	Proposed PDWS (EPA, 1986)
Promethium-144	pCi/L	5E+01	1E+02	EPA Method 901.1
Promethium-146	pCi/L	5E+01	1E+02	EPA Method 901.1
Promethium-147	pCi/L	2.62E+03	5.24E+03	Proposed PDWS (EPA, 1991)
Pronamid	µg/L	50	100	EPA Method 8270
Propionitrile	µg/L	1,000	2,000	EPA Method 8240
Pyrene	µg/L	50	100	EPA Method 8270
Pyridine	µg/L	50	100	EPA Method 8270
Radium (alpha-emitting) ^f	pCi/L	1E+01	2E+01	Proposed PDWS (EPA, 1991)
Radium-226	pCi/L	1E+01	2E+01	Proposed PDWS (EPA, 1991)
Radium-228	pCi/L	1E+01	2E+01	Proposed PDWS (EPA, 1991)
Radon-222	pCi/L	1.5E+02	3E+02	Proposed PDWS (EPA, 1991)
Ruthenium-103 ^c	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)
Ruthenium-106	pCi/L	1.5E+01	3E+01	Interim Final PDWS (EPA, 1977)
Safrole	µg/L	50	100	EPA Method 8270
Selenium	µg/L	25	50	Final PDWS (EPA, 1993a)
Selenium, dissolved	µg/L	25	50	Final PDWS (EPA, 1993a)
Selenium, total recoverable	µg/L	25	50	Final PDWS (EPA, 1993a)
Silica		No flag	No flag	Set by EPD/EMS
Silica, dissolved		No flag	No flag	Set by EPD/EMS
Silica, total recoverable		No flag	No flag	Set by EPD/EMS
Silver	µg/L	50	100	SDWS (EPA, 1993b)
Silver, dissolved	µg/L	50	100	SDWS (EPA, 1993b)
Silver, total recoverable	µg/L	50	100	SDWS (EPA, 1993b)
Simazine ^b	µg/L	2	4	Final PDWS (EPA, 1993a)
Sodium		No flag	No flag	Set by EPD/EMS
Sodium, dissolved		No flag	No flag	Set by EPD/EMS
Sodium, total recoverable		No flag	No flag	Set by EPD/EMS
Sodium-22	pCi/L	2.33E+02	4.66E+02	Proposed PDWS (EPA, 1991)
Specific conductance	µS/cm	250	500	Set by EPD/EMS
Strontium-89	pCi/L	1E+01	2E+01	Interim Final PDWS (EPA, 1977)
Strontium-89/90 ^e	pCi/L	4E+00	8E+00	Final PDWS (EPA, 1993a)
Strontium-90	pCi/L	4E+00	8E+00	Final PDWS (EPA, 1993a)
Styrene	µg/L	50	100	Final PDWS (EPA, 1993a)
Sulfate	µg/L	200,000	400,000	Proposed PDWS (EPA, 1990)
Sulfide	µg/L	5,000	10,000	EPA Method 9030
Sulfotep ^p	µg/L	50	100	EPA Method 8270
Surfactants		No flag	No flag	Set by EPD/EMS
2,3,7,8-TCDD	µg/L	0.000015	0.00003	Final PDWS (EPA, 1993a)
2,3,7,8-TCDF	µg/L	0.002	0.004	EPA Method 8280
Technetium-99	pCi/L	4.5E+02	9E+02	Interim Final PDWS (EPA, 1977)
1,2,4,5-Tetrachlorobenzene	µg/L	50	100	EPA Method 8270
Tetrachlorodibenzo-p-dioxin isomers	µg/L	0.00225	0.0045	EPA Method 8280
Tetrachlorodibenzo-p-furan isomers	µg/L	0.002	0.004	EPA Method 8280
1,1,1,2-Tetrachloroethane	µg/L	5	10	EPA Method 8240
1,1,2,2-Tetrachloroethane	µg/L	5	10	EPA Method 8240
Tetrachloroethylene	µg/L	2.5	5	Final PDWS (EPA, 1993a)
2,3,4,6-Tetrachlorophenol	µg/L	50	100	EPA Method 8270
Thallium	µg/L	1	2	Final PDWS (EPA, 1993a)

Thallium, dissolved	µg/L	1	2	Final PDWS (EPA, 1993a)
Thallium, total recoverable	µg/L	1	2	Final PDWS (EPA, 1993a)
Thionazin	µg/L	50	100	EPA Method 8270
Thorium-228	pCi/L	6.25E+01	1.25E+02	Proposed PDWS (EPA, 1991)
Thorium-230	pCi/L	3.96E+01	7.92E+01	Proposed PDWS (EPA, 1991)
Thorium-232	pCi/L	4.4E+01	8.8E+01	Proposed PDWS (EPA, 1991)
Thorium-234	pCi/L	2E+02	4.01E+02	Proposed PDWS (EPA, 1991)
Tin	µg/L	10	20	EPA Method 282.2
Tin, dissolved	µg/L	10	20	EPA Method 282.2
Tin, total recoverable	µg/L	10	20	EPA Method 282.2
Tin-113 ^c	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Toluene	µg/L	500	1,000	Final PDWS (EPA, 1993a)
o-Toluidine	µg/L	50	100	EPA Method 8270
Total carbon	µg/L	5,000	10,000	EPA Method 9060
Total coliform		0	0	Final PDWS (EPA, 1993a)
Total dissolved solids		No flag	No flag	Set by EPD/EMS
Total hydrocarbons	µg/L	5,000	10,000	EPA Method 418.1
Total inorganic carbon	µg/L	5,000	10,000	EPA Method 9060
Total organic carbon	µg/L	5,000	10,000	EPA Method 9060
Total organic halogens	µg/L	25	50	EPA Method 9020
Total organic nitrogen	µg/L	500	1,000	APHA Method 420
Total petroleum hydrocarbons	µg/L	5,000	10,000	EPA Method 418.1
Total phosphates (as P)		No flag	No flag	Set by EPD/EMS
Total phosphorus		No flag	No flag	Set by EPD/EMS
Toxaphene	µg/L	1.5	3	Final PDWS (EPA, 1993a)
2,4,5-TP (Silvex)	µg/L	25	50	Final PDWS (EPA, 1993a)
Tributyl phosphate	µg/L	50	100	EPA Method 8270
1,2,4-Trichlorobenzene	µg/L	35	70	Final PDWS (EPA, 1993a)
1,1,1-Trichloroethane	µg/L	100	200	Final PDWS (EPA, 1993a)
1,1,2-Trichloroethane	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Trichloroethylene	µg/L	2.5	5	Final PDWS (EPA, 1993a)
Trichlorofluoromethane	µg/L	5	10	EPA Method 8240
2,4,5-Trichlorophenol	µg/L	50	100	EPA Method 8270
2,4,6-Trichlorophenol	µg/L	50	100	EPA Method 8270
2,4,5-Trichlorophenoxyacetic acid	µg/L	2.5	5	EPA Method 8150
1,2,3-Trichloropropane	µg/L	5	10	EPA Method 8240
O,O,O-Triethyl phosphorothioate	µg/L	50	100	EPA Method 8270
1,3,5-Trinitrobenzene	µg/L	50	100	EPA Method 8270
Tritium	pCi/mL	1E+01	2E+01	Final PDWS (EPA, 1993a)
Turbidity ^g		No flag	No flag	Set by EPD/EMS
Uranium	µg/L	10	20	Proposed PDWS (EPA, 1991)
Uranium, dissolved	µg/L	10	20	Proposed PDWS (EPA, 1991)
Uranium, total recoverable	µg/L	10	20	Proposed PDWS (EPA, 1991)
Uranium alpha activity	pCi/L	1.5E+01	3E+01	Proposed PDWS (EPA, 1991)
Uranium-233/234 ^e	pCi/L	6.9E+00	1.38E+01	Proposed PDWS (EPA, 1991)
Uranium-234	pCi/L	6.95E+00	1.39E+01	Proposed PDWS (EPA, 1991)
Uranium-235	pCi/L	7.25E+00	1.45E+01	Proposed PDWS (EPA, 1991)
Uranium-238	pCi/L	7.3E+00	1.46E+01	Proposed PDWS (EPA, 1991)
Vanadium	µg/L	40	80	EPA Method 6010
Vanadium, dissolved	µg/L	40	80	EPA Method 6010
Vanadium, total recoverable	µg/L	40	80	EPA Method 6010
Vinyl acetate	µg/L	5	10	EPA Method 8240
Xylenes	µg/L	5,000	10,000	Final PDWS (EPA, 1993a)
Yttrium-88	pCi/L	5E+01	1E+02	EPA Method 901.1
Zinc	µg/L	2,500	5,000	SDWS (EPA, 1993b)

Zinc, dissolved	µg/L	2,500	5,000	SDWS (EPA, 1993b)
Zinc, total recoverable	µg/L	2,500	5,000	SDWS (EPA, 1993b)
Zinc-65	pCi/L	1.5E+02	3E+02	Interim Final PDWS (EPA, 1977)
Zirconium-95 ^c	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)
Zirconium/Niobium-95 ^c	pCi/L	1E+02	2E+02	Interim Final PDWS (EPA, 1977)

- a References for methods are in Appendix E; references for dated sources are at the end of this appendix.
- b EMS is currently unable to perform this analysis.
- c EMS discontinued monitoring this radionuclide because it is inappropriate for the SRS Groundwater Monitoring Program.
- d EPD/EMS set this flagging criterion using the 1991 proposed PDWS because the final PDWS in 1977 may have been in error.
- e For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.
- f The applied standard is for radium-226.
- g The primary maximum contaminant level range for turbidity is 1–5 NTU, which is inappropriate for the SRS Groundwater Monitoring Program.

References

EPA (U.S. Environmental Protection Agency), 1977. *National Interim Primary Drinking Water Regulations*, EPA-570/9-76-003. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1986. *Water Pollution Control; National Primary Drinking Water Regulations, Radionuclides (Proposed)*. *Federal Register*, September 30, 1986, pp. 34835–34862. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1990. *National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals and Inorganic Chemicals (Proposed Rule)*. *Federal Register*, July 25, 1990, pp. 30369–30448. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1991. *National Primary Drinking Water Regulations; Radionuclides; Proposed Rule*. *Federal Register*, July 18, 1991, pp. 33052–33127. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1993a. *National Primary Drinking Water Regulations. Code of Federal Regulations*, Title 40, Part 141, pp. 592–732. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1993b. *National Secondary Drinking Water Regulations. Code of Federal Regulations*, Title 40, Part 143, pp. 774–777. Washington, DC.

SCDHEC (South Carolina Department of Health and Environmental Control), 1981. *State Primary Drinking Water Regulations*, R.61–58.5. Columbia, SC.

Appendix C

Figures

THIS PAGE LEFT BLANK INTENTIONALLY.

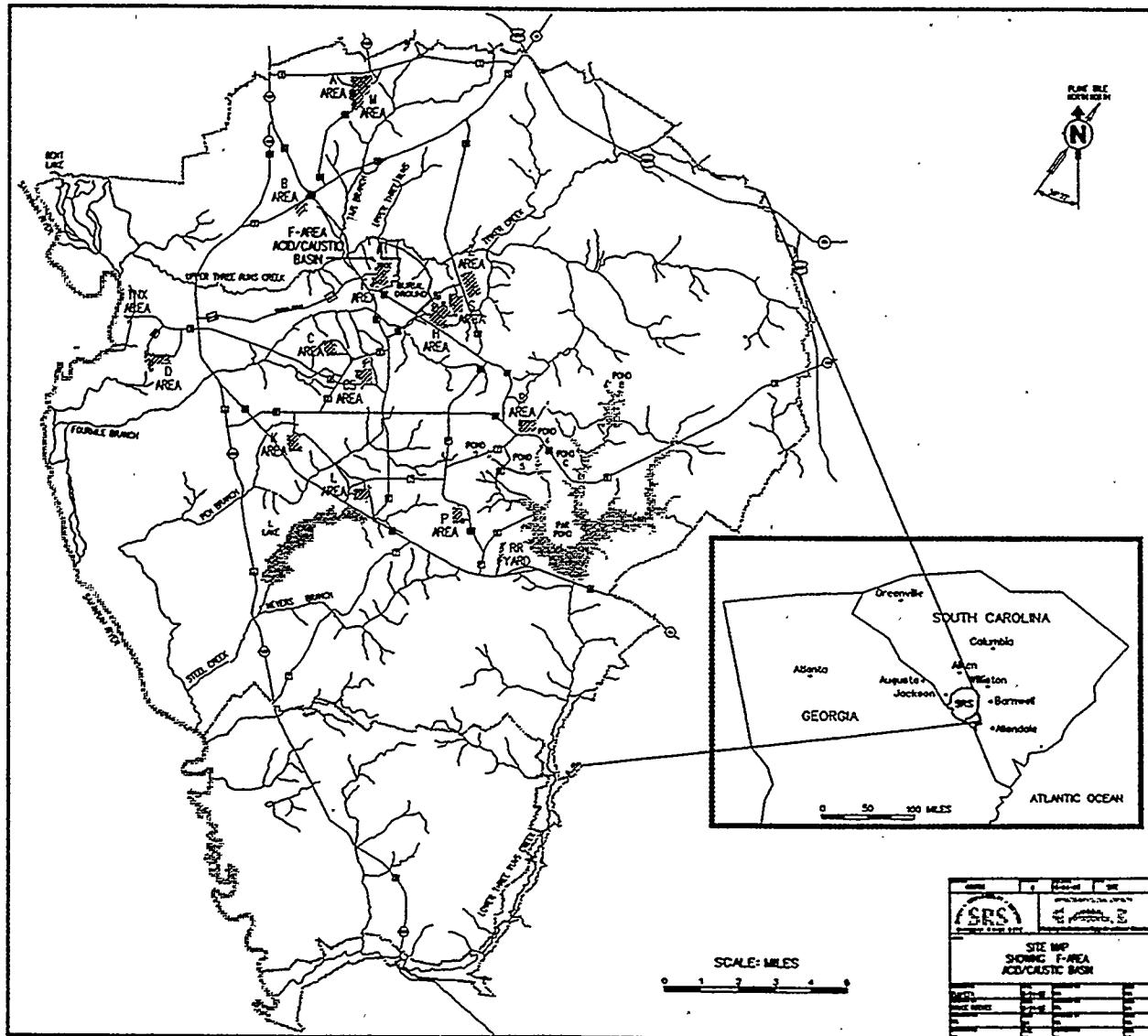
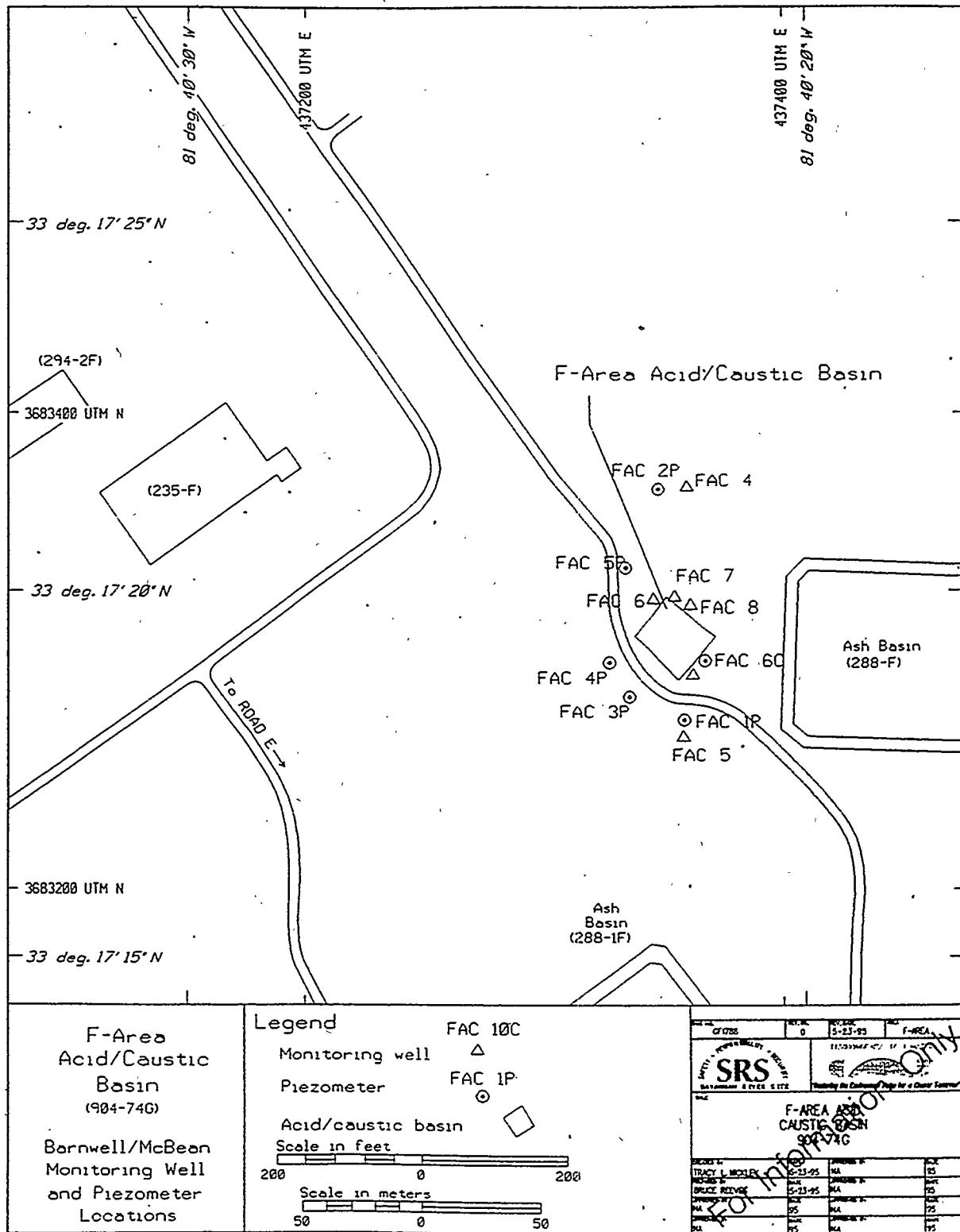



Figure 1. Location of the F-Area Acid/Caustic Basin at the Savannah River Site

Figure 2. Location of Groundwater Monitoring Wells and Piezometer Wells in the Water Table at the F-Area Acid/Caustic Basin

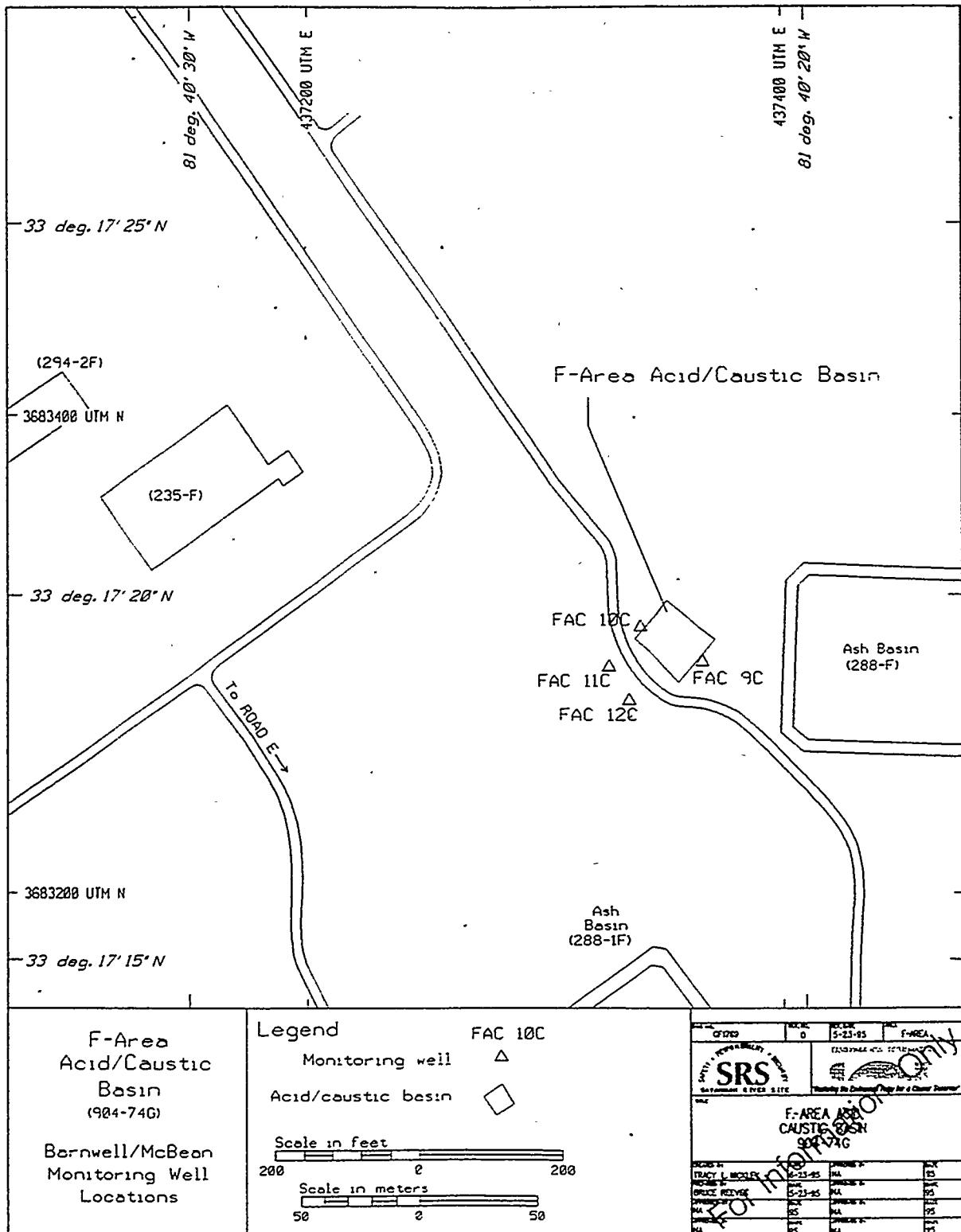


Figure 3. Location of Groundwater Monitoring Wells in the Barnwell/McBean at the F-Area Acid/Caustic Basin

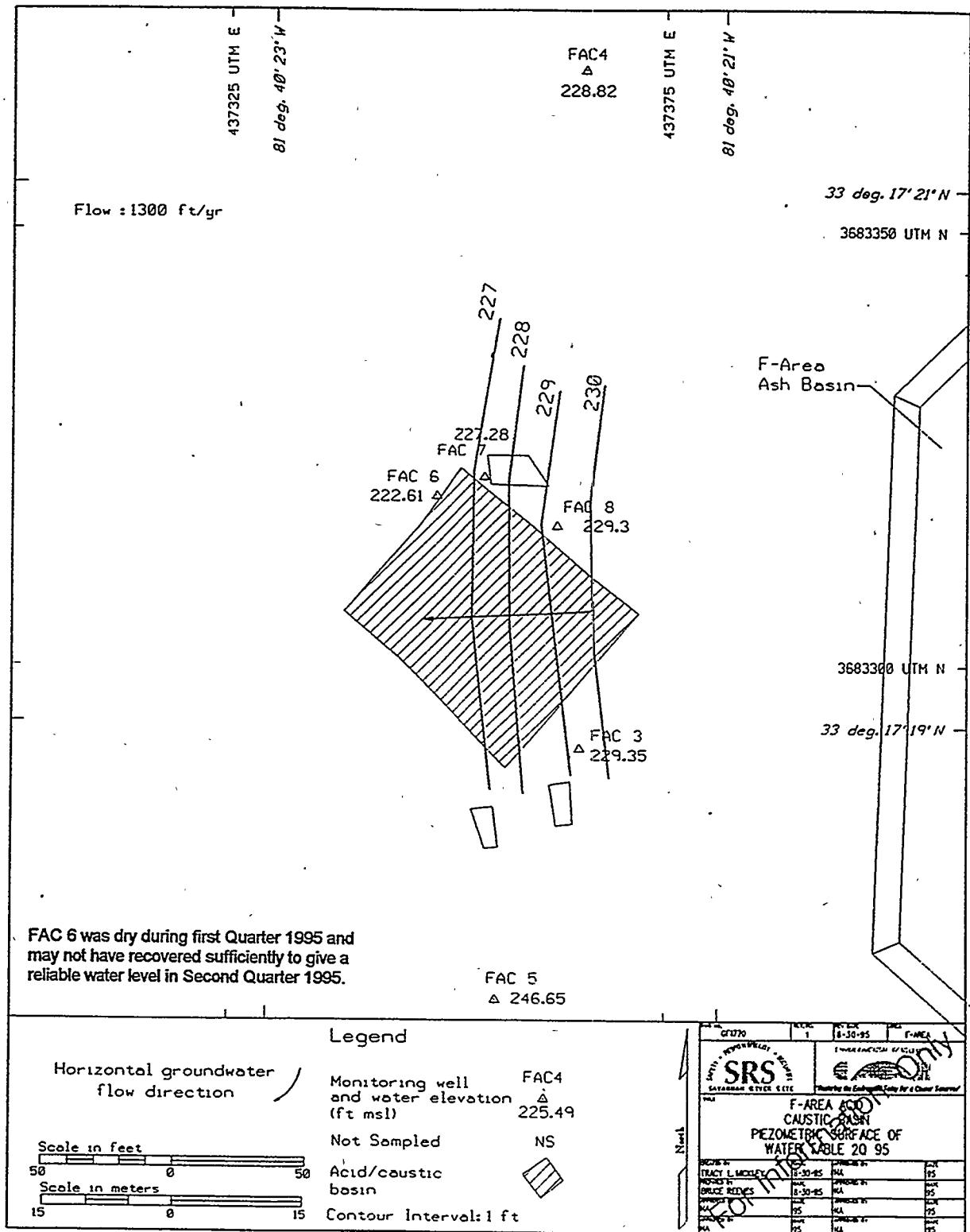
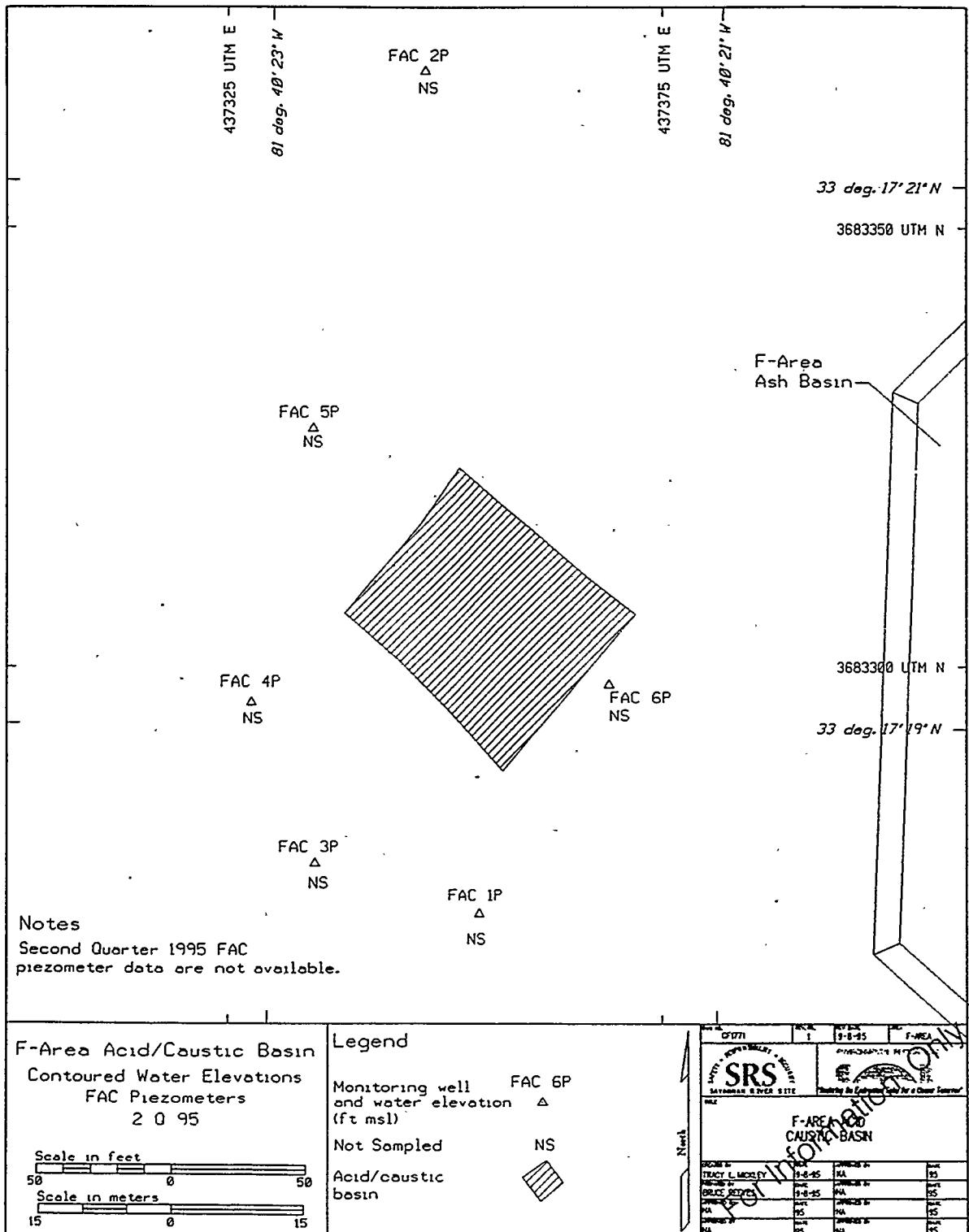
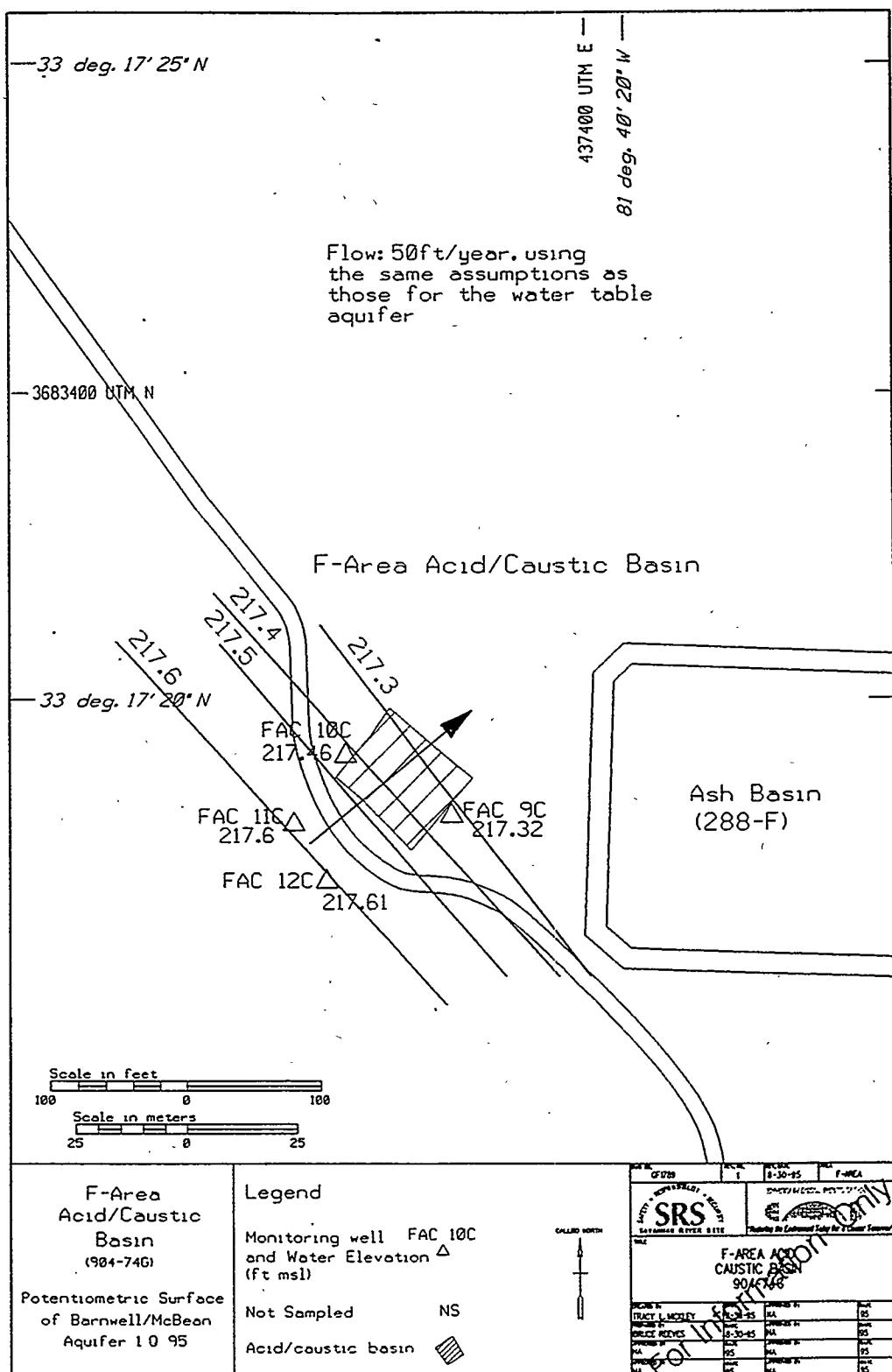




Figure 4. Piezometric Surface Map of the Water Table at the F-Area Acid/Caustic Basin, Monitoring Well Data

Figure 5. Water-Elevation Contour Map of the Water Table at the F-Area Acid/Caustic Basin, Piezometer Data

Appendix D

Groundwater Monitoring Results Tables

THIS PAGE LEFT BLANK INTENTIONALLY.

Key to Reading the Tables

The following abbreviations may appear in the data tables:

Constituents

1,2,3,4,6,7,8-HPCDD	1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin
1,2,3,4,6,7,8-HPCDF	1,2,3,4,6,7,8-heptachlorodibenzo-p-furan
1,2,3,4,7,8-HXCDD	1,2,3,4,7,8-hexachlorodibenzo-p-dioxin
1,2,3,4,7,8-HXCDF	1,2,3,4,7,8-hexachlorodibenzo-p-furan
Lindane	gamma-benzene hexachloride
PCB	polychlorinated biphenyl
1,2,3,7,8-PCDD	1,2,3,7,8-pentachlorodibenzo-p-dioxin
1,2,3,7,8-PCDF	1,2,3,7,8-pentachlorodibenzo-p-furan
Sp. conductance	specific conductance
TCDD	tetrachlorodibenzo-p-dioxin
TCDF	tetrachlorodibenzo-p-furan

Laboratories

CN	Clemson Technical Center, Inc.
EM	Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) Laboratory
GE and GP	General Engineering Laboratories
SC	Savannah River Technology Center
SP	Spencer Testing Services, Inc.
TM	TMA/Eberline
WA and WS	Roy F. Weston, Inc.

Sampling Codes

B	blank sample was collected
C	well was pumping continuously
D	well was dry
E	equipment blank was collected
I	well went dry during sampling; insufficient water to collect all samples
L	well went dry before sampling began; only depth to water can be determined
P	inaccessibility or mechanical failure prevented sample collection and field analysis of the water
S	no water in standpipe; for water level events only
X	well went dry during purging; samples collected after well recovered

Sampling Methods

B	sample collected using an open-bucket bailer
P	sample collected using a bladder pump
S	sample collected using a single-speed centrifugal downhole pump
V	sample collected using a variable-speed pump

Units

E	exponential notation (e.g., 1.1E-09 = 1.1×10^{-9} = 0.0000000011)
mg/L	milligrams per liter
msl	mean sea level
MSL	million structures per liter
NTU	turbidity unit
pCi/L	picocuries per liter
pCi/mL	picocuries per milliliter
pH	pH unit
$\mu\text{g}/\text{L}$	micrograms per liter
$\mu\text{S}/\text{cm}$	microsiemens per centimeter

Other

CS	carbon steel
DF	dilution factor column in data tables
H	holding time column in data tables
Mod	modifier column in data tables
PDWS	primary drinking water standard
PVC	polyvinyl chloride
ST	exceeded standard column in data tables
TOC	top of casing

Holding Times

Standard analytical methods include a limit, called holding time, on the maximum elapsed time between sample collection and extraction or analysis by the laboratory. In the data tables, a large bullet (•) in the *H* (holding time) column indicates that holding time was exceeded. Analyses performed beyond holding times may not yield valid results.

The South Carolina Department of Health and Environmental Control allows only 15 minutes to elapse between sampling and analysis for pH. Thus, only field pH measurements can meet the holding time criterion; laboratory pH analyses always will exceed it.

The laboratory procedure used for the determination of specific conductance allows one day to elapse between sampling and analysis. Thus, laboratory specific conductance measurements may exceed the holding time criterion.

Data Rounding

Constituent results in analytical results tables that appear to equal the final PDWS but are not marked in the *ST* (exceeded the final PDWS or screening level) column are below the final PDWS in the database. Values stored in the database contain more significant digits than the reported results. Apparent discrepancies in the tables are due to the rounding of reported results.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific quality assurance/quality control information either at the same time as analytical results or in a quarterly summary. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data usability. Result modifiers designed by the EPD/EMS and provided to the primary laboratories are defined below. These modifiers appear in the data tables under the column *Mod*. The lettered modifiers are based on EPA's STORET codes.

Result modifier

(Blank)	Data are not qualified. Numbers should be interpreted exactly as reported.
J	Value is estimated because quantitation in the sample or in associated quality control samples did not meet specifications.
I	The value in the result field is the instrument reading, not the sample quantification limit. Always used with the result qualifier <i>U</i> .
L	Value is off-scale high. The actual value is not known but is known to be greater than the value shown.
M	Presence of the analyte is verified but not quantified.
R	Result was rejected because performance requirements in the sample analysis or associated quality control analyses were not met.
T	Analyte was not detected; if present, it was below the criteria for detection.
U	Material analyzed for but not detected. Analytical result reported is less than the sample quantitation limit.
V	Analyte was detected in an associated method blank.
Y	Result was obtained from an unpreserved or improperly preserved sample. Data may not be accurate.
1	Result may be an underestimation of the true value due to analytical bias.
2	Result may be an overestimation of the true value due to analytical bias.
3	The associated result may be of poor precision (high variability) due to analytical bias.
4	Result is associated with QA results indicating matrix interference.
6	The associated result is from a reanalysis performed out of holding time due to problems with an earlier analysis.

Table 1. Maximum Results for Constituents Exceeding Final Primary Drinking Water Standards

<u>Well</u>	<u>Constituent</u>	<u>Unit</u>	<u>3Q94</u>	<u>4Q94</u>	<u>1Q95</u>	<u>2Q95</u>	<u>Mod</u>
FAC 3	Gross alpha	pCi/L	— ^a	—	2.3E+01	2.78E+01	
	Nonvolatile beta	pCi/L	—	—	—	—	
FAC 4	Gross alpha	pCi/L	4.7E+01	—	8.6E+01	8.65E+01	
	Nonvolatile beta	pCi/L	—	—	5.8E+01	—	
	Nitrate as nitrogen	ug/L	—	—	1.17E+04	1.16E+04	
	Nitrate-nitrite as nitrogen	ug/L	—	—	1.04E+04	—	
FAC 5	Gross alpha	pCi/L	1.7E+01	5.0E+01	3.9E+01	3.6E+01	
FAC 7	Dichloromethane (Methylene chloride)	ug/L	—	—	1.7E+01	—	
FAC 11C	Dichloromethane (Methylene chloride)	ug/L	—	—	7.8E+00	—	

Note: The modifier column applies to second quarter 1995 data only.

^a — = not above final PDWS.

Table 2. Maximum Results for Constituents Exceeding Other Flag 2 Criteria or the SRS Turbidity Standard

<u>Well</u>	<u>Constituent</u>	<u>Unit</u>	<u>2Q95</u>	<u>Mod</u>
FAC 3	Aluminum, total recoverable	ug/L	763	
	Total organic halogens	ug/L	105	J
	Iron, total recoverable	ug/L	918	
FAC 4	Radium-226	pCi/L	24.3	
	Aluminum, total recoverable	ug/L	307	
	Manganese, total recoverable	ug/L	322 397 399	
FAC 5	Aluminum, total recoverable	ug/L	106	
	Iron, total recoverable	ug/L	1,140	
FAC 7	Iron, total recoverable	ug/L	464	
FAC 8	Iron, total recoverable	ug/L	393	
FAC 10C	Aluminum, total recoverable	ug/L	265	V
FAC 11C	Aluminum, total recoverable	ug/L	2,560	
	Specific Conductance	uS/cm	536	

Notes: These results do not include field data. The groundwater samples are unfiltered. Thus, the results for metals are for total recoverable metals. Flags are established by EPD/EMS and are based on final PDWS, Secondary Drinking Water Standards, or method detection limits (Appendix B).

Table 3. Groundwater Monitoring Results for Individual Wells**WELL: FAC 3**

<u>SRS Coord.</u>	<u>Lat/Longitude</u>	<u>Screen Zone Elevation</u>	<u>Top of Casing</u>	<u>Casing</u>	<u>Pump</u>	<u>Formation</u>
N 78018.3	33.288592 Deg N	254.8-224.8 ft msl	311.8 ft msl	4" PVC	B	Water Table
E 55322.7	81.672674 Deg W					

FIELD MEASUREMENTS

Sample date: 04/21/95
 Depth to water: 82.45 ft (25.14 m) below TOC
 Water elevation: 229.35 ft (69.92 m) msl
 Sp. conductance: 155 uS/cm
 Turbidity: 181 NTU
 Water evacuated before sampling: 14 gal

Time: 09:13
 pH: 6.3
 Alkalinity: 12 mg/L
 Water temperature: 20.2 deg C
 Volumes purged: 4.690 well volumes

LABORATORY ANALYSES

<u>H</u>	<u>ST</u>	<u>Analyte</u>	<u>Result</u>	<u>DF</u>	<u>Mod</u>	<u>Unit</u>	<u>Flag</u>	<u>Lab</u>
		Benzene	<5	1	U	ug/L	0	WA
		Bromodichloromethane	<5	1	U	ug/L	0	WA
		Bromoform	<5	1	U	ug/L	0	WA
		Carbon tetrachloride	<5	1	U	ug/L	0	WA
		Chlorobenzene	<5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	<10	1	U	ug/L	0	WA
		Chloroform	<5	1	U	ug/L	0	WA
		Dibromochloromethane	<5	1	U	ug/L	0	WA
		1,2-Dichloroethane	<5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	<5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	<5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	<5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	<1.09	1	U	ug/L	0	WA
		1,2-Dichloropropane	<5	1	U	ug/L	0	WA
		Endrin	<.11	1	U	ug/L	0	WA
		Ethylbenzene	<5	1	U	ug/L	0	WA
		Fluoride	43	1		ug/L	0	WA
		Fluoride	43.3	1		ug/L	0	WA
+		Gross alpha	27.8	1		pCi/L	2	TM
		Lindane	<.055	1	U	ug/L	0	WA
		Methoxychlor	<.54	1	U	ug/L	0	WA
		Methoxychlor	<.55	1	U	ug/L	0	WA
		Nitrate as nitrogen	272	1		ug/L	0	WA
		Nonvolatile beta	18.1	1		pCi/L	0	TM
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toxaphene	<1.08	1	U	ug/L	0	WA
		Toxaphene	<1.1	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		2,4,5-TP (Silvex)	<.545	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA
		Tritium	1.6	1		pCi/mL	0	TM
		Xylenes	<5	1	U	ug/L	0	WA
		Aluminum, total recoverable	763	1		ug/L	2	WA
		Arsenic, total recoverable	3.1	1	J	ug/L	0	WA
		Barium, total recoverable	28.7	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	<10	1	U	ug/L	0	WA
		Cadmium, total recoverable	<4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	16300	1		ug/L	0	WA
		Chloride	3370	1		ug/L	0	WA
		Chloroethane	<10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	<10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	<10	1	U	ug/L	0	WA
		Chromium, total recoverable	<10	1	U	ug/L	0	WA
		1,1-Dichloroethane	<5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		Iron, total recoverable	918	1		ug/L	2	WA
		Lead, total recoverable	1.8	1	J	ug/L	0	WA
		Magnesium, total recoverable	2650	1		ug/L	0	WA
		Manganese, total recoverable	23.5	1		ug/L	0	WA
		Mercury, total recoverable	.62	1	J	ug/L	0	WA
		Phenols	<23.8	1	U	ug/L	0	WA
		Phenols	<23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	3660	1		ug/L	0	WA
		Radium-226	4.3	1		pCi/L	0	TM
		Radium-226	4.3	1		pCi/L	0	TM
		Radium-228	<1	1	UI	pCi/L	0	TM
		Selenium, total recoverable	2.5	1	J	ug/L	0	WA
		Silver, total recoverable	<1.4	1	U	ug/L	0	WA
		Sodium, total recoverable	7010	1		ug/L	0	WA
		Specific conductance	202	1		uS/cm	0	WA
		Sulfate	50700	10		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	<5	1	U	ug/L	0	WA
		Total dissolved solids	143000	1		ug/L	0	WA
		Total organic carbon	3470	1		ug/L	0	WA
		Total organic halogens	105	2	J	ug/L	2	WA
		Total phosphates (as P)	106	1		ug/L	0	WA
		Trichlorofluoromethane	<5	1	U	ug/L	0	WA
*		Turbidity	225	10	J	NTU	0	WA
*		pH	6.67	1	J	pH	0	WA
		Silica, total recoverable	10200	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	<5	1	U	ug/L	0	WA

Number of Records: 73

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

WELL: FAC 4

<u>SRS Coord.</u>	<u>Lat/Longitude</u>	<u>Screen Zone Elevation</u>	<u>Top of Casing</u>	<u>Casing</u>	<u>Pump</u>	<u>Formation</u>
N 78223.8	33.289292 Deg N	237.8-207.8 ft msl	309.9 ft msl	4" PVC	S	Water Table
E 55472.9	81.672678 Deg W					

FIELD MEASUREMENTS

Sample date: 04/20/95 Time: 14:40
 Depth to water: 81.08 ft (24.72 m) below TOC pH:4.7
 Water elevation: 228.82 ft (69.76 m) msl Alkalinity:0 mg/L
 Sp. conductance:265 uS/cm Water temperature: 21.6 deg C
 Turbidity: 1.2 NTU
 Water evacuated before sampling: 111 gal Volumes purged: 8.050 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.06	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	<.103	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	99.3	1		ug/L	0	WA
+		Gross alpha	86.5	1		pCi/L	2	TM
+		Gross alpha	77.9	1		pCi/L	2	TM
		Lindane	<.0515	1	U	ug/L	0	WA
		Methoxychlor	<.515	1	U	ug/L	0	WA
+		Nitrate as nitrogen	11600	50		ug/L	2	WA
+		Nitrate as nitrogen	11600	50		ug/L	2	WA
		Nonvolatile beta	44	1		pCi/L	1	TM
		Nonvolatile beta	44.9	1		pCi/L	1	TM
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Toluene	< 5	1	U	ug/L	0	WA
		Toxaphene	< 1.03	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.53	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	< 5	1	U	ug/L	0	WA
		Trichloroethylene	< 5	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Tritium	3.81	1		pCi/mL	0	TM
		Tritium	3.35	1		pCi/mL	0	TM
		Xylenes	< 5	1	U	ug/L	0	WA
		Aluminum, total recoverable	307	1		ug/L	2	WA
		Aluminum, total recoverable	322	1		ug/L	2	WA
		Arsenic, total recoverable	< 12	1	UJ	ug/L	0	WA
		Arsenic, total recoverable	1.9	1	J	ug/L	0	WA
		Barium, total recoverable	50.5	1		ug/L	0	WA
		Barium, total recoverable	52.3	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	9880	1		ug/L	0	WA
		Calcium, total recoverable	9790	1		ug/L	0	WA
		Chloride	4270	1		ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	< 10	1	UJ	ug/L	0	WA
		Chromium, total recoverable	1.2	1	J	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	23.8	1	J	ug/L	0	WA
		Iron, total recoverable	32.9	1	J	ug/L	0	WA
		Lead, total recoverable	1.4	1	J	ug/L	0	WA
		Lead, total recoverable	< 13	1	U	ug/L	0	WA
		Magnesium, total recoverable	4190	1		ug/L	0	WA
		Magnesium, total recoverable	4150	1		ug/L	0	WA
		Manganese, total recoverable	397	1		ug/L	2	WA
		Manganese, total recoverable	399	1		ug/L	2	WA
		Mercury, total recoverable	.197	1	J	ug/L	0	WA
		Mercury, total recoverable	.216	1	J	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	7730	1		ug/L	0	WA
		Potassium, total recoverable	7800	1		ug/L	0	WA
		Radium-226	24.3	1		pCi/L	2	TM
		Radium-226	23.5	1		pCi/L	2	TM
		Radium-228	7.4	1		pCi/L	0	TM
		Radium-228	10.7	1		pCi/L	1	TM
		Selenium, total recoverable	2.2	1	J	ug/L	0	WA
		Selenium, total recoverable	2.7	1	J	ug/L	0	WA
		Silver, total recoverable	< 1.4	1	UJ	ug/L	0	WA
		Silver, total recoverable	.9	1	JV	ug/L	0	WA
		Sodium, total recoverable	25500	1		ug/L	0	WA
		Sodium, total recoverable	25400	1		ug/L	0	WA
		Specific conductance	309	1		uS/cm	1	WA
		Sulfate	75300	50		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	209000	1		ug/L	0	WA
		Total organic carbon	4070	1		ug/L	0	WA
		Total organic halogens	< 161	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Total phosphates (as P)	8.9	1	J	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	.52	1	J	NTU	0	WA
*		pH	4.85	1	J	pH	0	WA
		Silica, total recoverable	7920	2.2		ug/L	0	WA
		Silica, total recoverable	7640	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 91

WELL: FAC 5

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 77960.3	33.288331 Deg N	234-214 ft msl	315.8 ft msl	4" PVC	S	Water Table
E 55241.3	81.672776 Deg W					

FIELD MEASUREMENTS

Sample date: 04/21/95 Time: 11:20
 Depth to water: 69.15 ft (21.08 m) below TOC pH: 4.6
 Water elevation: 246.65 ft (75.20 m) msl Alkalinity: 0 mg/L
 Sp. conductance: 195 uS/cm Water temperature: 23.4 deg C
 Turbidity: 10.4 NTU
 Water evacuated before sampling: 7 gal Volumes purged: .3268 well volumes
 Well went dry during purging; samples collected after well recovered

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.06	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.05	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	< .106	1	U	ug/L	0	WA
		Endrin	< .108	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	66.1	1		ug/L	0	WA
+		Gross alpha	36.1	1		pCi/L	2	TM
		Lindane	< .053	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Lindane	<.054	1	U	ug/L	0	WA
		Methoxychlor	<.54	1	U	ug/L	0	WA
		Methoxychlor	<.53	1	U	ug/L	0	WA
		Nitrate as nitrogen	838	1		ug/L	0	WA
		Nonvolatile beta	21.7	1		pCi/L	0	TM
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toxaphene	<1.08	1	U	ug/L	0	WA
		Toxaphene	<1.06	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.525	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.53	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA
		Tritium	5.82	1		pCi/mL	0	TM
		Xylenes	<5	1	U	ug/L	0	WA
		Aluminum, total recoverable	106	1		ug/L	2	WA
		Arsenic, total recoverable	2.6	1	J	ug/L	0	WA
		Barium, total recoverable	21.3	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	<10	1	U	ug/L	0	WA
		Cadmium, total recoverable	<4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	9560	1		ug/L	0	WA
		Chloride	2680	1		ug/L	0	WA
		Chloroethane	<10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	<10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	<10	1	U	ug/L	0	WA
		Chromium, total recoverable	<10	1	U	ug/L	0	WA
		1,1-Dichloroethane	<5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		Iron, total recoverable	1140	1		ug/L	2	WA
		Lead, total recoverable	1.9	1	J	ug/L	0	WA
		Magnesium, total recoverable	2970	1		ug/L	0	WA
		Manganese, total recoverable	15.8	1		ug/L	0	WA
		Mercury, total recoverable	.078	1	J	ug/L	0	WA
		Phenols	<23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	3870	1		ug/L	0	WA
		Radium-226	8.8	1		pCi/L	0	TM
		Radium-228	4.6	1	V	pCi/L	0	TM
		Radium-228	3.6	1	V	pCi/L	0	TM
		Selenium, total recoverable	2.8	1	J	ug/L	0	WA
		Silver, total recoverable	<1.4	1	U	ug/L	0	WA
		Sodium, total recoverable	12800	1		ug/L	0	WA
		Specific conductance	194	1		uS/cm	0	WA
		Sulfate	74800	10		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	<5	1	U	ug/L	0	WA
		Total dissolved solids	129000	1		ug/L	0	WA
		Total organic carbon	365	1	J	ug/L	0	WA
		Total organic halogens	<161	1	U	ug/L	0	WA
		Total phosphates (as P)	20.9	1	J	ug/L	0	WA
		Trichlorofluoromethane	<5	1	U	ug/L	0	WA
*		Turbidity	5.43	1	J	NTU	0	WA
*		pH	4.8	1	J	pH	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Silica, total recoverable	6070	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 75

WELL: FAC 6

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 78129	33.288858 Deg N	236.2-216.2 ft msl	312.5 ft msl	4" PVC	S	Water Table
E 55335.5	81.672855 Deg W					

FIELD MEASUREMENTS

Sample date: 04/21/95 Time: 11:03
 Depth to water: 89.89 ft (27.41 m) below TOC pH: Not Available (NA)
 Water elevation: 222.61 ft (67.87 m) msl Alkalinity: NAmg/L
 Sp. conductance: NA uS/cm Water temperature: NA deg C
 Turbidity: NA NTU
 Water evacuated before sampling: NA gal Volumes purged: NA well volumes
 Well went dry before sampling began; only depth to water can be determined

WELL: FAC 7

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 78123.4	33.288879 Deg N	235.7-215.7 ft msl	312 ft msl	4" PVC	S	Water Table
E 55356.2	81.67279 Deg W					

FIELD MEASUREMENTS

Sample date: 04/21/95 Time: 10:43
 Depth to water: 84.72 ft (25.83 m) below TOC pH: 5
 Water elevation: 227.28 ft (69.29 m) msl Alkalinity: 1 mg/L
 Sp. conductance: 45 uS/cm Water temperature: 22.2 deg C
 Turbidity: 41 NTU
 Water evacuated before sampling: 5 gal Volumes purged: .6582 well volumes
 Well went dry during purging; samples collected after well recovered

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.08	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	<.103	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	23	1	JV	ug/L	0	WA
		Gross alpha	6.8	1		pCi/L	0	TM
		Lindane	<.0515	1	U	ug/L	0	WA
		Methoxychlor	<.515	1	U	ug/L	0	WA
		Nitrate as nitrogen	239	1		ug/L	0	WA
		Nonvolatile beta	4.7	1		pCi/L	0	TM
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Toluene	< 5	1	U	ug/L	0	WA
		Toxaphene	< 1.03	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.54	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	< 5	1	U	ug/L	0	WA
		Trichloroethylene	< 5	1	U	ug/L	0	WA
		Tritium	2.51	1		pCi/mL	0	TM
		Xylenes	< 5	1	U	ug/L	0	WA
		Aluminum, total recoverable	< 87	1	U	ug/L	0	WA
		Arsenic, total recoverable	< 12	1	U	ug/L	0	WA
		Barium, total recoverable	3.9	1	J	ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	490	1		ug/L	0	WA
		Chloride	3050	1		ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	< 10	1	U	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	464	1		ug/L	2	WA
		Lead, total recoverable	< 13	1	U	ug/L	0	WA
		Magnesium, total recoverable	266	1		ug/L	0	WA
		Manganese, total recoverable	3.2	1	J	ug/L	0	WA
		Mercury, total recoverable	.453	1	J	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	417	1		ug/L	0	WA
		Radium-226	1.5	1		pCi/L	0	TM
		Radium-228	2.2	1	V	pCi/L	0	TM
		Selenium, total recoverable	3.3	1	J	ug/L	0	WA
		Silver, total recoverable	< 1.4	1	U	ug/L	0	WA
		Sodium, total recoverable	4130	1		ug/L	0	WA
		Specific conductance	35.2	1		uS/cm	0	WA
		Sulfate	5500	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	38000	1	J	ug/L	0	WA
		Total organic carbon	1870	1	J	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Total organic carbon	2070	1	J	ug/L	0	WA
		Total organic halogens	45.9	2	J	ug/L	1	WA
		Total phosphates (as P)	22.6	1	J	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	11	1	J	NTU	0	WA
*		pH	5.26	1	J	pH	0	WA
		Silica, total recoverable	7870	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 69

WELL: FAC 8

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 78090.9	33.288823 Deg N	236-216 ft msl	311 ft msl	4" PVC	S	Water Table
E 55366	81.672701 Deg W					

FIELD MEASUREMENTS

Sample date: 04/21/95
 Depth to water: 81.7 ft (24.91 m) below TOC
 Water elevation: 229.3 ft (69.91 m) msl
 Sp. conductance: 247 uS/cm
 Turbidity: 4.7 NTU
 Water evacuated before sampling: 5 gal
 Well went dry during purging; samples collected after well recovered

Time: 10:21
 pH: 5.5
 Alkalinity: 2 mg/L
 Water temperature: 21.9 deg C
 Volumes purged: .5731 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	1.37	1	JV	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.05	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	< .105	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	19.3	1	JV	ug/L	0	WA
		Gross alpha	2.1	1		pCi/L	0	TM
		Lindane	< .0525	1	U	ug/L	0	WA
		Methoxychlor	< .525	1	U	ug/L	0	WA
		Nitrate as nitrogen	219	1		ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Nonvolatile beta	3.4	1		pCi/L	0	TM
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Toluene	< 5	1	U	ug/L	0	WA
		Toxaphene	< 1.05	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	< .525	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	< 5	1	U	ug/L	0	WA
		Trichloroethylene	< 5	1	U	ug/L	0	WA
		Tritium	2.63	1		pCi/mL	0	TM
		Xylenes	< 5	1	U	ug/L	0	WA
		Aluminum, total recoverable	29.9	1	J	ug/L	1	WA
		Arsenic, total recoverable	1.7	1	J	ug/L	0	WA
		Barium, total recoverable	3.8	1	J	ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	605	1		ug/L	0	WA
		Chloride	3100	1		ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	< 10	1	U	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	393	1		ug/L	2	WA
		Lead, total recoverable	2.9	1	J	ug/L	0	WA
		Magnesium, total recoverable	232	1		ug/L	0	WA
		Manganese, total recoverable	3	1	J	ug/L	0	WA
		Mercury, total recoverable	.296	1	J	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	368	1		ug/L	0	WA
		Radium-226	.83	1		pCi/L	0	TM
		Radium-228	< .6	1	UI	pCi/L	0	TM
		Selenium, total recoverable	< 19	1	U	ug/L	0	WA
		Silver, total recoverable	< 1.4	1	U	ug/L	0	WA
		Sodium, total recoverable	5090	1		ug/L	0	WA
		Specific conductance	38.1	1		uS/cm	0	WA
		Sulfate	6420	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	40000	1	J	ug/L	0	WA
		Total organic carbon	666	1	J	ug/L	0	WA
		Total organic halogens	35.6	2	J	ug/L	1	WA
		Total organic halogens	42.4	2	J	ug/L	1	WA
		Total phosphates (as P)	12.3	1	J	ug/L	0	WA
		Total phosphates (as P)	10.6	1	J	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	3.01	1	J	NTU	0	WA
*		Turbidity	3.05	1	J	NTU	0	WA
*		pH	5.36	1	J	pH	0	WA
*		pH	5.36	1	J	pH	0	WA
		Silica, total recoverable	7850	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 72

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
---	----	---------	--------	----	-----	------	------	-----

WELL: FAC 9 C

<u>SRS Coord.</u>	<u>Lat/Longitude</u>	<u>Screen Zone Elevation</u>	<u>Top of Casing</u>	<u>Casing</u>	<u>Pump</u>	<u>Formation</u>
N 78030.5	33.288646 Deg N	207.1-112 ft msl	311.8 ft msl	2" PVC	V	Water Table
E 55339.3	81.672654 Deg W					

FIELD MEASUREMENTS

Sample date: 04/20/95
 Depth to water: 94.48 ft (28.80 m) below TOC
 Water elevation: 217.32 ft (66.26 m) msl
 Sp. conductance: 61 uS/cm
 Turbidity: 1.2 NTU
 Water evacuated before sampling: 9 gal

Time: 12:21
 pH: 6.3
 Alkalinity: 11 mg/L
 Water temperature: 23.9 deg C
 Volumes purged: .5211 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	<5	1	U	ug/L	0	WA
		Bromodichloromethane	<5	1	U	ug/L	0	WA
		Bromoform	<5	1	U	ug/L	0	WA
		Carbon tetrachloride	<5	1	U	ug/L	0	WA
		Chlorobenzene	<5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	<10	1	U	ug/L	0	WA
		Chloroform	<5	1	U	ug/L	0	WA
		Dibromochloromethane	<5	1	U	ug/L	0	WA
		1,2-Dichloroethane	<5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	<5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	<5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	<5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	<1.1	1	U	ug/L	0	WA
		1,2-Dichloropropane	<5	1	U	ug/L	0	WA
		Endrin	<.11	1	U	ug/L	0	WA
		Ethylbenzene	<5	1	U	ug/L	0	WA
		Fluoride	60.4	1		ug/L	0	WA
		Fluoride	59.2	1		ug/L	0	WA
		Gross alpha	<.5	1	UI	pCi/L	0	TM
		Lindane	<.055	1	U	ug/L	0	WA
		Methoxychlor	<.55	1	U	ug/L	0	WA
		Nitrate as nitrogen	253	1		ug/L	0	WA
		Nonvolatile beta	1.8	1	J	pCi/L	0	TM
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toxaphene	<1.1	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.55	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Tritium	1.17	1		pCi/mL	0	TM
		Xylenes	<5	1	U	ug/L	0	WA
		Aluminum, total recoverable	< 87	1	U	ug/L	0	WA
		Arsenic, total recoverable	1.4	1	J	ug/L	0	WA
		Barium, total recoverable	9.3	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	.62	1	J	ug/L	0	WA
		Calcium, total recoverable	4450	1		ug/L	0	WA
		Chloride	2150	1	J	ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	3.5	1	J	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	17.6	1	J	ug/L	0	WA
		Lead, total recoverable	2.9	1	J	ug/L	0	WA
		Magnesium, total recoverable	770	1		ug/L	0	WA
		Manganese, total recoverable	24.1	1		ug/L	0	WA
		Mercury, total recoverable	< .67	1	U	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	3000	1		ug/L	0	WA
		Radium-226	< .04	1	UI	pCi/L	0	TM
		Radium-228	< .6	1	UI	pCi/L	0	TM
		Selenium, total recoverable	< 19	1	U	ug/L	0	WA
		Silver, total recoverable	2	1	V	ug/L	0	WA
		Sodium, total recoverable	3860	1		ug/L	0	WA
		Specific conductance	66.4	1		uS/cm	0	WA
		Sulfate	9460	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	55000	1		ug/L	0	WA
		Total organic carbon	1070	1	J	ug/L	0	WA
		Total organic halogens	< 161	1.33	U	ug/L	0	WA
		Total phosphates (as P)	70.4	1		ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	.53	1	J	NTU	0	WA
*		pH	6.34	1	J	pH	0	WA
		Silica, total recoverable	7120	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 69

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

WELL: FAC 10C

<u>SRS Coord.</u>	<u>Lat/Longitude</u>	<u>Screen Zone Elevation</u>	<u>Top of Casing</u>	<u>Casing</u>	<u>Pump</u>	<u>Formation</u>
N 78119.7	33.288777 Deg N	209.9-110 ft msl	312.4 ft msl	2" PVC	V	Water Table
E 55298.4	81.672934 Deg W					

FIELD MEASUREMENTS

Sample date: 04/20/95
 Depth to water: 94.94 ft (28.95 m) below TOC
 Water elevation: 217.46 ft (66.30 m) msl
 Sp. conductance: 48 uS/cm
 Turbidity: 7.8 NTU
 Water evacuated before sampling: 15 gal

Time: 13:44
 pH: 6
 Alkalinity: 12 mg/L
 Water temperature: 23.5 deg C
 Volumes purged: .8511 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	<5	1	U	ug/L	0	WA
		Bromodichloromethane	<5	1	U	ug/L	0	WA
		Bromoform	<5	1	U	ug/L	0	WA
		Carbon tetrachloride	<5	1	U	ug/L	0	WA
		Chlorobenzene	<5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	<10	1	U	ug/L	0	WA
		Chloroform	<5	1	U	ug/L	0	WA
		Dibromochloromethane	<5	1	U	ug/L	0	WA
		1,2-Dichloroethane	<5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	<5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	<5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	<5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	<1.08	1	U	ug/L	0	WA
		1,2-Dichloropropane	<5	1	U	ug/L	0	WA
		Endrin	<.109	1	U	ug/L	0	WA
		Ethylbenzene	<5	1	U	ug/L	0	WA
		Fluoride	41.6	1		ug/L	0	WA
		Gross alpha	<.8	1	UI	pCi/L	0	TM
		Lindane	<.0545	1	U	ug/L	0	WA
		Methoxychlor	<.545	1	U	ug/L	0	WA
		Nitrate as nitrogen	502	1		ug/L	0	WA
		Nonvolatile beta	<1	1	UI	pCi/L	0	TM
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toxaphene	<1.09	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.54	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA
		Tritium	1.55	1		pCi/mL	0	TM
		Xylenes	<5	1	U	ug/L	0	WA
		Aluminum, total recoverable	265	1		ug/L	2	WA
		Arsenic, total recoverable	<12	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

<u>H</u>	<u>ST</u>	<u>Analyte</u>	<u>Result</u>	<u>DF</u>	<u>Mod</u>	<u>Unit</u>	<u>Flag</u>	<u>Lab</u>
		Barium, total recoverable	15	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	2920	1		ug/L	0	WA
		Chloride	2750	1	J	ug/L	0	WA
		Chloride	2850	1	J	ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	2.1	1	J	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	155	1		ug/L	1	WA
		Lead, total recoverable	9.4	1	J	ug/L	0	WA
		Magnesium, total recoverable	626	1		ug/L	0	WA
		Manganese, total recoverable	49.6	1		ug/L	1	WA
		Mercury, total recoverable	< .67	1	U	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	999	1		ug/L	0	WA
		Radium-226	.3	1		pCi/L	0	TM
		Radium-228	1.3	1	V	pCi/L	0	TM
		Selenium, total recoverable	< 19	1	U	ug/L	0	WA
		Silver, total recoverable	.42	1	JV	ug/L	0	WA
		Sodium, total recoverable	5090	1		ug/L	0	WA
		Specific conductance	54.1	1		uS/cm	0	WA
		Sulfate	3710	1		ug/L	0	WA
		Sulfate	3670	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	50000	1		ug/L	0	WA
		Total organic carbon	666	1	J	ug/L	0	WA
		Total organic halogens	< 161	1	U	ug/L	0	WA
		Total phosphates (as P)	44.8	1		ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	6.48	1	J	NTU	0	WA
*		pH	6.12	1	J	pH	0	WA
		Silica, total recoverable	8370	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 70

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

WELL: FAC 11C

<u>SRS Coord.</u>	<u>Lat/Longitude</u>	<u>Screen Zone Elevation</u>	<u>Top of Casing</u>	<u>Casing</u>	<u>Pump</u>	<u>Formation</u>
N 78100.3	33.288625 Deg N	211.1-110 ft msl	313.6 ft msl	2" PVC	V	Water Table
E 55231.9	81.673072 Deg W					

FIELD MEASUREMENTS

Sample date: 04/20/95
 Depth to water: 96 ft (29.27 m) below TOC
 Water elevation: 217.6 ft (66.34 m) msl
 Sp. conductance: 592 uS/cm
 Turbidity: 44 NTU
 Water evacuated before sampling: 14 gal

Time: 10:17
 pH: 10.7
 Alkalinity: 170 mg/L
 Water temperature: 23.1 deg C
 Volumes purged: .7934 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.09	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	< .106	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	263	1		ug/L	0	WA
		Gross alpha	4.6	1		pCi/L	0	TM
		Lindane	< .053	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Methoxychlor	<.53	1	U	ug/L	0	WA
		Nitrate as nitrogen	523	1		ug/L	0	WA
		Nonvolatile beta	8.2	1		pCi/L	0	TM
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Tetrachloroethylene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toluene	<5	1	U	ug/L	0	WA
		Toxaphene	<1.06	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.545	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA
		Trichloroethylene	<5	1	U	ug/L	0	WA
		Tritium	1.9	1		pCi/mL	0	TM
		Xylenes	<5	1	U	ug/L	0	WA
		Xylenes	<5	1	U	ug/L	0	WA
		Aluminum, total recoverable	2560	1		ug/L	2	WA
		Arsenic, total recoverable	4.3	1	J	ug/L	0	WA
		Barium, total recoverable	44.8	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	<10	1	U	ug/L	0	WA
		Bromomethane (Methyl bromide)	<10	1	U	ug/L	0	WA
		Cadmium, total recoverable	<4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	31800	1		ug/L	0	WA
		Chloride	2590	1	J	ug/L	0	WA
		Chloroethane	<10	1	U	ug/L	0	WA
		Chloroethane	<10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	<10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	<10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	<10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	<10	1	U	ug/L	0	WA
		Chromium, total recoverable	3.2	1	J	ug/L	0	WA
		1,1-Dichloroethane	<5	1	U	ug/L	0	WA
		1,1-Dichloroethane	<5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		Iron, total recoverable	173	1		ug/L	1	WA
		Lead, total recoverable	7.1	1	J	ug/L	0	WA
		Magnesium, total recoverable	110	1		ug/L	0	WA
		Manganese, total recoverable	3.6	1	J	ug/L	0	WA
		Mercury, total recoverable	<.67	1	U	ug/L	0	WA
		Phenols	<23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	6700	1		ug/L	0	WA
		Radium-226	.7	1		pCi/L	0	TM
		Radium-228	2.1	1	V	pCi/L	0	TM
		Selenium, total recoverable	2.3	1	J	ug/L	0	WA
		Silver, total recoverable	1	1	JV	ug/L	0	WA
		Sodium, total recoverable	32300	1		ug/L	0	WA
		Specific conductance	536	1		uS/cm	2	WA
		Sulfate	8380	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	<5	1	U	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	207000	1		ug/L	0	WA
		Total organic carbon	1070	1	J	ug/L	0	WA
		Total organic halogens	< 161	1	U	ug/L	0	WA
		Total phosphates (as P)	298	1		ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	29	1	J	NTU	0	WA
*		pH	11.2	1	J	pH	0	WA
*		pH	11.2	1	J	pH	0	WA
		Silica, total recoverable	9430	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		trans-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA

Number of Records: 98

WELL: FAC 12C

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 78047.2	33.288499 Deg N	207.7-114 ft msl	314.0 ft msl	2" PVC	V	Water Table
E 55226.4	81.672983 Deg W					

FIELD MEASUREMENTS

Sample date: 04/20/95
 Depth to water: 96.39 ft (29.39 m) below TOC
 Water elevation: 217.61 ft (66.34 m) msl
 Sp. conductance: 79 uS/cm
 Turbidity: 1.1 NTU
 Water evacuated before sampling: 12 gal

Time: 11:07
 pH: 6.2
 Alkalinity: 22 mg/L
 Water temperature: 22.3 deg C
 Volumes purged: .7062 well volumes

LABORATORY ANALYSES

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Benzene	< 5	1	U	ug/L	0	WA
		Benzene	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromodichloromethane	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Bromoform	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Carbon tetrachloride	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chlorobenzene	< 5	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA
		Chloroethene (Vinyl chloride)	< 10	1	U	ug/L	0	WA

*= exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Chloroform	< 5	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Chloroform	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		Dibromochloromethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		1,2-Dichloroethylene	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		Dichloromethane (Methylene chloride)	< 5	1	U	ug/L	0	WA
		2,4-Dichlorophenoxyacetic acid	< 1.1	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		1,2-Dichloropropane	< 5	1	U	ug/L	0	WA
		Endrin	<.111	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Ethylbenzene	< 5	1	U	ug/L	0	WA
		Fluoride	58.5	1		ug/L	0	WA
		Gross alpha	< .4	1	UI	pCi/L	0	TM
		Lindane	<.0555	1	U	ug/L	0	WA
		Methoxychlor	<.555	1	U	ug/L	0	WA
		Nitrate as nitrogen	277	1		ug/L	0	WA
		Nonvolatile beta	3.3	1		pCi/L	0	TM
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Tetrachloroethylene	< 5	1	U	ug/L	0	WA
		Toluene	< 5	1	U	ug/L	0	WA
		Toluene	< 5	1	U	ug/L	0	WA
		Toxaphene	< 1.11	1	U	ug/L	0	WA
		2,4,5-TP (Silvex)	<.55	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,1-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	< 5	1	U	ug/L	0	WA
		1,1,2-Trichloroethane	< 5	1	U	ug/L	0	WA
		Trichloroethylene	< 5	1	U	ug/L	0	WA
		Trichloroethylene	< 5	1	U	ug/L	0	WA
		Tritium	1.26	1		pCi/mL	0	TM
		Xylenes	< 5	1	U	ug/L	0	WA
		Xylenes	< 5	1	U	ug/L	0	WA
		Xylenes	< 5	1	U	ug/L	0	WA
		Aluminum, total recoverable	< 87	1	U	ug/L	0	WA
		Arsenic, total recoverable	2.1	1	J	ug/L	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

H	ST	Analyte	Result	DF	Mod	Unit	Flag	Lab
		Barium, total recoverable	9.8	1		ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Bromomethane (Methyl bromide)	< 10	1	U	ug/L	0	WA
		Cadmium, total recoverable	< 4.7	1	U	ug/L	0	WA
		Calcium, total recoverable	4710	1		ug/L	0	WA
		Chloride	2360	1	J	ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		Chloroethane	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		2-Chloroethyl vinyl ether	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chloromethane (Methyl chloride)	< 10	1	U	ug/L	0	WA
		Chromium, total recoverable	2.6	1	J	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		1,1-Dichloroethane	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		cis-1,3-Dichloropropene	< 5	1	U	ug/L	0	WA
		Iron, total recoverable	15.7	1	J	ug/L	0	WA
		Lead, total recoverable	7.4	1	J	ug/L	0	WA
		Magnesium, total recoverable	492	1		ug/L	0	WA
		Manganese, total recoverable	5.7	1	J	ug/L	0	WA
		Mercury, total recoverable	< .67	1	U	ug/L	0	WA
		Phenols	< 23.8	1	U	ug/L	0	WA
		Potassium, total recoverable	2990	1		ug/L	0	WA
		Radium-226	.16	1	J	pCi/L	0	TM
		Radium-228	1.5	1	V	pCi/L	0	TM
		Selenium, total recoverable	< 19	1	U	ug/L	0	WA
		Silver, total recoverable	1.1	1	JV	ug/L	0	WA
		Sodium, total recoverable	7470	1		ug/L	0	WA
		Specific conductance	84.3	1		uS/cm	0	WA
		Specific conductance	84.2	1		uS/cm	0	WA
		Sulfate	8470	1		ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		1,1,2,2-Tetrachloroethane	< 5	1	U	ug/L	0	WA
		Total dissolved solids	71000	1		ug/L	0	WA
		Total organic carbon	866	1	J	ug/L	0	WA
		Total organic halogens	< 161	1	U	ug/L	0	WA
		Total organic halogens	< 161	1	U	ug/L	0	WA
		Total phosphates (as P)	120	1		ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
		Trichlorofluoromethane	< 5	1	U	ug/L	0	WA
*		Turbidity	.74	1	J	NTU	0	WA
*		Turbidity	.77	1	J	NTU	0	WA
*		pH	6.58	1	J	pH	0	WA

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

<u>H</u>	<u>ST</u>	<u>Analyte</u>	<u>Result</u>	<u>DF</u>	<u>Mod</u>	<u>Unit</u>	<u>Flag</u>	<u>Lab</u>
		Silica, total recoverable	7590	2.1		ug/L	0	WA
		trans-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		trans-1,3-Dichloropropene	<5	1	U	ug/L	0	WA
		trans-1,3-Dichloropropene	<5	1	U	ug/L	0	WA

Number of Records: 124

* = exceeded holding time. + = exceeded screening level or final primary drinking water standard.

Appendix E

Data Quality/Usability Assessment

THIS PAGE LEFT BLANK INTENTIONALLY.

Data Quality/Usability Assessment

Quality assurance/quality control (QA/QC) procedures relating to accuracy and precision of analyses performed on groundwater samples are followed in the field and laboratory and are reviewed prior to publication of results. The review by the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) of the volume of analytical data acquired each quarter and presented in various reports is an ongoing process; its review of the QA/QC data cannot be completed in time to meet the deadlines for the reports required by the Resource Conservation and Recovery Act and associated regulations. Other site and regulatory personnel can obtain further information on the data quality and usability in a variety of ways, including those described below.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific QA/QC information either at the same time as analytical results or in quarterly summaries. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data usability. Result modifiers designed by EPD/EMS and used by the primary laboratories are presented in Appendix D.

Assessment of Accuracy of the Data

Accuracy, or the nearness of the reported result to the true concentration of a constituent in a sample, can be assessed in several ways.

A laboratory's general accuracy can be judged by analysis of results obtained from known samples. The non-radionuclide contract laboratories analyze commercial reference samples every quarter at EPD/EMS' request. The results of these analyses are presented in the EPD/EMS groundwater monitoring quarterly reports. The primary laboratories also seek or maintain state certification by participating periodically in performance studies; reference samples and analysis of results are provided by EPA. Results of these studies also are published in the EPD/EMS quarterly reports.

Analysis of blanks provides a tool for assessing the accuracy of both sampling and laboratory analysis. Results for all field blanks for the quarter can be found in the EPD/EMS quarterly reports. Any field or laboratory blanks that exceed established minimums are identified in the same reports, in tables associating them with groundwater samples analyzed in the same batches.

Surrogates, organic compounds similar in chemical behavior to the compounds of interest but not normally found in environmental samples, are used to monitor the effect of the matrix on the accuracy of analyses for organic parameters. For example, for analyses of volatile organics by EPA Method 8240, three surrogate compounds are added to all samples and blanks in each analytical batch. In analyses of semivolatile organics, three acid compounds and three base/neutral compounds are used. Two surrogates are used in organochlorine pesticides analyses. Percent recoveries for surrogate analyses are calculated by laboratory personnel, reported to EPD/EMS, reviewed, and entered into the database, but they are not published. If recoveries are not within specified limits, the laboratory is

expected to reanalyze the samples or attach qualifiers to the data identifying the anomalous results.

Sample-specific accuracy for both organic and inorganic parameters can be assessed by examination of matrix spike/matrix spike duplicate results. A sample is analyzed unspiked to determine a baseline set of values. A second portion of the sample is spiked with known concentrations of compounds appropriate to the analyses being performed, typically five volatile organic compounds for volatile organics analyses, eleven semivolatile compounds for semivolatiles, six pesticide compounds for pesticides, all metals for metals analyses by SW-846 methods (EPA, 1986), and a known quantity of cyanide for cyanide analysis. The percentage of the spike compound that is recovered (i.e., measured in excess of the value obtained for the unspiked sample) is a direct measure of analytical accuracy. EPA requires matrix spike/matrix spike duplicates to be run at least once per 20 samples of similar matrix.

Matrix spike/matrix spike duplicate results are reported to EPD/EMS but are not published. For organic compounds, according to EPA guidelines, no action is taken on the basis of matrix spike/matrix spike duplicate data alone (i.e., no result modifiers are assigned solely on the basis of matrix spike results); however, the results can indicate if a laboratory is having a systematic problem in the analysis of one or more analytes.

In the case of inorganic compounds, such as metals, the matrix spike sample analysis provides information about the effect of each sample matrix on the digestion and measurement methodology. Data qualifiers assigned by the laboratories on the basis of the percentage of spike recovery are reported in the published results tables.

Assessment of Precision

Precision of the analyses, or agreement of a set of replicate results among themselves, is assessed through the use of duplicates initiated by the laboratory and blind replicates provided by EPD/EMS. The results of duplicate and replicate analyses are presented in those results tables of the quarterly reports which report only one quarter of data, usually during first, second, and third quarters. Duplicate and replicate results are not presented in results tables that report more than one quarter of data, generally provided in fourth quarter reports. In this case, the results tables instead present only the highest result for each analyte for each quarter of the year.

The laboratories assess precision by calculating the relative percent difference (RPD) for each pair of laboratory-initiated duplicate results. One of the contract laboratories uses a data qualifier (J3) to modify metals analyses when the RPD for laboratory duplicates is greater than 20 percent.

Additional statistical comparisons of laboratory duplicate and blind replicate results, both intra- and interlaboratory, are presented in the EPD/EMS quarterly reports. The calculation used for these reports is the mean relative difference (MRD) which is similar to EPA's RPD except that the MRD is the average of all the RPD values from one laboratory for each compound (intralaboratory MRD) or all the RPD values from all laboratories for each compound (interlaboratory MRD), during one quarter. Because detection limits may vary among samples, the MRD requires calculation of a reference detection limit, which is the detection limit at the 90th percentile of the

array of limits in the population of all duplicate and replicate analyses for a given analyte during a particular quarter. The MRD is not method-specific.

Method-Specific Accuracy and Precision

The contract laboratories' EPA-approved laboratory procedures include QA/QC requirements as an integral part of the methods. Thus, knowledge of the method used in obtaining data is an important component of determining data usability. EPA has conducted extensive research and development on the methods approved for the analysis of water and waste water; information on the accuracy and precision of a method is available from EPA publications, as is full information on required QA/QC procedures. A listing of the methods used by the primary laboratories during fourth quarter 1993 is given below along with the source for the method description. Many, if not all, of these sources include presentations of representative accuracy and precision results.

Methods Used by the Contract Laboratories

<u>Method</u>	<u>Used to Analyze</u>	<u>Source</u>
EPA120.1	Specific conductance	EPA EMSL, 1983
EPA150.1	pH	EPA EMSL, 1983
EPA160.1	Total dissolved solids	EPA EMSL, 1983
EPA160.2	Total dissolved solids, total suspended solids	EPA EMSL, 1983
EPA180.1	Turbidity	EPA EMSL, 1983
EPA200.7	Metals	EPA EMSL, 1983
EPA204.2	Antimony	EPA EMSL, 1983
EPA206.2	Arsenic	EPA EMSL, 1983
EPA239.2	Lead	EPA EMSL, 1983
EPA245.1	Mercury	EPA EMSL, 1983
EPA270.2	Selenium	EPA EMSL, 1983
EPA279.2	Thallium	EPA EMSL, 1983
EPA300.0	Chloride, nitrite, sulfate	EPA EMSL, 1991
EPA310.1	Alkalinity	EPA EMSL, 1983
EPA325.2	Chloride	EPA EMSL, 1983
EPA335.3	Cyanide	EPA EMSL, 1983
EPA340.2	Fluoride	EPA EMSL, 1983
EPA353.1	Nitrogen, nitrate-nitrite	EPA EMSL, 1983
EPA353.2	Nitrogen, nitrate, nitrite, or combined	EPA EMSL, 1983
EPA365.1	Phosphorus, all forms (reported as total phosphates)	EPA EMSL, 1983
EPA365.2	Phosphorus, all forms (reported as total phosphates)	EPA EMSL, 1983
EPA376.2	Sulfide	EPA EMSL, 1983
EPA413.1	Oil & grease	EPA EMSL, 1983
EPA415.1	Dissolved organic carbon, total inorganic carbon, total organic carbon	EPA EMSL, 1983
EPA418.1	Total petroleum hydrocarbons	EPA EMSL, 1983
EPA420.2	Phenols	EPA EMSL, 1983
EPA900.0	Gross alpha, nonvolatile beta	EPA EMSL, 1980
EPA900.1	Total alpha-emitting radium	EPA EMSL, 1980
EPA906.0	Tritium	EPA EMSL, 1980
EPA6010	Metals	EPA, 1986
EPA7041	Antimony	EPA, 1986
EPA7060	Arsenic	EPA, 1986
EPA7421	Lead	EPA, 1986
EPA7470	Mercury	EPA, 1986
EPA7740	Selenium	EPA, 1986
EPA7841	Thallium	EPA, 1986

EPA8010	Chlorinated volatile organics	EPA, 1986
EPA8080	Organochlorine pesticides and PCBs	EPA, 1986
EPA8150	Chlorinated herbicides	EPA, 1986
EPA8240	GCMS volatiles	EPA, 1986
EPA8270	GCMS semivolatiles	EPA, 1986
EPA8280	Dioxins and furans	EPA, 1986
EPA9012	Cyanide	EPA, 1986
EPA9020	Total organic halogens	EPA, 1986
EPA9020A	Total organic halogens	EPA, 1986
EPA9030	Sulfide	EPA, 1986
EPA9060	Dissolved organic carbon, total inorganic carbon, total organic carbon	EPA, 1986

An example of available method-specific QA/QC information is that for the analysis of metals by EPA Method 6010/200.7 (EPA, 1986/EPA EMSL, 1983). The primary laboratories, General Engineering Laboratories (GE) and Roy F. Weston, Inc. (Weston), use this inductively coupled plasma (ICP) atomic emission spectrometric method.

The following precision and accuracy data are based on the experience of seven laboratories that applied the ICP technique to acid-distilled water matrices that had been spiked with various metal concentrates. (Note: Not all seven laboratories analyzed all 14 elements.) The references give results for samples having three concentration ranges; the results here are for samples having the lowest values, similar to actual groundwater results for SRS.

ICP Precision and Accuracy Data

<u>Element</u>	<u>True value (mg/L)</u>	<u>Mean reported value (mg/L)</u>	<u>Mean percent RSD^a</u>
Aluminum	60	62	33
Arsenic	22	19	23
Beryllium	20	20	9.8
Cadmium	2.5	2.9	16
Chromium	10	10	18
Cobalt	20	20	4.1
Copper	11	11	40
Iron	20	19	15
Lead	24	30	32
Manganese	15	15	6.7
Nickel	30	28	11
Selenium	6	8.5	42
Vanadium	70	69	2.9
Zinc	16	19	45

^a Relative standard deviation. In EPA (1986), the column heading is Mean Standard Deviation (%).

As another example, EPA Method 601/8010 (EPA, 1991/EPA, 1986) is used by both GE and Weston for analyses of halogenated volatile organics. In the presentation of the method in both references, the following table gives method-specific accuracy and precision as functions of concentration. Contract laboratories are expected to achieve or at least approach these limits.

Accuracy and Precision as Functions of Concentration for EPA Method 601/8010

Parameter	Accuracy as recovery, X' ^a (mg/L)	Single analyst precision (mg/L) ^b	Overall precision (mg/L) ^c
Bromodichloromethane	1.12C-1.02 ^d	0.11+0.04 ^e	0.20+1.00
Bromoform	0.96C-2.05	0.12+0.58	0.21+2.41
Bromomethane	0.76C-1.27	0.28+0.27	0.36+0.94
Carbon tetrachloride	0.98C-1.04	0.15+0.38	0.20+0.39
Chlorobenzene	1.00C-1.23	0.15-0.02	0.18+1.21
Chloroethane	0.99C-1.53	0.14-0.13	0.17+0.63
2-Chloroethyl vinyl ether ^f	1.00C	0.20	0.35
Chloroform	0.93C-0.39	0.13+0.15	0.19-0.02
Chloromethane	0.77C+0.18	0.28-0.31	0.52+1.31
Dibromochloromethane	0.94C+2.72	0.11+1.10	0.24+1.68
1,2-Dichlorobenzene	0.93C+1.70	0.20+0.97	0.13+6.13
1,3-Dichlorobenzene	0.95C+0.43	0.14+2.33	0.26+2.34
1,4-Dichlorobenzene	0.93C-0.09	0.15+0.29	0.20+0.41
1,1-Dichloroethane	0.95C-1.08	0.09+0.17	0.14+0.94
1,2-Dichloroethane	1.04C-1.06	0.11+0.70	0.15+0.94
1,1-Dichloroethene	0.98C-0.87	0.21-0.23	0.29-0.40
trans-1,2-Dichloroethene	0.97C-0.16	0.11+1.46	0.17+1.46
Dichloromethane (Methylene chloride)	0.91C-0.93	0.11+0.33	0.21+1.43
1,2-Dichloropropane ^f	1.00C	0.13	0.23
cis-1,3-Dichloropropene ^f	1.00C	0.18	0.32
trans-1,3-Dichloropropene ^f	1.00C	0.18	0.32
1,1,2,2-Tetrachloroethane	0.95C+0.19	0.14+2.41	0.23+2.79
Tetrachloroethylene	0.94C+0.06	0.14+0.38	0.18+2.21
1,1,1-Trichloroethane	0.90C-0.16	0.15+0.04	0.20+0.37
1,1,2-Trichloroethane	0.86C+0.30	0.13-0.14	0.19+0.67
Trichloroethylene	0.87C+0.48	0.13-0.03	0.23+0.30
Trichlorofluoromethane	0.89C-0.07	0.15+0.67	0.26+0.91
Vinyl chloride	0.97C-0.36	0.13+0.65	0.27+0.40

a X' = expected recovery for one or more measurements of a sample containing a concentration of C , in mg/L.

b Expected single analyst standard deviation of measurements.

c Expected interlaboratory standard deviation of measurements.

d C = true value for the concentration, in mg/L.

e = average recovery found for measurements of samples containing a concentration of C , in mg/L.

f Estimates based on performance of a single laboratory.

References

EPA (U.S. Environmental Protection Agency), 1986. **Test Methods for Evaluating Solid Waste (SW-846), Volumes IA-IC.** Washington, DC.

EPA (U.S. Environmental Protection Agency), 1991. *Guidelines Establishing Test Procedures for the Analysis of Pollutants, Code of Federal Regulations, Title 40, Part 136, Appendix A.* Washington, DC.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1980. **Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032.** Cincinnati, OH.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1983. **Methods for Chemical Analysis of Water and Wastes.** Cincinnati, OH.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1991. **Test Method, The Determination of Inorganic Anions in Water by Ion Chromatography--Method 300.0.** Cincinnati, OH.