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ABSTRACT

We have designed and implemented a ci
will detect zero or more approximately circ
nearly the size of the breast. We address the

Hiserib

esion: detection. algorithm based on the Hough Transform, which
¢s in a mammogram over a range of radii from a few pixels to
ometrical behavior of peaks in Hough parameter space {z,y,r} for both
the true radius of a circular structure in the im = 1g) , and for the parameter r as it passes through this radius. In
addition, we evaluate peaks in Hough parameter space by re-analyzing the underlying mammogram in the vicinity of the
circular disk indicated by the peak. Discs suggested by the resulting peaks are accumulated in a feature image, scaled by a,
measure of their quality. These results are then rectified with respect to image contrast extremes and average value. The
result is a feature with a continuously scaled pixel level output. which suggests the likelihood that a pixel is located inside a
circular structure, irrespective of the radius of the structure and: overall mammogram contrast. These features are evaluated
fast qualitative and quantitative performance metrics which permit circumscribed lesion detection features to be initially
evaluated without a full end-to-énd ¢l ation experiment.

ODUCTION

This paper reports on progress
screening mammograms. The end go
a second opinion to a screenmg radlologlst poit

ffort to develop an integrated approach for the detection of abnormalities in
ter tool which may be used as a second reader of mammograms, providing
% to them areas worthy of their focused attention.

There has been af: i -k devoted to t,, is general purpose. 1 However there are many pertinent mammographlc

image outputs is suc
circumscribed lesion deteé

d, and one which we explore here, reporting on the initial design of features pertinent to
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1.1 A Review Of Related Work

ncerned with classification, rather than detection.3
). remains a popular area of interest.**

The earliest work in circumscribed lesion analysis by computer was
Classification of lesions (in the hopes of reducing the rate of false biop

Detection of such lesions is the focus of the current paper, how_(gy'er, and there has.been a wide variety of approaches to
this problem as well.*1%% Most of this work has been “region-oriented”. That is; ic organization of the method is
to generate regions of interest by one technique or another, and. then analyze features of .thos regions to decide whether or
not to report them as potential lesions. '

One investigation,' though avowedly region-oriented, is elated to the current work in that they also use BDTs with
probabilistic outputs to analyze the features generated by each candidate region. Another approach® begins in an essentially

There has been, however, at least one other effort t:
connections between image compression and image ¢l » 1 this case, though, the pixel “features” were simple 2
by 2 blocks of pixels, and so were not designed to- spec1ﬁca Iy res ito, either lesions or normal pixels. As a result, the
false alarm rate was very high; 30% of the normal pixels in a typical result image were reported as being lesion pixels.

1.2 A Review of the Dense Feature Map (DFM) Approach

on of spiculated lesions in digitized mammograms,'?

eader scenario,'* and have extended the method to

We have previously described a method
reported on an observer study employing this
detection of calcification clusters.!®

The technique extracts image features at every pixel from a set of training images, pairs them with “truth” images
to grow binary decision trees, and uses those trees to lab
being located on an abnormality. The effect, as illustrated:in Figure 1, is to expand each mammogram into a stack of
feature images which is then compressed back into a single “probability of suspiciousness” image, with values on [0, 1], by
the binary decision tree classifier. After each pixel is independeritly labeled, a spatial filtering step is applied to extract a

spatial consensus on the presen ce of a lesion or calcification cluster.

ction of breast abnormalities does not depend on the precise
¢ selected features which respond well to the image signature
y: (suspicious/nonsuspicious) detection problem, features which
relate with normal tissue are useful. Therefore we also use general
Se purpose is to model the broad range of normal breast tissue patterns, and so

Note that this high-level .description ¢
nature of the abnormality off interest. In p
of spiculated lesions or calcifications. A
correlate with abnormalities ghd. feature
texture characterlzatlo_n catire
suppress false alarms. '

nt of pixel-level features that will respond to circumscribed lesions,
heir detection as well.

In the current paper, we report on the dev
permitting the same overall methodology to apply

1.3 The Avg‘ivi“'cumscribed Lesion Model

the surrp‘ur’rdmg tissul 17 Finally, circumscribed lesions can vary dramatically in size, with radii from 1 to 30 millimeters.

Further, the context in which ‘the circumscribed lesions azre to be detected is one containing a great deal of structured
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noise (due to the complex appearance of normal parenchyma) and wide ranges in brlghtness (due to the possible presence
of fatty and/or dense tissue).

Accordingly, the situation calls for an detection approach which is'successful despite partial or distorted shapes, robust in
the face of structured noise, and capable of generalizing to a wide range of scales. All of these considerations motivated the
development of a method based on the circle Hough Transform, as will be discussed in detail in Section 4. First, however,
we will describe other approaches to the problem, our own test data, and methods for evaluating the usefulness of a given
circumscribed lesion feature. :

2 TEST DATA

2.1 Data Descriptiqnt

n is a subset of version 1.2 of the digital mammographic database created and
Analysis Society (MIAS)!. These are single-view mammograms scanned with the

h1ch has a linear response in the optical density range 0-3.2. The resulting
re ;-scale resolution of 8 bits.

The data analyzed i
distributed by the Mamm
Joyce-Loebl microdensitometer
pixels have a spatial resolution of 50 m

The MIAS databas
contain circumscrib 10ns:
impossible to objectively determirne it;
22 images containing 24 lesions, as two

izes each image aceording to the class of abnormalities present. There are 23 images that
hese, however ‘(mdb05913), has no associated groundtruth information, and so it was
ation or extent; accordingly, it was not included in our analysis. This results in
he images contain two lesions apiece.

1ages, 22 entirely normal images were selected at random from the set of 204
ling in a data subset containing 44 images. The names of the images selected

To matgﬁ- the 22 circumscribed lesio
normal images.in the MIAS database, rest

Iskye.icr.ac.uk/miasdb/miasdb.html for more information.




Lesion Images  001lm 002r1 00511  010rm 0121l
02811 06911 080rm 091lm 132rx
Normal Images 036rs 04111 047lm 066rm 068rl
1431x  154rx 1731  180rs 22911

01911 0211 0231 0251
244rm 270rm  290rs 31511
098rl 114rs  122r] 1381l
27911 296rl 29711 31911

Table 1: Selected Subset of the MIAS

2.2 Groundtruth Data

Version 1.2 of the MIAS database includes information {

{ 1o the location and extent of each abnormality
in the database. This information is encoded as circles Wthh indicate t

roximate center and radius of the abnormality.

As circumscribed lesions are rarely perfectly circ d as the MIAS database had a policy of erring on the side of
making the groundtruth circles completely inclusive ra n too small, the groundtruth regions often contain a substantial
amount of normal tissue. Therefore, for the subset of esions.in wh he border was both clearly visible and substantially
different from the original groundtruth circle, the truth regions wes _» ed to more closely reflect the actual lesion shape.

These edited truth regions are used when training classifiers and when applying the performance metrics discussed in
Section 3. However, the original truth regions are and will be used whenever end-to-end detection rates are computed, in
order to permit accurate comparison with results from other institutions making use of the same data.

2.3 Pre-Processing

an practical for initial algorithm investigation. Accordingly, it
olation,8 to create data with a pixel resolution of 800 microns.
TAS database have a radius that varies from 4.5 to 49 pixels.

At 50 microns, the original data is at a resolution'
was subsampled by a factor of 16, using Gaussian /sinc

the image at a level dynamically chosen to be just higher than the background
1e largest resultlng 4-connected obJect The rest of the obJects are merged mto

mammogram pixels.

The BDT is very fast when classifying new feature vectors, as in application it is simply a small number of threshold
comparisi_o‘h =So it is well suited for the i ification of large mammogram images. The BDT’s matching disadvantage,
however,:is th s very time-consumin generate the classification tree in the first place. It is not an iterative process,
S0 it corgﬁplete‘s'vW' _ of time, but for any training set of reasonable size it can be very slow.
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In practice, with a finished and polished set of pixel-level features, this
only once. But in the context of feature discovery and exploration, the:
permit its application to every set of feature variations.

ot:a limitation, as the tree needs to be grown
1 BDT process has too lengthy a cycle time to

Accordingly we have implemented two intermediate feature perfo
to aid in the fast evaluation of candidate features. Both hinge on th
as both are based on the degree of separation of a feature betwee

measures, one qualitative and one quantitative,
oundtruth information (see Section 2.2),
e background areas.

That is, a frequent approach to classification of features is simple thresholding of e. This generally does
not suffice, as in a sufficiently rich feature set there will be combinations of features who can have values indicative of the
target class, where any single feature would not suffice. It is premsely this fact that gives the BDT approach its utility. Still,
if a feature does well separate the target classes (in this case, lesion pixels and normal tissue pixels), then it will perform well
for any classifier. In other words, feature separation is a sufficient but not.necessary criteria for a good feature. Accordingly,
both of the fast evaluation methods to be described are based on feature separation.

3.1 Separation Plots

One fast, though crude, approach is to determine the mean and s rd deviation of the feature over the lesion area
and over the background. If the spread of the means is large with respect to their standard deviations, then the feature well
separates the two classes.

In the current context, the same classiﬁer is going to be applied to all images Thus it is important to note not only

low values in the lesion area, as computed acro:; e;»entlre nnage set, 'arkedly overlap the high values of the normal area,
then this feature will confuse a classifier, even if . here is never any overlap in any given image.

These behaviors can be examined qualitatively wit epara,‘tion plots. The source data is the mean and standard deviation
of the normal tissue and the lesion tissue (when prese omputed across all 44 images in the current data set. These
values are plotted on a single graph, one curve following:; he lesion means and one following the normal tissue means, with
the error bars indicating the magnitude of the standard deviation in each image. An example is in Figure 5. A promising
feature would be one where the lowest point on the lesion curveis well-separated from the highest point on the normal tissue

curve, regardless of the images in

3.2 t-statistic Analﬁéis

“assessing the degree of separation. A more quantitative approach is to
e values to be sets of samples from two distributions, and to ask whether they
d.be p0351b1e to comstruct a separation test (via an automatic process, in the

consider the lesion an normal |
are different distributions. If so,

t of Gaussian distributions is the Two-Sample Student ¢ test. Though

there is no a priori reas
is appropriate, as it is partlcula,r yrol
with large sample sizes,? which we certai
data to define the regions of the lesion

-even when the underlying distributions are not Gaussian, and becomes more so
have here. Accordingly, we have implemented this test, using the groundtruth
normal tissue populations. (The non-tissue part of the mammogram is not
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4 LESION DETECTION .METHODS

Our method for detecting circumscribed lesions in mammograms is built around the circular Hough!® transform. The
algorithm we use is composed of a series of steps as outlined in Fi The input is a mammogram as described in
Section 2, and the end result is a feature image that correlates wi ihood of a circumscribed lesion at each pixel
location in the input mammogram. We segment the input mamm Sectlon 2.3, detect intensity edges,
perform the circular Hough transform, filter the Hough accumula radiius, qualify peaks in the
accumulator using the contrast in the mammogram, and finall eature image. We describe
these algorithm steps in more detail in the following Sections '

4.1 Edge Detection

Our objective for edge detection is a sensitive edge indicator, combined with accurate normal directions, as these are
required by the HT. We use a simple algorithm based‘onjgﬁhz t:of Canny.?® We filter the input image with a 2-d symmetrical
Gaussian (o, = oy = 1.0), then estimate the image gradient using first differences taken in the image X and Y directions,
then compute the magnitude and phase angle of the gradient, and ﬁna,lly suppress all points but those which are a local
maxima in the direction of the gradient. o

We experimented with a larger Gaussian (¢, = o, = 2.0), which increased the accuracy of the gradient phase angle
dramatically for smaller radii circles, but failed to improve end-to-end detection performance noticeably. We also experi-
mented with a directional Canny?° using 8 orlented ﬁlters (6z = 1.0,04 = 3.0) with similar results. We attribute this lack
of improved detection performance to the qu luttering in the mammograms.

4.2 Circular Hough Transform

We chose the Circular Hough?'~2® transform as a detection algorithm for its performance over a wide radius range in
the face of noise and background clutter, both prevalent féatures in our mammogram data set. We chose to parameterize
the Hough accumulator for circles for two reasons: first, circles are a reasonable first order approximation for circumscribed
lesions, and second, to limit the dimensionality of the search for peaks in the accumulator. Figure 2a schematically illustrates
' which is parameterized at 1 unit in z, y, and 7, where {x y} indicate the origin

Figure 2b. Figure 2c illustrates the project
accumulator {z,y,7}, incre enting each p
{—1,0} increments each
result in a cluster of vali
result is a volume of pomts W
in Figure 2d. '

0+7,20,7}. Smnlarly, a maxima at {60 20} with direction
1 ne {60 — r,20,r}. Edge points arranged in a circle will thus
0 in the Hough accumulator where the pro_]ected hnes converge. The

or down to the 2-d pixel level feature image (Section 4.6) to indicate the
f its radius. Unfortunately, the height and density of peaks in the raw Hough
dge points contributing to a peak and by the accuracy of the edge location

the plxel samphng of hich is both a function of circle radius and location. This results in peak heights
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and densities that vary considerably with respect to radius, even for ima
plot of peak height versus radial distance from the peak center for circular ‘radius 2, 10, 20, and 50. We compensate
for this behavior by normalizing the Hough accumulator with respect to'r using an empirically designed exponential filter
matched to the peak shapes created by circular disks. The filtering operation is the convolution

fectly circular structures. Figure ?%?a is a

g(z,y,7) = f(z,y,7) (1)

(2)

radius r, and were empirically determined for each r by:siimming the I
circular disks displaced uniformly over the interval z,
hough accumulator for circles of varying radius.

;accumulator response for a large number of
5,90 £ 0.5. Figures 2e-f illustrate the effect of normalizing the

4.4 Hough Peak Qualification

Peaks in the Hough transform accumulator described above indicate circuldr structures in the mammogram. Unfortu-
nately, many Hough peaks of similar height are created, due to both interfering structure and to lesion deviation from a
circle. The Hough transform only measures the outline of a structure, as indicated by edge points on its periphery. Our
approach to improving this performance isitg: i i tr ween the interior and exterior of the circle
described by a peak in Hough space by com f the r of the circular region and the mean of an
annulus exterior to the circle as shown in Figure e this contrast to scale the Hough peak in a multiplicative
fashion, resulting in a measure of the region cont the support for a circle.

. We then ;
st, as well

o s 100 150 20

(a) Lesion contras
surement region

) Cumulative distribution map- (c) Linear mapping

3: Lesion contr chematic and image mapping functions

{z,y,7} describing the structure with radius r at a point {z,y}.

8

Iikelihoo@ f a dense circular




4.6 Feature Mapping

the relative likelihood of a circumscribed lesion at
z,y,7 space onto disks of radius r on the image
of 7 possible Hough space values onto

The last step in our algorithm is to create a feature image indicatin
a pixel level by mapping points in the qualified, rectified Hough ima
plane at z,y. We experimented with two different methods of coll
the feature image plane:

Peak disk: Setting each feature image pixel to the maximum ihood encountered 6% e point z, y.

Sum disk: Setting each feature image pixel to the sum of. celihoods encountered over r at the point z,y.

Figure 4a-c illustrates this mapping for the “028rl” unagei.s- Figure 4 1 tistrates the “Peak disk” and “Sum disk” features
(Section 4.8). for selected mammograms, as well as the original mammograms. Figures 5a and b are plots of the “Peak disk”
and “Sum disk” features without contrast rectification (Section 4.5) forall 44 mammograms in the data set. Figures 5¢c and
d illustrate the linear map contrast rectification over the nd Figure 5¢ and f illustrate the cumulative distribution map
contrast rectification. e

Our intent is to extend the dense feature map method to the detection of circumscribed lesions in screening mammograms.
:and the means for modeling normal breast tissues
(via the Laws texture features).

The current effort, then, has been devoted to remaining piece of the puzzle, that is, the development of pixel-level features
which suggest, for each pixel, the likelihood that that particular pixel is located within a circumscribed lesion. This effort
is not complete; at the least, a full end-to-end detec rformance evaluation, represented as a free-response receiver-
operator characteristic (FROC) curve would be require assess the merit of these features. We have demonstrated,
however, the value of these features as assessed by faster (though less sensitive) qualitative and quantitative measures.

Future effort will focus on pre-pise:
of contrast, analysis of the Hou ¢
evaluation.

ssing to reduce the structiiral noise in mammograms and to improve the assessment
arpen the d1st1nct10n between true and false peaks, and full FROC performance
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