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ABSTRACT

In this paper we present parallel solvers for large linear systems aris-
ing from the finite—element discretization of three-dimensional
groundwater flow problems. We havetested our parallel implementa-
tions on the Intel Paragon XP/S 150 supercomputer using up to 1024
parallel processors. Our solvers are based on multigrid and Krylov
subspace methods. Our goal is to combine powerful algorithms and
current generation high performance computers to enhance the capa-
bilities of computer models for groundwater modeling. We demon-
strate that multigrid can be a scalable algorithm on distributed
memory machines. We demonstrate the effectiveness of parallel mul-
tigrid based solvers by solving problems requiring more than 64 mil-
lion finite-elements in less than aminute. Ourresults show that multi-
grid as a stand alone solver works best for problems with smooth
coefficients, but forrough coefficientsitis bestusedasaprecondition-
er for a Krylov method.

BACKGROUND

In order to determine flow fields in a groundwater aquifer, a partial
difference equation (p.d.e) commonly referred to as the groundwater
flow equation needs to be solved. For the steady—state saturated case,
this equation is an elliptic p.d.e given by

VKVAY-q = 0 )

where K is the hydraulic conductivity tensor, 4 is the head field, and
q represents the source/sink terms coming from injection/pumping
wells. In general, finite-clement or finite—difference techniques are
used to discretize Equation (1).

For many realistic problems, the groundwater flow equa-
tion involves rough coefficients (tensor K) resulting from heteroge-
neous hydraulic conductivity fields (or K—fields). Inordertoresolve
fine-scale heterogeneity effects onlarge—scaleregional modelsafine
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discretization is required (e.g. in the order of few meters) even for re-
gional models (e.g. in the order of kilometers). For such problems fi-
nite-elementorfinite-differencediscretizationsgiverisetoverylarge
linearsystems(inthe orderof 100’s of millions) thatneed to be solved.

The matrices that result from the discrete approximation of
Equation (1) are sparse, symmetric and positive definite. The pre-
conditioned conjugate gradients is apopular Krylov method (see next
section) commonly used to solve such systems (Meyer et al 1989;
Mahinthakumar and Valocchi, 1993). For methods such as precondi-
tioned conjugate gradients, the number of iterations required for con-
vergence increases with the problem size and the degree of hetero-
geneity when traditional preconditioners such as diagonal scaling or
incomplete Cholesky are used. However, we can improve on this be-
havior by using a multigrid method, either on its own, or as a precon-
ditionerin aKrylov subspace method. By using multigrid techniques
wecanmakethe convergencebehaviorlessdependentontheproblem
size and the roughness of the coefficients (Alcouffe eral 1981; Behie
and Forsyth 1983; Mckeon and Chu 1987; Ashby and Falgout 1995).
But the difficulty in implementing multigrid techniques on distrib-
uted memory machines has prevented this method from gaining pop-
ularity on machines such as the Intel Paragon.

Inthis work we implement parallel multigrid based solvers
on the Intel Paragon and compare their performance with diagonally
preconditioned conjugate gradients. Performance is measured in
terms of raw solution time, scalability, parallel efficiency, and Mega-
flop rate. Efficiency of multigrid methods for increasing problem
sizes and increasing roughness is also compared.

KRYLOYV SUBSPACE METHODS

Krylov subspace methods for solving a linear system Ax = b are it-
erative methods that pick the j—th iterate from the following affine
subspace

X Exy + K,-(A,ro),

where xis the initial guess, r, the corresponding residual vector and

the Krylov subspace K(4,r,) is defined as

Ki(A,ry) = span{ry,Ary,..., 4"},
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These methods are very popular for solving large sparse linear sys-
tems because they are powerful and yet offer considerable savings in
both computation and storage. Some of the more popular Krylov
methods are Preconditioned Conjugate Gradients (PCG), Bi~Conju-
gateGradientStabilized (Bi-CGSTAB), GeneralizedMinimal Resid-
ual (GMRES), Quasi~Minimal Residual (QMR), and Adaptive Che-
bychev (Barret et al. 1994; Dongarra et al. 1991). Of these, PCG is
used for only symmetric positive definite systems.

MULTIGRID METHODS

Multigrid methods forpartial differential equations use multiple grids
forresolving various features of the solution on the appropriate spatial
scales (Brandt 1977; Briggs 1988; Holst and Saied 1993). They de-
rivetheirefficiency by not attempting to resolve coarse scale features
on the finest grid. The basic idea of multigrid is depicted in Fig 1, for
the two-grid version.
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Fig I: The Two-Grid Version of Multigrid

Starting with and initial guess, u,‘:"’, on the finest grid, we

apply v, iterations of a smoothing method (R,), such as weighted Ja-
cobi or Gauss—Seidel and form the residual r, of the resulting grid
vector 7, Thisis “restricted”” downtothecoarsegrid, whereitisused
as the right hand side (r,,) of the coarse grid correction equation,
Lye = ryy,, where Ly, is an appropriately defined coarse grid opera-

tor. The solution to this problem (c,,) is interpolated back to the fine
grid whereitis added to the current approximation. Finally an addi-

tional v, sweeps of the smoother areapplied to the corrected approxi-

mation, to obtain #}**. The grid transfers involve fine to coarse (re-
striction) and coarse to fine (prolongation or interpolation) stages. At
thecoarsestlevel, afull matrix solveis performed before movingupto
the next finer level, The coarse-grid solve is usually done by PCG or
banded Gaussian elimination.

In practice, the two—grid algorithm is applied recursively.
The most common approach is the V—cycle, where an initial guess
must be supplied on the finest grid. The V—cycle can be used on its
own or as a preconditioner to a Krylov method. The Full Multigrid

(FMG) method goes one step further and starting from the coarsest
grid, “bootstraps” itself up to the finest grid, before doing the V-
cycle. Inthissense, FMG generatesits own (usually very good) initial
guessonthe finest grid. In Fig 2 we schematically illustrate both these
approaches (the finest grid is at the top).
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Fig 2: V-Cycle and the Full Multigrid

ALGORITHMIC FRAMEWORK

For the three-dimensional isotropic case, Equation (1) reduces to
d oh J oh
& (K(x;ysz) a) + @ (K(X,y,z) @)

2
+ ,%(K(x,y,Z)%) =q

where K(x,y,z) is the hydraulic conductivity value at location 2.
To solve Equation (2) we employ the Galerkin finite element discreti-
zation using eight-node linear brick elements (Istok 1989; Huyakomn
and Pinder 1983). This discretization results in a matrix equation of

theform Ax = b, whereA isasparse, symmetric positive definite ma-
trix. For a rectangular grid structure and “natural ordering” of un-
knowns matrix A has a 27-diagonal banded non—zero structure. If the
non-zero entries of the matrix are stored by diagonals, vectorizing
compilers can generate extremely efficient code for operations like a
matrix vector product, which are used in multigrid and Krylov meth-
ods. In our implementation we exploit symmetry and store only the
14 super—diagonals of the matrix.

For the multigrid implementation we use a V—cycle for
each multigrid iteration. In order to construct the restriction operator
within each V—cycle, we implemented three methods: simple injec-
tion, half weighting (7-point), and full weighting (27-point). For the
prolongation operator (or interpolation) within each V—cycle, we use
alinear interpolation scheme. The coarse grid operator for each level
is simply the finite—element global matrix at these levels. For cases
with rough coefficients, the elemental hydraulic conductivity values
atthe coarser levels are obtained by alocal averaging scheme. Weim-
plemented three options to perform this averaging: arithmetic, geo-
metric and harmonic averaging. For most of our test cases, simple in-
jectionand arithmetic averaging proved to be the best options. For the



coarse grid solve we used the diagonally preconditioned conjugate
gradient method.

Forthe smoothing operation we chose the weighted (orun-
derrelaxed) Jacobi, which, for Ax = band A = D-L-U, is defined
by

x+) = [(1-0)] + D YL + U)K™ + wD™'b

wherew is the weighting factor. Although Jacobi isless powerful than
methodssuchasGauss-Seidel, itiseasily parallelizedandis generally
adequate as a smoother.

We also implemented options to use multigrid as a precon-
ditioner for CG and BICGSTAB methods. Summarizing, our parallel
solvers consisted of the following methods: DPCG (diagonally pre-
conditioned conjugate gradients), MG (stand alone multigrid solver),
MGCG (multigrid preconditioned conjugate gradients), and
MGBiICGSTAB (multigrid preconditioned Bi-CGSTAB).

PARALLEL IMPLEMENTATION

Ourparallelimplementationiscurrentlyrestricted tothe Intel Paragon
architecture. We used the Intel Paragon machines at the Oak Ridge
National Laboratory’s Center for Computational Sciences (CCS) for
our code development and testing. There are three Intel Paragon ma-
chines at CCS: XP/S 5 (66 GP-nodes), XP/S 35 (512 GP-nodes), and
XP/S 150 (1024 MP~nodes). Although we used all 3 machines in our
development phase, the results that will be presented here pertain to
the XP/S 150, The XP/S 150 has 1024 MP (multiple thread) nodes
connected by a 16 row by 64 column rectangular mesh configura-
tion**. In our implementation we used these nodes only in single
threaded mode. Insinglethreaded mode, eachnodeistheoretically ca-
pable of 75 Mflops (in double—precision arithmetic). Eachnode has a
local memory of 64 Mb (execpt for 64 ”fat” nodes which have 128 Mb
each). The native message passing library on the Paragon is called nx.
The inter-node message bandwidth is about 152 Mb/s for long mes-
sages (~ 1Mb) with a zero-length latency of 35 ps.

Forthe parallel implementation weused atwo-dimension-
al (2-D) domain decomposition in the x and y directions as shown in
Fig 3. A 2-D decomposition is generally adequate for groundwater
problems because common groundwater aquifer geometries involve
a vertical dimension which is much shorter than the other two dimen-
sions. For the finite—element discretization such decomposition in-
volves communication with at most 8 neighboring processors. We
note here that a 3-D decomposition in this case will require commu-
nication with up to 26 neighboring processors.

-

* see CCS web page at http://www.ccs.ornl.gov
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Fig 3: Plan View of Two-Dimensional Domain Decomposition

We overlap one layer of processor boundary elements in
our decomposition to avoid additional communication during the as-
sembly stage at the expense of some duplication in element computa-
tions. There is no overlap in node points. In order to preserve the
27-diagonal band structure within each processor submatrix, we per-
form a local numbering of the nodes for each processor subdomain.
Thisresulted in non—contiguous rows being allocated to each proces-
sor in the global sense. For local computations each processor is re-
sponsible only for its portion of the rows which are locally contigu-
ous. However, such numbering gives rise to some difficulties during
explicit communication and I/O stages. For example, in explicit mes-
sage passing, non—contiguous array segments had to be gathered into
temporary buffers prior to sending. These are then unpacked by the
receivfng processor. This buffering contributes somewhatto the com-
munication overhead. When the solution output is written to a file we
had to make sure that the proper orderis preserved in the global sense.
This required non—contiguous writes to a file resulting in I/O perfor-
mance degradation particularly when a large number of processors
were involved.

For simplicity we use the same static decomposition at all
multigrid levels. This strategy puts an upper limit on the number of
multigrid levels that can be used because even the coarsest grid prob-
lem has to be distributed across all processors. However, this strategy
isnotalways bad since the convergence of the multigrid method dete-
riorates with increasing number of levels.

All explicit communications between neighboring proces-
sors were performed using asynchronous nx calls. System calls were
used for global communication operations such as those used in dot
products. The codes are written in FORTRAN using double-preci-
sion arithmetic.

MODEL PROBLEM

Forall the test simulations we setup a model problem as shown in Fig
4. This setup corresponds to a contamination scenario where the con-
taminant leaches from a single rectangular source into a naturally
flowing groundwater aquifer.
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Fig 4: Vertical Cross-Section of Model Problem

The flow field generated from such simulation can be used
asaninputtoatransport simulatorto generate the contaminant plume
(Mahinthakumar 1995). Boundary conditions for this setup are as fol-
lows: Fixed heads of h= L,/100 andh=0 atthefacesof x=0andx=
Ly respectively, arectangularpatch of L,/8x L,/8 centeredat (x=L,/4,
y=L,/2,2=L;) withauniformly distributed flux of 0.04 m?/d, and no
flow boundaries else where. For tests involving heterogeneous K-
fields (i.e. rough coefficients), we obtained the spatially correlated
random K—fields by using a parallelized version of the turning bands
code (Tompson et al 1989). The degree of heterogeneity is measured
by the parameter o, which is an input parameter to the turning bands
code.

PERFORMANCE RESULTS AND DISCUSSION

Inthis section we present and compare the performance of our imple-
mentations withrespecttoproblemsize, scalability, raw floating point
performance, androughness of coefficients. Thefollowing selections
were used for all performance tests unless otherwise stated:

¢ convergence criteria for matrix solution: two~norm of relative
residual < 10-8

¢ coarse grid solve: DPCG with tolerance set to 10~

¢ smoothing: v; = v, = 3, weighted Jacobi with @ = 0.95
* homogeneous K-field (constant coefficient case)

* timings are for matrix solution only

*  number of multigrid levels within each V—cycle =4

wherev; ,v; arethe number of pre-and post—smoothing operations
respectively. Timings were obtained by the dclock() system call.
Timings reported are for the processor that takes the maximum time.

Increasing Problem Size

InTable | we presentthe iteration counts and solution timings forMG
and DPCGmethods asthe problemsizeincreases. Asthe problemsize
doubled in either x or y directions, the 2-D processor configuration
was also changed accordingly. NP is the total number of processors
used. The processor mesh configuration is NPy x NPy.

NP NPy x NPy nx xnyxnz MG DPCG

(=NP) Iter Time Iter Time

1 Ix1 33x33x65 6 230 98 423
2 2x1 65x33x65 6 241 147 610
4 2x2 65 x 65 x 65 6 252 151 636
8 4x2 129 x 65 x 65 6 263 245 987
16 4x4 129 x 129 x 65 6 272 242 984
32 8x4 257x 129 x 65 6 284 358 142
64 8x8 257x257x 65 6 299 429 171
128. 16x8 513 x 257 x 65 6 329 664 260
256 16x 16 513x513x65 6 327 756 299
512 32x 16 1025 x 513 x 65 6 404 1203 469
1024 32x32 1025 x 1025 x 65 6 450 1612 670

Table 1: Effect of Increasing Problem Size

As the problem size increased, the DPCG iterations in-
creased dramatically whilethe multigrid iterations remains fixed. Itis
interesting to note here that DPCG is also sensitive to the aspect ratio
ofthe problem while MGis not. Forexample, the increase initeration
count for DPCG is larger for the 257 x 257 x 65 to 513 x 257 x 65
transition than the 513 x 257 x 65 t0 513 x 513 x 65 transition. This
phenomena canbe observed forall cases. Although we do notshow it
here, wenote that both MGCG and MGBiCGSTAB behaved similar-
ly to MG. We would like to note here that using MG we were able to
solve a 68 million node problem in only 45 seconds.

Scalability of Multigrid

In this section we analyze the scalability of MG by increasing the
problem size with corresponding increase in the number of proces-
sors. In fact we used the same test results that were obtained for the
previous section. For perfect scalability, the solution time should re-
main fixed as weincrease the problem size accordingly with the num-
berof processors. InFig 5 we show the scalingbehavior of our parallel
multigrid implementation. Note that a horizontal line on this plot
would correspond to perfect scalability.

A first glance at Fig 5 may indicate that multigrid does not
scale very well at all. The solution time for the largest problem
(approximately 68 M nodes) on 1024 processors is approximately
twice that for the smallest problem (approximately 70 K nodes) on 1
pracessor. A closerinspection of our timings revealed that most of the
lossinscalability is due tothe coarse grid solve which is performed by
DPCG. Even though the multigrid iterations remain the same
throughout the scaling process (see Table 1), the DPCG coarse grid
solve iterations increase because the coarse grid problem becomes
larger as we scale. By the same token we can see from Fig 5 that all
phasesofthe V—cycleother thanthe coarse grid solve show very good
scalability.
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Fig 5: Scaling Behavior of Multigrid

Convergence Behavior for Large Problems

The convergence behavior of each method forthe 68 M node problem
is shown in Fig 6. Note that in this figure we plot the norm of the rela-
tive residual against the total time (includes initial setup, /O, matrix
computation and assembly, and matrix solution time). It is evident
that all MG based methods show very good and monotonic conver-
gencerates compared to DPCG. Itisinteresting to note that MGCG s
performing well even though our V-cycle preconditioneris not sym-
metric.
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Fig 6: Covergence Behavior as Function of Total Time
for the 1025 x 1025 x 65 Problem

Parallel Performance for Fixed Problem Size

We measured the parallel performance for afixed problem of size 257
x 257 x 65 (3.9 M nodes) by increasing the number of parallel proces-
sors from 64 to 1024. The results are shown in Fig 7. For the multigrid
based methods 3 multigrid levels and 2 pre~ and post— smoothing
passes were used.
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Fig 7: Parallel Performance for Fixed Problem Size
From Fig 7 we can see that the MG based methods do not
speed up as well as DPCG. We attribute this behavior to greater over-
heads in the coarse grid operations as the problem size per processor
becomes smaller. We would like to note here that even though DPCG
hasbetter parallel efficiency itisstill siowerthan MG forall processor
numbers except for NP=1024,

InFig 8 we compare the parallel efficiency of the total time
to the matrixsolution and explicit inter—processor communication
times. Timings are for the fixed size problem (257 x 257 x 65) using
the MG solver. The total time includes initial setup, finite—element
matrix’assembly, matrix solution and I/O. From Fig 8 we can observe
that even though the MG solution has subpar parallel efficiency, the
total time has a reasonable speed up behavior. The explicit commu-
nication time decreases slightly in the beginning and then starts to
gradually increase as we increase NP. We attribute the initial drop in
communication time to messages becoming shorter (message band-
width limited) and the increase near the end to the latency overhead.
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Roughness of Coefficients

The roughness of the coefficients of Equation (2) is measured by pa-
rametero whichrepresentsthedegree of heterogeneity of the K—field.
In Table 2 we show the effect of increase in o on the convergence be-
havior of our solvers. The results we present are fora 257 x 257 x 65
problem on 256 processors, The multigrid based methods used 3 lev-
els and 2 pre~and post~ smoothings. The results show that multigrid
isbestused a preconditioner whenthe heterogeneityis high. Examin-
ing Table 2 reveals that the convergence of MGCG and MGBiCG-
STAB isless affected by o than DPCG. This is interesting because we
did not use operator based restriction and prolongation for the MG
based methods in our implementation, We believe this is somewhat
related to the robustness of our coarse grid operator.

o MG MGCG MGBICG DPCG

Iter Time Iter Time Iter Time Iter Time

0.0 9 18.7 8 217 4 204 256 334
0.5 10 232 8 242 5 269 366 492
1.0 13 30.7 10 281 5 270 609 81.1
1.5 25 58.6 13 34.6 7 360 1043 137
20 Diverged 20 506 10 497 1489 195
25 Diverged 29 713 16 775 1844 242

Table 2: Effect of K-field Heterogeneity

Floating Point Performance

We estimated the Mflop rates for our solvers using a MATLAB rou-
tine which computes the number of floating point operations as a
function of various V—cycle parameters. The peak performance for
the MG solveris about4.2 Gflops compared to 10.3 for DPCG. These
numbers are for the largest problem shown in Table 1. For the MG
solver the Mflop per processor ranged from 7.8 for the single proces-
sor problem in Table 1 to 4.1 for the largest problem on 1024 proces-
sors. We should keep in mind that these numbers are for sparse matrix
operations that usually do not give good floating point performance.
For double precision floating point operations involving sparse ma-
trices, 15 Mflops perprocessorisusually considered very good forthe
Portland Group Fortran compiler on the i860 chip.

CONCLUSIONS

We have implemented multigrid forthe solution of the finite—element
equations for the 3-D groundwater flow problem on distributed
memory machines. Ofthe solvers we have implemented we conclude
that multigrid solvers are the most efficient for solving very large
groundwater flow problems on the Paragon. For example, for the 68
M node problem, DPCG would have to run at 150 Gflops to solve the
problem as quickly as multigrid. The performance of our multigrid
solvers could be further fmproved by optimizing the single processor

performance of major loops. For example by using calls to optimized
BLAS routines for the saxpy and dot product operations. The robust-
ness of our multigrid solvers with respect to increasing heterogeneity
might be enhanced by using operator based interpolation and semi—
coarsening. That is, for increasing heterogeneity the number of V-
cycles that is required for convergence will not change appreciably.

Inthis work we have demonstrated that by combining pow-
erful algorithms and current generation high performance computers
the capabilities of computer models for groundwatermodeling can be
substantially enhanced.
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