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Abstract — A range-to-target algorithm for application to
targets which exhibit a crude hyperbolic wiggle trace is
described. The current practice is to use the apex time of the
hyperbolic response together with an estimate of the
propagation velocity to furnish the range. This new
algorithm minimizes a difference function over a velocity
search interval to provide the range. Examples for a variety
of media, targets, range, and operating frequency are given
for both simulated data and actual field data provided by
others. Generally, the range is within 5% of the true value
when known, or is consistent with values faurnished by
others.

ASSUMPTIONS

Several assumptions are required for the development of
the algorithm: The transmitter is not modulated during the
pulse interval; the media between the radar and the target is
homogeneous and isotropic; the round-trip travel time is
measured during a linear traverse past the target; and the
transmitting and receiving antennas of the GPR are
appropriately separated.

THE TRAVERSE

Suppose that the radar is translated in uniform increments
along its own axis and approaches, illuminates, and passes-
by a discrete target as shown in Fig. 1. If the maximum
radius of curvature of the target is much less than the
minimum range, the slant range is given by

R =0.5vt, , (1

where V is the velocity, Z, is the round trip time, and R,
is the slant range from the midpoint of the antenna
separation distance 25 at the i-th traverse position z,. The
minimum time is denoted by f, and the corresponding
traverse position is denoted by z,. The minimum range is
given by '

-p=0.5v¢, . ) )]
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The slant range from the midpoint can also be written ag - Lo
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Figure 1. Traverse Geometry

The form of the trace generated with the traverse is
obtained by equating (1) and (3), and using (2) to get

L=l @

which is the standard form for an hyperbola centered at
(z,,t,) = (0.0).

From Fig. 1 it is simple to write the expression for the
round-trip path length R, in terms of R;, namely
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where 1= 5/ p is the normalized separation distance, and
I, = lz,. l / p is the normalized traverse distance. We see
from Fig. 2 that the error in using 2R, for the round-trip
path length is greatest when z, = 0, and that the separation
distance should be made as small as possible.
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Figure 2. Midpoint error forn=0.1, 0.2

ALGORITHM DEVELOPMENT

The key idea in the algorithm consists in minimizing the
difference between the propagation form for range, (1), and
the Pythagorean form, (3), which is called the difference
Junction:

DF =

\/zf +(vt,12) -v s, /2‘ . ®

where the v, are trial values of velocity, j =1,2... j ...

The difference function is zero when #, = 7,. I assume that,
when the mean difference function is minimized over the set
of trial velocities {v f } the velocity at the minimum will

provide the range which is most consistent with the data.

The difference function may be set to zero and solved
directly for as many trial velocities as there are data points.
Often, the velocities thus found imply combinations of
relative dielectric constant, RDC , and conductivity which
are very different from any reasonable estimates of what the

electrical soil parameters could be. These so-called direct
solution velocities are not used in the algorithm.

Constraints

The range-to-target algorithm is a numerical solution
process and must be constrained to avoid instability,
unwarranted precision, and results that are physically
impossible. Because the difference method may require a
large amount of computation and is subject to round-off
errors, the (7 z;)-data are read-in as double-precision

numbers, and the computations are performed in double
precision.

Stability: One problem arises from the limited precision of
the time measurement itself. The several values of #; in the

vicinity of the apex of the hyperbola often have the same
value, and the question arises as to which of these 7, -values

should be designated as #,. If the number of such values is
odd, the middle value is chosen as 7; if the number is even,
the mean value of the two z; in the center is inserted as zZ,
together with a corresponding 7,. The z; are subsequently
recalculated so that only z, = 0, and all other £, equal to ,

are excluded from use in (6). This also increases the
minimum values of the I, and reduces the midpoint

H
approximation error as shown in Fig. 2.

Precision: The uncertainty associated with each (z,?,)-

pair, namely Az and A#, can be used to estimate the relative
error in the difference function, and to control the number of
significant figures or NSF retained in the subtraction. The
error in the trial velocities, which are computed values, is
neglected.

The NSF to retain in the difference function is given by
the characteristic of the common logarithm of the reciprocal
of the relative error. If the NSF is one or more, only one or
more significant figures are retained in the difference
function; if the NSF is less than one, the difference function
is not accumulated into the mean value. Consequently, it
may turn out that the process of minimization may fail for
lack of adequate precision.

Velocity interval: The difference function requires the use
of trial velocities, and I assume that it usually possible to
make an estimate of the lower and upper limits of each of the
electrical parameters. These are used to compute lower and
upper bounds of the wavelength which, in turn, are used to
provide bounds for the trial velocities. Alternatively, of
course, the search could be conducted directly in terms of
wavelength rather than velocity. )




EXAMPLES

Several examples are given below which demonstrate the
uscfulness of the algorithm in several different combinations
of soils and targets. The first three examples use simulated
data based on the return from a sphere [1], and the
remaining six examples use field data taken by others on
commercial equipment. The velocity search increment was
0.1% of the velocity interval in each example.

Air Example: The target is a 1m OD conductive sphere
centered 50m from the traverse line. The transmitter and
receiver are separated by 0.5m. The target RDC is also that
of air, but the conductivity is 10mS/m. At a frequency of
100MHz the minimum round-trip time to the target surface
is 330.2ns. The traverse extends +0.85m in 0.1m intervals
and provides extreme times of 330.3ms. Using just the
extreme time on each side, 3 points in all, the estimated
range is 49.49m which is very close to the minimum range-
to-target distance of 49.5m.

An Air Cavity in Granite: The Boulder Creek granite
formation near Raymond, Colorado has been extensively
measured in situ at frequencies up to 25MHz [2]. At
12.5MHz the RDC is 7.8 and the conductivity is 1.8 mS/m
which provide a wavelength of 8.47m and a velocity of
0.106 m/ns. A 1.6m-OD spherical cavity is centered 33m
away. The transmitter & receiver are separated by 0.5m, and
the traverse increment is 0.1m. Using data points between *
3.25m provides a range of 32.3m which is close to the
minimum distance of 32.2m.

A Saline Cavity in Granite: This is the same as the
previous example except that the target is changed to a 0.5m
OD saline sphere centered at 9.64m. The target RDC is 81
and the conductivity is 180mS/m. Using data points between
+ 4.5m provides a range of 9.36m which is 3cm short of the
minimum distance of 9.39m.

Pipes and Barrels in Sand: The January 1994 issue of The
EKKO Update, a newsletter published by Sensors &
Software, Inc., illustrated the responses from pipes and
barrels buried at the GPR Antenna Range located at the
University of Waterloo, Kitchener, Ontario. Fig. 3 shows the
wiggle traces corresponding to five targets. All targets were
buried at a depth of 1.30m in a uniform sand overlying a
water table which began at a depth of 4m. The trace for the
vertical barrel, the 4th target, is rather flat on top and does
not extend as far along the traverse as the other traces
because there is very little return from the vertical sides. A
spurious response is also present at about 12m along the
- traverse. The trace for the horizontal barrel shows a

* minimum round-trip time which is about Ins greater than.

that of the other targets which suggests that the barrel is at a
slightly greater depth. Sensors & Software, Inc. has kindly
supplied the data which was acquired at 450MHz. The
antenna separation of 0.25m made n = 0.1 so that the
midpoint approximation error of Fig. 2 is very small. The
results of using the algorithm, with media search limits of 5
< RDC < 10, and 0.1ms/m <Conductivity < 1mS/m, are
shown below.

Velocity, m/ns

Target Description Depth, meters

0.5m steel cylinder 1.29 0.134
0.16m OD plastic pipe 1.25 0.130
0.16m OD steel pipe 1.28 0.133
Vertical barrel, 180L 1.31 0.134
Horizontal barrel, 180L 1.33 0.128

The differences between the computed and implanted
depths are less than 4% for the first four targets. The
horizontal barrel is about 3cm deeper than intended.

Rebar Mesh in Concrete Slab on Grade: In the January
1995 issue of The Ekko Update, Sensors & Software
described the measurements shown in Fig. 4, and graciously
provided a copy of the actual data obtained at 1200MHz.
The antennas were separated by 7.5cm which was one-half
the mesh spacing and one-half of the nominal slab thickness.
The return at 1.2m along the traverse was investigated with
media search limits of 5 < RDC < 15, and 0.0lms/m <
Conductivity < 10mS/m. Times were only known to 2
significant figures, and the algorithm provided a depth of
licm. This is consistent with both the traverse data and
migrated image of Fig. 4 when using the algorithm velocity
of 0.082m/ns and a minimum time of 2.7ns. The slab has
not yet been bored to determine the actual depth of the mesh.

CONCLUSIONS

The results given here are encouraging because of the
variety of media parameters, frequency, and hyperbolic
quality, but further testing is desirable. The algorithm
appears to be ready for stand-alone use, or for integration
into software associated with existing GPRs. It is worth
noting that the algorithm is also applicable to seismic
surveys with constant-offset gather.
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Figure 3. GPR returns at 450MHz at University of Waterloo GPR antenna test site
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Figure 4. GPR returns at 1200MHz from rebar mesh in a concrete slab
15mm x 15mm square mesh of 3mm wire in ~ 15cm thick slab




