SANDGL-27071 L

THE SIMULATION INTRANET ARCHITECTURE

Victor P. Holmes, John M. Linebarger, David J. Miller, and Ruthe L. Vandewart

Sandia National Laboratories

P. O. Box 5800
Albuquerque, New Mexico, 87185

E-mail vpholme@sandia.gov

KEYWORDS
Distributed computing, Intranet, Framework architec-
ture, CORBA, High performance simulations

ABSTRACT

The Simulation Intranet (SI) is a term which is being
uscd to describe one element of a multidisciplinary dis-
tributed and distance computing initiative known as

DisCom? at Sandia National Laboratory (http et al.
1998). The Simulation Intranet is an architecture for
satisfying Sandia’s long term goal of providing an end-
to-end set of services for high fidelity full physics simu-
lations in a high performance, distributed, and distance
computing environment. The Intranet Architecture
group was formed to apply current distributed object
technologies to this problem. For the hardware architec-
tures and software models involved with the current
simulation process, a CORBA-based architecture is best
suited to meet Sandia’s needs. This paper presents the
initial design and implementation of this Intranct based
on a three-tier Network Computing Architecture(NCA).
The major parts of the architecture include: the Web Cli-
ent, the Business Objects, and Data Persistence.

ARCHITECTURE DESCRIPTION
Overview

The purpose of the Simulation Intranet architecture is
to satisfy Sandia National Laboratory’s long term goal
of providing designers and analysts an integrated set of
product realization and virtual prototyping services
which include high fidelity simulations in a high perfor-
mance (HP), distributed, and distance computing envi-
ronment. The initial focus of the architecture is on the
development of a distributed object framework which
allows users Web-based desktop access to applications
that require high performance distributed resources for
modeling, simulation, analysis, and visualization. This
framework satisfies the following characteristics:

DECEIVED
=C 8 7 1998
Q8TH

+ works within a heterogeneous. distributed computing
environment

* is object-oriented

» is machine-independent and tool-independent (based
on open standards)

» exhibits network transparency
» contains components which are largely decoupled

+ makes new and existing applications appear as
distributed object services

« provides for sequencing, launching. and monitoring of
sets of applications

« coordinates archival and retrieval of information
» allows for adding or upgrading capabilities
+ provides a consistent, integrated operator interface.

In addition. there are three main thrusts that are
addressed by the first version implementation of this

framework. First and foremost. the framework architec-
ture must provide users transparent desktop access to
the Computational Plant (CPLANT), a massively paral-
lel computing resource constructed of commodity parts.
This is accomplished by advancing the use of distributed
software object concepts coupled with Web and intranet
technologies, and focusing on emerging open standards
in these areas. To provide desktop access to such high
performance machines, it is necessary to integrate dis-
tributed object computing and Web-based computing
with HP computing, areas of computer science which
have in the past taken separate research paths and now
are merging to create a component-based architecture
for modeling, simulation, and analysis. Some of the
technologies being employing include object request
brokers (ORBs), object-oriented databases (ODBMS),
and Java Beans, coupled with applications employing
the Message-Passing Interface (MPI) and parallel visu-
alization techniques.

The second aspect of the framework architecture
involves integrating visualization with analysis in order
to monitor progress and potentially inject computational
steering. The current model of HP computing normally

This work is supported by Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation (a Lockheed Martin com-
pany) for the United States Department of Energy under contract DE-AC04-94AL85000.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

involves long running batch-oriented computations fol-
lowed by complex postprocessing to finally visualize the
results, In some cases. the analysis has to be resubmitted
with modified component meshes and parameters. In the
Simulation Intranet model, the framework can initially
provide image snapshots of simulation time steps to the
desktop so the users can determine if the analysis is on
track without having to wait until it is completed. The
implementation of this capability is described later in
the visualization sections. Eventually, the framework
will expand upon this spyglass concept and allow the
user to virtually move around in 3D space to look at the
data, potentially interrupt the analysis to tweak the mesh
or parameters, and ultimately use the power of the
CPLANT clusters to perform real-time parallel visual-
ization of data as it is generated.

The third thrust involves knowledge management
through a concept known as the Product Design Object
or PDO. This concept includes the ability to capture the
large quantities of data generated by these analyses in an
object repository, classify this data into some kind of
taxonomy which is consistent with the Laboratory’s
business model, and then make relevant information
available to the users to solve new problems and achieve
new insights, particularly in the area of nuclear weapon
stockpile stewardship.

Related Work in Distributed Frameworks

Although this arca of research is fairly new, other
framework architectures and related services are being
developed which contribute to the advancement of the
technology. Some of the more recent approaches
include CONDOR (Litzkow et al. 1988), Legion (Grim-
shaw et al. 1997), GLOBUS (Foster et al. 1997),
WebOS (Vahdat et al. 1997), and Javelin (Christiansen
ctal. 1998). The Legion research attempts to provide
shared object and name spaces within a fault tolerant
cnvironment. Globus may be viewed as an environment
that provides a “metacomputer” in the form of net-
worked supercomputers or workstation clusters. It
builds a layer of services for communication, resource
location and allocation, authentication, and information
access. WebOS attempts to provide similar services for
wide area applications, including resource management,
remote process execution, and security. The Javelin
architecture is an all-Java global computing infrastruc-
ture which defines brokers, clients, and hosts. A client
seeks resources, a host offers resources, and a broker
coordinates the supply and demand between clients and
hosts. By using Java exclusively, Javelin attempts to cir-
cumvent issues regarding user login access and mainte-
nance of binaries across architectures.

With the growing popularity of Java, other research-
ers are also pursuing Java-based efforts to establish soft-
ware infrastructures for distributed and distance
computing. These include ATLAS (Baldeschwieler et
al. 1996), Charlotte (Baratloo et al. 1996), ParaWeb
(Brecht et al. 1996), and Popcorn (Camiel et al. 1997).
These projects attempt to provide capabilities for paral-
lel applications in heterogeneous environments.The use
of Java for building distributed systems will continue to
flourish as Internet-based programming becomes more
viable.

Three-Tier Component Model

The three thrusts or current areas of development dis-
cussed above fit nicely into a Three-Tier Network Com-
puting Architecture (NCA) model depicted in the
following figure.

Three-Tier Network Computing Architecture

Web Buuncss Legffmfg &"‘
Cheat | \igssages] Qbrees \{ESSAGES wence

The following sections discuss the general characteris-
tics of each of these tiers. A subset of these characteris-
tics has been implemented within the prototype
distributed object framework.

Web Top A typical web browser can be viewed as
the user’s desktop operating environment of the future.
The browser provides access to all applications and ser-
vices required by users to accomplish their laboratory
missions. The browser component of a three-tiered
architecture is concerned with aspects of presentation
without knowledge of business rules. It provides a user-
centered, document-centered, coarse-grained, stateless
world view.

In the context of the Simulation Intranet, the browser
displays the “web pages” which provide access to mod-
eling, simulation, and analysis capabilities. These capa-
bilities can be displayed through numerous web-based
technologies such as HTML, Java, Javascript, or
ActiveX. The first instantiation of the framework creates
Java Bean components which represent the various
applications and services for the Simulation Intranet. In
addition, an applet serves as the container or “bean box”
for graphically programming a simulation sequence,
configuring each simulation component in the sequence
(customizers, introspection), invoking the sequence
(event model), and monitoring its progress. This

approach provides a component-based architecture
which transforms legacy applications into application
components, or “business objects.” The enterprise
gains new distributed object-based applications from
different assemblies of repackaged legacy components.

Distributed Access to Applications and Services
Transparent connections and communication must be
provided between the Web Top and the distributed appli-
cations and services. This messaging element of the
three-tiered architecture provides the notion of distrib-
uted blobs of computing resources which are available
to the Simulation Intranet. These resources may be local
to a site (LAN) or remotely accessed (WAN), and the
messaging interface makes them appear as if they are on
the user’s local machine. The initial implementation
uses the Java Bean event model coupled with event
model adapters which can potentially accommodate var-
ious protocols, including IIOP (CORBA), RMI. RPC,
HTTP, and COM+. These adapters provide the transpar-
ent mechanisms for browser-based beans to connect and
communicate with the distributed applications and ser-

vices. Currently the adapters are implemented using
CORBA and IIOP.

As an example, a Java Bean component can represent
a desktop instantiation of some application code. The
bean includes all of the properties needed to configure
and initiate execution of the code, as well as visual rep-
resentations of its component for drag-and-drop pro-
gramming. The event model associated with this bean
includes a series of events for triggering the initializa-
tion and execution of the actual legacy code. A
CORBA-based adapter associated with this bean serves
as a listener for these events. Upon receiving these
events, this adapter reacts to them by establishing a con-
nection with and making remote calls to a CORBA
wrapper for the actual legacy code which resides wher-
ever the code is to exccute, such as the CPLANT. These
remote calls are defined by an IDL interface, and their
execution is carried out through the use of an ORB and
the IIOP protocol. Therefore, the event model adapter,
serving as a listener for the application code bean, is
written in Java, but the wrapper for the code itself can be
written in another language such as C++. The adapter
behaves as a CORBA client and the legacy code wrap-
per behaves as a CORBA server.

Modeling, Simulation, and Analysis “Business
Objects” The business objects in the three-tiered
architecture are the legacy codes and new codes pro-
vided by Sandia scientists and commercial vendors
which implement the applications and services required
by the Laboratory’s missions and provided by the Simu-

lation Intranet. These applications should be presenta-
tion and data storage independent, usually have
connections with other business objects (perhaps
through other bean components and adapters), and may
need to store and retrieve information from the persis-
tent store. As opposed to the Web client, business
objects provide an application-centered. fine-grained,
stateful world view.

To achieve the concept of business objects, most leg-

acy codes require wrappers which handle the distributed
object aspects of their use. The encapsulation strategy
used to wrap legacy codes should be a component-first
approach which involves performing a domain analysis
to generate an object model, identifying public inter-
faces for this object model, and encapsulating the legacy
application to populate the specific functions of this
public interface. A complete wrapper should perform
connection protocol management, data translation and
information processing, error detection and recovery.
and environment management, which includes insula-
tion of the users from changes and upgrades.

Knowledge Management The final tier of the
architecture, data persistence, should ultimately take the
form of a knowledge management system. The valuc of
Sandia’s information assets requires more than just the
ability to store and retrieve them in a distributed fashion.
It should also be possible to dynamically match infor-
mation to specific processes or unknown situations and
leverage that information to achieve new results and
insights into mission-related problems. Some key ele-
ments of a knowledge management system include dis-
tributed object databases and associated tools for legacy
data conversion, knowledge creation analysis, collabora-
tion, web content management, intelligent agent imple-
mentation, and visualization.

Some of the functions which transform information
into knowledge include capturing data in an object
repository and organizing it into a classification frame-
work or taxonomy which reflects the Simulation Intra-
net business model, the ability to make information
available to a knowledge seeker, and the application of
that knowledge to solve new problems. Knowledge
management solutions should be context sensitive, user
sensitive, flexible, heuristic, and suggestive.

ARCHITECTURAL COMPONENTS

Overview

A generalized pictorial representation of the architec-
ture is shown in the following figure.

(s Enimument

1Singe Netwock Node
Laivor}Q)

Design 284 Anshss Emirotmant (Distribused Netwark)

On the left is the desktop environment and on the right
are the distributed computing resources which are avail-
able. A Java-based applet running inside the browser
represents a prototype desktop environment. There is a
navigation panel that shows the available products and
services being worked on, a work panel that displays the
individual GUI’s for the various services as well as the
images sent back by the visualization service, and a sta-
tus window. In the context of the framework as
described in the previous section, this browser is one of
the entities of the three-tiered architecture. The designer
uses this common desktop environment to configure,
link together, and launch various applications, and each
launched application transparently locates, connects to,
or acquires the appropriate distributed resources for that
application.

For legacy codes, there are wrappers which allow
older codes to become network-aware and behave as
distributed object services. Wrappers may appear as
front-ends to codes which cannot or should not be modi-
fied, or there may be tight integration between the wrap-
per and the analysis code. For new codes, they should be
developed as network-based components from the start
and would not require wrappers. The wrappers represent
the second clement of the three-tiered architecture
which is sometimes referred to a the business model or
business objects. Sandia’s business in the framework
context is not accounting or payroll, but rather applica-
tions such as solid modeling, meshing, finite element

analysis, and visualization. Some codes execute on
workstations and others are launched on HP massively
parallel computers, depending upon the code’s require-
ments and the users’ needs.

Finally, the third tier of the architecture at the back-
end involves data persistence and knowledge manage-
ment which is represented as a PDO repository. Both the
wrappers and the desktop are capable of communicating
with the PDO repository. All distributed communication
is performed using CORBA.

The Web Top

User Interface Applet and PDO Bean The fol-
lowing is a prototype display of the Web Top interface.

TS o

CARORONSH C o PAm e T NG

The user first starts up a browser and navigates to the
Simulation Intranet home page where information and
documentation are available for the distributed object
framework. This home page contains a link pointing to
an HTML file which initiates execution of the frame-
work applet that provides the container for the user
interactions with the desktop services. The applet per-
forms three initialization functions. It first provides a
login dialog which allows the user to enter a username
and password. Then it creates the desktop which con-
sists of three panels. The panel on the left serves as a
navigation panel and contains a tree of products and ser-
vices available to that user in the database. The panel on
the right serves as a workspace panel where the user can
interact with the various services. If an application has a
GUT associated with it, this GUI can be displayed within
the workspace panel. In addition, images being sent
from a visualization service may be displayed here as

well, The bottom panel serves as a status display for
messages from both desktop and distributed services.
After these panels are created, the applet completes its
initialization process by instantiating the PDO bean
which essentially controls all of the framework’s subse-
quent activities.

The PDO bean first creates a CORBA-based adapter
object and uses it to connect to the database. Then it
uses the adapter to retrieve all of the PDO’s from the
database and build the navigation tree from this infor-
mation. This tree then becomes the starting point for the
user. By selecting a product and service from the tree,
the user generates an event which causes the PDO bean
to instantiate an application or service bean. The names
of the beans are available from the database, and there-
fore, any new application or service can be plugged into
the framework by creating a bean for it which adheres to
some minimal design patterns, and then providing meta-
data for the database about the new application or ser-
vice. The core framework code itself (applet and PDO
bean) does not need to be modified. The creation of
application and service beans allows the user to config-
ure, launch, monitor, and display results for modeling,
simulation, and analysis tasks associated with a product.

Intranet Beans for Applications and Services
Each application or service to be accessed through the
Simulation Intranet should have a bean implementation
associated with it. This bean normally provides the
desktop side of the service for the user to interact with.
To become a part of the framework, an Intranet Bean
should adhere to some minimal design patterns.

First of all, the bean may import the PDO service and
implement an adapter class which allows it to communi-
cate with the database and other distributed services.
This is not an absolute requirement if the service has no
need to communicate with the database or contains its
own communication interfaces. The only requirement is
that some metadata about the service be resident in the
database so that the service will appear on the naviga-
tion tree, and in t hat way become accessible to the user.
If the bean does wish to communicate with the database
and/or to a server which manages the actual service pro-
vided by the bean, then the framework provides some
simple template classes which simplify the adapter’s
implementation, The bean event model is used by these
templates to communicate between the bean and its
adapter. When a user interaction generates an event
which requires distributed services, the adapter, acting
as a listener for those events, will respond to them and
provide the communication needed to complete the
transaction.

The second major design pattern is associated with
the way the bean displays its services to the user. If a
bean has some form of GUI and it wishes to use the
applet’s workspace panel as a container for the GUI,
then the bean must implement a Java interface known as
the FrameworkBean. This interface consists of a single
instantiate method which the PDO bean will use to
instantiate the application bean. This method enables the
PDO bean to convey the handles needed for the applica-
tion bean to interact with the applet’s panels. The PDO

bean uses introspection to determine if the application
bean implements the FrameworkBean interface, and if
so, calls that bean’s instantiate method to start it up. The
framework provides templates for implementing the
instantiate method. This method usually includes cre-
ation of the bean’s adapter, creation of the GUI, setting
up of the event model, and display of the GUI in the
workspace panel. Of course, if the bean wishes to have a
GUI which is displayed outside of the browser’s con-
text, then it need not implement the FrameworkBean
interface. The only requirement is that it provide a con-
structor with no parameters so that the PDO bean can
instantiate it. Once the bean has been instantiated and its
GUI displayed. the user can interact with it to utilize the
distributed service that this bean provides the doorway
to.

Bean Adapters for Distributed Communication
As discussed above, each application bean will normally
include an adapter class for distributed communication.
There are several reasons why an adapter is preferable to
embedding the communication within the bean itself.
First of all. the adapter provides a nice encapsulation
mechanism for all of the communication code and
makes the design more object-oriented in nature. This
encapsulation subsequently allows for multiple imple-
mentations of the adapter without affecting the bean
application code. Such multiple implementations allow
for different communication technologies and protocols
which may be necessary when switching between dis-
tributed computing and distance computing. Another
advantage of an adapter is that it can be implemented as
a separate thread which prevents bottlenecks from
occurring on the desktop. When the user submits a
request to the service, it can be carried out by this thread
without affecting the user’s ability to perform subse-
quent desktop interactions. Finally, various multiplexing
and queuing algorithms can be inserted into adapters,
allowing the user to batch requests to a service without
having to wait for one to complete before issuing
another one.

Applications and Services

Database Service An object-oriented database is a
key component of the framework, maintaining informa-
tion and methods for each product design and analysis.
A CORBA interface is required to the database so that it
can be accessed from the desktop or from applications
which are running on workstation clusters or high per-
formance computers. This CORBA interface includes a
persistent server application (PDO server) which man-
ages the PDO object implementation for the IDL inter-
faces to the database. This server resides on machines
which contain PDO’s that may be accessed by the
framework. This server creates and returns PDO object
references to clients who need to communicate with the
database. When a client connects to the PDO server and
receives back PDO object references, these references
are associated with particular products or product ser-
vices. A set of IDL interfaces for these PDO’s provide
the operations needed to initiate user sessions, launch
applications and services, retrieve status, and manage
the information generated.

Application Launch Service Because some of the
ORBs used by the framework do not provide an auto-
matic launching capability of application servers, it is
necessary for the framework to provide this so that desk-
top users do not have to deal with such details. For the
short term, this capability will be provided by a simple
CORBA-based Launch server which must be persis-
tently active on machines where applications may be run
within the framework. This server manages an applica-
tion launching object which implements a simple IDL
interface containing a single launch operation. This
operation accepts as input a string containing the com-
mand line required to start an application. The operation
uses this string to perform a spawn of the application
executable, Obviously this spawning action is operating
system specific. The framework currently only supports
the launching service on Unix-based systems. The
launching operation throws an exception and informs
the database if it detects that the launch call fails. Nor-
mally, the launching operation will start up a CORBA-
based server which manages an application object. This
application object or wrapper serves as a front-end to an
application code that may execute on an HP computer.

Alegra Application Service The Alegra applica-
tion is a structural dynamics finite element code written
in C++, It was selected as the first candidate application
for the framework. It had to be made CORBA-aware so
that it could be accessed in a distributed fashion from
the desktop using the Web Top aspects of the frame-
work. Therefore, an IDL interface was defined for
Alegra operations, and the object implementation of this
interface, or Alegra wrapper, serves as a front end to the

Alegra software. This wrapper is managed by an Alegra
server which is launched by the Launch server whenever
a desktop client requests an analysis session that uses
Alegra. There is one Alegra server launched per session
so that each user has their own exclusive copy of the

Alegra software when performing an analysis.

The IDL interface for the Alegra wrapper object itself
simply provides operations for starting an execution,
retrieving status of the execution. and aborting or termi-
nating an execution. The execute operation allows the
desktop client to begin an analysis. This operation nor-
mally initiates an HP computing cluster process known
as “yodto start a parallelized Alegra run on compute
nodes available in a CPLANT cluster. The execute oper-
ation also makes requests from the PDO service to
determine where the execution is occurring, since the
startup process may be different for workstation clusters
than it is for HP machines. This operation also retrieves
the parameter file and data files from the PDO before
starting the execution. The parameter file resides in the
database, so it must be retrieved and written as an ASCII
file to the local file system where it will be accessible to
the legacy code execution. Only the paths to the data
files are stored in the database. These files must be avail-
able on the local CPLANT file system as well. Once all
the information has been gathered. system calls and
scripts can be used to launch the actual application. If
the application is to be run on an HP computer, the sys-
tem calls will start yod with the appropriate parameters
for the Alegra exccution. In addition. since the only
mechanism currently available for getting back Alegra
status is through yod’s stdout, this execute function also
includes the launching of a status process. The stdout of
yod is piped into the stdin of the status process such that
status messages coming back from Alegra may be inter-
preted and acted upon by the status process.

The status operation in the Alegra wrapper allows the
desktop client to find out the status of an application’s
resource allocation and execution state. The wrapper
can use the services of the HP computer to obtain this
information and send it back to the desktop as part of
this operation. Normal status of an application, such as
its current time step if it involves a time-based simula-
tion, will be available to the desktop from the database
which stores messages sent to it by the status process.

Finally, the abort and terminate operations allows the
desktop client to abort a run and terminate the service
respectively. This assumes that the wrapper has some
way of communicating with the compute nodes or yod
to abort the execution. No restart capability is provided
by the framework for this version.

Application Status Process This process is started
by the application wrapper and waits on stdin for mes-
sages coming back from an application, usually through
yod’s stdout. Upon receiving a message, it must parse
the message and determine the appropriate action to be
taken. This process is a client to the PDO server and a
client to the visualization snapshot service. If periodic
status messages come back from an application, this
process forwards them to the database. If a message
comes back indicating that a data file is ready for visual-
izing, then this process sends a message to the visualiza-
tion service indicating where to locate the data. This
process connects to the PDO server through some well
known port or naming service. It obtains an object refer-
ence for the visualization service by requesting it from
the database which records status information and
object references that contain knowledge of when the
visualization service is running and ready to accept data
for a particular analysis. If the status process starts
before the visualization service and is unable to obtain
an object reference for the visualization service on star-
tup, then the status process must attempt to request it
again when the first data file is available for imaging. If
the status process successfully makes a connection, it
can request the visualization service to process the data.
If it cannot make a connection. the data files will still be
available for post-processing after the run but there will
be no quick look available.

Visualization Snapshot Service This service han-
dles the quick look capability which allows the user to
reccive a snapshot image of a currently running applica-
tion. This service is configured from the desktop and
launched by the PDO server as another application asso-
ciated with a particular lifecycle analysis. It is a
CORBA-based server and performs initialization func-
tions similar to any application server. It connects to the
PDO server, creates a visualization application object,
stringifies that object, and sends a message back to the
PDO indicating it is ready for data. It also sends back its
stringified object reference to the database which can
return it to any application that communicates with the
visualization service. Normally there would be only one
client associated with a particular visualization service,
and that client could be the application status process
which knows when data is available for processing. In
addition to these standard init procedures, the visualiza-
tion service also requests from the PDO server an object
reference which communicates with a desktop bean
which displays an image within the browser. The visual-
ization server should request the desktop object refer-
ence first from the PDO before attempting to create the
visualization application object. That way, this bean
object reference can be passed into the constructor of

the visualization application object so that it will have
the means to communicate with the desktop when it has
an image ready to send. Once initialized, this server
enters its event loop and waits for messages from the
status process. Upon receiving a message, this service
retrieves the data, post-processes it, converts it to an
image, and sends it to the desktop for display. Then it
goes back and waits for the next available data and iter-
ates on this sequence of steps. :

Knowledge Management: Product Design Object
(PDO) Concept

To achieve the goal of building the capacity to per-
form high-end simulations without relying on single
vendors to produce machines or software, and to relieve
the users of the necessity of tracking configuration
changes and remembering system details and com-
mands. there must exist a facility to insulate most users
from this detailed information about the current configu-
ration and composition of the system: one element of
this facility is the Product Framework (PF). The PF
defines the product-centric viewpoint of the system and
will reduce the need for an engineer or scientist to have
current detailed system usage information. These details
include specifics of the system architecture and the cur-
rent configuration of files, environments, data-sources.
tools and all the other by-product details that are neces-
sary in order to get to the real purpose of the analysis --
getting the product built. This need is exacerbated by the
potential necessity of maintaining a number of binaries
and libraries for particular software due to the use of
heterogeneous systems and by the utilization of remote,
unfamiliar platforms as they are made available through
the Distance Computing effort. With the pursuit of high-
est application performance and the subsequent loss of
transparency, the product framework becomes even
more basic to the successful deployment of the
CPLANT concept, particularly when execution parame-
ters are dependent on datasets.

The PF interfaces with the Simulation Intranet using
CORBA or other products that may be supported in the
future. This interface provides classes, methods and
other components and infrastructure to implement a
Product Design Object (PDO). A PDO is a specific
instance of product information and methods created for
a particular product. The PF supplies persistent, avail-
able, and flexible storage for a PDO from its creation
through the production and maintenance of the product.
This repository provides a valuable archive of product
development information and meta-data relating to the
PDO instance and its components.

Through the PF, individual PDO instances can be
linked together to do regression testing on software
modifications and upgrades, thus requiring the PF to act
as the first-line user to system and application develop-
ment personnel. Products will be analyzed with alterna-
tive software to not only validate the composition and
construction of the product but also to validate and cali-
brate the analysis software.

The main purpose of the Product Framework is the
construction and maintenance of the Product Design
Object. The Product Design Object is a complex persis-
tent object that captures the design state, recipe, require-
ments, results, toolkit elements, and access information
for a legacy or in-development product. It provides an
easy-to-use and globally available interface by which a
PDO instance can be created or accessed for utilization
or update. A PDO instance includes not only the specif-
ics necessary to locate any information relating to the
product but also includes methods to actually do the
access or processing of the particular aspect of the PDO,
such as starting the program launcher. It will locate and
deliver necessary inputs to the application and receive
and retain outputs from that application. Designers, ana-
lysts and developers, each from their differing view-
points, make use of the PDO to record and deliver the
detailed and changing information necessary to integrate
data, procedures, and locations necessary for executing
complex software applications, documentation of deci-
sions made, and lessons learned.

Because the classes and methods for each PDO are be
maintained by the PF, all pertinent PDO instances can
be updated in one step when information about a loca-
tion, an access method, or a resource becomes obsolete
or is augmented. Shared objects are supported wherever
feasible by the PF, and reuse of objects created for sup-
port of PDO instances is facilitated. The use of shared
objects enables certain information to exist in only one
instance and thus require only one update to update
objects referencing the shared object. An example of a
shared object is the Server object which encapsulates
information about a particular server and contains links
to Application objects that it supports and to Service
objects which have knowledge and methods necessary
to execute the Application on the Server. A Session
links a User, a Product, its required environment, and
possibly documentation and help files, with one or more
Service instances and maintains the status of an in-
progress analysis. Minimizing the impact of system
upgrades and repartitioning, new development, new
hardware, and other changes inevitable in a dynamic,

developing system, leverages the gains made by reuse of
the object hierarchy and provides data management sup-
port as the systems evolve and advance.

Preferences of the user, characteristics of the product,
and the status of the infrastructure might all have a role
in determining the particular choice for a resource to
perform an analysis at a particular time and place. For
instance, if a user on node “a” wishes to execute a pro-
gram on node “b” with a portion of the data referenced
by the PDO, and this data resides on a node other than
“a”, it is not cost-effective to relocate that data to “a”
before finally relocating it to “b”. The methods utilized
must make intelligent determinations for data transfer or
inform the user if there is not a satisfactory alternative
given the current constraints. Other decisions that must
be made might include whether the capture and storage
of interim datasets and products or their re-creation is
more appropriate and a strategy for releasing products
which are antiquated or when additional storage is
needed.

To implement the PDO, the schemas necessary to
support the PDO were created in an object database
management system (ODBMS). This design cffort
defines the hierarchy of classes and descendent classes
to support instances of the PDO. An ontology of the
classes and components of the PDO is being specified
utilizing information gained by examination of the
needs of users, designers, and application developers.
The use of an ODBMS facilitates the evolution of the
PDO Schema as more details and requirements are dis-
covered. Database schema evolution is a vital part of the
PDO instance’s required flexibility. As new entities are
defined (new software. data formats, file storage. com-
ponent types. hardware, etc.) the PDO must be modified
to support the new entities without invalidating already
existing PDO instances. The new information must be
incorporated seamlessly into the existing PDO, preserv-
ing useful information with an implementation of ver-
sioning,

Visualization Services

One of the key visualization services provided is the
Spyglass capability which was introduced earlier. This
enables the user to view an early result of the
computation before too much time is invested in an
unpromising simulation. It consists simply of the
Visualization Spyglass Server, which is started by the
corresponding generic Launch Service running on the
visualization machine. Launched at the same time as

the simulation model server, it awaits a signal from the
model server that a consolidated simulation timestep
dara file has been created. Since the file systems of a
service node in a CPlant cluster can be NFS-mounted
by the visualization machine, the file generated by the
analysis code is simply read in, the geometry of the
requested objects is extracted and rendered into an off-
line frame buffer (using the Mesa graphics library,
which is OpenGL-like), and a JPEG image is created
from the framebuffer. This image is sent both to the
PDO and to the Webtop (again, if it is active). Note that
the decision was made to send an image to the desktop,
not the extracted geometry from the data file, in order to
reduce both network traffic and computational load on
the desktop. Also note that JPEG was chosen as the
image format because it is natively recognizable both
from a Web browser and from a Java environment, and
unlike the GIF format, it is not restricted to 256 colors.

At this point, one of two events can happen. If the
Webtop is not active, or does not respond to the receipt
of the JPEG image from the simulation timestep data
file. the Visualization Spyglass Server simply awaits the
signal from the model server that the consolidated data
file from a subsequent timestep is available, and repeats
the off-linc rendering and JPEG image extraction
process. If the Webtop is active, it can perform "remote
navigation” and request that the image be regenerated
from another perspective (i.e.. camera position). A
Java3D-based object is present on the Webtop that
contains a bounding box of the objects in the image
(based on the maximum and minimum x. y, and z
coordinates of the geometry. which are sent along with
the image by the Visualization Spyglass Server), and a
set of canonical x, y, and z axis vectors. Six degree-of-
freedom navigation is possible within that Java3D
object. and the bounding box can be repositioned
accordingly. When the desired point-of-view of the
bounding box is reached, the viewpoint transformation
matrix is extracted and sent to the Visualization
Spyglass service, which uses it to reposition the camera
and render another JPEG image from that perspective.
This remote navigation process can continue until the
Webtop user is satisfied that the simulation is
progressing properly, or until the image from a
subsequent timestep is received.

CONCLUSIONS
Current Status of the Framework
The framework is currently in an initial prototype

phase. The architecture was formulated after numerous
discussions with stakeholders and after performing use

case analysis and storyboarding. A focused problem
domain for the first implementation was then developed
which involves providing desktop access to the Alegra
finite element code executing on a Linux-based
CPLANT Miata HP cluster. In addition, the framework
provides a visualization capability which feeds back
snapshots of data generated by Alegra at each time step.

To implement the focused problem, it was first neces-
sary to perform a capability analysis on Linux-based
ORBs because Linux is the CPLANT Miata cluster
operating system, and most mainstream commercial
ORB vendors do not currently support Linux as a plat-
form. An evaluation criteria was established, the best
candidates were tested, and the results produced the
“best” ORB for framework development. The ORB
selected for initial use is called ORBacus from Object-
Oriented Concepts, Inc.

It was also necessary to make some decisions on
environment and tools. The desktop is currently imple-
mented with Netscape. Java and Java Beans (JDK 1.2
Betad, Swing Set 1.1Beta3, Java3D), and CORBA (Java
ORBacus 3.0.1). The PDO environment utilizes the Ver-
sant ODBMS version 5.0.8 with a CORBA server acting
as a front-end. The Linux-based CPLANT service nodes
arc where the CORBA wrappers reside for applications
which run on the massively parallel clusters. Finally, an
SGI workstation cluster is used for visualization. includ-
ing the use of the Mesa software for offline rendering.

The following figure illustrates the capabilities pro-
vided by the first framework prototype.

fa
(7 SR
LN

ith g
R -

!

b

Again, the three-tiered architecture is evident, consisting
of the Web Top, computational resources or business
model, and knowledge management. On the Web Top

are the components using Java applets and Intranet
Beans to configure, execute, monitor, and display results
of an Alegra run. Coupled to the beans through the bean
event model are the adapters which handle the underly-
ing distributed network protocol. For this prototype,
IIOP/CORBA is used to communicate with application
wrappers and the PDO. For long distance computing,
these adapters could be replaced with some other tech-
nology for handling wide area networks or ATM
switches. The PDO repository is used to build the navi-
gation tree on the desktop which depicts the products
and services available to the user. The PDO database is
also used to coordinate all of the activities associated
with a particular product development cycle. On the
CPLANT side, a launch service is used to automatically
launch application wrappers, and wrappers have been
developed for the Alegra and Visualization services. The
Alegra service is actually a front-end to the native
Alegra code and has the capability to call CPLANT ser-
vices to load the code into the computational nodes. start
execution, and monitor status. The Visualization service
is a CORBA-based server which encapsulates visualiza-
tion algorithms for offline rendering and generation of
JPEG images. Because the capability does not yet exist
to allow direct communication of data in parallel from
applications to visualization codes, Alegra generates
files on shared file systems. and then a CORBA-based
Alegra status task is used to notify the Visualization ser-
vice when data is available for rendering. When the
image is completed. CORBA is again used to ship it
back to the desktop where it is displayed.

Future Work

There is obviously much work remaining in the
development of the framework and the overall Simula-
tion Intranet architecture. The framework needs to be
extended and productionized for actual mission-based
use. To do this more easily, reuseable design patterns are
being documented which can be applied to extrapolating
the framework for other applications, services, or prob-
lem domains. In addition, further research and develop-
ment will involve incorporating fault tolerant features,
investigating impacts of distance computing on some of
the framework’s architectural components such as the
adapters and network protocols, looking at performance,
scalability, security, and other distributed resource man-
agement (DRM) issues, and continuing the work on the
PDO concept.

REFERENCES

Baldeschwieler, J. E., R. D. Blumofe, and E. A. Brewer,
ATLAS: An Infrastructure for Global Computing, Pro-
ceedings of the Seventh ACM SIGOPS European Work-

shop on System Support for Worldwide Applications,
1996.

Baratloo, A., M. Karaul, Z. Kedem, and P. Wyckoff,
Charlotte: Metacomputing on the Web, Proceedings of
the 9th Conference on Parallel and Distributed Comput-
ing Systems, 1996.

Brecht, T., H. Sandhu, M. Shan, and J. Talbot. ParaWeb:
Towards World-Wide Supercomputing, Proceedings of
the Seventh ACM SIGOPS European Workshop on Sys-
tem Support for Worldwide Applications. 1996.

Camiel, N., S. London. N. Nisan. and O. Regev. The
POPCORN Project: Distributed Computation over the
Intemet in Java, 6th International World Wide Web Con-
Serence. April 1997,

Christiansen. B. O.. P. Cappello. M. lonescu. M. O.
Neary, K. E. Schauser, and D. Wu. Javelin: Internct-
Based Paralle] Computing Using Java, Department of
Computer Science. University of California. Santa Bar-
bara, 1998.

Foster, I.. and C. Kesselman, Globus: A Metacomput-
ing Infrastructure Toolkit. International Journal of
Supercomputer Applications. 1997.

Grimshaw, A. S., W. A. Wulf. and the Legion team. The
Legion Vision of a Worldwide Virtual Computer. Com-
munications of the ACM, 40 (1), January 1997.

Litzkow, M., M. Livny, and M. W. Mutka, Condor - A
Hunter of Idle Workstations, Proceedings of the 8th
International Conference of Distributed Computing Sys-
tems, June 1988.

Vahdat, A., P. Eastham, C. Yoshikawa. E. Belani. T.
Anderson, D. Culler, and M. Dahlin, WebOS: Operat-
ing System Services For Wide Area Applications, Tech-
nical Report CSD-97-938, UC Berkeley, 1997.

http://www.cs.sandia.gov/discom/

