S WAIYE

January 1995
. PEAEIVEDR
EZCA Primer ~ECEIVED
FEB 14 1925
Nicholas T. Karonis
Argonne National Laboratory
Advanced Photon Source
Accelerator Systems Division
Controls Group
1 Introduction
This document provides a quick introduction to EZCA, a library that was designed to provide
an easy to use interface to Channel Access (CA). As such, this document is not a user’s
manual, where a more detailed explanation of EZCA can be found. In short, this document is
designed to get users to a state where they can be writing EZCA code as quickly as possible. It
is not a document that answers all EZCA questions.
2 Getting Started
Below is an example of a program, usrl.c, that uses EZCA.
qu].C /* following needed when using EZCA */

#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()

{

double 4;
short s(2];

s(0)] = 10; s[1] = -21;
ezcaPut (“mywaveform”, ezcaShort, 2, s);

ezcaGet (“mygenerator”, ezcabDouble, 1, &d4);
} /* end main() */

First note the three include files necessary for all EZCA programs. The first two, tsDefs.h and
cadef.h, are EPICS include files. The last, ezca.h, is a new EPICS include file. The files must
appear in the same order as they appear above.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED g5 A

2 Getting Started

2.1 Data Types

2.2 Makefile

makefile

Our first call is to ezcaPut. The first argument specifies the process variable we wish to write
to, mywaveform. The next two arguments state that we are supplying the data as C short
variables and that there are 2 of them. The last argument is a pointer to the data.

Our last call is to ezcaGet. We are retrieving a scalar from the process variable mygenerator

in the form of a C double and are placing it into the variable d.

EZCA allows the user to read/write information in a number of different formats. In the
example above we wrote data supplied as ezcaShort and requested the data in our read as an

ezcaDouble. Here are the allowable EZCA data types.

* ezcaByte

* ezcaString
e ezcaShort
* ezcalLong
* ezcaFloat
¢ ezcaDouble

Below is the makefile used to make the example program usrl.c.

CC = acc

EPICSDIR = /home/opiinj2/epics
EPICS_ADD_ON_DIR = $(EPICSDIR)/add_on

EZCAINCDIR = -I$(EPICS_ADD_ON_DIR)/include
EPICSINCDIR = -I$(EPICSDIR)/R3.11.6/share/epicsH
INCLUDEDIRS = $(EZCAINCDIR) $(EPICSINCDIR)

EZCALIBDIR = $(EPICS_ADD_ON)/1lib
EZCALIB = -lezca

CALIBDIR = $(EPICSDIR)/R3.11.6/Unix/sun4/bin
CALIBS = -lca -1Com -1lUnix

LIBDIRS = ~L$(CALIBDIR) -L$(EZCALIBDIR)
LIBS = $(EZCALIB) $(CALIBS)

CFLAGS = -C
DEFINES = ~DUNIX -USUN4 -DOLDCA

usrl: usrl.o
$(CC) -o usrl usrl.o $(LIBDIRS) $(LIBS)

clean:
/bin/rm ~£ *.o0 usril

.C.0:8*.c
$(CC) $(CFLAGS) $(INCLUDEDIRS) $(DEFINES) $*.c

DISCLAIMER

y an agency of the United States

This report was prepared as an account of work sponsored b

G

cy thereof, nor any of their

overnment. Neither the United States Government nor any agen

express or implied, or assumes any legal liability or responsi-

completeness, or usefulness of any information, apparatus, product, or

employees, makes any warranty,

" bility for the accuracy,

ts use would not infringe privately owned rights. Refer-

, or represents that i

process disclosed

fic commercial product, process, or service by trade name, trademark,

ence herein to any speci

ly its endorsement, recom-

imp

or otherwise does not necessarily constitute or
or favoring by the United States Government or any agency thereof. The views

manufacturer,
mendation,

EZCA Primer

ns of authors expressed herein do not necessarily state or reflect those of the

and opinio

United States Government or any agency thereof.

3 Main Functions

3

Main Functions

EZCA is a library of composed of 25 or so functions. Some of the functions deal with error
handling, grouping, monitors, and tuning EZCA. All of the functions are described in this
document.

In this section we introduce the main work functions in EZCA, the functions that read/write
data. There are 8 functions that read data all starting with ezcaGet and one function to write
data, ezcaPut.

* int ezcaGet(char *pvname, char ezcatype, int nelem, void *data_buff)

This is the fundamental retrieval function in EZCA. The process variable is named in pvname
and the request type is specified as an EZCA data type in ezcatype. The requested number of
elements is specified in nelem. data_buff is a user-supplied buffer that must be large enough
to store nelem data values of type ezcatype. ezcaGet places the value into that buffer.

+ int ezcaGetControlLimits(char *pvname, double *low, double *high)
+ int ezcaGetGraphicLimits(char *pvname, double *low, double *high)
¢ int ezcaGetNelem(char *pvname, int *nelem)

« int ezcaGetPrecision(char *pvname, short *precision)

¢ int ezcaGetStatus(char *pvname, TS_STAMP *timestamp, short *status,
short *severity)

+ int ezcaGetUnits(char *pvname, char *units)

These functions all retrieve information about EPICS database records rather than their values.
The process variable is named in pvname. All other fields are user-supplied buffers that EZCA
fills.

TS_STAMP is an EPICS type (found in tsDefs.h). It reflects the last time the record was
processed. There is an EPICS library to manipulate this data type.

In ezcaGetUnits the character array units must be at least EZCA_UNITS_SIZE (defined in
ezca.h) big.

* int ezcaGetWithStatus(char *pvname, char ezcatype, int nelem, void *data_buff,
TS_STAMP *timestamp, short *status, short *severity)

This is nothing more than an ezcaGet and an ezcaGetStatus wrapped up into one function.
¢ int ezcaPut(char *pvname, char ezcatype, int nelem, void *data_buff)

This is the write function in EZCA. The process variable is named in pvname. The type and
amount of supplied data are specified in ezcatype and nelem, respectively. The data is in the
user-supplied buffer data_buff, which is immediately ready for re-use upon return of the
function.

Error Handling

4.1 Return Codes

EZCA functions return status codes indicating the success/failure of the call. In EZCA a return
of 0 (EZCA_OK) always means success. Anything else indicates a problem. Following are
the return codes EZCA uses.

EZCA Primer 3

4 Error Handling

4.2 Automatic

Error Reporting

4.3 Requested

Error Messages

usr2.c

EZCA_OK
EZCA_INVALIDARG
EZCA_FAILEDMALLOC
EZCA_CAFAILURE
EZCA_UDFREQ
EZCA_NOTCONNECTED
EZCA_NOTIMELYRESPONSE
EZCA_INGROUP
EZCA_NOTINGROUP

Although the return codes are useful, the real information associated with anomalous return
codes is found in the error messages. By default, EZCA prints error messages (to stdout) as
soon as they are encountered. The user can toggle this automatic error reporting feature with
the following functions.

* void ezcaAutoErrorMessageOn()
* void ezcaAutoErrorMessageOff()

The default state is on. The user may call these as often as he wishes and at any time
throughout the program.

For tighter control over error messages, EZCA provides two error handling mechanisms.

* void ezcaPerror(char *prefix)
* int ezcaGetErrorString(char *prefix, char **buff)

Both of these error reporting facilities report the status, including success, of the last EZCA
call (except for at the end of groups discussed later). In both functions, prefix is a user-
supplied character string (possibly NULL) that EZCA will use as a prefix to its error message.

ezcaPerror prints the optional prefix with the error message to stdout. ezcaGetErrorString
allocates a buffer and fills it with the optional prefix and error message. It then returns the
address of the buffer in the user-supplied pointer buff. It then becomes the user’s responsibility
to free the buffer using the following.

* void ezcaFree(void *buff)

Following is the program usr2.c, a modification of usrl.c, that uses these new error functions.

#include <stdio.h>

/* following needed when using EZCA */
#include <tsbefs.h>

#include <cadef.h>

#include <ezca.h>

main()
{

double 4d;
short s([2];

char *error msg buff;

ezcaAutoErrorHessageO£fE () ;

EZCA Primer

5 Groups

s{0}] = 10; s[1] = -21;
if (ezcaPut (*mywaveform”, ezcaShort, 2, s))
ezcaPerror (“Put Error:”);

if (ezcaGet (“mygenerator”, ezcaDouble, 1, &d))

{
ezcaGetErrorString (NULL, &error_msg_buff);
printf(“Get Error: %s\n”, error_msg_buff);
ezcaFree((void *) error_msg_buff);

} /* endif */

} /* end main() */

The first thing to notice is the new include file stdio.h. It was brought in because we used the
constant NULL in our call to ezcaGetErrorString.

We introduced a new variable, error_msg_buff, where we plan to have ezcaGetErrorString
place the address of the buffer it allocates.

Our first call is to ezcaAutoErrorMessageOff. This turns off the automatic error message
reporting that is the default in EZCA. We could have left it on. Doing so in this program would
have resulted in errors being reported twice, once automatically and once with our explicit
requests.

Our call to ezcaPut is the same. This time we test the return status. Recall a return status of 0 is
always an indication of success. Anything else indicates a problem. Here we use ezcaPerror to
report the problem with the write using the prefix “Put Error:”. If something went wrong
with the write, the error message would be written to stdout with our specified prefix.

Our call to ezcaGet is also the same. Here we used ezcaGetErrorString without specifying
the optional prefix to have the error message placed into an allocated buffer and the address of
the buffer placed into our variable error_msg_buff. We print the error with our own prefix
message specified in the print statement rather than the EZCA function and then free the
allocated string using ezcaFree.

Assuming that both process variables cannot be found on any IOCs, executing usr2 would look
like this.

% usr2

Put Error: ezcaPut(): channel not currently connected
Get Error: ezcaGet(): channel not currently connected
%

Groups

When doing a large block of unconditional reads and/or writes, it is more efficient to do them
in a group rather than individually. Groups are delineated using the following two EZCA
functions.

* int ezcaStartGroup()
* int ezcaEndGroup() or int ezcaEndGroupWithReport(int **rcs, int *nrcs)

Making an EZCA call in the context of an EZCA group merely checks the validity of the
arguments. The actual work is postponed until the end of the group is encountered.

Not all of the EZCA functions respect the context of a group. Only those functions mentioned
in section 3 have their work postponed. All other EZCA functions are always performed
immediately.

Consider the following program usr3.c which is another modification of usrl.c.

EZCA Primer 5

5 Groups

usr3.c

#include <stdio.h>

/* following needed when using EZCA */
#include <tsDefs.h>

#include <cadef.h>

#include <ezca.h>

main()

(

double d;
short s[2];
char *error_msg_buff;

ezcaAutoErrorMessageOff () ;
ezcaStartGroup () ;

s[0] = 10; s[1] = -21;
ezcaPut (“mywaveform~, ezcaShort, 2, s);

ezcaGet (“mygenerator”, ezcaDouble, 1, &d);

if (ezcaEndGroup())
ezcaPerror (NULL) ;

} /* end main() */

Note that we have removed the error reporting functions found in usr2.c from ezcaPut and
ezcaGet, although we were not required to do so. We have also placed both of these functions
in a group by surrounding them with ezcaStartGroup and ezcaEndGroup.

By placing these functions into a group we have postponed the work until ezcaEndGroup is
encountered. Each function simply checks the validity of the arguments and places the work
onto a list to be processed later. ezcaEndGroup performs all the batched work. It returns the
first encountered non-successful return code (based on their order of appearance) in the group.
If all the batched work returned successfully, ezcaEndGroup returns EZCA_OK which is 0.

ezcaPerror behaves a little bit differently here. When called after ezcaEndGroup (and before
a call to any other EZCA function) it prints a status line for every function in the group. This
includes those functions with successful return codes.

Under the same assumption as before, that none of the process variables can be found,
executing usr3 would look like this.

% usr3

ezcaPut () : channel not currently connected
ezcaGet () : channel not currently connected
%

Assuming that all the arguments to all the functions in the group are valid, there is no
difference in placing ezcaStartGroup and ezcaEndGroup around the EZCA functions as
they appear in usrl.c or in usr2.c. In usr2.c the return code from each EZCA function would
have indicated success (assuming all the arguments are valid).

If some of the arguments were invalid, then surrounding the EZCA calls with ezcaStartGroup
and ezcaEndGroup in usrl.c and usr2.c would simply produce different output. In usr2.c the
invalid argument error message would appear twice, once immediately after the function call
and once as a result of the ezcaPerror at the end of the group.

Users interested in the return status of all the all the EZCA calls in a group should use
ezcaEndGroupWithReport instead of ezcaEndGroup.

EZCA Primer

5 Groups

usr4.c

5.1 Bad
Grouping

bad.c

Like ezcaEndGroup, ezcaEndGroupWithReport performs all the batched work and returns
the first encountered non-successful return code or EZCA_OK. Additionally,
ezcaEndGroupWithReport allocates a vector of return codes, one element for each member
of the group, and returns that vector as well as its length to the user. It then becomes the user’s
responsibility to free the acquired vector using ezcaFree.

Consider the following program usr4.c, a modification of usr3.c where we replaced
ezcaEndGroup with ezcaEndGroupWithReport.

#include <stdio.h>

/* following needed when using EZCA */
#include <tsbDefs.h>

#include <cadef.h>

$include <ezca.h>

main()
{

double d;

short s[2];

char *error_msg_buff;

int i, *re¢s, nrcs;
ezcaAutoErrorMessageOff () ;

ezcaStartGroup();

s[0) = 10; s[1l] = ~-21;
ezcaPut (“mywaveform”, ezcaShort, 2, s);

ezcaGet (“mygenerator”, ezcaDouble, 1, &d);
ezcaEndGroupWithReport (&xcs, &nres);
for (1 = 0; i < nres; i ++)
if (res[i] 1= EZCA_OK)
printf(~Call %d had abnormal return status %d\n”, i, res[i]);

ezcaFree((void *) zcs);

} /* end main() */

Not all programs should use EZCA groups. The following is an example program that is a poor
candidate for groups.

#include <stdio.h>

/* following needed when using EZCA */
#include <tsDefs.h>

#include <cadef.h>

#include <ezca.h>

main()

{

double d;
short s{2]};

ezcaAutoErrorMessageO£f£f () ;
ezcaStartGroup();

ezcaGet (“mygenerator”, ezcaDouble, 1, &d):;

EZCA Primer 7

6 Monitors

if (4 < 0)
{

s[0] = 10; s[1l] = ~-21;

ezcaPut (“mywaveform”, ezcaShort, 2, 8);
} /* endif */

if (ezcaEndGroup())
ezcaPerror (NULL) ;
} /* end main() */

Here we have changed the order of the read and write. We read first, and based on the value we
read we conditionally write. This program is destined to fail. Recall that the ezcaGet read is
postponed until ezcaEndGroup is executed. This means that the value found in the variable d
is garbage when the test on it is performed.

Monitors

6.1 Monitor
Check

6.2 Delay

Another optimization (in addition to groups) available to users are monitors. If the user has a
process variable whose value will not change very often but will be read frequently, then the
user should establish an monitor on that process variable.

Monitors can be placed and removed at any time using the following.

« int ezcaSetMonitor(char *pvname, char ezcatype)
« int ezcaClearMonitor(char *pvname, char ezcatype)

There is no difference in the way a user reads the value, i.e.,all the ezcaGet family of functions
are called exactly the same way. Calling ezcaSetMonitor simply instructs EZCA to
immediately establish a CA monitor of the specified request type on the named process
variable. Any time the value of the process variable changes (presumably infrequently) EZCA
automatically and silently caches the new value. All subsequent reads of that process variable
under that request type will not generate a CA read, but rather, will simply read the cached
value. This arrangement continues until the monitor is removed using ezcaClearMonitor.

The user can also poll the monitor to see if a new value has come in since the last time the
value was read. This is done with the following function.

* int ezcaNewMonitorValue(char *pvname, char ezcatype)

This function returns a non-zero value if there is a new (unread) value in the monitor,
otherwise it returns 0. This function is particularly useful when the read operation is expensive
in time, e.g., reading large arrays.

Users must exercise caution when using monitors. Because of the way CA is implemented, it is
possible to lose changes in process variables if there is a substantial amount of time between
any two adjacent EZCA calls. Substantial here is a relative term. It depends on how frequently
the values are likely to change.

To alleviate this problem, EZCA provides a function that should be called whenever using
monitors and there is a substantial amount of time between any two adjacent EZCA calls.
Between all such pair of calls, the user should call the following function.

EZCA Primer

7 Tuning EZCA

« int ezcaDelay(float sec)

Where sec is always greater than 0, values around 0.01 should suffice.

Tuning EZCA

EZCA uses two tunable parameters to determine when to stop waiting for connections and
confirmations of reads and writes. They are timeout and retrycount. EZCA uses them by
waiting timeout seconds and then, if necessary, waiting timeout seconds a maximum of
retrycount more times, resulting in a maximum total timeout time of
timeout+(timeout*retrycount) = timeout*(1+retrycount).

The default values for these parameters strikes a balance that hopefully serves most users
efficiently. The hope is that those users that can connect quickly are served as well as those that
require a little more time.

Users can not only discover the values of these parameters using

* float ezcaGetTimeout()
+ int ezcaGetRetryCount()

but they can also set these parameters using

« int ezcaSetTimeout(float sec)
+ int ezcaSetRetryCount(int retry).

Here all arguments must be greater than 0.

Empirically, we have observed that under normal circumstances EZCA can reliably process
(read or write) 200 process variables per second. Users should adjust timeout and retrycount
accordingly.

For example, with a timeout of 0.2 seconds and a retrycount of 9, EZCA will wait a
maximum of 0.2%(14+9) = 2 seconds. This will allow the user to process groups of up to 400
gets and/or puts reliably. If a particular group has 600 operations to perform, the user must
increase the maximum timeout to at least 3 seconds to more adequately assure reliable
processing. This may be done by increasing timeout and/or retrycount accordingly.

Escape to Raw Channel Access

EZCA is designed to provide an easy to use interface to CA. In doing so, we were forced to
sacrifice some of the functionality and efficiency found in CA. Users of EZCA that
occasionally need to make a call directly to the CA library can do so in an EZCA program by
calling the EZCA function that converts a process variable name to a CA chid.

« int ezcaPvToChid(char *pvname, chid **cid)

The cid should already be connected for you and ready to use with any CA function. Calls to
CA functions may be mixed freely with EZCA function calls.

EZCA Primer 9

