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SUMMARY

In support of the Hanford Waste Vitrification Plant (HWVP), the
Slurry Integrated Performance Testing (SIPT) subtask will perform
full-scale testing .of the Feed Preparation Test System (FPTS)
currently located in the High Bay of the 324 Building in the
Hanford 300 Area. The FPTS is an adaptation of the Defense Waste
Processing Facility (DWPF) feed preparation system. The FPTS
represents the proposed HWVP feed preparation system being designed
by Fluor-Daniel, Inc. The equipment will be used to test the
application of the DWPF design to the Hanford Site waste feed.

Two important tasks of the HWVP product composition control (PCC)
system are [Bryan and Piepel, 1992]:

(1) estimation of tank contents and uncertainties (expressed
as covariance matrices), and :
(2) controlling the properties of the-feed/melt/glass

A general Measurement Error Model (MEM) has been developed for the
HWVP PCC system to estimate the contents and covariance matrices
for both the source and recipient tanks after a transfer operation.

A preliminary version of the composition control algorithm, called
the Frit Addition Algorithm (FAA) recommends the mass of fresh frit
of known composition to transfer to the Slurry Mix Evaporator (SME)
in order to maximize the waste loading subject to waste glass
acceptability and processability constraints. The FAA is a
preliminary version of the SME Targeting Algorithm (STA), which
chooses the target mixture for a single SME batch and recommends
the masses of waste, recycle, and frit to transfer to the SME. A
generalization of the STA, which extends the optimization to the
selection of frit composition and reference mixture for an entire
production campaign is also under development.

This document discusses the applicability of the HWVP PCC system
MEM and FAA algorithms to estimation and composition control
problems arising in the context of the FPTS. The existing
algorithms are too specialized to be directly applicable to the
FPTS. However, recommendations for generalizing these algorithms
are presented which would improve their suitability for application
to the FPTS. :

With respect to estimation, it is important to recognize that the
needs of the FPTS include continuous estimation and monitoring
tasks in addition to theé batch by batch updating used by the MEM.

An approach to estimation that incorporates differential as well as
algebraic constraints and which combines the advantages of batch
processing using weighted squares techniques (as used in the MEM)
and classical continuous estimation techniques (e.g., Kalman
filtering) is proposed as a means for extending the MEM to the
needs of the FPTS. The physical plant and operating procedures of
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- the FPTS also differ from the HWVP. An object-oriented
representation approach is proposed which facilitates the modular
application of the existing MEM computer code to different

structural and operational configurations.

Extensions of the FAA may f£ind limited application in adjusting the
composition of the feed simulants. However, the emphasis in the
FPTS is on state estimation and parameter identification. For the
most part, there is very little need for a composition optimization
algorithm. For this reason, attention is focused in this report on
the MEM.
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1.0 INTRODUCTION

The purpose of the feed preparation subsystem in the Hanford Waste
vitrification Plant (HWVP) is to provide for control of the
properties of the slurry that are sent to the melter. The slurry-
properties are adjusted so that two classes of constraints are
satisfied. Processability constraints guarantee that the process
conditions required by the melter can be obtained. For example,
there are processability constraints associated with electrical
conductivity and viscosity. Acceptability constraints guarantee
that the processed glass can be safely stored in a repository. An
example of an acceptability constraint is the durability of the
product glass.

The primary control focus for satisfying both processability and
acceptability constraints is the composition of the slurry. The
primary mechanism for adjusting the composition of the slurry is
mixing the waste slurry with frit of known composition. Spent frit
from canister decontamination is also recycled by adding it to the
_ melter feed. A number of processes in addition to mixing are used
+o condition the waste slurry prior to melting, including
evaporation and the addition of formic acid. These processes also
have an effect on the feed composition.

Tn order to adjust the composition of the slurry by mixing with
fresh frit, the composition of the slurry prior to mixing must be
accurately known. Available measurements consist of chemical:
analysis of samples extracted from the tanks at various stages of
the processing and tank level and density measurements. The former
yield estimates of the concentration of the various species. The
latter provide "estimates of the total mass, so that the
concentrations may be scaled to determine the total amount of each
species present. Because of noise in the measurement process, it is
useful to adjust the measurements to agree with all known physical
constraints, for example, the masses of all species in any given
sample must sum to the total mass of the sample and the amount of
mass transferred out of a source tank must be equal to the mass
transferred into the receiving tank. The usual method for adjusting
the measured values so as to minimize the sum of squares adjustment
to +the measured values while simultaneously satisfying the
applicable constraints is known as data reconciliation. The
measurement error model (MEM) is a data reconciliation algorithm
for the concentration, level and density measurements and is used
to obtain the best estimate of the Slurry Mix Evaporator (SME)
species concentrations prior to mixing with the fresh frit. This
estimate is used by the Frit Addition Algorithm (FAA) to determine
the amount of fresh frit to add. The MEM algorithm also produces a
covariance matrix for these estimates so that the FAA can
conservatively adjust for any error in the knowledge of the SME
concentrations. The MEM is also used in the same manner to obtain
updated estimates and covariances of the SME composition after
mixing with the fresh frit. This composition estimate is used by
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the Feed Test Algorithm prior to sending the slurry to the melter.

The frit addition algorithm (FAA) uses the concentrations and
uncertainties supplied by the MEM to determine the amount ‘of frit
to add to the SME to maximize the waste loading while at the same
time increasing the probability that the processability and
acceptability constraints will be met to statistically acceptable
levels. The existing FAA assumes that the frit composition and .
associated error are known and that the composition is fixed a
priori (i.e., the frit composition is not subject to optimization).
The routine iterates on the amount of frit added and selects the
maximum value that ensures (in the probabilistic sense) that none
of the constraints will be violated.

Finally, the MEM is reapplied after fresh frit addition to produce
an estimate of the. SME composition and associated uncertainty. The
. Feed Test Algorithm (FTA) is then applied to the MEM outputs in
order to decide whether this particular batch is acceptable by
comparing estimates of the SME composition and glass melt
properties to the requirements (Bryan and Piepel, 1993).

The purpose of this study was to evaluate the appropriateness of
the MEM and FAA developed for the full scale vitrification plant to
the Slurry Integrated Performance Testing (SIPT) Feed Preparation
Test System (FPTS). The SIPT FPTS is a test bed for obtaining data
on the characterization of the equipment and processes to be used
in the full scale plant using simulated, non-radioactive, waste
slurries. In addition, the FPTS will ascertain whether certain
assumptions needed to simplify the data analysis in the full scale
_ plant (e.g.,. mixing produces a homogeneous slurry) are valid and
will also characterize the measurement subsystems. In the full
scale plant, various stages of the process take place in different
tanks prior to being mixed.- Raw waste is conditioned by the
addition of formic acid and boiling in the Slurry Receipt and
Adjustment Tank (SRAT). The conditioned waste slurry and recycled
waste stored in the Recycle Waste Collection Tank (RWCT) are added
to the SME, where the composition of the melter feed is adjusted by
the addition of fresh frit. In the SIPT FPTS, full scale operations
are simulated in a single full scale test vessel in which all the
processes performed by the SRAT, RWCT and SME are simulated in a
' sequential fashion in a singlée vessel. Therefore all the
- constituent processes can be measured and evaluated using a single
test vessel. An additional half scale tank is provided for the
preparation of slurries with the desired properties. Condensate
from all thermal operations in the main test vessel is collected in
an additional tank. '

This study was carried out by first analyzing the methodologies
used in the existing MEM and FAA algorithms. The equipment,
processes, and measurements used in the SIPT FPTS were then
characterized. The appropriateness of the MEM and FAA algorithms
for use in the SIPT FPTS was then analyzed. The existing algorithms
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were found to be' inadequate in their existing form. The primary
reason for this mismatch is that the purpose of the original MEM
and FAA algorithms is to obtain state estimates and control values
for a highly structured configuration with known parameters,
whereas the purpose of the SIPT FPTS is to obtain validation of
equipment operation, estimates of the values of important
parameters involved in the process, and verification of important
assumptions used in data processing. Another important difference
affecting the design of the estimation and optimization algorithms
is the fact that the full scale plant makes use of batch processing
based on data reconciliation, whereas the needs of the FPTS are
better served by state estimation and parameter identification
using real-time monitoring methods based on model reconciliation.
By model reconciliation, it is meant that the parameters of the
model are adjusted to minimize the squared state estimation error
rather than adjusting the data to fit the model, as is done in data

reconciliation.

The next phase of the study was to determine what modifications and
extensions to the existing MEM and FAA algorithms could be
suggested that might lead to their suitable application to the SIPT
FPTS scenario. The major accomplishment has been to identify the
important characteristics of the changes to the existing algorithms
that must be addressed in further research and development in order
to arrive at a suite of algorithms that is appropriate to the SIPT
FPTS scenario. These recommendations for further investigations are
specified in detail in Section 4. A summary is provided here to
provide perspective for reading the remainder of this report.

With respect to the MEM algorithm, we have found that the algorithm
is specific to the HWVP plant and operational configuration. By
using knowledge representation methods from object-oriented
programming and artificial intelligence, it is possible to obtain
a general purpose estimation and parameter identification algorithm
that is suitable for a wide variety of waste processing scenarios.
This approach would support generation of the state estimates and
associated covariance matrices for a variety of plant and
operational scenarios from a library of plant equipment and
sensors. The actual configuration of equipment and sensors, and the
estimation processes to be performed would be entered by the
analysts, and the. estimation algorithm would be constructed
automatically from the library of process egquipment and sensor
behavioral models and generic templates for the estimation and
optimization algorithms. By separating descriptions of processes,
measurements, and algorithms a high degree of flexibility to
different scenarios can be accomplished. This approach would not
only facilitate extension of the MEM to the FPTS, but would also
find application to a number .of other applications in which
continuous monitoring of chemical and physical processes is
required. The current MEM is also limited to mixing and evaporation
processes and further assumes that the constraints must be
satisfied exactly. By extending the library of primitive processes
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and allowing for process noise, the range of processes that can be
dealt with can be extended. This would permit the MEM to be
extended to a wider range of applications and allow for soft
matching of the process constraints. The existing measurement
models assume that the noise is zero mean, additive and Gaussian.
These models can be extended by providing parameterized models of
bias and explicit models of the calibration processes. For example
the dependence of the Holledge detection system tank levels on
temperature can be explicitly accounted for. The existing MEM
assumes that all constraints are algebraic in nature. This limits
the applicability of the MEM to equilibrium states. By extending
the MEM to include process dynamics, an algorithm incorporating
both algebraic and differential constraints can be obtained. The
batch nature of the existing MEM does not permit continuous
monitoring of the process, which would be useful in the FPTS
scenarios. In order to achieve detection of discrepancies at the
incipient stage, an jncremental, continuous monitoring approach is
desired. Finally, there is no provision in the MEM for identifying
gross errors and removing "bad data."

With respect to modifications to the FAA, there is no direct
application of the FAA'in the STPT FPTS, since the FAA assumes only
additions of frit of a fixed composition that is determined a
priori and, hence, does not permit optimization over the current
composition of the frit.. However, work done in developing and
applying the Optimal Waste Loading (OWL) methodology [Hoza, 1993]
provides extensions to the FAR which might £ind application in the
FPTS. For example, OWL is being used to investigate blending of
waste types, which might £ind application in the preparation of
feed test slurries having the target composition. The mathematical
optimization techniques used in OWL may also find application in
applying the FAA algorithm to the monitoring and control of
chemical systems, for which the complete search of the entire
domain of the control variables in discrete increments employed by

the FAA may be impractical.
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In order to provide a context for the discussion of the existing
MEM and FAA algorithms, ‘it is first necessary to describe the
process sequence for feed preparation in the full scale plant. As
previously mentioned, separate tanks are provided in the full scale
plant for the preparation of waste slurry and spent frit. The
contents of these tanks are transferred to the Slurry Mix
Evaporator (SME), where the composition is adjusted by adding an
amount of fresh frit that balances the multiple objectives of high
waste loading, slurry processability, and acceptable product glass
characteristics. The Slurry Receipt and Adjustment Tank (SRAT) and
the Recycle Waste Collection Tank (RWCT) are assumed to be
initially full. The Slurry Mix Evaporator (SME) is initially empty.
Inductively Coupled Plasma (ICP) samples are taken from the RWCT,
the SME, and the SRAT. The level of the RWCT and SRAT and the level
and specific gravity of the SME are also measured. The slurry in
the SRAT is then transferred to the SME, and the level of the SRAT
is remeasured. Next the liquid in the SME is removed by evaporation
and the condensate is transferred ,to the Slurry Mix Evaporator
Condensate Tank (SMECT). Spent frit is then transferred from the
RWCT to the SME. The liquid content of the SME is again
concentrated by boiling and the vapor contents transferred to the
SMECT. More spent frit is then added to the SME from the RWCT.
Inductively Coupled Plasma (ICP) samples are again taken from the
RWCT and the SME and the level of the RWCT and the level and
density of the SME are remeasured.

The Measurement Error Model is now applied to the six measurement
sets (three tanks in each of two states (empty and full) and the
NOXIDE + 5, where NOXIDE is the number of species present in the
mixture, constraint equations to determine the best estimate of the
contents of the SME. These constraints represent the overall net
mass change in the SME (mass change in SME = mass transferred from
RWCT + mass transferred from the SRAT - mass evaporated to the
SMECT), the four mass balances (RWCT FULL, SRAT FULL, SME EMPTY,
SME FULL) obtained from thé requirement that the ICP sample mass
must equal the sum of the constituent component masses, and the
NOXIDE mass balances that represent the fact that the masses of
each species must also conserve mass in the same way as the overall
mass. The measurement sets for each of the tank samples all contain
a level measurement (a total of six individual measurements). For
FULL tank samples from the RWCT and SRAT, the measurement set also
includes a set of oxide mass measurements for each species, the
mass of the sample that is analyzed by ICP, and the weight of the
sample removed from the tank (a total of 12 individual measurements
for each of 2 FULL samples). The SME measurements contain an
additional specific gravity measurement but are equivalent in other
respects to the measurements from the other two tanks in both EMPTY
and FULL states (a total of 13 samples for each of the 2 SME £ill
states), bringing the size of the complete measurement vector to 56
(= 6 + 24 + 26). :




The SME composition estimates are then used by the frit addition
algorithm (FAA) to determine the amount. of fresh process frit to
add from the Process Frit Slurry Feed Tank (PFSFT). The existing
FAA adds the minimum amount of fresh frit (maximizes the waste
loading) such that neither the 2 constraints on the processability
(electrical conductivity, viscosity) nor any of the 3 constraints
on the durability (B release, Li release, Na release) of the
vitrified glass are violated. The existing FAA uses a
straightforward search through a set of quantizéed levels of added
frit that spans the amount that can be added without overflowing
the SME in uniform increments of added mass. The algorithm
determines the uncertainty of each of the five properties (as a
function of frit being added) by considering errors associated with
frit composition, level measurements in the SME, composition in the
SME, and property coefficients. The maximum (over all five
properties) of the minimum frit addition that does not violate the
constraints (for each property on an individual basis) is selected
as the actual amount of frit to be added. Constraint violation is
defined as a limit on the probability that the actual value of the
property will not exceed specified limits.

The liquid is again removed from the SME by evaporation. Level and
species concentration measurements are then obtained from the PFSFT
and the SME. Process frit in the amount determined by the FAA is
then transferred to the SME. The level and species concentrations
. are remeasured. The MEM is then applied to the set of measurements
obtained from the FULL and EMPTY PFSFT and SME to obtain the best
estimates of the PFSFT and SME levels and concentrations.

The MEM algorithm is essentially- a data reconciliation algorithm
and can easily be generalized for applications in situations where
it is desired to find the best set of adjustments to a set of data
which are known to fit a set of algebraic constraints. Appendix A
discusses the general form of the data reconciliation problem.
Appendix B gives the constraint models and the gradient matrices
which are required by the algorithm for the full scale process
sequence described above.

Adjustment of the HWVP feed composition takes place in two stages
[Bryan and Piepel, 1993]. The Glass Formulation Algorithm (GFA)
selects the frit composition for an entire production campaign. The
SME Targeting algorithm (STA) chooses the target mixture for a
single SME batch and recommends the masses of waste, recycle, and
frit to transfer to the SME. The FAA is a preliminary version of
the STA that adjusts only the amount of fresh frit of a known
composition to be added to the contents of the SME. The FAA can be -
generally expressed as a minimization problem: subject to
probabilistic constraints. The existing algorithm is specialized
and takes advantage of many special characteristics of the specific
problem it addresses; the one dimensional minimization, the limited
range of feasible values, and the low resolution required of the

solution permit a full search of the space of possible solutions,
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so +that formal optimization techniques are not required.
Independent research on optimal waste loading under a wider range
of feasible inputs (individual optimization of each component of
the fresh frit) is under consideration under another task in this
project [Hoza, 1993). The specification of the problem that the
existing frit algorithm addresses and a summary of the algorithm

are given in Appendix C.

The purpose of this report is to identify potential applications of
data reconciliation and optimization typified by the MEM and FAA to
the pilot plant and to determine what. extensions of these
algorithms might be worth pursuing for the pilot plant application.
Section 3.0 gives a brief review of the process sequences,
available measurements, and objectives of the FPTS. Section 4.0
discusses extensions of the existing algorithms that are required
to meet the needs presented in Section 3.0.




3.6 DESCRIPTION OF FEED PREPARATION TEST SYSTEM

3.1 FPTS_EQUIPMENT

The Hanford Waste Vitrification Plant (HWVP) Feed Preparation Test
System (FPTS) is an adaptation of the Defense Waste Processing
Facility (DWPF) feed preparation system. The equipment will be used
to test the application of the DWPF design to the Hanford Site
waste feed. The HWVP FPTS consists of a vessel(evaporator), heat
transfer coils, condenser, slurry transfer/melter feed pump, sample
punp, sample systemn, agitator, Holledge -Level Detection/Density
Measurement System, and supporting monitoring and control
equipment. »

Vessel HB-15 is a full-scale representation of the three feed
preparation process tanks:

(1) Slurry Receipt and Adjustment Tank (SRAT)
(2) Slurry Mix Evaporator (SME), and
(3) Melter Feed Tank (MFT).

The HWVP SRAT is designed to receive, concentrate and formate HWVP
feed. Feed slurry is pumped to the SRAT, cooled, and sampled in
order to identify the composition and ensure adéquate mixing. The
feed is then concentrated by boiling -the slurry and evaporating to
a predetermined solids concentration (nominally 140 grams of total
oxlides per liter of slurry). Formic acid is added at an, elevated
temperature and the batch is then digested at boiling temperature.
The formic acid addition reduces the yield stress and viscosity of
the slurry and provides the melt reductant to inhibit foaming in
the melter. . -

Recycle Waste and Process Frit are added to the formated slurry in
the SME. Adjustments are also made at this point to ensure that
the melter feed conforms to the total target oxide concentration
(nominally 500 grams of test oxide .per liter of melter feed). The
total oxide concentration is controlled by the amount of frit added
to the formated slurry and the volume of feed in the test vessel.
The redox state is adjusted by the addition of a known amount of
formic acid and/or sugar, if required. Following adjustment of
total oxide concentration and redox state, the slurry is cooled and
sampled in preparation to being sent to the MFT.

The HWVP MFT receives the prepared feed from the SME. The melter
feed is maintained in a well-mixed state by constant agitation. The
MFT will also provide cooling of the contents. The feed is then
transferred into the melter through two independent melter feed
delivery systems. '

Temperature control of HB-15 is provided by three concentric heat
transfer coils suspended from the vessel head. The inner coil is
for cooling water and the middle and outer coils are for steam
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heating.

condenser CD-1000 is a full scale rebresentation. of the DWPF
SRAT/SME condenser. Slurry Mix Evaporator Condensate Tank HB-14 is
used to collect the condensate from the condenser on HB-15 during

normal operations.

Transfer/Melter Feed Pump P-1101 is a cantilevered centrifugal pump
that is used:

(1) to transfer feed out of the vessel HB-15 during SRAT/SME
operations, and

(2) to supply feed to the melter through a recycle loop during MFT

operations.

The Hydragard Sampler is an in-line, closed-loop, liquid sampling
system designed to provide positive extraction and collection of
samples from the process vessel (HB-15) using a diaphragm pump. The
sample is used to characterize the feed composition. Sample-Pump P-
1002 is used to circulate slurry through the sample system and is
similar in construction to the transfer pump.

The auxiliary sampler system installed in Tank HB-15 has the
capability of drawing samples from seven (7) different 1levels
within HB-15. These samples will be used to verify the homogeneity
of the feed slurry in comparison to the samples taken using the

main sample pump. .

Agitator AG-1000 has two impellers mounted on a single shaft, a
radial flow impeller and an axial flow impeller, and is .driven by
a variable speed electriq motor.

The Holledge Level Detector works on the same principle as a dip
tube bubbler. Tubes are set at different elevations above the floor
of the' tank, which causes a change in pressure on the air flowing
into each tube that is dependent on the liquid level in the tank.
The difference in pressures between the tubes is then translated
into level and specific gravity measurements. In addition to the
Holledge Level Detection System, a conventional dip-tube bubbler
system has been installed into HB-15. The diptube bubbler is used
as a comparison against the Holledge Level Detector and to provide
a backup in the event that the Holledge Level Detector fails.

There is an air-cooled camera installed in HB-15 that provides the
ability to view the inside of the tank during operations.

Receipt and Lag Storage Tank HB~13 is an existing tank that will be
used for make-up of both feed and frit slurries and for transfer
pump testing. Weigh Tank TK-900 is used as a chemical addition
station to HB-15 and to collect condensate from the condenser.
Weigh Tank TK-900 is equipped with an air operated diaphragm pump
which will be used to transfer solutions to the process tanks.
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Approximately 70 process variables are monitored throughout the
process, primarily flow rates, pressures, and temperatures. The
current, -voltage and speed of the agitator, the sample pump and the
transfer pump are also monitored. Liquid Levels in HB-14 and HB-15,
specific gravity in HB-15 and weight in TK-900 and HB-15 are also
available: HB-14 is equipped with a pH meter.

Some of these data are used for process control. Others are simply
collected for analysis purposes by the data acquisition system.

3.2 FPTS PROCESSES

The test plan for the pilot feed (HWVP, 1991) consists of
essentially three phases, one for each of the three tanks involved
in the full scale process: .

(1) Slurry Receipt and Adjustment Tank (SRAT) Simulant Processing,

(2) Slurry Mix Evaporator (SME) Simulant Processing, and
(3) Melter Feed Tank (MFT) Simulant Processing.

The general purposes of each phase are to simulate and characterize
the corresponding feeds and operations of the full scale process.

Each of the top-level phases can also be subdivided into sub-phases
that are associated with the activities that take place in the
respective tanks. For SRAT Simulant Processing, the subphases are

(1) Simulant Preparation, :
(2) Simulant Concentration (Heating, Boiling, and Cooling), and
(3) Formic Acid Addition and Reaction.

SME Simulant Processing can be subdivided into two sub-phases:

(1) Recycle Waste Addition, and
(2) Process Frit Addition.

MFT Simulant Processihg is beyond the scope of this study.

Within each sub-phase a number of processes and tests are
performed. A detailed description of the processes and tests to be
performed by the FPTS has been extracted from the test plan and is
presented in Appendix D. In this section wé briefly describe from
a general perspective the classes of processes and tests involved.
The purpose of describing the tests and processes in this way is.
not only to simplify the discussion but also to facilitate the
basic task of this study--to identify applications of the MEM and
frit addition algorithms to pilot plant operations and to specify
modifications and extensions that would be required by the new

applications.

The basic categories of processes involved are:

10



(1) Simulant Preparation
(2) Mass Transfer and Mixing
(3) Dilution

(4) Thermal Processes (Boiling, Cooling, Evaporation, Heating)

(5) Formic Acid Addition

The MEM algorithm deals explicitly only with mass transfer and
mixing and evaporation. The Frit Addition Algorithm deals
explicitly with the determination of the amount of one feed stream
to add to another such that the mixture composition satisfies
certain constraints and therefore may have application to simulant

preparation and mass transfer and mixing processes.
The basic classes of tests involved are:

(1) Homogeneity Tests

(2) Equipment Performance Evaluations
(3) Coil/Condenser Tests

(4) Simulant Characterization

(5) Offgas Analysis

The objectives of the homogeneity testing are to determine the
ability of the equipment to produce a homogeneous slurry and to
evaluate the ability of the Hydragard sampler to collect a

representative sample. .

At major slurry compositions (dilute HWVP feed, concentrated HWVP
feed, formated HWVP feed, and HWVP melter feed) selected equipment
performance evaluations are carried out such as pump performance,

sampling, slurry transfer, and Holledge system measurements.

-

The coil/condenser tests are designed to characterize the
performance of the evaporator/condenser as a function of liquid
level, slurry concentration, and boiling rate. Two condensate
samples per steam flow rate will be taken from the condensate line
during each test to determine solids carryover in the condensate.
An aerosol sample will also be taken during each test to determine

the solids carryover in the off-gas line.

Simulant compositions are characterized by performing ICP
(Inductively Coupled Plasma), atomic absorption (cesium), ion
chromatography (fluoride, chlorine, nitrate, nitrite, sulfate,
formate, and phosphate) and ion selective electrode (ammonia) and
redox (formated feed only) measurements. Weight percent total
solids, weight percent total oxides, pH, density, viscosity and
solids settling rate analyses will be performed on the slurries to

identify their physical properties. .

Ooff-gas composition analysis will be employed to characterize the
generation rates of the major gaseous reaction products.
Specifically the temporal emission rate behavior of NO,, N0, NHj,
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0,, N;, Hy, CO, and CO, will be continuously monitored with specific
gas analyzers. Hydrogen gas emissions will be monitored during all
feed preparation steps due to the flanmability hazards it presents.

The existing MEM algorithm addresses only the simulant
characterization test,.that is, the purpose of the MEM is to obtain
the best estimates of the species concentrations, given all the
available measurements.
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4.0 RECOMMENDED EXTENSIONS TO THE EXISTING MEM AND FAA
ALGORITHMS FOR _USE IN THF FPTS

. In considering the applicability of the FAA- and MEM to the FPTS,
the differences in the objectives of full scale operations and feed
performance testing must be taken into account. In the case of full
scale operations, the primary objectives are accurate and precise
estimation of composition and statistical process control of feed
composition. The MEM contributes to this objective by providing
improved estimates of the feed composition prior to frit addition
and verification of feed composition after frit addition. The FAA
contributes to this objective by determining the minimum amount of
frit that must be added to ensure processability of the slurry and
acceptability of the vitrified waste.

In the case of feed performance testing, the focus is more on
characterizing the properties of the slurry, verifying certain
assumptions made in the process models (e.g., that mixing produces
a homogeneous slurry), obtaining unknown coefficients of the
process models (e.g., condenser heat transfer coefficient),
verifying equipment models, and monitoring process variables for
safe operation. The FPTS is equipped with additional
instrumentation for these purposes, including spatial sampling of
the composition of the slurry, off-gas analyses, and pump and
agitator electrical and speed monitors. The instrumentation
provided in the pilot plant is therefore capable of giving a much
more comprehensive view of processes and operations than can be
provided with the instrumentation available in the £full scale
plant. Because extension of the FAA for the full scale plant is
currently under study (see for e.g., (Bryan and Piepel, 1993) and
(Hoza, 1993)), most of our discussion is directed at extending the
MEM. However, the use of object-oriented representation techniques
and state space modeling strategies can.be equally employed in
process optimization algorithms (of which the FAA is a very special
case) in the same way that they are illustrated here in the context
of estimation and parameter identification algorithms (of which the
MEM is a very special case). .

In the following paragraphs, our purpose is to generalize the MEM
algorithm along several directions. A few observations about the
form of the MEM motivate our discussion of these extensions. The .
first observation is that the algorithm is completely determined by
the form of the process constraints, the form of the measurement
equations and the covariance matrix of the measurement noise.
Gradient matrices required by the MEM are generated by
differentiating the constraints with. respect to measured or .
unmeasured variables. The first set of recommended changes to the
algorithm therefore deals with facilitating the construction of the
algorithm by making use of object-oriented representation methods.
The central idea is to decompose the physical plant into a set of
more primitive descriptions representing the primitive plant
equipment and sensing devices. The global behavior of a specific
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plant is then synthesized by specifying separately the plant
objects (primitive plant equipment and sensors) from a library of
generic equipment and sensor models and the plant topology
(interconnections among the components and placement of sensors) by
specifying which outputs of each object are connected to which
inputs of other objects. The combination of primitive objects and
" interconnections describes the physical layout of the plant and is
essentially equivalent to the chemical engineer’s piping and
instrument diagram. Since the state of the plant is determined not
only by its physical configuration but also by how it is operated,
it is necessary to augment the object and interconnection models by
another set of models describing how the plant will be operated.,
The description of plant operations can be decomposed into a
library of primitive actions (eg., open a valve) in the same way
that the physical plant was decomposed into a set of tangible
primitive objects. The global description of action includes the
temporal sequencing of the primitive actions in the same way that
the global description of physical layout includes the description
of interconnections. It is also possible to model event-driven
actions by augmenting the primitive action models with the
appropriate activation preconditions. A process becomes active when
the preconditions become true in any operational scenario. The
temporally-sequenced and event-conditional description of the
actions to be performed constitutes the process model. The behavior
of the plant can be predicted given the plant and process models.
The observed behavior is then predicted from the measurement models
which describe the relationship between actual and observed
behavior: '

Summarizing the above discussion, the object-oriented method can be
described as a decomposition of behavior in terms of both the
physical structure of components and the temporal structure of
action. The plant physical structure is hierarchically decomposed
into a set of component equipment each of which is described by
behavioral models that depend on external parameters specifying
links to behaviors of other components and 1links to active
processes and internal parameters that describe conditions (e.g.,
pressure, temperature) particular to that component. Plant
operational procedure is decomposed temporally into a sequence of
primitive process that are activated either manually, by the
occurrence of specific events in the operational scenario, or by
automatic control systems. The sequence of primitive processes
triggers behavioral constraints to be active or inactive during
specific time frames, which imposes a different set of constraints
to be active between operational events. The global behavior of the
plant is obtained from the collection of constraints describing
component behaviors, ' component interconnections, and active
processes.

The reformulation of the algorithm in general object/process terms
allows the algorithm to be applied more readily to novel
combinations of process sequencing and measurement configurations.
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In particular this means that the modified MEM can be used for
various state estimation tasks required by +the FPTS. FPTS
operations differ from the full scale operation_with respect to
process and measurement configuration and process sequencing
scenario. The object/process approach also permits the development
of estimation algorithms like the MEM to be decomposed. The first
step consists of describing the set of constraints that apply
during a particular interval of time. The second step consists of
constructing the estimation algorithm from the given plant physical
configuration and operational sequences. The benefits of this
approach are the ease with which the estimation algorithm can be
applied to a wide variety of plant configurations and flexibility
to changes in operational procedures that may arise.

The goal of the~algori£hm development described here is to provide
the framework for an object-oriented estimation environment that
can produce a complete state estimate and associated covariances

given a description of:

(1) the plant configuration épecified as a set of unit processing
elements and their interconnections,

(2) a set of measurements specified by +the appropriate
transformation of plant states and a description of the measurement
errors, and

(3) a process scenario consisting of a. temporally related set of
primitive operations that specify the constraints that must hold
for a specific subset of the states during a particular interval of

time.

For the FPTS special case, the process elements consist of the
tanks and pumps used to transfer material, the measurements consist
of the various masses, volumes and concentrations that are
monitored, and the process scenario consists of the various tank
transfers, chemical additions, and dilution and concentration
operations that are specified in the test plan. The measurement
scenario consists of the description of the measurement types that
are available and the sampling description (how often sensed values
are obtained). The state estimation algorithm is recursive. A state
update equation is provided to project the effects of .the current
process operation on the values and uncertainties of the state
variables. The state update algorithm is essentially a simulator
for the mean value of the system state and an algorithm to keep
track of the state uncertainties. A measurement update algorithm is
provided to incorporate the effects of measurements on the
estimates and their covariances.

In the following paragraphs, the elements of the object-oriented
approach to equipment and process modeling are described in
somewhat more detail. It is assumed that a library of primitive
equipment describing their behaviors in generic terms and a library
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‘of primitive actions describing the effect of activation of these
actions on the primitive objects is ayvailable. An element of
either library can be introduced into the model of the plant
scenario by instantiating an element from the 1library.
Instantiation may be described as introducing the set- of
constraints associated with that action or process into the global
model and'explicitly stating the values of parameters that may be
expressed generally in the model libraries. For example a Tank_1’
instance may be created from the generic tank library by specifying
what kind of tank it is (e.g., cylindrical) and giving values to
its cross-sectional-area and height. The physical model of the test
facility is synthesized by instantiating specific. model entities
from a library of component model templates. The plant physical
model is then completed by specifying the interconnections and
other causal pathways between the instantiated components. The
model of the test plan is composed in a similar fashion as a
sequence of primitive operations selected from a library of generic
process methods. The generic process methods may influence the
behaviors of the components and require certain constraints to be
in effect while they are active. Each of the elements of this
description is elaborated on in the sections below.

Plant Model

The plant model consists of a set of interconnected equipment
models which collectively define the possible behaviors of the
plant. The individual equipment models describe the possible local
behaviors of the components of the system in terms of constraints
that must be satisfied in any valid global solution. For example,
the sum of the masses of the components of a multicomponent
solution in a tank must be equal to the total mass contained in the
tank. The connectedness models describe any interactions that may
occur among the components. For example, if there is a pipe
connecting two tanks and the conditions for flow are satisfied
(gravity gradient or pump), then the amount of material flowing out
of one tank must be equal to.the amount of material flowing into
the other tank and the rate of flow at the output of the
discharging tank is equal to the rate of flow at the input to the
receiving tank. Individual components are instantiated from a
general library of component templates. The component templates
determine the general form of the component behaviors and the
component instances give specific details of a particular component
in the plant scenario, for example, an instance may specify the
values of parameters given in the class template.

Component Prototype Models

Component prototypes are the templates for objects used in the
scenario. Each prototype has associated with it a number of
attributes each of which may contain the description of a parameter
or which may contain pointers to other prototypes which contain a
more detailed description of the slot. This dual description of
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attributes in terms of simple values or more complex objects
permits the description to be abstracted to the appropriate level
of detail. The parameter description is a primitive prototype that
contains the name of the parameter, a time history of its values,
the units used for specifying that parameter, pointers to any
constraints in which that parameter appears, mathematical
descriptions of the parameter and any procedures that may be used
to evaluate the parameter. Permitting pointers to other prototypes
to be used as slot fillers permits the objects to be defined
hierarchically. For example, a reaction vessel may consist of the
tank containing the reactants, the agitator for stirring the
reactants, and heating and cooling coils for controlling the
temperature of the reactor. The state of a component is a set of
parameters that is sufficient to givée a complete description of the
component’s behavior. The prototype may contain additional
descriptors of the component that are derivable from the component
state if desired. For example, if the tank geometry is described in
terms of a discrete parameter giving its shape as cylindrical, then
its cross-sectional area and length are sufficient to describe its
geometry, but the prototype may contain a slot for volume as well.
In this case the consistency of the redundant constraints must be

maintained. . "
bomponent Instance Hocfels

Component instance models are defined as instances of component
prototype models. Component prototype models specify the parameters
and behaviors of the components in general terms. Component
instance models specify the specific values of parameters of a
specific component in the scenario. For example a - component
prototype model may define the generic description of a tank or a
valve. The component instance model describes a particular tank or
valve in the scenario, for example, Tank HB-14, a stainless steel
tank that is the primary receiver for condensate generated from
SRAT/SME operations. -

Connectedness Models

Connectedness models describe the various interactions that can
take place between the components. The most common example of
‘connectedness in chemical systems is the piping between the various
components through which materials transfer takes place.
Connectedness constraints are the basic mechanism through which
local behaviors may impact global behaviors of the system. The
primary connectedness constraint for the SIPT is the pipe. A pipe
establishes the equality of the mass and mass flow rates at the
ports to which it is connected.

Process Model

The process model consists of a set of local activities that are
applied to the plant model in order modify its global behavior to
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achieve some specified set of objectives. Local process activities
modify the parameters of a particular object over a particular time
interval. The local activities may be performed in series or in
parallel. The complete set of activities for each component over
+he entire time span of interest is called the process scenario.
For example, a tank-to-tank transfer consists of changing the state
of the valve in a pipeline connecting the tanks from open to closed
for a specified interval of time or until some particular
constraint is met. For example the source tank may become empty at
some point in time, thereby causing the flow to cease.

The global behavior of the plant is predicted by propagating the
consequences of the local actions throughout the entire plant and
over the duration of the scenario. The algorithm which projects the
current estimated state forward in time to account for the dynamics
of the system and any control activities that occur during that
interval is called the process update algorithm. The process update
algorithm updates both the values of the components comprising the
plant and their associated uncertainties.

Measurement Model

The measurement model consists of a set of constraints that
describe the measured variables in terms of the process states and
any errors that are associated with the measurement. A typical
measurement equation thus takes the form:

Z; = £(Xy, Xgre0e¢X,) + & (4.1)

where f£(%,, X;,...,%,), represents the deterministic aspects of the
transformation of the system state performed by the measuring
device and e; represents the measurement error. e may. consist
entirely of random error, in which case it is described by its
probability distribution, its temporal correlation and its
correlation with other random variables in the system. Additional
structure may be imposed on the error, if desired. For example,

a measured value which is nominally constant, but which has an
unknown quadratic drift over time may be written as: )

e = (bg); + (by); * £ + (b)) * 4+ n - (4.2)

where (b;);, j =0,1,2 are constant but unknown parameters and n; is
random noise. A similar expression can be used to represent the
unknown relationship bétween level and temperature in the Holledge
Level Detection system. Temperature measurements can then be used
to estimate the unknown coefficients in the model in order to
calibrate the system.

In the object-oriented representation of the plant, sensor

instances will be selected from a library of sensor prototypes. For
each sensor prototype the form of the function £(¥%;, %,...,%;) is
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given. Every sensor also has a sampling history, which describes
fhe time at which measurements are taken (either as sampling rates,
sample at specific events in the process, or a specific function of
time), a measurement noise description, and a calibration method.
The second set of extensions to the MEM algorithm results from
comparing the form of the constraints in the Kalman filter with
those in the constrained weighted least squares algorithm. The
Kalman filter is a well known algorithm for obtaining minimum mean
squared error estimates in dynamic systems modeled by constraints .
expressed as differential equations that is analogous to the
weighted least squares solution for static systems modeled by
algebraic constraints. A brief review of "the Kalman £filter
equations for discrete time systems is presented in Appendix E.

Tn the Kalman filter, there are two distinct sets of equations, the
process model equations, given by equation E-1, and the measurement
equations, given by equation E-2. In the MEM, the process states
are converted to measurement variables (by substituting any
relations of the form E-2 into the process state equations) so that
all measurement variables appear in the state equations. Any
unmeasured process states remaining after substitution become
unmeasured variables and are treated differently by the algorithm.

Three extensions to the approach adopted in the MEM are suggested
by the comparison of the different representations used in the
Kalman filter and the MEM. First, it is desirable to modularize the
description, eliminating any coupling that might occur between the
description of the process constraints and the description of the
measurement constraints. This facilitates maintaining a clear
distinction between sources of error that arise from lack -of
‘understanding of the underlying chemical and physical processes and
any error arising from errors in the measurement process. Second,
a convenient method for introducing "soft matching” of the process
constraints is desired. It is frequently the case that the
constraints will be satisfied only inexactly, for example, the
compositions may change due to unmodeled chemical reactions as well
as mixing during mass transfer. Therefore, the mass of a particular
species after mixing may not be exactly equal to the sum of the
masses of that species from the two streams being mixed, since a
small amount of that species may be converted to some other
species. If the reaction converts a significant fraction of the
species, then it may be necessary to explicitly model the reaction
as an additional constraint. However, if only a small fraction will
be converted, it may be adequate to simply model the error as
process noise. The process noise levels may be adjusted to reflect
the a priori knowledge of the tendency of this species to be
modified in the mixture. In the literature on regression with
algebraic constraints (see, for example, Fuller (1987)), the
approach to dealing .with process noise is to introduce an
intermediate and unobservable variable when defining the
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regression, the so-called latent variable, ¥, and then define an
additional noisy algebraic constraint that defines the observed, or
manifest variable, X,, in terms of the latent variable. Models with
fixed latent variable are called functional modéls, while models
with random latent variable are called structural models. For
example, if it is desired to define a structural model for-an
inexact linear regression, we obtain

Yc=B°+lec+e=’ t=1' L] ’n : (4-3)

for the "process model" with e, representing the process noise,
and

for the "measurement model", with u, representing the measurement
noise. . '

Equations 4.3 and 4.4 are in a form very similar to the constraints
used in the Kalman filter formulation except that, in the algebraic
case, the constraints are global, in the sense that the linear fit
described in equation- 4.3 applies to the entire set of data,
whereas in the Kalman filter the constraints are local, in the
sense that only the instantaneous rate of change of state is
constrained. In the Kalman filter, the state estimates are adjusted
to fit the data, whereas, in the MEM the data are adjusted to fit
the model. The former approach may give better indications of the
quality of the model, whereas the latter may be more useful in
identifying "bad data." For the FPTS, an approach more suited to
model reconciliation is desired.

Three explicit recommendations with respect to specification of the
constraint equations derive from the above considerations. The
first recommendation is that the state variables to be estimated
should reflect parameters defining process behavior, not
observations. For the pilot plant algorithms, a convenient set of
state variables is the concentration of each species in each
vessel. The second recommendation is that process constraints and
measurement constraints be kept distinct so that process dynamics
and process observation can be specified independently. Our third
recommendation is that,all state variables .should be considered as
functions of time so that state histories can be maintained over a
sequence of operational processes.

Data reconciliation algorithms have considered only algebraic
process constraints, whereas Kalman filter approaches have
considered only differential equation constraints. An approach is
needed for the FPTS algorithm that permits state estimation for
hybrid representations containing both algebraic and differential
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constraints. The Kalman filter approach traditionally makes strong
assumptions regarding linearity and stationarity of the process.
The extended Kalman filter and second-order Kalman filters have
been developed for dealing with nonlinear constraints, but rely on
linearization about a reference trajectory or the previous
prediction. Techniques also exist for dealing with abrupt changes
in the process equations that occur at process event times, for
example, process noise tuning, adaptive estimation of the process
noise matrix, and parallel filters matched to a set of discrete
models. Kalman filter techniques are most appropriate for smoothing
high sampling-rate measurements with respect to a process model. In
the FPTS, measurements related to overall mass balance, such as
level and density, are made at sufficiently high rates for the
Kalman filter approach, but composition related measurements are
obtained infrequently, since they require substantial offline
analysis. Therefore any approach based on Kalman filtering would
have to deal with potentially large discrepancies between predicted
and measured compositions at the infrequent composition measurement
updates. This situation is somewhat analogous to the position
updating of inertial navigation systems, in which the long term
position drift of the accelerometers is corrected by a position
update from a system with accurate instantaneous position
measurements, such as the global positioning satellite system. The
nonlinear regression +techniques deal with nonlinearity by
iteration. The potential problems include the possibility of many
local minima and .speed of convergence. It appears that a hybrid
technique that retains. the Kalman filter extrapolation method for
state prediction between composition measurements and an iterative
approach to measurement updates at the composition sampling times
may provide the advantages of -both approaches. :

Another limitation of the existing MEM is the restriction of the
process constraints to mass -balances.” Extensions of the data
reconciliation approach that deal with energy balance for a single
flash operation are described in MacDonald and Howatt (1988). This
paper also includes flow rates, pressures and temperatures in the
state vector. A Kalman filter for the estimation of reaction rates
that includes process in the mass balance equation, uses a random
walk model for the reaction rate is described in (Elicabe and
Georgakis, 1992). The proposed scheme in the latter paper assumes
the availability of on-line measurements of overall concentrations
of the reactants, and -the lack of knowledge on the reaction rate
dependence with those concentrations. A state space description of
systems characterized by a set of m reactions involving a set of'n
components, which considers both reaction kinetics and exchange
dynamics is developed in (Bastin and Lévine, 1993). Extending the
library of process models for the MEM would reduce the uncertainty
in the melter composition estimate and increase the fundamental
understanding of chemical processes in the feed system.

The existing MEM is written in batch form. The algorithm processes
all the measurements simultaneously in a single iterative pass. The
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size of the matrices involved in the algorithm increases directly
with the number of measurements. The Kalman filter uses an
incremental approach in which the state is projected and. updated at
each instant in time. This limits the size of the matrices to the
number of variables that are necessary to describe the system at a
single instant of time. A theoretical problenm for the incremental
approach for nonlinear systems is that the .optimality of the
recursive approach depends upon the fact that the current state
estimate is a sufficient statistic for the past data, which in turn
depends on the linearity and Gaussian assumptions. However,
approximations using the recursive structure have been successfully
applied- to nonlinear systems. The incremental approach is
especially desirable for the FPTS algorithm, since a large number
of processes is sequenced through the same small set of equipment.
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5.0 CONCLUSTONS

.This section describes the recommendations for modifications and
extensions to the existing measurement error model (MEM) and frit
addition algorithm (FAA) that would permit the concepts embodied in
these codes to be applied to the test and evaluation environment of
the FPTS. In addition to the state estimation and optimization
tasks performed by the MEM and the FAA, respectively, there is also
a need to employ the same fundamental process and measurement
models to additional tasks, such as parameter identification, real-
time monitoring and control, and data-.and model reconciliation. The
results of our preliminary study suggest that the development of an
integrated environment that can perform all these tasks within a
common problem-solving framework, utilizing a library of generic
equipment and process models is highly desirable. Use of this
model-based approach facilitates code transportability and reuse
throughout the scale-up process and is robust with respect to
changes in the configuration and operating characteristics of the
target 'full scale facility. This approach also facilitates
incremental development of the algorithms, so that the number of
necessary assumptions required can be gradually reduced, thus
enhancing the range of applications to which they can be applied.

A summary of our recommendations for modifications to the existing
algorithm include:

(1) Implement the code in an environment that facilitates
reapplication of the algorithms +to a variety of plant
configurations and operational scenarios. Prototype the code in an
object-oriented environment that facilitates the development a
general library of equipments (e.g.,-melters, tanks), a library of
fundamental processes (e.g., mass transfer, mixing, reaction), a
library of measurement sensors (e.g. tank 1level, species
concentration) and -their associated error models (biases,
calibrations, covariance matrices). The library component models
.can be used to configure the plant model by mirroring the
particular piping and instrumentation diagram and operations
schedule (in the case of the full plant) or test methodology (in
the case of the FPTS). The operations schedule may be event-driven.
For example, it may be desired to sample a tank after it reaches
some specific level, empty or full. This is accommodated by
augmenting the primitive processes with a set of activation
constraints, which determine the conditions under which a
particular process may become active. To implement an algorithm for
a particular configuration (e.g., full-scale, FPTS), the
appropriate components from the library are instantiated and
connected according to the piping diagram, sensors are instantiated
from the measurement models and placed according to the
instrumentation diagram, and plant operations are instantiated as
a schedule of fundamental processes from the process library. The
appropriate methods for the task at hand (parameter identification,
simulation, state estimation, optimization) can then be assembled
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from the appropriate state descriptions of the éomposite model.

(2) Strictly enforce separation of the process description and the
measurement description. The process model consists of a
description of the normal behavior of the plant in terms of set of
algebraic and differential constraints that must be satisfied
(e.g., energy and mass balance), random modeling error (usually in
terms of covariance matrices on the process state variables), and
any systematic process error (e.g., leaks) that may be present. The
measurement error model consists of a description of the desired
transfer function between the variables describing the process
state ‘and the measured variables (e.g. tank levels are expressed -as
a function of measured pressures), any bias (e.g., temperature
drift) and random errors that may be present, and the consequences
of any calibration schemes that may be employed. -

(3) Use representations that facilitate the joint consideration of
steady state (e.g., mass balance) and dynamic (e.g. integration of
flow rate to obtain total flow) constraints. In most applications
differential as well as algebraic .constraints must be satisfied.
This approach has become standard in flowsheet-oriented simulation
environments (see for example, Bar et al, (1993)). The HWVP plant
simulation code also permits the use of both algebraic and
differential constraints- (Kuhn, 1992).

(4) Extend the library of process models. The MEM algorithm is
currently capable of modeling only tank transfers. A wider range
of process models would permit the MEM to be applied to a more
diverse set of applications.

(5) The MEM is currently 1limited to situations for which -the
process models must be satisfied exactly. In practice, the process
constraints may be satisfied only approximately or process faults
may occur during operation or testing. Process noise can be used to
account for non-systematic errors. Systematic errors can be modeled
either as fixed, but. unknown biases or with explicit models. The
use of explicit models permits diagnosis of the fault in addition
to reconciliation of the measurements with the process models.

(6) The MEM currently does not take measurement biases or the
effects of calibration ‘into account. Modification of the MEM
algorithm to take these effects into account is desirable.

(7) The existing MEM. algorithm is written in batch form. An
incremental algorithm that can be updated following the completion
of each process or continuously in time is highly desirable for
real-time monitoring applications. The integration of the MEM with
the existing data acquisition and monitoring and control system is
an area requiring further study.

(8) The current frit addition algorithm performs an exhaustive
search_over a set of discrete levels of amount of frit to be added.
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Use of multi-objective mathematical optimization techniques may
lead to improvement in- the performance of the algorithm.

(9) The current frit addition algorithm assumes that the
composition of the frit to be added is known a priori. Joint
optimization of frit composition and level may lead to higher waste
loading factors. The OWL study is currently reviewing this issue

[Hoza, 1993].

(L0) Use of a declarative framework for implementation will
facilitate the integration of existing code modules in a broader
class of problem solving algorithms and results in an extensible
architecture that can be readily adapted to a wide range of plant
configurations, operational scenarios, and analysis - goals
(estimation, optimization, simulation). The only currently
available commercial inference engine that satisfies the
requirements of an epistemologically comprehensive knowledge
representation and a sound and complete inference engine is EPIKIT,
which makes it an ideal -environment <for accomplishing the
integration referred: 'to here. Epistemologically comprehensive
refers to the expressiveness of the language and means that a wide
Yariety of concepts may be represented in the language. An
inference engine is sound if produces only correct results. An
inference engine is complete if it produces every correct result.
Code developed in FORTRAN can easily be integrated into the EPIKIT
environment by augmenting the FORTRAN code with a declarative
description that describes its inputs and outputs and any
assumptions made by the code developer that restrict its
applicability. .
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APPENDIX A: GENERAL DISCUSSION OF THE USE OF CONSTRAINED WEIGHTED
LEAST SQUARES ESTIMATION FOR DATA RECONCILIATION

For the purposes of clarity, the exposition of the application of
nonlinear regression to data reconciliation is carried out under
two separate cases. In the first case, it is assumed that all
quantities for which an estimate is desired are measured. In the
second case it 1is assumed that some of the parameters to be

estimated are not measured.
Case 1: All Estimated Quantities Are Measured.

In this case we assume that the measurement vector, z, differs from
the vector of true values, 7, only by the addition of zero mean,
additive Gaussian (normally distributed) noise,¢:

z= T+ E. (A-1)

By Gaussian noise, it is meant that the distribution function of
the noise is normally distributed. The covariance matrix, R, of the.
measurement noise, g, is assumed to be known a priori.

The true values, 1, are known to obey a set of constraints
(e.g.,material balance, efficiency, sum of mole fractions, enthalpy
balance) that can be expressed in vector form as:

£(z) =0 (A-2)

The statistical development here follows that of Britt and Leucke
(1973). For one set of measurements the probability density
function for the measured data is:

(A-3)

=

[ (z-t)?R‘l(z-t)]

£(z)= 5

exp

nls

1
2

(2w) 2|R|

where

IR} is the determinant of R.

Maximum likelihood estimation reduces the problem to the following:
Minimize: (z- 7)T R (é - 1) (A-4)
Subject to the constraints: £(z) = 0 (A-5)
Some insight into the meaning of the objective function being

minimized in equation (A.4) can be obtained by considering the
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special case when there is no covar:.ance among the measured data.
In that case, the quantity .

(z- )" R! (2 - 1) (A-6)
reduces to:
5~ (Z77) 7y (a=7)
1=1 (0'1_)2

Thus it can be seen that the statistical "best" adjustment to the
data is that which satisfies the constraints while minimizing the
sum of squares adjustment to the measured data. :

Britt and Leucke (1973) use the method of Lagrange multipliers with
a Taylor expansion about the nionlinear constraints to obtain the

following iterative algorithm for the determination of the best
adjustment to the data. Their iterative algorithm is:

- (a-8)
T140=To+RH; T(H;RH, ™) ™ [H, (v4-10) —£(7,) ]

where H; is the m ¥ n Jacobian matrix resulting from differentiating
the n constraint equations m with respect to the m-dimensional
measurement vector 1, evaluated at ;.

Equation A.3 is recalculated until the absolute values of the
constraint discrepancies are less than some tolerance, that is,

1E(T1) | < € (A-9)

The variance covariance matrix for 1, that is calculated according
to the iterative algorithm is given by Knepper and Gorman (1980):

(A-10)

&l (ty~7) (v ,~%) T} =R-RH, T (H,RH,T) *H,R

Case 2: Some Estimated Quantities Are Not Measured
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The more general problem is where a number of unmeasured parameters
§ are part of the constraint equations, that is, to find the "best
estimates, 7, and §, simultaneously such that £(7,, §,) = 0. For the
maximum likelihood, the problem now becomes:

Minimize: (z - 7)T R! (2 - 1) _ (A-11)

Subject to the constraints: £(r,, 0.,) = 0. (A-12)

Following the development of Britt and Leucke (1973), the iterative
equations are:

0341=0+ [Fy T (FRF,T) -‘11,..0] “p, T(FRF,T) (A-13)
[F(2p=2,) ~£(28;,9;) ]

. (A-14)
Zyay =2 +RF,T(F,RF,T) ™ [F,(24~7,) -Fy (8,01-04) =£(24,0,) ]

where F, includes the partial derivatives for the measured variables
and F, is an p x m Jacobian matrix obtained by differentiating £
with respect to 6.

The estimated variance-covariance matrix for the measured
parameters, z, is: :

£L(2-5) (2-2) 71 =R-RF,70(Q"Fy (FyTOF) “RAQFR - (0 0)

where .
Q = ((H)TRE)" ' (A-16)

The p x p variance-covariance matrix for the unmeasured parameters
is:

E1(8-8) (8-) "] = (Fy"0Fy) ™ (8-17)
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APPENDIX B: HWVP MEM ALGORITHM

In this section the equations for the first application of the MEM,
namely, the estimation of SME compositions, given the 1level,
specific gravity, and concentration measurements for +the RWCT,
SRAT, and SME, as described in Section 3.0, are given.

In this case, the measurement vector for the HWVP MEM algorithm is
a vector of length 56 defined as follows: .

The first 8 components represent the outputs of the Holledge level
detectors in both of the tank states {empty, full}:

z(1) = Level(RWCT, FULL)

z(2) = Level (RWCT, EMPTY)

z(3) = Level(SRAT, FULL)

z(4) = Level (SRAT, EMPTY)

z(5) = Specific_Gravity(SME, EMPTY)
z(6) .= Level(SME, EMPTY)

z(7) = Level(SME, FULL)

z(8) = Specific_Gravity(SME, FULL)

The next 40 components represent the ICP concentrations for each of
the 10 species measure in four different tank states:

z(9),..., z(18) = concentration(RWCT, FULL, §i0,), ceos

concentration (RWCT, FULL, OTHER); )

z(19),..., 2(28) = concentration(SRAT, FULL, Si0,), ...,
concentration (SRAT, FULL, OTHER);

z(29),..., z(38) = concentration(SME, EMPTY, Si0,), ...,
concentration (SME, EMPTY, OTHER); :
z(39),..., 2(48) = concentration(SME, FULL, §io0,), ooy

concentration (SME, FULL, OTHER);

The complete set of 10 species for which concentrations are
defined is: .

The next 4 elements of the measurement vector contain the masses of
the ICP samples under the same 4 tank states:

z(49) = liquid_mass (RWCT, FULL),
Z(50) = liquid_mass (SRAT, FULL),
z(51) = liquid_mass (SME, EMPTY),
z(52) = liquid_mass (SME, FULL).

The final 4 elements of the measurement vector contain the masses
of the contents of the tank in each of the same 4 tank states:

z(53) = sample weight (RWCT, FULL),
z(54) = sample _weight (SRAT, FULL),
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z(55) = sample_weight (SME, EMPTY) ,
z(56) = sample weight (SME, FULL).

The unmeasured, but estimable variables in this case are the levels
in the Slurry Mix Evaporator Condensate Tank (SMECT) before and

after evaporation form the SME. It is assumed that level changes in
the SMECT are due only to evaporation from the SME.

There are a total of 15 constraints. The first five constraints are
defined as follows:

(1) mass transfer balance for the total mass

(2) ICP sample mass species balance for {SRAT, FULL}
(3) ICP sample mass species balance for {RWCT, FULL}
(4) ICP sample mass species balance for {SME, EMPTY}
(5) ICP sample mass species balance for {SME, FULL}

Constraints 6-15 represent mass transfer balances for each of the
10 species in the slurry. . :

‘With these definitions, and defining the scalar variable § by:
§ = Level(SMECT, FULL) - Levei (SMECT, EMPTY) ,

the constraints can be written in matrix form as:
cz + 0 (-:-CL(SMECT),O,...,O)T = o.

where C is a matrix of coefficients, and c; specifies the
coefficient of the jth measurement in the ith constraint.

The C matrix has the from shown below:

2s Liso Lixe Lixe

L= g4x49 §4x40 £4x4 g4:1:4

’ 9
2, oxe 8, oxeo 8 oxs Lioxs

where a is the 8-vector defined by:

The coefficients in the a vector are defined by:
c_(tank) = A(tank;) * p(tank; tank-state)
A(tank;) is the cross-sectional area of the ith tank,

p (tank;, tank-statey) is‘the density of the slurry in the ith tank,
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[ C,(SFHT) )
-Cy, (SFHT)
Cy (SRAT)

s|  —Cp(SRAT)
277 -, (SME, EMPTY)
. -C,, (SME, EMPTY)
' 4 C, (SME, FULL)

: | Csq(SME, FULL) )

when the tank is in state-j.

For the RWCT and the SRAT, where no mikxing or heating occurs,
it is assumed that

p (tank,, EMPTY) = p(tank;, FULL) = p(tank),
Furthermore, for the SME -

Cyq(SME, TANK-STATE, ) = A(SME) * (h, (SME) ./ h, (SME))*
p (SME, TANK~STATE;) '

where

h, is the distance between the two density dip tubes of the
Holledge level detector,

h, is the height of the lowest dip tube above the: floor, and

p (SME, TANK-STATE;) is the oxides per solution of the SME in state
j, where j is either EMPTY, OR FULL. - :

i
2

" The B matrix is defined by

Lixto Quxso Qacto Qanad
P =Q1x10'11x10 Q110 L1xz0
T4x40 10,00 Lix10 2axro Laixso
9110 Lix10 Lrxr0 Laxao

where 1 is a vector consisting of all ones, i.e.,

Lixio = (1111111t11111111111)'

The coefficients of the D matrix are defined as follows:
i
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_ C,(SFHT) *concentration(SFHT, FULL, SPECIES,)

diz sample-weight (SFHT, FULL)
dp = = dy,
doo= C. (SRAT) *concentration(SRAT, FULL, SPECIES,)
13 sample-weight (SRAT, FULL)
dy = - dg, )
_ Cgs(SME, EMPTY) *concentration(SME, EMPTY, SPECIES,)
dys (SME, EMPTY) =~ sample-weight (SME, EMPTY)

dm = = dB(SME, FULL)

C, (SME, EMPTY) *concentration(SME, EMPTY, SPECIES,)
sample-weight (SME, EMPTY)

d,s (SME, EMPTY) =

and

dn = =- dIG(SME, FULL) -
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APPENDIX C: FRIT ADDITION ALGORITHM

The composition in the SME is controlled by adding an amount of
fresh frit to the combined raw waste and recycled frit in the SME.
Tn order to maximize the throughput of raw waste, it is desirable
Yo add the smallest amount of frit that will result in an
acceptable and processable feed composition. The composition of the
feed prior to the addition of frit is determined by the MEM
algorithm. The relationship between the feed composition and glass
properties is assumed to obey a linear relationship in the mass
fractions of the oxides in the slurry. Thus for the ith glass
property, i = 1l,..., k, where k is the number of waste glass
properties considered by the frit addition algorithm:

C—
978,012+ 1o+ - - +&,p 1,=¢ B, (e=1)

where y; is the ith waste glass property, ¢ is the jth oxide mass .
fraction, j = i,..., Ny, and B; is the regression coefficient
expressing the relationship between the ith waste glass property
and the jth oxide mass fraction. The covariance matrix of the
regression coefficients is assumed known. The development of
property models relating feed composition to .melt and glass

properties, is one of the objectives of the Composition Variability
Study. The CVS is described in detail by Hrma and Piepel (1992).

An estimate of the mass in the SME before the frit is added can be
expressed as: :

(—ﬁ:.s'*' 25) ) (C-2)

where the estimates Py, i =1,2, of the pressure differences in the
SME prior to frit addition are obtained from the MEM algorithm.

Assuming that the mass of frit to be added to the SME is given by
m,, the composition of the SME after .adding frit can be obtained as:

(c-3)

~

B(SME, £,) =—— T &T(£ri) +(L-——ri—) 8(SME, £;)
. (my +Mgp : my *Mgp

where c(frit) is the vector of mass fractions of the frit, and
c(SME, t;) is the vector of mass fractions of the SME at times, t;,
prior to frit addition, and t,, after frit addition. ‘
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substituting equation C.3 into equation C.1, we obtain

oM ar(erit
P ms. b2} (my + 5 (£t B . (c-4)
m.
1- 1 ) @T(SME, t,)
+( (mi-i-ﬁ ) 1 B.‘l

The variance of each waste glass proéerty can be estimated
approximately as:

var (9,) =gidiag(X,,X;, 0% V) gis
where
Y, =vVar(&(frit)),

By
22=Var( ﬁzs ) ’
8(SME, t,)
o2=var(m,),
V1=Var(ﬁi) o

(C-5) -

g; is the gradient of y; with respect to the vector p;, where

. A ~ . C-G
piz(e(frlt) Istlesl 6(SME', tz) lmll BI) ( )

The vector of mass fractions of the frit, the vector of mass
fraction estimates from the SME, and the vector of regression
coefficients for the ith waste glass property have dimension equal
£o the number of oxides in the slurry, N,. The pressure
measurements and the mass of the frit to be added to the SME are
cscalars. The dimension of the vector p is therefore, 3(Ny, + 1).
Hence,

o my (C=7)
gjl (m1+ﬁsux) Bi
A, h
ml(?“f-) (c-8)
giss——2— (2(SME, t,) - (&(£rit)) B,
(my +Mgye5)
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. Gi3 (:11: im)z (&(sME, t,) -&'(frit))fp% (C-9)
g1e* [1—_(11_;’%_5;)-] B, (c-10)
gis™ ﬁi"z (&(frit) -8(SME, t,)) B, (C-il)
(m, +Mgp5) ®
. ge= (mlinft‘fm) a(frik) +(1- (mii”&m) ) 8(SME, t,) (c-12)

Equations (C-7) through (C-12) are the individual components of the
gradient vector, which has the overall form:

g; = (Girr gnl Oisr Jur Yisr ds)

It is assumed that for each glass property, upper and lower bounds
on acceptable values of that property have been specified. Given
1imits of acceptable glass characteristics, I;, and U, for the ith
glass property, the frit level to be added is accepted if the lower
limit, I;, is less than the mean minus two standard deviations and
the upper limit, U;, is greater than the mean plus two standard
deviations. The frit addition algorithm iterates over the range of
possible frit levels (the maximum frit to be added is limited by
the capacity of the tank) in 1000 increments of frit addition
level, which translates to frit masses of about 10 to 15 pounds per
jncrement. At each level of frit addition, and for each glass
property, the best estimate and variance of that property for a
given composition is calculated using the above expressions. The
minimum acceptable value of added frit for that particular property .
is stored in a temporary array. After all six properties have been
evaluated in this manner, the actual frit to be added is taken as
the maximum of the six minimums obtained for each property. The
value of frit added is therefore the maximum value that guarantees
that the mean of every glass characteristic is no closer than 2
standard deviations to its limiting -values. The use of standard
deviation as a basis for comparing the estimated values to the
property acceptance limits is an approximation used to test the
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algorithm. If the distribution function associated with the
property estimate and its variance are known, then the test can be
specified directly in terms of the probability that the level of
frit added will result in an acceptable and processable glass.
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APPENDIX D: SUMMARY OF SIPT TEST METHODOLOGY

A general description of the Feed Preparation Test System in terms
of equipment, processes and tests to be performed is presented in
. Section 3.0. This appendix gives further details on the operational
characteristics of the Test Plan.

D.1 SLURRY RECEIPT AND ADJUSTMENT TANK (SRAT) SIMULANT PROCESSING
D.1.1. 8imulant preparation

The operating performance of much of the feed preparation equipment
as well as the ability of the test vessel to maintain homogeneity
is dependent upon the volume of feed in the tank. Therefore,
testing is' performed at two volumes:

(1) the nominal operating volume (approximately 7800 gallons), and
(2) nine inches above the top of the coils (approximately 5600
gallons). .

In the sequel, the two volumes mentioned above are referred to as
the high and low levels, respectively. Thus, the terms high and low
levels refer to volume of slurry and not to the level of
radioactivity. |

D.1.1.1 Low Level Tests

Initially 4000 gallons of HWVP feed simulant is prepared in Tank
HB-13. A sample is then taken from HB-13 and analyzed for material
_balance purposes. .After the simulant is transferred to the full
scale test vessel, it is diluted to approximately 5600 gallons.

(1) Prepare simulated waste to approximately 45 grams of waste
oxides per liter of melt feed in Tank HB-13

(2) Sample HB-13 for complete simulant characterization.

(3) Transfer slurry from Tank HB-13. to tank HB-15

(4) Dilute the concentration to 31 grams of waste oxide per liter

(5) Perform Homogeneity Tests

(6) Perform Pumping Tests

(7) Perform Evaporator/Condenser Tests
D.1.1.2 High Level Tests

To bring the total volume of dilute slurry in the full-scale test
vessel to 7800 gallons, an additional 2200 gallons of HWVP feed
simulant is prepared in Tank HB-13, sampled, and then transferred
to the full scale test vessel.

(1) Prepare 2200 gallons of dilute (31 grams/liter) of simulated
waste in Tank HB~13

(2) Sample HB-13 for complete simulant characterization.

(3) Transfer slurry from Tank HB-13 to tank HB-15
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(4) Perform Homogeﬁeitx Tests
(5) Perform Pumping Tests
(6) Perform Evaporator/Condenser Tests -

D.1.2 Feed Concentration Tests (Heating, Boiling, Cooling)

The feed concentration process test will demonstrate the
concentration of HWVP simulated feed in the SRAT from 31 grams
waste oxide per liter of melter feed to approximately 140 grams
waste oxide per 1liter of melter feed. Following equipment
characterization with the dilute feed simulant, the contents of
tank - HB-15 will be concentrated by boiling the slurry for
approximately 45 hours, condensing approximately 10 gpm condensate,
and adding 27,000 gallons of dilute HWVP feed simulant _at a
corresponding rate. The 27,000 gallons of feed slurry will be
prepared as 6 batches of 4,000 gallons and one batch of 3,000
gallons in Tank HB-13. During each phase of boiling the condensate
is directed to HB-14, and condensate and aerosol samples are taken.

(1) The contents of the full-scale vessel are first evaporated from
7800 gallons to 5600 gallons by boiling at the maximum steam
flow rate.

(2)-(7) While boiling at one of three steam flow rates, 4000
gallons of dilute feed simulant from HB-13 is added at a rate
approximately equal to the generation rate of the condensate
(the final tank volume increases by about 3000 gallons). Two
cycles of concentration are performed at each of three steam
flow rates.

(8) While boiling at medium steam flow rate, 3200 gallons of
dilute feed simulant from HB-13 is added at a rate
approximately equal to the generation rate of the condensate
(the f£inal tank volume is about 7700 gallons).

(9) After concentration has been completed, 2100 gallons of
concentrated feed are transferred from tank HB-15 to HB-13.

D.1.2.1 Low Level Concentrated Feed Tests

(10) Perform Homogeneity Tests
(11) Perform Evaporator/Condenser Tests

D.1.2.2 High Level Concentrated Feed Tests

(12) Tank HB-15 is returned to full level by pumping 2100 gallons
* of concentrated simulant from Tank HB-13 to Tank HB-15.

(13) Perform Homogeneity Tests

(14) Perform Pumping Tests

(15) Perform Evaporator/Condenser Tests
D.1.3 Formic Acid and Reaction Tests

Formic acid facilitates the oxidafion-reductibn reaction- and
inhibits foaming within the melter and changes the slurry rheology.
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Following congentration and slurry testing, the slurry temperature
is adjusted to 95°C and 90 wt% formic acid is added to the slurry
at a controlled rate. Following the addition of formic acid, the
formated slurry is digested. Finally the slurry batch is cooled to
50°C and sampled to verify the concentration and composition. 300
gallons of formic acid are added at 2 gpm and digested for 4 hours.

The nature and magnitude of process effluent losses associated with
feed preparation operations is assessed by examining secondary
waste stream compositions. On a mass basis, gaseous losses dominate

feed preparation effluent emission rates. The temporal emission
rate behavior of several gases is continuously monitored with
specific gas analyzers. Physical entrainment of feed matter during
feed preparation is the only significant loss mechanism responsible
for off-gas aerosol. Elemental. constituents of the process
generated aerosols are determined by conventional batch filtration
methods in conjunction with off-line laboratory analysis. To
characterize condensate losses, the composition of the process
condenser waste stream is characterized using batch sampling
techniques and analyzed during each process operation.

Homogeneity Tests and Pumping Tests are performed for the Formated
HWVP Simulant. N :

D.2. SLURRY MIX EVAPORATOR (SME) SIMULANT PROCESSING

In the SME, recycle waste .and process frit are  added to ,the
formated slurry. The total oxide concentration is controlled by the
amount of.frit added to the formated slurry and the volume of feed
in the test vessel. Following slurry adjustment, the feed is cooled
and sampled in preparation to be sent to the Melter Feed Tank

(MFT)". -
D.2.1. Recycle Waste Addition (two batches)

Recycle addition occurs in two batches to the prototypic SME.

As the recycle waste batch is prepared in tank HB-13, the contents
of Tank HB-15 are concentrated to approximately 5700 gallons in
preparation for recycle addition. The recycle stream is then
transferred to tank HB-15 at approximately 60 gpm.

(1) Adjust the volume of formated slurry to 5700 gallons by
concentration or water dilution
(2) (a) Prepare two batches (4200 gallons) of recycle waste slurry
(30 grams of oxide per liter of recycle oxide) in Tank
HB-13. '
(b) Sample HB-13 for complete simulant characterization.
(3) Heat tank HB-15 to boiling.
(4) (a) Calibrate effluent analyzers as necessary
(b) initial instrumental off-gas analysis
(c) begin filter collection of process generated aerosols
(5) Transfer first batch (2100 gallons) of recycle slurry from tank
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HB-13 to tank HB-15
(6) (a) Concentrate feed slurry to 5700 gallons
(b) Determine heating and boiling heat transfer coefficients
by heating and concentrating tank HB-15 contents.
(c) evaporate at maximum capacity
(d) collect condensate. in tank HB-14
(e) sample condensate ,
(£) collect off-gas filter sample
(7) Transfer second batch (2100 gallons) of recycle slurry from
tank HB-13 to tank HB~15 :
(8) Cool HB-15 to 50°C.

D.2.2. Process Frit Addition (two batches)

The process frit addition also occurs in two batches to the SME.
The frit slurry is prepared in HB-13 as a 2900 gallon slurry. It is
transferred at 60 gpm in two batches of 1450 gallons each following
concentration of the test vessel contents.

(1) (a) Prepare two batches (2900 gallons) of process frit slurry
in Tank HB-13.
(b) Sample HB-13 for complete simulant characterization.
(2) (a) Calibrate effluent analyzers as necessary
(b) initial instrumental off-gas analysis
(c) begin filter collection of process generated aerosols
(3) (a) Concentrate feed slurry to 5700 gallons ]
(b) Determine heating and boiling heat transfer coefficients
by heating and concentrating tank HB-15 contents.
(c) evaporate at maximum capacity
(d) collect condensate in tank HB-14
(e) sample condensate .
(£) collect off-gas filter sample-
(4) (a) Transfer 2200 gallons of process frit slurry from tank HB-
: 13 to tank HB-15 at 60 gallons per minute and flush lines.
(b) Maintain tank.HB-15 at full heating and reflux condensate
during process frit addition.
(5) Repeat 'step (3) _
(6) Perform evaporator/condenser testing
(7) Repeat step (4) with remaining process frit slurry
(8) Add formic acid and reflux condensate
(9) (a) Digest contents of tank HB-15 at 101°C for 2-4 hours.
(b) Determine boiling heat transfer coefficient. )
(c) Collect condensate in tank HB-14.
(10) Cool HB-15 to 50°C. .
(11) Adjust the concentration of the melter feed slurry to the
appropriate weight percent total solids, weight percent total
oxides and density by concentration or dilution.

D.3 Melter Feed Tank (MFT) Bimulant‘Processing

Beyond.the scope of this study
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APPENDIX E: THE BASIC KATMAN FILTER EQUATIONS

optimal state estimation techniques have been developed to provide
acceptable estimates of the state variables in spite of the fact
that some of these states may not be directly measurable and/or may
be subject to random measurement error and process disturbances.
These techniques require the definition of a measure of the state
estimation error, a knowledge of measurement error statistics,
dynamic system models and system disturbance statistics, and
algorithms for using this information to compute minimum-error
state estimates. Measurement errors (measurement noise), and
process disturbances and modelling inaccuracies (process noise) are
freated as stochastic processes in this framework. One of the most
popular and powerful estimation techniques, developed in the 1960s,
is Kalman filtering (Kalman, 1960; Kalman and Bucy, 1961) . In this
approach the process dynamics are given in terms of a stochastic
process described by a vector stochastic difference equation and
the measurement equations are described in terms of an algebraic
transformation of the state vector perturbed by noise.

The process dynamic ﬁoﬁei has the general form:
(E-1)

X(tey) = @(x(E) , my(ER))

where: :

x(t,) is the n dimensional system state,

'd(*, *) is a known n-dimensional state transition function, and
n, is the n-dimensional process noise vector.

An important special case of equatibn E-1 occurs when pn, is

additive, zero-mean, white, gaussian noise. In that case, .equation
E-1 can be written as:

X(tp,,) =g(x(t) )+ n,(&) ~ (BE-2)

where _
) - E{m(t,) }=0, for all t, - (E-3)

The covariance matrix of the process noise vector is given by:
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: . ' (E-4)

covin,(ty) 1o, £ 1=Eln, (£5) B () 3= 8 (€0 £ Ba(£y)

where 6(+, °*) is the Dirac delta function, and
R,(ty) is an nxn symmetric positive definite matrix.

If in addition g(x(ty)) is linear, then equation E-4 may be further
simplified to:

X(tkﬂ.) =.G(tk)X(tk)"' Ep(tk) (E-5)

where G(t;) is the nxn state transition matrix.

The measurement model has the general form:

¥t = h(x(t), By(t)) (E-6)

where: .

y(t,) is the m-dimensional measurement vector,

h(:, *) is the m-dimensional measurement transformation function,
and :

n, is the m-dimensional measurement noise vector.

An important -special case occurs when h(°, °*) is linear and n, is
additive, zero-mean, white, Gaussian noise. In that case, equation
E-6 can be written as,

x(t,) =H(t) x (&) + 0y (E) (E-7)

where
E{n,(ty) }=0, for all t (E-8)

The covariance matrix of the measurement ‘noise vector is given by:
covla,(t,) 1m,(t) 1= Bl (£) Ba(E) V= 8 (L5 £ R (E)  (E-9)

where R (t,) is an mxm symmetric positive definite matrix.

When both process and measurement equations are linear and process
noise and measurement noises are both additive, zero mean, Gaussian
white noises, and are uncorrelated with each other, and the noise
covariance matrices are known a priori, then the algorithm which
obtains the optimal state estimate under the minimum mean squared
state estimation error criterion is the Kalman filter. Several
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extensions to the basic Kalman filtering algorithm are available
when some or all of the assumptions mentioned above are not
satisfied in practice. Several commonly used methods for dealing
with nonlinearity (e.g., extended Kalman filter) are based on local
linearization of the process model around the current £ilter
estimates. Process and measurement noise statistics can be
estimated on-line. The same basic approach can be used when some of
the parameters of the process are unknown by augmenting the state
vector with those parameters whose values are unknown.

The Kalman filter algorithm consists of two stages,

(1) estimate propagation, in which the process dynamics and the
process noise statistics are used to propagate the state estimate,
at the current time to obtain a predicted state estimate at some

time in the future, and

(2) measurement updating, in which the predicted state estimate at
the time of measurement is combined with the measured value to
provide an updated filtered measurement at the measurement time.
The relative strength of the predicted state covariance and the
measurement covariance are used to compute the weight, or Kalman
filter gain, which balances contributions to the updated state
estimate from the predicted state estimate and the measurement.
If the ratio of the predicted state estimation error to the
measurement error is small, then the filter assigns greater weight
to the predicted state estimate. conversely, if this ratio is
large, then the measured value is favored in the computation of the
updated state estimate.

The explicit equations for the Kalman filter are as follows:
(1) State Estimate Propagation.

(.t ) =E(R(E EY) ' (E-10)

(2) Estimate ‘Covariance Propagation ..
B(tgay !t &) =F (&1 EL) ) B( et Ep) Fi (RN EL) ) +R, (Ep) (E-11)

(3) Filter Gain Computation '
K(tp) = Bltgyd ) BT (R(Eg) )

E—
LR (6000) Bl £ He(® (E! £+ Baltp) 15 12)
(4) State Estimate Update
2( t}u-l.{ tka-,l) =2( l':ko-:!.= tk) +K(k+1) - (E-lj)

(k1) —H (2 (Epeyt £ ) R Epay 1 £ ]

(5) Covariance Estimate Update
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B(tguy! tray) = [I-K(k+1) Hy (R(Epay £ LB €y 1 €5 (E-14)

In the equations above the notation- x(tlt;) is use to denote that
¥he conditional mean of the state at time, t;, is conditioned on the

set of all measurements received prior. to time, tj, that is

2(t! £) =Elx(ty) 1Y ()] (E-15)
and- .
where Y(t) is the set of all past measurements, i.e.,
v(t) ={x(0) ;x(1), ..., 2(t)}. (E-17) -

The equations shown are for the extended Kalman filter, which
addresses the nonlinear. filtering problem given by a process
description of the form of equation E-2 and a measurement model
that specializes equation E-6 in analogous way by assuming additive
white, gaussian noise, but retains a nonlinear relationship between
+he state and the state transition function. The extended Kalman
filter is based on linearization of the state equations at each
time step and the use of linear estimation theory (the Kalman
filter).

H (x(t+1]ty)) is the gradient of the measurement matrix with respect
to the state vector evaluated at the current predicted state
estimate and F (x(t.lty)) is the gradient of the state transition
matrix with respect to.the state vector evaluated at the filtered

state estimate.

We can make the following comparisons between the nonlinear
regression algorithm and the Kalman filtering algorithm.

(1) The nonlinear regression algorithm jterates over successive
approximations to the best estimate at the same instant of time.
A starting value is chosen and jteratively updated until the
convergence criterion is satisfied. Each estimate represents a more
precise estimate of the state at the same instant of time. After
the algorithm has converged, the covariance of the estimate is
computed. ' : )

(2) The Kalman' filter 'iterates over successive instants of time.
The best estimate at the current time is projected and combined
with the measured value at the next instant of time to produce the
pest estimate of the state at the next instant of time. ,

(3) The constraints used in the nonlinear regression algorithm
refer to relationships between the variables at the same instant of
time (i.e., the constraints are algebraic). To refer to
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measurements of the same variable at different estimates of time,
a new state variable at each time must be defined.

(4) In the Kalman filter the constrairnts represent relations that
hold between variables at adjacent instants of time (i.e., the
constraints are differential equations). State variables and their
estimates are considered as time series.

(5) By setting the process noise in the Kalman filtering equations
to zero and letting the predicted covariance matrix in the Kalman
filter equations be equal to the measurement covariance matrix, it
can be seen that the form of the covariance update equation for the
nonlinear regression method in case 1 and the Kalman filter have
the same form. Furthermore, under the additional substitution that
the measurement covariance matrix goes to zero, the Kalman filter
gain reduces to the gain term in the state update equation for the

nonlinear regression method in case 1.

The solution for the strictly linear case represented by equations
E-5 and E-7 has a similar form to the above except that

the gradient matrices are replaced by the corresponding state
transition matrices.
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APPENDIX F: PROCESS CONSTRAINT MODELS
The process constraint models specify the relationships between the
plant component and process state variables that must be satisfied
in any self-consistent solution for the global behavior of the
plant. In the specification of the transfer of materials between
tanks, these constraints consist of two types:

(1) Mass balance for the components of a mixture, and

(2) Specification of the total mass change and any changes in the
relative concentrations of the components that occur.as the result
of the tank transfer process. ' )

-Type 1 constraints are algebraic in nature and must hold for every
contained liquid at all times in the plant operational scenario.
If we define the mass of - species i in tank j at time t as
mass (species;, tank;, t) and the total mass of the liguid in tank; as
mass (contained-liquid, tank;, t), then the mass balance constraints
can be written as: .

mass(contained-liquid, tank, t) =
Ne (F-1)
=Y mass(species;, tanky, t)
. I=

where Ng is the total number of chemical species in the liquid
contained in the tank. Equation F.1 must be satisfied for every
tank or sample in the scenario at every instant of time t. In the
case of a single transfer between two tanks, and assuming that
equilibrium states before and after transfer are of interest, there
are four instantiations of equation F.l1 that define the species
mass balance of the contained liquid in the source tank and in the

receiving tank before and after transfer.

Type 2 constraints constitute the behavioral models of the process
under study. In the case of the transfer of liquid from one tank to
another, there are two subtypes of type 2 constraints specifying
the behavioral model. The first subtype of behavioral constraint
specifies the relation between the total masses in the tanks and
the second subtype specifies the relationship between the relative
concentrations before and after transfer. These constraints can be
- expressed either in ‘algebraic or differential form. The algebraic
form is used if the analyst is only interested in equilibrium
masses at some instants of time prior to transfer, t,, and after
transfer, t,. The differential form is- used if the analyst is
interested in monitoring the total mass and species concentrations
continuously. The algebraic form of the behavioral model of an
ideal tank transfer, in which no change in the relative
concentrations among the constituent species occurs can therefore
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be expressed as follows:
mass(contained—liquid,tankg,q”)—mass(contained—liquid,tankg,tag

mass(contained-liquid,tankh,Qw)—mass(contained—liquid,tankh,tpg
(F-2)

and
mass(apeciesi,tankg,qm)ﬁmass(apeciesi,tankg,tag (F-3)

mass(species,, tanky, t..) -mass(species,, tanky, t,.)

Equation F.2 expresses the fact that the total mass transferred
from the source tank must be equal to the total mass transferred to
the receiving tank. Equations F.3, one for each of the Ny species
in the contained liquid, express the fact that the masses of each
of the component species must also be conserved. Equation F.2 can
be obtained from- equation F.3 by summing both sides of the
equations over the components. In the ideal mass transfer model no
allowances are made for reactivity among the constituents or leaks

occurring during transfer.

The differential form of the ideal mass transfer constraint

El-mass(contained—liquid,tankg,t)

dt
= : (F"4)
-%%Emass(contained—liquid,tankk,t)

can be obtained by replacing the algebraic form of equation F.2
with its differential counterpart. Equation F.4 expresses the fact
that the rate of mass transfer into the receiving tank must be
equal in magnitude and opposite in sign to the transfer of mass out
of the source tank.
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APPENDIX G: MEASUREMENT MODELS

The measurement model describes the -relationship between the
observed measurement variables and the process state variables. The
measurement model consists of two major components, the
deterministic transformation describing the ideal behavior: of the
observing device in terms of the process state variables and the
measurement error model that describes deviations from that ideal

behavior. Mathematically, this can be written as:

(G-1)
2= (Xy 0 Xps o 00 0 Xp) +84

where £,(X,, ¥;,++-, X,) represents the deterministic aspects of the
transformation of the system state performed by the measuring
device and e, represents the measurement error. The measurement
error, e;, may consists entirely of random error, in which case it
is described by its probability distribution, its temporal
correlation, and its correlation with other random variables in the
system. In many cases a suitable approximation for e; is to assume
that it is zero mean, white Gaussian noise that is uncorrelated
with the other measurement errors and is also uncorrelated with the
process noise. Additional structure may be imposed on the error
model, if required. For example, temporal drift of a sensor can be
represented by writing the error as the sum of the random term and
a polynomial bias term, in which the constants of the polynomial
are assumed to be constant, but unknown a prieri, i.e.,

e;=(by) 4+ (by) yxt+(b,) xt2+ny ‘ (G-2)

where (k));, j = 1,2,3 are constant but unknown parameters and n; is
random additive noise.’

The form of f; depends on the sensor in gquestion and the choice of
the process state variables. A complete listing of the sensed
variables for the Pilot Vitrification Project is given in Appendix
A. In this section we will give the derivation of the expression
for £, for the Holledge Level Detector and the ICP concentration
measurements.

G.1l Holledge Level Detection System

The Holledge level detection system is designed to monitor tank
jevel and simulated slurry density. The operating principle is
similar to that of a standard dip tube bubbler system. Dip tube
bubblers bleed a small flow of air out a set of tubes into the
fluid. The tubes are set at different known heights in the fluid
which causes a change in the pressure on the air flowing into each
individual tube. The differences in pressures are converted into a
level measurement as shown below.

50




In what follows, the height of a tube refers to the height of the
terminus of the tube; for example, "the lowest tube" is shorthand
for "the tube with. its terminus nearest the bottom of the tank.
Assume there are three pressure measurement tubes in the system,
with subscript O associated with the lowest (reference) tube,
subscript 1 associated with the middle tube, and subscript 2
associated with the upper tube. The termina of reference and middle
tubes are in the slurry, while the terminus of the upper tube is in
the headspace above the slurry.

Let the pressure measured at the terminus of the tube, i = 0,1,2,
be given by P; and let AP, = P, — Py, denote the difference between
the pressures measured at the reference tube and tube i, i = 1,2.
Denoting the known tube heights, hy and h,, as the distance from the
terminus of the reference tube to the bottom of the tank and the
terminus of the middle tube, respectively, and the unknown distance
from the top (surface) of the slurry to the to the terminus of the
reference tube, the total depth of the slurry, from the bottom of
the tank to the top of the slurry, h, is given by h = hy + h,.

The total pressure measured in each tube is equal to the sum of the
air pressure and the pressure exerted by the fluid:

P, = air pressure + pgh,,
P, = air pressure + pg(h, - hy), and
P, = air pressure,

where p is the density of the slurry, which -is assumed to be
homogeneous and g is the gravitational constant.

Using the expressions for the total pressures in the expressions
for the pressure differences, the pressure differences can be
expressed in terms of the tube heights as

Ap; = pgh; (G-3)

Since h, is known, the density can be estimated from the measured
pressure difference between the middle tube and the reference tube:

p = APy [/ ghy ' (G-4)

The density estimate given by (G.4) can be used to estimate the
unknown height of the slurry above the terminus of the reference
tube: .

h, = AP, / pg'= (AP, / §) (1/p) = (AP, / g) ( ghy / AP)) = (AP,/AP)) Iy

Substituting this expression for h, in terms of the measured
quantities AP, and P, and the known distance h, into the expression
relating the slurry depth to hy and h,, it can be shown that the
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slurry level can be related to the pressure measurements and the
known tube heights by: .

. h = hy + (Py/P) by ' (G-5)

Using the definition of density as the ratio of mass, M, to
volume, V, the mass of the tank can be expressed as:

M=pV (G-6)

Assuming the tank is cylindrical with cross-sectional area, A, the
volume of the tank can be expressed as

vV = A % h . (G—7)
Substituting (G.7) into (G.6) leads to:
M = pAh ' (G-8)

gubstituting the density estimate (6.4) and the slurry level
estimate (G.5) in (G.8) results in:

M = (AP, / gh;)A[hy + (P2/P;) hy] . (6-9)

Simplifying (G.9) yieids an expression for the mass estimate in
terms of measured gquantities and known constants:

M= (A/9) (AP, /hy) [hy + (P,/Py) h] = (A/9) ((ho/hx)AP1 +AP,)

An early problem encountered by the Defense Waste Processing
Facility (DWPF) with the Holledge system was the calibration of
these instruments. The pressure response of Holledge sensors varies
directly with temperature. That is, if the liquid level is held
constant and temperature is increased, the instrument will indicate
an increase 'in the liquid 1level. Temperature calibration of the
Holledge Level Detection System pased on data received in the first
quarter of 1992 is discussed in [McKay and Beckette, draft].

G.2 Inductiveiy Coupled Plasma(ICP) Concentration Measurements

Plasma emission techniques determine atomic species in a sensitive,
selective, and easy-to-use manner. The ICP is an electrodeless
argon plasma operated at atmospheric pressure and sustained as a
plasma by inductive coupling to an r-f electromagnetic field. The
plasma source causes excitation of the sample atoms. Radiation,
emitted as characteristic narrow lines by the excited atomic
species, is separated by a high resolution dispersion system. The
intensity of the resolved analytical line is determined by a
detector and is proportional to the concentration (weight per unit
volume) of a particular species in solution. A thorough discussion
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of ICP can be found in [Fassel, 1978].
3

The technique measuréds the concentration of metallic cation.

Therefore the ratio, r;, of the concentration of oxide, (g)° to the
measured concentration of cation, (c;) ¥, must be known:

r = (&)°/ ()7 (G-10)
for each species in the slurry. Furthermore, the process state
variable, oxide mass, (m)°, is the product of the oxide
concentration and sample volume:

(m)® = (c)° * Vs (G-11)

Therefore the relationship between measured variable, (c)*, and
state variable, (m)°, can be written as,

(cp* = (m)° / (x * V) = (M)° [ % (6-12)

where | '
o= r * Vg, ) (G-13)
is assumed known for éach species in the slurry. The ICP oxide

measurements’ are therefore linear in the oxide mass when this
constant is known.
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APPENDIX H: FPTS MONITORED VARIABLES

Approximately 70 process variables are monitored throughout the
process, mostly temperatures, pressures and flow rates. A summary
of the available measurements is given below. Numbered. categories
are organized by data type. Wwithin each category, the FPTS
equipment for which that data type is monitored are listed.

1. Voltage (VAC), Current(AMP), Speed (RPM)
Agitator (AG-1000) -
Sample pump (P-1002)
Transfer-pump (P-1101)

2. Flow (GPM)
' Condensate
Transfer TK-900 to HB-15
Transfer HB-13 to HB-15
Formic acid addition flow ‘
Steam supply (HB-15 heating coils (E-1001, E-1002))
Cooling water (E-1003)
Hydragard sampler
Ssampler flush water
Melter feed line
Feed recycle loop
Condenser cooling water
Offgas
Auxiliary offgas

3. Ligquid Level
HB-14
HB-15

4. Specific Gravity
HB-15 MFT
HB-15 SRAT/SME

5. Weight
TK-900
HB-15

5. Pressure
HB-15
HB-15 head space
HB-15 purge air
Sample pump discharge
Hyrdogard sampler discharge
Feed recycle loop
Steam header
E-1001, E-1002 Steam Supply
E-1001 coil condensate
E-1002 coil condensate
E-1003 coil inlet
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