

DOE/PC/92521-7250  
RECEIVED  
MAR 19 1995  
OSTI

TECHNICAL REPORT  
December 1, 1994 through February 28, 1995

Project Title: **COMBINED REMOVAL OF SO<sub>x</sub> AND NO<sub>x</sub> FROM FLUE GAS  
USING NON-THERMAL PLASMA**

DOE Cooperative Agreement Number: DE-FC22-92PC92521 (Year 3)  
ICCI Project Number: 94-1/2.1A-4P  
Principal Investigator: Shirshak K. Dhali, SIUC  
Project Manager: Frank I. Honea, ICCI

**ABSTRACT**

The removal of NO<sub>x</sub> from flue gas was studied during this period. About 44% of NO<sub>x</sub> in concentrations of about 400 ppm and 100% of NO<sub>x</sub> in concentrations below 80 ppm can be removed without any chemical additives. Also some preliminary experiments have been done on the combined removal of SO<sub>2</sub> and NO. Indications are that the NO in the flue gas helps the removal of SO<sub>2</sub>. Work is continuing on the combined removal at present.

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

RECEIVED  
USDOE/PC/ETC  
ACQUISITION & ASSISTANCE DIV.  
95 APR 17 AM 9:35

MASTER

## EXECUTIVE SUMMARY

The primary objective of the proposed research is to investigate a novel scheme for the simultaneous removal of  $\text{SO}_2/\text{NO}_x$  using a non-thermal plasma technique (dielectric-barrier corona discharge). Since the proposed approach also has the potential to remove volatile organic compounds (VOC) and hazardous trace elements, a study will be done on the removal of elemental mercury.

The removal of  $\text{NO}_x$  from flue gas was studied during this period. About 44% of  $\text{NO}_x$  in concentrations of about 400 ppm and 100% of  $\text{NO}_x$  in concentrations below 80 ppm can be removed without any chemical additives. For these experiments no chemical additives were added to the discharge.

A convenient parameter used to describe the power input to the discharge is the average energy density which is defined as the (average power input)/(flow rate of the gas). This quantity gives a measure of the amount of electrical energy inputted per unit volume of the processed gas.

Shown in Fig. 1 is the typical removal efficiency of dielectric-barrier discharge reactor as

NOX2 Mar. 7, 1985 2:00:40 PM

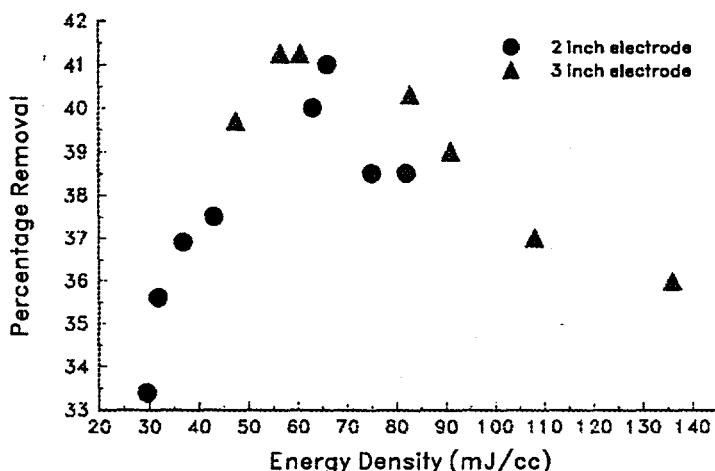
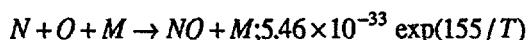
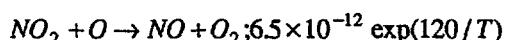





Fig. 1. Percentage removal of NO as a function of energy density. The  $\text{N}_2/\text{O}_2/\text{H}_2\text{O}/\text{CO}_2$  is in the ratio of 75/5/2.6/15. The flow was at 6000 SCCM, pressure was 760 Torr and the temperature was at room 20°C.

which produces NO:



a function of energy density. The two sets of data is for two different electrode lengths. As shown the energy density is critical in determining the removal percentage. Irrespective of the length of the electrode, the removal efficiency peaks at about 65-70 mJ/cc under the particular experimental condition. The decrease in the removal efficiency with higher energy density can be explained by the following reaction

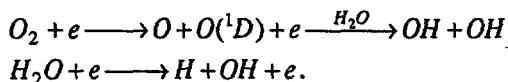
Higher energy densities produce higher concentrations of N and O. As the concentration of NO<sub>2</sub> increases, the first reaction becomes dominant at high energies and any additional increase in energy does help in the removal of NO. Similarly, the second reaction produces more NO as the energy is increased again with a detrimental effect as shown in Fig. 1.

There is some indication that NO helps in the removal of SO<sub>2</sub>. It is also likely that presence of SO<sub>2</sub> will help in the removal of NO. This is likely because SO<sub>2</sub> uses O radicals and thus impedes reaction shown above. The results of combined removal will be reported in the next quarterly report. Also the following additional experiments will be performed:

1. Study the combined removal with trace amounts of NH<sub>3</sub> (1000 ppm).
2. Study the effect of NO on the removal of SO<sub>2</sub> and vice versa.

Some of these results will be presented at a forthcoming workshop on the treatment of Gaseous Emissions via Plasma Technology. This workshop is being organized by National Institute of Standards and Technology at Gaithersburg, Maryland.

## OBJECTIVES

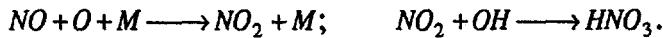

The primary objective of the proposed research is to investigate a novel scheme for the simultaneous removal of  $SO_2/NO_x$  using a non-thermal plasma technique (dielectric-barrier corona discharge). Since the proposed approach also has the potential to remove volatile organic compounds (VOC) and hazardous trace elements, a study will be done on the removal of elemental mercury. Specifically, the following will be done to accomplish the above stated objectives.

1. *Optimization of the discharge for the removal of  $SO_2$  and  $NO_x$  without additives:*
2. *Study the reduction of  $NO_x$  with ammonia injection in to the plasma:*
3. *Study of the removal of mercury and volatile organic compounds (VOC):*

## INTRODUCTION AND BACKGROUND

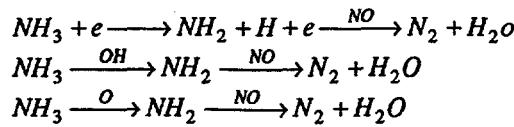
In a plasma, chemical reactions can take place which is ordinarily not possible without a catalyst. We have conclusively demonstrated that plasma chemistry alone is sufficient to convert  $SO_2$  to  $H_2SO_4$ , the plasma being produced by a dielectric-barrier discharge. We get nearly 80% removal of  $SO_2$  in a flue gas containing 775 ppm (parts per million) of  $SO_2$  and 99% for  $SO_2$  in concentrations of 300 ppm. However many questions have to be answered before this technique can be put to practical use.

Theory and experiments suggest that chemical reactions in the plasma are favorable for the removal of  $SO_2/NO_x$ . In a dielectric-barrier discharge, the dissociation of water and oxygen by electrons produce hydroxyl radicals and oxygen atoms, and the reactions are shown below,




The O and OH radicals react with  $SO_2$  to form  $H_2SO_4$ , and the reaction scheme is shown below;




The  $H_2SO_4$  forms droplets which can be removed from the gas stream by an electrostatic precipitator.

For the removal of NO, the following reaction scheme is proposed



The  $\text{HNO}_3$  produced as an end product of the reaction may be removed by injection of  $\text{NH}_3$  or  $\text{Ca}(\text{OH})_2$  to form  $\text{NH}_4\text{NO}_3$  or  $\text{Ca}(\text{NO}_3)_2$  respectively. The particles thus formed can then be removed from the gas stream by an electrostatic precipitator.

The proposed reaction scheme is the same as the Thermal De $\text{NO}_x$  process (Lyon 1987) which takes place in the temperature range of 900-1100 °C. However in a plasma the reactions are possible at temperatures below 300 °C and these reactions are shown below;



This study will be done for a set of parameters that are typical for coal-fired combustion facility.

The list of chemical substances that must be monitored and controlled under evolving environmental regulations is increasing rapidly. The Clean Air Act Amendments list 190 chemicals, many of which are emitted by fossil fuel-fired boilers. These guidelines will provide the technical basis for selecting appropriate control technology options to meet both current and proposed environmental regulations. Coal contain various mercury compounds, probably bound to sulfur in one way or another. It is very likely that during combustion process (above 700 °C), the compounds are thermally decomposed giving elemental mercury. It is also likely that divalent Hg is reduced on the surface of a burning particle. When the combustion gases are cooled, a small fraction of the mercury is oxidized. Oxidized mercury has its advantages and disadvantages: the disadvantage is that,  $\text{HgO}$  is more hazardous to the local environment if released to the atmosphere; the advantage is that it is easier to retain in flue gas cleaning system. For power plants with efficient collection systems, it is an advantage to convert elemental mercury to its oxide. In a dielectric-barrier discharge, oxygen atoms are readily created by electron-impact dissociation and the oxidation reaction below 600 °C can be achieved.

## EXPERIMENTAL PROCEDURES

The experimental setup is shown in Fig. 2. The power supply for the discharge is a 2kW, 0 to 5 kHz ac source. The discharge electrode configuration currently in use is coaxial. The inner electrode is exposed metal (stainless steel) and the outer electrode is glass coated with a conducting surface.

The on-line diagnostics consists of emission spectroscopy, mass spectroscopy, and  $\text{SO}_2$  pulsed fluorescence spectroscopy. The diagnostics are geared mainly towards estimating the species type and concentration. The main aim of the measurements is to understand the parameter influence on the removal of  $\text{SO}_2/\text{NO}_x$ . The main instrument available for  $\text{SO}_2$  analysis is the Thermo-Electron Model 40 pulsed fluorescent  $\text{SO}_2$  analyzer and for NO detection we have a Bacharach NONOXUR NO detector.

## RESULTS AND DISCUSSIONS

For the results reported here, the dimension of the inner electrode (A) is 0.5 cm, and the inner diameter of the glass dielectric was fixed at 2 cm. The length of the outer electrode is 10 cm. All the experimental results reported were performed at atmospheric pressures (760 Torr) and inlet gas was at room temperature. The basic composition of the gas consist of N<sub>2</sub>/O<sub>2</sub>/H<sub>2</sub>O/CO<sub>2</sub> in the ratio of 75/5/2.6/17. The NO concentration with discharge turned off and the discharge turned on were measured to obtain the percent  $\eta$ (%) removal from the flue gas stream:

$$\eta(\%) = \frac{([NO]_{off} - [NO]_{on})}{[NO]_{off}} \times 100.$$

During this reporting period, the removal of NO and combined removal of SO<sub>2</sub>/NO from a simulated flue gas was studied. For these experiments no chemical additives were added to the discharge.

A convenient parameter used to describe the power input to the discharge is the average energy density which is defined as the (average power input)/(flow rate of the gas). This quantity gives a measure of the amount of electrical energy inputted per unit volume of the processed gas.

Shown in Fig. 1 is the typical removal efficiency of dielectric-barrier discharge reactor as a function of energy density. The two sets of data is for two different electrode lengths.

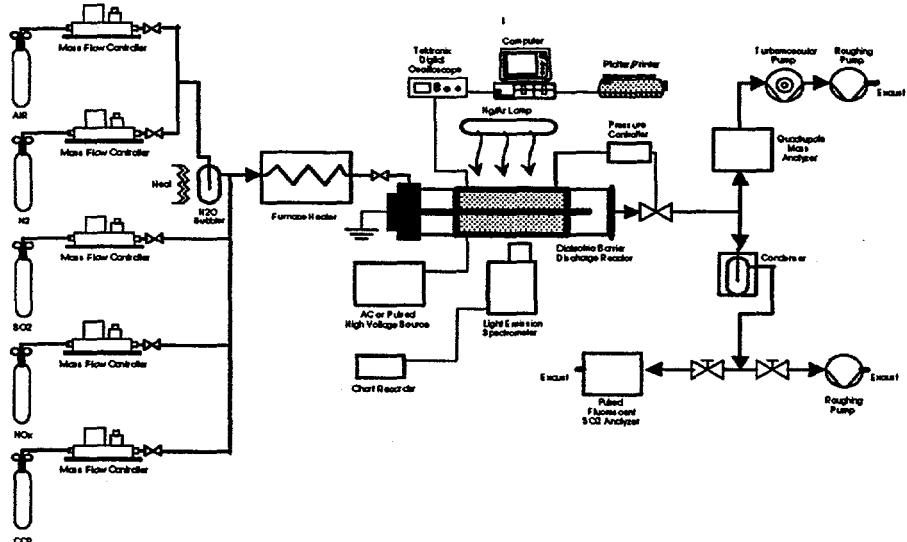
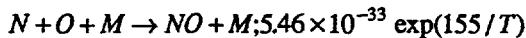
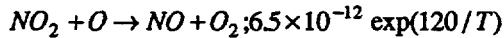





Fig. 2. The schematic of the experimental setup for the current project.

As shown the energy density is critical in determining the removal percentage. Irrespective of the length of the electrode, the removal efficiency peaks at about 65-70 mJ/cc under the particular experimental condition. The decrease in the removal

efficiency with higher energy density can be explained by the following reaction which produces NO:



Higher energy densities produce higher concentrations of N and O. As the concentration of  $NO_2$  increases, the first reaction becomes dominant at high energies and any additional increase in energy does help in the removal of NO. Similarly, the second reaction produces more NO as the energy is increased again with a detrimental effect as shown in Fig. 1.

There is some indication that NO helps in the removal of  $SO_2$ . It is also likely that presence of  $SO_2$  will help in the removal of NO. This is likely because  $SO_2$  uses O radicals and thus impedes reaction shown above. The results of combined removal will be reported in the next quarterly report. Also the following additional experiments will be performed:

1. Study the combined removal with trace amounts of  $NH_3$  (1000 ppm).
2. Study the effect of NO on the removal of  $SO_2$  and vice versa.

Some of these results will be presented at a forthcoming workshop on the treatment of Gaseous Emissions via Plasma Technology. This workshop is being organized by National Institute of Standards and Technology at Gaithersburg, Maryland.

A convenient parameter used to describe the power input to the discharge is the average energy density which is defined as the (average power input)/(flow rate of the gas). This quantity gives a measure of the amount of electrical energy inputted per unit volume of the processed gas. It is clear that increased removal of  $SO_2$  at higher voltages comes at the expense of increased power input.

#### **Disclaimer Statement**

"This report was prepared by S. K. Dhali, Southern Illinois University with support, in part by grants made possible by the U. S. Department of Energy Cooperative Agreement Number DE-FC22-92PC92521 and the Illinois Department of Energy through the Illinois Coal Development Board and the Illinois Clean Coal Institute. Neither S. K. Dhali, Southern Illinois University nor any of its subcontractors nor the U. S. Department of Energy, Illinois Department of Energy & Natural Resources, Illinois Clean Coal Institute, nor any person acting on behalf of either:

- (A) Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report,

or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or

(B) Assumes any liability with respect to use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U. S. Department of Energy. The views and opinions of authors expresses herein do not necessarily reflect those of the U. S. Department of Energy."

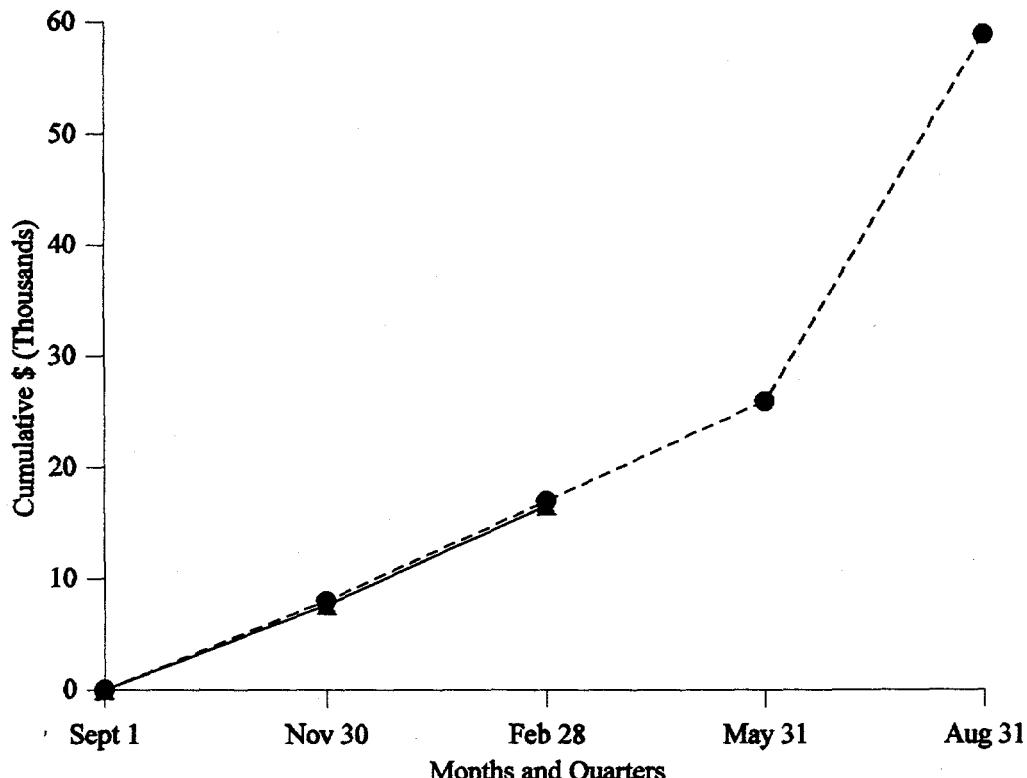
**Notice to Journalists and Publishers:** If you borrow information from any part of this report, you must include a statement about the DOE and Illinois cost-sharing of the project.

PROJECT MANAGEMENT REPORT  
December 1, 1994 to February 28, 1995

Project Title: **COMBINED REMOVAL OF SO<sub>x</sub> AND NO<sub>x</sub> FROM FLUE GAS  
USING NON-THERMAL PLASMA**

DOE Cooperative Agreement Number: DE-FC22-92PC92521 (Year 3)  
ICCI Project Number: 94-1/2.1A-4P  
Principal Investigator: Shirshak K. Dhali, Department of Electrical  
Engineering, Southern Illinois University at  
Carbondale  
Project Manager: Frank I. Honea, Illinois Clean Coal Institute

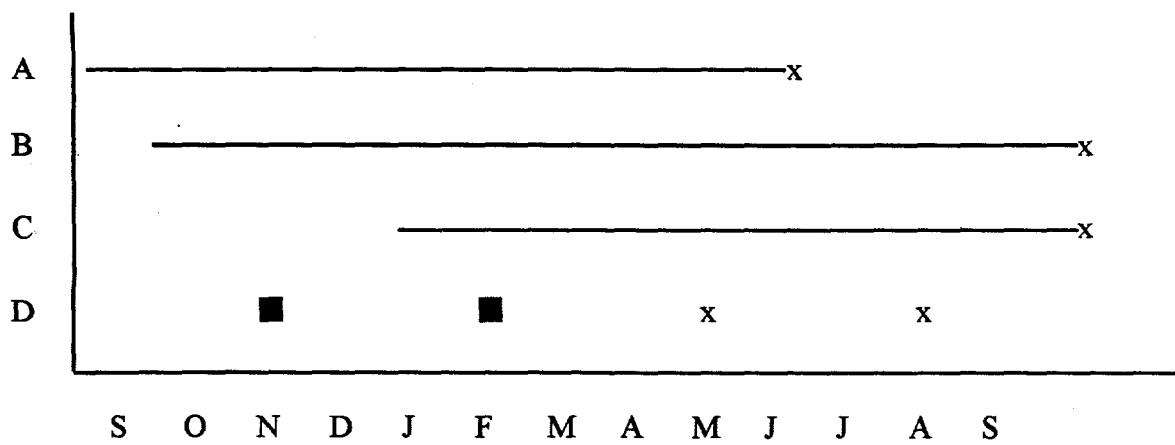
COMMENTS


None.

## PROJECTED AND ESTIMATED EXPENDITURES BY QUARTER

| Quarter*                             | Types of Cost | Direct Labor | Fringe Benefits | Materials and Supplies | Travel | Major Equipment | Other Direct Costs | Indirect Cost | Total  |
|--------------------------------------|---------------|--------------|-----------------|------------------------|--------|-----------------|--------------------|---------------|--------|
| Sept. 1, 1994<br>to<br>Nov. 30, 1994 | Projected     | 4,937        | 0               | 1,250                  | 0      | 0               | 1,250              | 744           | 8,181  |
|                                      | Estimated     | 4,937        | 0               | 1,000                  | 0      | 0               | 1,000              | 694           | 7,631  |
| Sept. 1, 1994<br>to<br>Feb. 28, 1995 | Projected     | 9,874        | 0               | 2,500                  | 700    | 0               | 2,500              | 1,557         | 17,131 |
|                                      | Estimated     | 9,874        | 0               | 2,000                  | 700    | 0               | 2,500              | 1,507         | 16,581 |
| Sept. 1, 1994<br>to<br>May 31, 1995  | Projected     | 14,811       | 0               | 3,750                  | 1,400  | 0               | 3,750              | 2,371         | 26,082 |
|                                      | Estimated     |              |                 |                        |        |                 |                    |               |        |
| Sept. 1, 1994<br>to<br>Aug. 31, 1995 | Projected     | 38,583       | 3,409           | 5,000                  | 2,000  | 0               | 5,000              | 5,399         | 59,391 |
|                                      | Estimated     |              |                 |                        |        |                 |                    |               |        |

\*Cumulative by Quarter


## CUMULATIVE COSTS BY QUARTER

Combined Removal of  $\text{So}_x$  and  $\text{No}_x$  from Flue Gas Using Non-Thermal Plasma

● = Projected Expenditures - - - - -  
▲ = Actual Expenditures \_\_\_\_\_

Total Illinois Clean Coal Institute Award \$59,391

## SCHEDULE OF PROJECT MILESTONES



Begin  
Sept. 1  
1994

## Hypothetical Milestones:

- A: Optimization of discharge parameters
- B:  $\text{NO}_x$  removal with  $\text{NH}_3$  injection
- C: Mercury Removal
- D: Technical and Project Management Reports