QOoNF-9¢04/03. )

SANDY 6~ DHTL L

A NEW PARALLEL ALGORITHM
FOR CONTACT DETECTION IN FINITE ELEMENT METHODS

Bruce Hendrickson*® Steve Plimpton

David Gardner

Abstract

In finite-element, transient dynamics simulations,
physical objects are typically modeled as Lagrangian
meshes because the meshes can move and deform with
the objects as they undergo stress. In many simula-
tions, such as computations of impacts or explosions,
portions of the deforming mesh come in contact with
each other as the simulation progresses. These con-
tacts must be detected and the forces they impart to
the mesh must be computed at each timestep to ac-
curately capture the physics of interest. While the
finite-element portion of these compurations is read-
ily parallelized, the contact deteczion problemn is diffi-
culv to implement efficiently on pacallel computers and
has been a bottleneck to achieving high performance
on large parallel machines. In this paper we describe
a new parallel algorithm for detecting contacts. Our
approach differs from previous work in that we use
two different parallel decompositions, = static one for
the finite element analysis and dynamic one for con-
tact detection. We present resulis for this algorithm
in a parallel version of the transieat dynamics code
PRONTO-3D runnirg on a large Intel Paragon.

1 Introduction

Transient dynamics models are often formulated as
finite element simulations on Lagrangian meshes. Un-
like Eulerian meshes which remain geometrically fixed
as the simulation proceeds, Lagrangian meshes can
be easily fitted to complex objects and can deform
as objects change shape during z simulation. Pro-
totypical phenomena that are modeled in this way
include car crashes, and metal forming and cutting
for manufacturing processes. Commonly-used com-
mercial codes that simulate these effects include LS-
DYNA3D, ABACUS, and Pam-Crash. PRONTO-3D
is a DOE code of similar scope that was developed at
Sandia [11].
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A complicated process such as a cpllisi,o‘q or explo-
sion involving numerous complex ijeét‘si;reg,uilgzs a
large number of mesh elements to model accurately.
The underlying physics of the stress-strain relations
for a variety of interacting materials must also be in-
cluded in the model. "Running such a simulation for
thousands or millions of timesteps can be very compu-
tationally intensive, and so is a natural candidate for
the power of paralle! computers.

The finite-element (FE) portion of the computation
within a single timestep can be parallelized straight-
forwardly. In an explicit timestepping scheme, each
mesh element interacts only with the neighboring ele-
mentis it is connected to in the FE mesh topology. If
each processor is assigned a small cluster of elements
then the only interprocessor communication will be
the exchange of information on the cluster boundary
with a handful of neighboring processors. A variety of
algorithms and tools have been developed that opti-
mize this assignment task. For PRONTO-3D we use a
software package called Chaco [4] which partitions the
FE mesh so that each processor has an equal number
of elements and interprocessor communication is mini-
mized. In practice;the resulting FE computations are
highly load-balanced and scale efficiently (over 90%)
when large meshes are mapped to thousands of pro-
cessors. The chief reason for the scalability is that the
communication required by the FE computation is lo-
cal in nature.

It is important to note that because the mesh con-
nectivity does not change during the simulation (with
a few minor exceptions), a static decomposition of the
elements is sufficient to insure good performance. To
achieve the best possible decomposition, we partition
the FE mesh as a pre-processing step before the tran-
sient dynamics simulation is run. Similar FE paral-
lelization strategies have been used in other transient
dynamics codes [6, 8, 9, 10].

In most simulations there is a second major compu-
tation which must be performed each timestep. This
is the detection of contacts between unconnected ele-
ments. For example, in Fig. 1, initial and 5 millisec-
ond snapshots are shown of a simulation of a steel rod
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colliding with a brick wall. Contacts occur any time
a surface element on one brick interpenetzates a sur-
face element on another brick. These coniacts impart
forces to the impacting objects which must be included
in the equations-of-motion for the interpenstrating el-
ements. Thus, PRONTO-3D performs i2e following
computations every timestep: (1) detect contacts, (2)
compute contact forces, and (3) push-back the contact-
ing elements so they no longer interpensirate. Steps
(2} and (3) are actually minor computations since ab
any one timestep only a small fraction of the elements
are in contact. However, the contact detection in step
(1) requires a global search of the simulation domain
and can require 30-50% of the overall run time when
PRONTO-3D runs on a vector machine like the Cray
Y-MP. This is because, in principle, any two surface el-
ements anywhere in the simulation domain czn come in
contact with each other during a given timestep. This
is true even for surface elements on the sams object, as
when a car fender is crumpled in a collisioz. Efficient
schemes for spatially sorting and searching lists of ele-
ments have been devised to speed this compuration in
the serial version of PRONTO-3D {3].

Figure 1: Simulation of a stecl rod hmiing a brick
wall.

On a parallel machine, contact detection is even
more problematic. First, in contrast tc e FE por-
tion of the computation, some form of girbsi analysis

and communication is now required. This is because
the FE regions in contact can be owned by any two
processors. Second, load-balance is a serious problem.
Formally, the task is to find all the geometric penetra-
tions of a set of contact surfaces (faces of elements) by a
set of contact nodes (corner points of elements). These
contact surfaces and nodes come from elements that lie
on the surface of the meshed object volumes and thus
comprise only a subset of the overall FE mesh. Since
the FE decomposition described above load-balances
the entire FE mesh, it will not (in general) assign an
equal number of contact surfaces and nodes to each
processor. Finally, finding the one (or more) surfaces
that a node penetrates requires that the processor who
owns the node acquire information about all surfaces
that are geometrically nearby. Even if we devise a
global communication scheme or new decomposition
technique that provides this information it must be a
dynamic or adaptive method instead of static, since
the set of nearby surfaces changes as the simulation
progresses. ‘

Given these difficulties, how can we efficiently par-
allelize the task of contact detection? The most com-
monly used approach [8, 9, 10] has been to use a single.
static decomposition of the mesh to perform both I'E
computation and contact detection. At each timestep,
the FE region owned by a processor is bounded with a
box. Global communication is performed to exchange
the bounding box’s extent with all processors. Then
each processor sends contact surface and node informa-
tion to all processors with overlapping bounding boxes
so that contact detection can be performed locally on
each processor. Though simple in concept, this ap-
proach is problematic for several reasons. For general
problems it will not load-balance the contact detec-
tion for the reasons given above. This is not as se-
vere a problem in [10] because only meshes composed
of “shell” elements are considered. Since every ele-
ment is on a surface a single decomposition can bal-
ance both parts of the computation. However, con-
sider what happens in Fig. 1 if one processor owns
surface elements on 2 or more bricks. As those bricks
fly apart, the bounding box surrounding the proces-
sor’s elements becomes arbitrarily large and will over-
lap with many other processor’s boxes. This will re-
quire large amounts of communication and force the
processor to search a large fraction of the global do-
main for its contacts.

In this paper we describe a new strategy for con-
tact detection which we have implemented in a ver-
sion of PRONTO-3D developed for message—passinz
MIMD parallel computers such as the Intel Paragor.
and Cray T3D. An important aspect of our approacz
is that we use a different decomposition for contact



detection than we use for the finite element calcula-
tion. This allows us to optimize each portioz of the
code independently. For contact detection we use a
dynamic technique known as recursive coordinate bi-
section (RCB) to generate the decomposition znew at
each timestep. We find several advan:azes w this ap-
proach. First, and foremost, since each orocessor ends
up with the same number of contict radzs and sur-
faces. we can achieve nearly perfe:t lo=d balzance in

ond, the cost of performing an RC3 de:omgosition is
minimal if it begins with a nearly-balznced starting
point. We use the result from the previous timestep,
which will always be close to the correct decomposition
for the current timestep. Third, the local and global
communication patterns we use in our algorithm are
straightforward to implement and do not rzquire any
complicated analysis of the simulation geometry. The
price we pay for these advantages is that we must com-
municate information between the FE and contact de-
compositions at every timestep. Our resulis indicate
that the advantage of achieving load balance greatly
outweighs the cost of maintaining two decompositions.

We have recently become aware of independent
work [6] which has some similarity te sur zooroach.
Like our technique, this approach uses z Gifferent de-
composition for the contact detection than for the fi-
nite element analysis. In their method. thev decom-
pose the contact surfaces and nodes by overlaving a
regular, coarse 3-D grid on the entire simulzation do-
main. The coarse grid is then divided along onz dimen-
sion into slices and each processor is rasponsible for
contact detection within a slice. While this approach
is likely to perform better than a static dzcompcsition,
the implementation described in [6] suffered Fem load
imbalance and did not scale to large numbers of pro-
Cessors.

In the next section we provide some background ma-
terial that will help explain our algorithm in §3. This
is followed in §4 by some performance results from sim-
ulations using PRONTO-3D.

2 Background

Our contact algorithm involves a number of un-
structured communication steps. In tbese operations,
each processor has some information it wants o share
with a handful of other processors. Althougk = given
processor knows how much informatior. := will s=nd and
to whom, it doesn’t know how much it =il reczive and
from whom. Before the communicatizn can be per-
formed efficiently, each processor needs o kncw about
the messages it will receive. We accorzlish this with

the approach sketched in Fig. 2.

(1) Form vector of 0/1 denoting who I send to
(2) Fold vector over all P processors
(3) nrecvs = vector(gq)
(4) For each processor I have data for,
send message containing size of the data
-(5) Receive nrecvs messages with sizes coming to me
(6) Allocate space & post asynchronous receivas
(7) Synchronize
(8) Send all my data
(9) Wait until I receive my data

Figure 2: Parallel algorithm for unstructured com-
munication for processor q.

In steps (1-3) each processor learns how many other
processors want to send it data. In step (1) each of the
P processors initializes a P-length vector with zeroes
and stores a 1 in each location corresponding to a pro-
cessor it needs to send data to. The fold operation
(2] in step (2) communicates this vector in an optimal
way; processor ¢ ends up with the sum across all pro-
cessors of only location g, which is the total number
of messages it will receive. In step (4) each processor
sends a short message to the processors it has data for,
indicating how much data they should expect. These
short messages are received in step (5). With this in-
formation, a processor can now allocate the appropri-
ate amount of space for all the incoming data, and post
receive calls which tell the operating system where to
put the data once it arrives. After a synchronization
in step (7), each processor can now send its data. The
processor can proceed once it has received all its data.

The recursive coordinate bisectioning (RCB) algo-
rithm we use was first propcsed as a static technique
for partitioning unstructured meshes [1]. Aithough for
static partitioning it has been eclipsed by better ap-
proaches, RCB has a number of attractive properties
as a dynamic partitioning scheme which have been ex-
ploited by Jones and Plassmann [7]. The subdomains
produced by RCB are geometrically compact and well~
shaped. The algorithm can also be parallelized in a
fairly inexpensive manner. And it has the attractive
property that small changes in the geometry induce
only small changes in the partitions. Most partition-
ing algorithms do not exhibit this behavior.

‘The collection of points we want to divide equally
among P processors is the combined set of N contact
surfaces and nodes as shown in Fig. 3 for a 2-d ex:
ample. For this operation we treat each surface as a
single point. Initially each processor owns some subset
of the points which may be scattered anywhere in the
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Figure 3: Top: First cut of RCB decomposition. Bot-
tom: Final partitioning for 8 processors.

domain. The first step is to choose one of the coordi-
nate directions, z, y, or z. We choose the direction for
which the bex bounding the points is longest, so that
when we cut orthogonal to that direction, the resuli-
ing sub-domains will be as cubic as possible. The next
task is to position the cut, shown as the dotted line in
the figure, at a location which puts half the poinis on
one side of the cut, and half on the other. This is
equivalent to finding the median of a distributed set of
values in parallel. We do this in an iterative fashion.
First we try the midpoint of the box. Each processor
counts the number of points it owns that are on one
side of the cut. Summing this result across processors
determines which direction the cut should be moved
to improve the median guess. In practice, within a
few iterations we find a suitable cut that partitions
the points exactly. Then we divide the processors into
two groups, one group on each side of the cut. Each
processor sends its ‘points that fall on the far side of
the cut to a partner processor in the other group. and
likewise receives a set of points that lie on its side of

the cut. These steps are outlined in Fig. 4.

(1) Choose a coordinate axis (zyz)

(2) Position cut so as to partition points equally
(8) Send points that lie on far side of cut

(4) Receive points that lie on my side of cut

(5) Recurse

Figure 4: Parallel algorithm for recursive coordinate
bisection.

After the first pass through steps (1-4), we have
reduced the partitioning problem to two smaller prob-
lems, each of which is to partition N/2 points on P/2
processors within a new. bounding box. Thus we can
recurse on these stéps until we have assigned N/P
points to each processor, as shown in Fig. 4 for an
8-processor example. The final geometric sub-domain
owned by each processor is a regular parallelepiped.
Note that it is simple to generalize the RCB procedure
for any N and non-power-of-two P by adjusting our
desired “median” criterion at each stage to insure the
correct number of points end up on each side of the
cut.

3 Parallel Contact Algorithm

Qur parallel algorithm for contact detection is out-
lined in Fig. 5. In step (1), the current position of each
contact surface and node is communicated by the pro-
cessor who owns and updated it in the FE decompoz-
tion to the processor who owned that surface or node in
the RCB decomposition of the previous timestep. (On
the first timestep this step is simply skipped.) This in-
volves unstructured communication as detailed in the
previous section. The purpose of this step is to giv«
the RCB decomposition a starting point that is close
to the correctly balanced answer, since the finite ele-
ments do not move far in any one timestep. In step
(2) we perform the RCB decomposition as described in
the previous section to rebalance the contact surfaces
and nodes based on their current positions.

The entire RCB decomposition can be represented
as a set of P — 1 cuts, one of which is stored by each
processor as the RCB decomposition is carried out. Iu
step (3) we communicate this cut information so that
every processor has a copy of the entire set of cuts.
This is done via an ezpand operation [2]. Before con-
tact detection is performed, each processor must know
about all contact surfaces that are near any of its con-
tact points. Because we represented a surface as a
single point during the RCB decomposition, some of



(1) Send contact data to old RCB decomposition
(2) Perform parallel RCB to rebalance
(3) Share RCB cut info with all processors
(4) For all my surfaces
If surface extends beyond my RCB box
Determine what other processors need it
(5) Send overlapping surfaces to nearby processors
(6) Find contacts within my RCB box
(7) Send contact results to FE owncrs

Figure 5: A parallel algorithm for contact detection.

these nearby surfaces will actually be owned by su:-
rounding processors. So in step (4), each processor
determines which of its contact surfaces extends be-
yond its RCB sub-domain. For those that do, a list of
processors who need to know about that surface is cre-
ated. This is done using the RCB vector of cuts created
in step (3). The information in this vector enables &
processor to know the bounds of the RCB sub—domaiz
owned by every other processor. In step (5) the daza
for overlapping contact surfaces is communicated wo
the appropriate processors.

In step (6) each processor can now find all the con-
tacts that occur in its geometric RCB sub~domair.
A nice feature of our algorithm is that this detection
problem is identical conceptually to the global detec-
tion problem we originally formulated, namely to find
all the contacts between a set of surfaces and nodes
bounded by a box. In fact, in our contact algerithn
each processor calls the original serial PRONTO-3D
contact detection routine to accomplish step (6). This
enables the code to take advantage of the special sori-
ing and searching features the serial routine uses to ef-
ficiently find contacts. It also means we did not have w0
recode the complex geometry equations that compuie
intersections between moving 3-d surfaces and points!
Finally, in step (7), information about contacting suz-
faces and nodes is communicated back to the proces-
sors who own them in the FE decomposition. Thos=
processors can then perform the appropriate force ca’-
culations and element push~back. .

In summary, steps (1), (5), and (7) all involvs
unstructured communication of the form outlined iz
Fig. 2. Steps (2) and (3) also consist primarily of cor-
munication. Steps (4) and (6) are solely on—processz:
computation. A fuller explanation of the details of this
algorithm are given in [5].

4 Results

Fig. 6 shows the results of a PRONTO-3D simula-
ticn of a steel shipping container being crushed due to
an impact with a flat inclined wall. The front of the
figure is a symmetry plane; actually only one half of
the container is simulated. As the container crumples,
numerous contacts occur between layers of elements on
the folding surface. We have used this problem to test
and benchmark our parallel contact algorithm.

Figure 6: Simulation of a crushed shipping container
from initial impact to final state after 3.2 milliseconds.

The first set of timing results we present is for a
fixed-size problem geometry containing 7152 finite el-
ements. Both the container and wall were meshed 3
elements thick, so roughly 2/3 of the elements are on a
surface. Since each surface element contributes both a
surface and node, there were about 9500 contact sur-
faces and nodes in the problem. The average CPU
time per timestep for simulating this problem on var-
ious numbers of Intel Paragon processors from 4 to
1840 is shown in Fig. 7. Whether in serial or parallel,
PRONTO-3D spends virtually all of its time in two
portions of the timestep calculation — FE computa-
tion and contact detection. For this problem, both por-
tions of the code speed-up adequately on small num-
bers of processors, but begin to fall off when there are
only a few dozen elements per processor.
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Figure 7: Average CPU time per timestep to crush
a container with 7152 finite elements on the Intel
Paragon. The dotted line denotes perfect speed-up.

Fig. 8 shows performance on a scalable version of the
crush simulation where the container and surface are
meshed more finely as more processors are used. On
one processor a 1875-element model was run. Each
time the processor count was doubled, the number of
finite elements was also doubled by halving the mesh
spacing in a particular dimension. Thus all the data
points are for simulations with 1875 elements per pro-
cessor; the largest problem is 480,000 elements on 256
Processors.
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Figure 8: Average CPU time per timestep on the
Intel Paragon to crush a container meshed at varying
resolutions. The mesh size is 1875 finite elements per
processor at every data point.

In contrast to the previous graph, we now see ex-
cellent scalability. A breakdown of the timings shows
that the performance of the contact detection portion
of the code is now scaling as well or better than the
FE computation, which was our original goal with this
work. In fact, since linear speed—up would be a hori-

zontal line on this plot, we see apparent super-linear
speed-up for some of the data points! This is due to
the fact that we are really not exactly doubling the
computational work each time we double the number
of finite elements. First, the mesh refinement scheme
we used does not keep the surface-to-volume ratio of
the meshed objects constant, so that the contact algo-
rithm may have less (or more) work to do relative to
the FE computation for one mesh size versus another.
Second, the timestep size is reduced as the mesh is re-
fined. This actually reduces the work done in any one
timestep by the serial contact search portion of the
contact algorithm (step (6) in Fig. 5), since contact
surfaces and nodes are not moving as far in a single
timestep. More generally, the number of actual con-
zacts that occur in any given timestep will not exactly
double just because the number of finite elements is
doubled.

5 Conclusions

The chief advantages of the parallel contact detec-
tion algorithm we have proposed are as follows:

(1! The contact surfaces and nodes are nearly perfectly
spread across processors, ensuring that the contact de-
zection is load-balanced.

{2) The RCB decomposition technique takes advan-
tage of the fact that the partitioning does not change
dramatically from one timestep to the next.

(3) The parallel code can use the same single-processor
routine used in the original serial code to perform the
actual work of contact detection.

The chief disadvamtage of our method is that we
must communicate data back—and-forth between the
FE and RCB decompositions each timestep. In prac-
tice we observed this to be a very minor cost. Almost
all of the time in the parallel contact detection was
spent performing the RCB decomposition and in the
on-processor contact detection effort. There is also a
memory cost in our method for the contact surface and
node data to be duplicated by the processors that store
it in the RCB decomposition. This has not been a ma-
jor bottleneck for us because the duplication is only for
surfzce elements and because we are typically compu-
zationally bound, not memory bound, in the problems
that we run with PRONTO-3D.
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