http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 1

APS Tcl/Tk Library
and Interpreter Extensions

<= GEIN =
Claude Saunders, Michael Borland Ft [" hed E AR D

Table of Contents OS8T |

1. Introduction

2. Tk Library

3. Tcl Library

4. Interpreter Extensions

Operations Analysis Group
Accelerator Systems Division
Argonne National Laboratory
Nov. 27, 1995

1. Introduction

This document serves as a User’s Manual and Reference for the library of Tcl and Tk procedures
produced by the Operations Analysis Group. Also covered are compiled interpreter extensions.

1.1. Tk Library

This library is a collection of widget procedures for creating Tk applications with a consistent
look—and—feel. To access this library, simply add to your Tcl auto_path variable as follows:

set auto_path [linsert $auto_path 0 /usr/local/ocag/apps/lib/sun4]

Tcl/Tk will dynamically load the neccessary procedures when you reference them in your script. A
basic, functioning skeleton application is as simple as this:

#!/usr/local/bin/wish

set auto_path [linsert $Sauto_path 0 /usr/local/cag/apps/lib/sund]

APSApplication . -name MyMainApplication -version 1.0 -overview NotMuch \
—-contextHelp "This is a general APS widget demo application™

The widget procedures in this library all follow a consistent calling convention. All arguments
except the first are optional and non—positional. With this capability, the authors of the library can
add arguments (options) to the procedures over time without breaking existing applications.

Every procedure has a help procedure of the same name w1th the suffix "Help". These help | The submitted manuscript has teen authored

by a contractor of the U.S. Government

under contract No. W-31-109-ENG-38

Accordingly, the U. S. Government retains a

‘\, nonexclusive, royalty-free license to publish

~ or reproduce the published form of this

DISTRBUT‘ON OC’ o ;F \,i TLEG.ITED contribution, or allow others to do so, for

U. S. Government purposes.

http://www.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page:

procedures return a usage string to aid the programmer. Context help can be provided for each
widget, or for groups of widgets in an application. At runtime, the user of your application can
access this help via the Help menu or the keyboard Help key.

1.2. Tcl Library

This library is a collection of non—graphical Tcl procedures to aid in creating standardized
applications. To access this library, the same path as the Tk library is used:

set auto_path [linsert S$auto_path 0 /usr/local/oag/apps/lib/sun4]
1.3. Interpreter Extensions

Custom Tcl/Tk interpreters and their associated libraries.
2. Tk Library

The calling conventions for the Tk library are described first, followed by a detailed description of
each procedure. A code example is provided for each procedure which may refer to other
procedures. Every procedure in this library begins with upper—case APS.

2.1. Calling Conventions

Every procedure is as follows:

APSWhatever <widget> [<option-list>]
where <option-list> is a list of
-name value
pairs.

The procedure creates a widget named <widget> according to the specifications in the
<option-list>. The options can be given in any order. For every procedure above, there is a help
procedure:

APSWhateverHelp

This help procedure returns a string with a usage statement. The usage statement describes the
accepted <option-list> and lists the widget(s) that are created by the procedure.

Options common to most procedures are described below:

e -—parent <widget>
Pack widget named in first argument into <widget> using the default packing options. If this
option is absent, procedure attempts to make a toplevel widget.

e —noPack 1
Do not pack widget into parent, just create it.

e —packOption <list>

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 3

When widget is packed into parent, use packing options in <list>.
e —contextHelp <string>
Display <string> whenever this widget is selected in context help mode.

2.2, Procedures
Procedures in this library are grouped by their general purpose:

o Main Windows
e Basic Widgets
e Complex Widgets

2.2.1. Main Windows

The Main Window widgets are the primary windows which a user of an application would interact
with. The APSApplication window is complete with a menubar. For interaction via a dialog,
APSDialogBox is provided. For a window which is neither a full application, nor a dialog box,
APSWindow is provided. Other utility windows are APSAlertBox, APSInfoWindow,
APSExecLog, APSFileSelectDialog, and APSFileDisplayWindow.

APSApplication widget

Creates basic application framework, setting various global options such as
widget colors. Creates a menubar with File and Help entries. A "userxrFrame" is
returned into which the programmer may pack application specific widgets.
Options:
-name <string> Title on window of application.
-version <string> Version number put into Help/Version menu entry.
—-overview <string> Overview put into Help/Overview menu entry.
-contextHelp <string>
Creates:

Swidget.

usexrFrame

menu.file.menu

menu.help.menu

Example:
Note that . should be used as the first application widget name.
APSApplication . -name MyMainApplication -version 1.0 -overview NotMuch \

—contextHelp "This is a general APS widget demo application”
APSMenubarAddMenu .edit -parent .menu —-text Edit
.menu.edit.menu add command -label "Print this" -command {

puts "this is a new addition to the menu bar."

}
Note that I am having this button packed into the "userFrame" created
by the call to APSApplication.
APSButton .mybutton -parent .userFrame -text Hello —-command "puts Hello"

APSStandardSetup

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 4

Takes no arguments. Configures various global Tcl/Tk attributes and colors. This
is executed for you by the APSApplication procedure, so is rarely needed.

APSMenubar widget

This procedure is generally not used directly. The APSApplication procedure take:
care of producing a standard menubar for your application.

Options:

-parent <widget>

-noPack 1

-packOption <list>

-name <string>

-version <string> Version number put info Help/Version menu entry.
-overview <string> Overview put into Help/Overview menu entry.
-contextHelp <string>
Creates:

Sparent$widget.

file.menu
help.menu

APSMenubarAddMenu widget

Adds a new menu to an existing menu bar. Entries may be added to the returned
widget via the "add command" widget command.
Options:
-parent <widget>
-text <string>
-packOption <string>
-~underline 1
-contextHelp <string>
Creates:
$parentSwidget.
menu
Example:
APSMenubarAddMenu .edit -parent .menu -text Edit
.menu.edit.menu add command -label "Print this" -command ({
puts "this is a new addition to the menu bar."

}
APSDialogBox widget

Creates a standard dialog box framework with OK and Cancel buttons, and a
"userFrame" in which to pack dialog specific widgets. The programmer should
configure the command for each button according to their needs, although both OK
and Cancel button commands default to destroying the dialog window. The OK butto
is initially disabled, and must be explicitly enabled by the application. The
idea here is that the OK button should not be enabled until the user has typed i
sufficient information to consider the dialog "completed". If possible, the
cancel button command should undo any input the user may have begun.

hitp:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 5

Options:
-parent <widget>
-noPack 1
-packOption <list>
-name <string>
~contextHelp <string>
Creates:
$parent$widget.
userFrame
buttonRow.ok.button
buttonRow.cancel .button
Example:
APSDialogBox .boxl -name DialogBox \
—-contextHelp "This is the demo dialog box."
Change the default command for the Cancel button.
.boxl.buttonRow.cancel.button configure -command
{puts "this replaces the previous cancel command"}
Add a new button.
APSDialogBoxAddButton .new -parent .boxl -text "Enable OK" -command \
{APSEnableButton .boxl.buttonRow.ok.button} -contextHelp \
"To demonstrate, this button enables the OK button”
Put a message widget into the "userFrame" portion of the dialog box.
message .boxl.userFrame.message -justify left -text [APSDialogBoxHelp] \
-width 300
pack .boxl.userFrame.message -f£ill both -expand 1

APSDialogBoxAddButton widget

Adds a button to the bottom row of buttons created by a call to APSDialogBox.
Options:
-parent <widget>
—-text <string>
-command <script>
-contextHelp <string>
Creates:
$parent .buttonRowSwidget
Example:
See the example for APSDialogBox.

APSExecLog widget

Executes an arbitrary Unix command and displays the output in a scrollable
window. A script may be provided with the -callback option. This script is
executed upon successful completion of the unix command. If APSExecLog is called
again with the same widget name, the window will remain up and be reused.
Options:

-parent <widget>

-noPack 1

-packOption <list>

-name <string>

http://www.aps.anl. gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 6

—unixCommand <string>
-callback <script>
-contextHelp <string>
Creates:
SparentsSwidget.
userFrame
userFrame. text.text
buttonRow.ok.button
buttonRow.cancel .button
buttonRow.print.button
buttonRow.enscript.button
Example:
APSExecLog .cmd -~unixCommand "sddsplot -col=t,V file.sdds" -callback {
puts "this is printed upon completion of the command"

}
APSInfoWindow widget

Creates a window for displaying a general informational message for the user.
Window is modeless by default (ie. user can continue interacting with calling
application). A -modal option is provided to block the calling application.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-name <string>
-infoMessage <string>
-modal 1
-contextHelp <string>
Creates:
$parentsSwidget.
msg
buttonRow.ok.button
Example:
APSInfoWindow .info -infoMessage "The accelerator is running just dandy."

APSWindow widget

Creates a standard blank window framework with a Close button, and a “"userFrame"
in which to pack your widgets.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-name <string>
-contextHelp <string>
Creates:
Sparents$widget.
userFrame
buttonRow.close.button

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 7

Example:

APSWindow .appWindowl -name "Application Window"

Add a scrolled text widget to userFrame

APSScrolledText .stuff -parent .appWindowl.userFrame
.appWindowl.userFrame.stuff.text insert end "This text is in scrolled window."

APSAlertBox widget

i
Creates a modal alert box. Interaction with the main application is suspended
until this alert box is dismissed. Useful for notifying users of serious errors.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-contextHelp <string>
-errorMessage <string> Display <string> in alert box.
-modeless 1 Do not suspend interaction with main application during dialo
Creates

Sparent$widget.

msg

buttonRow.ok.button
Example:
The alert box is a toplevel window, so you don’t use -parent option.
APSAlertBox .alert -errorMessage "This is a demo error message. Note that int
eraction with the application is suspended until OK is pressed."

APSFileSelectDialog widget

Creates a dialog box for browsing the file system and selecting a file. The
procedure returns the selected file (and path), or a null string if the user
cancels the dialog. A starting directory may be provided via the -listDir option
By default, the current working directory will be used.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-listDir <string>
-contextHelp <string>
Returns selected file, or null string if dialog is cancelled.
Example:
APSFileSelectDialog .fileselect -contextHelp \
"Click to select a file, or to change to another directory.®

APSFileDisplayWindow widget

Creates a simple scrolled text window which displays the contents of the file
given by the -fileName option.

Options:

-parent <widget>

-noPack 1

http://www.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 8

-packOption <list>
—-comment <string> This is placed in the window title bar.
-fileName <string> Desired file to display.
-deleteOnClose 1 The file will be deleted when Close button pressed.
-contextHelp <string>
Creates:
$parent$widget
userFrame
userFrame.file.text
buttonRow.close.button
Example:
APSFileDisplayWindow .fileWin -comment "My File" -fileName file.txt

APSScrolledListWindow widget

Creates a window with a scrollable list of user-supplied items. Any combination
of items may be selected. Using <Ctrl-Click>, one may select disjoint items in
the list. When either the Close or Accept buttons are pressed, the user supplied
variable is set to a list of the selected items. The Accept button allows the
selection to be accepted without closing the window.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-height <string>
-name <string> Window name
-label <string> Label placed above scrolled list
-itemList <list> Put these strings on scrolled list
-selectionVar <string> When Accept or Close is pressed, var is set to selection.
—callback <procedure> When Accept or Close is pressed, <procedure> ig invoked
with one argument, a list of selected items.
—-contextHelp <string>
Creates:
SparentSwidget.
userFrame
userFrame.sl.listbox
buttonRow.close.button
buttonRow.accept.button
Example:
Note: two examples follow, one using -selectionVar, and one using -callback
set mySelection ""
APSScrolledlListWindow .slw -name MyList -—-itemList {one two three four} \
-selectionVar mySelection -label "Select one or more from list"
You can wait for selection using tkwait
tkwait variable mySelection
Alternately, you can use the -callback option
proc myCallback {list} {
puts "You selected: $list”
}
APSScrolledListWindow .slw2 -itemList {one two three four} -callback myCallback

http://www.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 9

2.2.2. Basic Widgets
These form the foundation of the interior of a Tk application.
APSButton widget

Creates a single button. The command option specifies the script to be executed
when the button is pressed. The highlight option creates a button with a black
outline.
Options:
-parent <widget>
-noPack 1
-packOption <list>
—-text <string> Text on button.
—-command <script> Script executed on button press.
~highlight 1 Highlight the button (indicating primary).
-gize <string> where <string> is small or medium (default)
—-contextHelp <string>
Creates:
Sparents$widget.
button
Example:
APSButton .b -parent .userFrame -text "Press Me" -command "puts pressed"

APSEnableButton widget
When passed button created above, button and its command are enabled.

APSDisableButton widget

When passed button created above, button and its command are disabled.

APSFrame widget

Creates an (optionally) titled, visible frame.
Options:
-parent <widget>
-noPack 1
-packOption <list>
~label <string>
-width <string>
~height <string>
-contextHelp <string>
Creates:
SparentsSwidget.
label
frame
Example:
APSFrame .fr -parent .userFrame -label "Empty Box" -width 80 -height 80

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 10

APSFrameGrid widget

Creates an untitled x by v grid of frames where x is the number of elements in
the -xList option and y is the number of elements in the -yList option. Either
xList or yList may be omitted to create a vertical or horizontal stack of frames
Options:

-parent <widget>

-noPack 1

-packOption <list>

-xList <list> 1list of names to be given to frames in x direction

~-yList <list> 1list of names to be given to frames in y direction

-width <string> width of each frame in grid

-height <string> height of each frame in grid

~relief <string> standard Tk reliefs (flat, ridge, raised, sunken, groove)
-bd <string> width of relief border

-contextHelp
If you supply just -xList or just -yList, it creates:
$parentSwidget.
<namel>, ..., <namen> where names are from xList or yList
If both -xList and -yList specified, it creates:
SparentSwidget.
<xnamel>.<ynamel>, ..., <xnamel>.<ynamen>
<xXnamen>.<ynamel>, ..., <xXnamen>.<ynamen>
<string>
Example:

APSFrameGrid .fg -parent .userFrame -xList {a b ¢} -yList {x y z} \
-relief ridge

APSLabeledEntry widget

Creates a standard labeled text entry widget. Text entered in the widget will se
the variable given by -textVariable option.
Options:
-parent <widget>
-noPack 1
-packOption <list>
~label <string> Label to left of entry widget.
~textVariable <variable> Variable associated with text entry widget
-width <string>
—-contextHelp <string>
Creates:
Sparents$widget.
label
entry
Example:
set filename ""
APSLabeledEntry .filename -parent .userFrame -label File: -width 40 \
~-textVariable filename -contextHelp "Enter file name here"

http://www.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 11

APSLabeledOutput widget

Creates a standard labeled text output widget. Text displayed is taken from the
variable given by -textVariable option.
Options:
-parent <widget>
-noPack 1
~packOption <list>
-label <string> Label to left of entry widget.
-textVariable <variable> Variable associated with text output widge
-width <string>
-contextHelp <string>
Creates:
$parentSwidget.
label
entry
Example:
set directory "/usr/bin"
APSLabeledOutput .dir -parent .userFrame -label Dir: -textVariable directory

2.2.3. Complex Widgets
These widgets contain multiple widgets and are often composed from the basic widget set.
APSLabeledEntryFrame widget

Creates a titled frame containing a collection of vertically (or horizontally)
stacked entry widgets. Text entered in the widget will set the associated
variable in -variableList.
Options:
-parent <widget>
-noPack 1
-packOption <list>
—label <string> frame title
-variableList <list>
~width <string> width of entry widget
—-orientation <string> where <string> is horizontal or vertical (default)
-contextHelp <string>
Creates:
Sparent$widget.
label
frame.entryl
frame.entry2, ..., frame.entry<n>

APSLabeledOutputFrame widget
Creates a titled frame containing a collection of vertically (or horizontally)

stacked text output widgets. Text displayed is taken from the associated variabl:
in -variableList.

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 12

Options:
-parent <widget>
-noPack 1
-packOption <list>
-label <string> frame title
-variableList <list>
-width <string> width of entry widget
—-orientation <string> where <string> is horizontal or vertical (default)
-contextHelp <string>
Creates:
SparentSwidget.
label
frame.entryl
frame.entry2, ..., frame.entry<n>

APSScrolledText widget

Creates a text widget with a scrollbar to the right.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-width <string>
~height <string>
-name <string>
-contextHelp <string>
Creates:
$parentSwidget.
text
scroll
Example:
APSScrolledText .stuff -parent .userFrame
.userFrame.stuff.text insert end "Add this text to scrolled text widget."

APSScrolledList widget

Creates a listbox widget with a scrollbar to the right. If a callback procedure
is given with the -callback option, the procedure will be invoked each time the
user single and double clicks on the listbox item. If -itemList option is used,
the width is set to display the widest item in given list.

Options:

-parent <widget>

-noPack 1

-packOption <list>

~height <string>

-name <string>

~itemList <list> Put these strings on scrolled list

—-callback <procedure> note: procedure must be <proc> listboxItem doubleClick
—contextHelp <string>

Creates:

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 13

$parentSwidget.
listbox
scroll

Example:

proc myCallback {listboxItem doubleClick} {
if {SdoubleClick == 0} {
puts "you single clicked on $listboxItem"
} else {
puts "vou double clicked on $listboxItem"
}

}
APSScrolledList .list -parent .userFrame -callback myCallback

set listbox .userFrame.list.listbox

Note: items added below may instead be supplied via -itemList option
$listbox insert end "A new entry"

$listbox insert end "Another new entry"

APSScroll widget

Creates a vertially scrolled canvas into which you may pack arbitrary widgets.
After packing in the desired widgets, you must call APSScrollAdjust to set up the
scrolling parameters.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-name <string> name for window if you don’t supply -parent
-contextHelp <string>
Creates:
$parentSwidget.
frame.canvas
frame.yscroll
frame.canvas.frame
Returns:
$parent$widget. frame.canvas.frame
Example:
set frame [APSScroll .sw -parent .userFrame]
set doodad "A text message"
foreach widget {one two three four five six} {
APSLabeledOutput .S$widget -parent $frame -label Item -textVariable doodad
}

APSScrollAdjust .userFrame.sw -numVisible 3

APSScrollAdjust widget

Given the base widget created by APSScroll ($parent$widget), this procedure sets
up the scrolling parameters to something reasonable. In general, it is assumed
you have packed homogenous widgets, in which case -numVisible determines how man:
you will see at a time. Scrolling is set up to jump in increments of one widget.
If you pack in widgets of differing sizes, or one really large widget, you will

http://www.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 14

have to set -scrollIncrement to suit yourself.
Options:

-numVisible <string>

-scrollIncrement <string>

APSRadioButtonFrame widget

Creates a titled frame containing a collection of vertically stacked radio
buttons. The programmer specifies the button titles, associated variable and
assigned values via lists.
Options:
-parent <widget>
-noPack 1
-packOption <list>
-label <string>
-variable <string>
-buttonList <list>
-valueList <list>
—-orientation <string> where <string> is horizontal or vertical (default)
-contextHelp <string>
Creates:
Sparent$widget.
label
frame.buttonl
frame.button2, ...,button<n>
Example:
set num 0
APSRadioButtonFrame .rb -parent .userFrame -label "Select One" -variable num \
~buttonList {One Two Three} -valueList {1 2 3} -contextHelp \
"Select a button and the variable will be assigned the corresponding value."

APSCheckButtonFrame widget

Creates a titled frame containing a collection of vertically stacked check
buttons. The programmer specifies the button titles and associated variables. Thi
variables are set to 1 or 0, depending on the checkbox state.

Options:

~-parent <widget>

-noPack 1

-packOption <list>

~label <string>

-buttonList <list>

-variableList <list>

-orientation <string> where <string> is horizontal or vertical (default)

~allNone 1 Adds two buttons which select and clear all check buttons
-contextHelp <string>
Creates:

$parentSwidget.

label

frame.buttonl

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 15

frame.button2, ..., button<n>

Example:

set cbl 0

set cb2 1

APSCheckButtonFrame .cb -parent .userFrame -label Configure: \
-buttonList {checkl check2} -variableList {cbl cb2}

2.2.4. SDDS Widgets

These widgets typically allow graphical selection and manipulation of SDDS files.
3. Tcl Library

Detailed descriptions of each procedure are given here, along with an example. Every procedure in
this library begins with upper—case APS, every global variable utililized by this library begins with
lower—case aps.

3.1. Procedures
The tcl procedures are broken up into two categories:

o Utility
e SDDS

3.1.1. Utility

APSParseArguments <list>

Provides a non-positional, optional argument capability to Tcl/Tk procedures.
This procedure is utilized by the APS Tk widget library. APSParseArguments parse:
the list of options in the args variable of the current scope, and creates a
corresponding set of variables containing the option values.

o <list>
A list of option keywords that are accepted by the procedure requesting the parsing. The
parsing scans the args list of the calling procedure. Only options from the keyword list will be
processed; others are left in the args list. The effect of APSParseArguments is to translate a
sequence like "—~keyword value" into "set keyword value"; that is, the keyword names are
variable names in the calling procedure.

Example:
proc APSWhatever {widget args} {
First provide default values for the options
set buttonLabel "NoLabel®
set buttonCommand ""
This call searches "args" for the options given in <list>
APSParseArguments {buttonLabel buttonCommand}
button $widget -text $buttonLabel -command $buttonCommand

http:/fwww.aps.anl.gov/asd/oag/manuals/APSTK/APSTk4.0.html Page: 16

}
APSWhatever .mybutton -buttonCommand "puts hello" -buttonLabel "Pregs Me"

APSExec

Options:

-unixCommand <string>

-callback <script>

-outputVariable <variable>

Executes the command given by -unixCommand option without blocking the calling
application. If -callback is given, <script> will be executed upon completion of
unixCommand. Output of unixCommand is normally thrown away. If -outputVariable i:
given, command output will be stored in the designated global variable.

APSSound

Options:

-type <string> where <string> is working, alert, or emergency

-volume <string> where <string> is 1 to 100

-iterations <string>

-period <string> where <string> is in milliseconds or "continuous"

Plays a preset soundfile based on given -type. Procedure schedules work and
returns immediately, so iterations are done in background.

3.1.2. SDDS

APSGetSDDSColumn

Options:

[-fileName <string>]

[-column <string>]

[-page <string>]

Extracts column from sdds file and returns it as a tcl list.

APSGetSDDSParameter

Options

[-fileName <string>]

[-parameter <string>]

[-page <string>]

Extracts parameter from sdds file and returns it.

APSGetSDDSNames

Options:

[-fileName <string>]

[-class <string>] where <string> is column (default), parameter, or array.
Extracts data names by class from an sdds file and returns it as a tcl list.

APSCheckSDDSFile

http://www.aps.anl.gov/asd/oag/manuals/APSTk/APSTk4.0.html Page: 17

Options:

[-fileName <string>]

Verify that given fileName is an SDDS1 file.
Returns 1 if true, 0 otherwise.

4. Interpreter Extensions

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

