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Abstract

The structure and burning rate of an unconfined deflagration propagating through a porous
energetic material is analyzed in the limit of merged condensed and gas-phase reaction zones. A
global two-step reaction mechanism, applicable to certain types of degraded nitramine propellants
and consisting of sequéntial condensed and gaseous steps, is postulated. Taking into account
important effects due to multiphase flow and exploiting the limit of large activation energies,
a theoretical analysis based on activation-energy asymptotics leads to explicit formulas for the
deflagration velocity in a specifically identified regime that is consistent with the merged-flame
assumption. The results clearly indicate the influences of two-phase flow and the multiphase,
multi-step chemistry on the deflagration structure and the burning rate, and define conditions that
support the intrusion of the primary gas flame into the two-phase condensed decomposition region

at the propellant surface.
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COMBUSTION OF POROUS ENERGETIC MATERIALS
IN THE MERGED-FLAME REGIME

Introduction

There is increasing interest in the combustion behavior of systems characterized by significant
two-phase flow. Examples include filtration combustion, smoldering, and the deflagration of porous
energetic materials, where the latter, the focus of the present work, is of interest in propulsion and
pyrotechnics. In such problems, the porous nature of the material arises from a certain degree of
metastability which, after either a prolonged existence and/or exposure to an abnormal thermal
environment, leaves the material in a chemically degraded, porous state. As a result, two-phase-
flow effects associated with different velocities and properties of the condensed and gaseous species
have a pronounced effect on the structure and propagation velocity of the combustion wave.

Although relatively complete formulations have been proposed for analyzing combustion phe-
nomena involving multiphase flow [1], they are difficult to analyze because of the wide range of
physical phenomena associated with such systems and the highly nonlinear nature of the problem.
Accordingly, early two-phase work in this area tended to alleviate some of the difficulties by treat-
ing the two-phase medium as a single phase with suitably averaged properties [2,3]. Unfortunately,
such models effectively require the velocity of each phase to be the same, precluding any analysis
of two-phase-flow effects. More recently, however, it has proven possible to analyze deflagration
models for porous energetic materials that explicitly involve multiphase flow [4-9]. These studies
have largely been applicable to nitramine propellants, such as HMX and, in some cases, RDX,
that are characterized by a liquid melt region in which extensive bubbling in an exothermic foam
layer occurs. In some cases [4-6], two-phase-flow effects were confined to this layer, while in others
[7-9], the solid material was assumed to be porous, with two-phase flow occurring throughout the
preheat region. In order to focus on the effects of multiphase flow, chemistry was generally confined
to a single-step overall reaction R(c) — P(g) representing direct conversion of condensed (melted)
propellant to gaseous products. A generalization [5] in which a separate (primary) gas flame follows
the initial multiphase decomposition region is given by R(c) — P(g), R(c) « R(g), R(g) — P(g),
where R(g) is a gaseous reactant. This scheme was applied to a nonporous problem to determine
the structure and propagation velocity of a steady, planar nitramine deflagration, while stability
results for these models have thus far been confined to single-step mechanisms [6,8,9].

The present work analyzes the limiting case in which the primary gas flame intrudes upon the

multiphase decomposition region, a tendency that is often observed experimentally as the pressure
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increases. Thus, the single-step analysis [7] is extended by incorporating both condensed- and gas-
phase reactions in the thin multiphase reaction region. In particular, a global sequential reaction
mechanism is assumed, consisting of an overall condensed-phase reaction that produces gas-phase
intermediates, and a gas-phase reaction that converts these intermediates to final products. While
this mechanism is still an extreme approximation to actual nitramine chemistry [10,11], it enables
us to fully incorporate two-phase flow into the analysis, and to assess its effect on the structure
and propagation speed of the deflagration. The merged-flame analysis presented here is thus
a multiphase-flow analog to single-phase studies of propagating combustion waves that are also

governed by sequential reactions occurring in a single thin reaction zone [12-15].

The Mathematical Model

We consider an unconfined, steady, planar deflagration, propagating from right to left into a
degraded (porous) energetic solid. Melting of the solid occurs at a moving location & = %,,(f) where
the solid temperature equals its melting point T5,. Subsequent to melting, gas-phase intermediates
are assumed to be produced directly by liquid-phase reactions, and these, in turn, react to form
final combustion products according to the mechanism R(c) — I(g), I{g) — P(g), where R(c), I(g)
and P(g) denote the condensed (melted) reactant material, the inteimediate gas-phase species, and
the final gas-phase products. The pores within the solid are assumed to be filled with a mixture
of I(g) and P(g), with the mass-fraction ratio ¢ of the two specified far upstream. The present
analysis considers a merged regime in which both reactions occur within a single reaction zone, and
thus, the deflagration wave consists of a solid/gas preheat region, the melting surface, a liquid/gas
preheat region, a thin reaction zone in which all reactive species are converted to gaseous products,
and the burned region. The latter typically corresponds to a dark zone that separates the primary

flame from a secondary gas flame that has little effect on the burning rate.

A model describing a multiphase deflagration was derived previously for a single-step reac-
tion mechanism R{c) — P(g) [7]. For two gas-phase species (I and P), an additional species
conservation equation is thus required. For simplicity, we consider the single-temperature limit
in which the rates of interphase heat transfer are large so that all phases have the same local
temperature, but since a complete derivation of the full two-temperature model is given elsewhere
|7,16], we provide only a brief explanation of the origin of each equation. Thus, we introduce, in
terms of dimensional quantities (denoted by tildes) defined in the nomenclature, the nondimen-
sional variables z = §,8,U%/Xs, t = ps8s0E/Xs, Tapg = Tu g/ T tr,g = ti1,g/U, and py = g/ 2,

where U = —di,/df is the (unknown) propagation speed of the melting front, and constant heat
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capacities and thermal conductivities have been assumed. We also define the parameters

r=pfBs, T=p21Bs, L=N/Xs, T=Xg/A, b=81/8,, b=08,/8, Yo =7:/8Tu,

. . .o (1)
w= WI/WP ) Le= )‘g/ﬁgDEg’ Ql,g = Ql,g/ésTu; Nl,g = El,g/RoTbs

A= /\ Ale N /pscs ) Ag = :\s‘ag(ﬁs)ne_Ng /ﬁ.scé.‘rﬁ2 ) (2)

where n is the reaction order of the gas-phase reaction and Le is the gas-phase Lewis number.
Here, ;\g, ﬁgﬁ and hence Le are assumed constant, r and # are density ratios (liquid-to-solid
and upstream gas-to-solid), [ and [ are thermal conductivity ratios, b and b are heat-capacity
ratios, w is the ratio of molecular weights of the two gas-phase species, s is a heat-of-melting
parameter (negative when melting is endothermic), @, are heat-release parameters associated
with the condensed and gas-phase reactions, N; g, are the activation energies, and A;, are rate
coefficients, or Damké&hler numbers. Since Ag/A; = f(ﬁg / ﬁs)(ﬁ;)n‘leN‘—Ne, we may regard A; as
the burning-rate eigenvalue.

For a steadily propagating deflagration, it is convenient to transform to the moving coordinate
& = z + t whose origin is defined to be z,,(t). In the solid/gas region, the volume fraction o of
gas is assumed constant (@ = «;), the solid phase is assumed to have constant density and zero
velocity with respect to the laboratory frame of reference, and gas-phase continuity is given by
2 loalug + 01 =0, (Y (g + 1) = (o) S

representing overall continuity for the gas phase and mass conservation for the mass fraction Y of

£<0, (3)

the gas-phase intermediates. In the liquid/gas region & > 0, overall continuity, continuity of the

liquid phase, and continuity of the intermediate gas-phase species are given as
d .
% [r(1 — a)(u + 1) + Fapg(ug +1)] =0, (4)

(d/d) 11 = )(w + 1)) = —As(1 - o) eMA-T/T, | ()
[rang(ug +1)+r(l—a)w+1)] = (l/bLe) c;if[ %] — Ag(ap,Y)" eNoU-To/To) - (6)

where Eq. (5) has been used to eliminate the condensed-phase reaction-rate term that would have

otherwise appeared in Eq. (6). Finally, overall energy conservation is given by

ir .. d d . dT
(1 = @) G + e gz [oy g + )T = 7 [(1 p— las)d—f] , £<0, (7)

[r(1 — ) (i + 1)(Q + Qg + bT) + Fap,(ug + 1)(Q,Y + BT)]

&=

(8)
[1((1 - a)+la]—+(le/bLe) d§ , €>0,

7




where Egs. (5) and (6) have been used to eliminate the reaction-rate terms in the latter.

The above system of equations is closed by adding an equation of state (assumed to be that
of an ideal gas) and an expression for the liquid velocity u;. An approximate analysis of gas-phase
momentum conservation implies, for an unconfined, small Mach-number deflagration, that pressure
is constant, thereby allowing the former to be expressed as p,T[Y +w(l - YY) =+ w(l —¢) =
#, where ¢ is defined below. An analysis of condensed-phase momentum and the assumption
of zero velocity for the solid phase, on the other hand, leads to the kinematic approximation
u; = (1 —r)/r in the limit of small viscous and surface-tension-gradient forces [4,7]. The problem
is then completely defined by imposing the boundary conditions @ = o, for § <0, ug — 0,Y — ¢
(0<¢<1),T—1as€é—-c0canda—1,Y—0.T—T,as £ - +00, and the melting-surface
conditions, which are continuity of T' = Ty, uy, ¥ and dY/d€ at £ = 0 and the jump condition
ar
d¢ |e=o+

Here, the final burned temperature 7} is to be determined, as is the burning-rate eigenvalue A,

11 — @) + o) — (1 -a, +la, =(l—a) [ +0-1DTn). (9

)Q
d§ £=0—

which determines the propagation velocity of the deflagration according to Eq. (2).
Expressions for T and the burned gas velocity ug = ug| fmoo? BT€ obtained from the above

model as follows. From Egs. (3), (4) and the boundary conditions, we have the first integrals
s s dY
polug+1) =1, Y—¢=(l/rbLe)—d-£—, £<0, (10)

(1—a) +fopg(ug +1) =7h (b +1), £>0, (11)

where pg = ¢/wT; is the burned gas density. Thus, evaluating Eq. (11) at £ = 0 using the first of

Egs. (10) and continuity across the melting surface, we obtain
up = [1+a.(f — 1)]/fpd — 1 = [1 + as(F — 1)]wTh/id — 1. (12)
Using these results, first integrals of the overall energy equations (7) and (8) are given by
o2 ~ dT
(1—a3+rbas)(T—-1)=(1—as+las)-(7§-, £E<0 (13)

[61 — @) + (e — as + asf)| T + (@ — as + asF)QgY = [I(1 — a) + la] ar

73
(14)
+ (Qgi/BLe)a% — (1~ )@+ Qg) +5(1 — e + auPYTh, £>0,

Thus, subtracting Eq. (13) evaluated at £ = 0~ from Eq. (14) evaluated at £ = 0% and using the

melting-surface condition (9), we obtain

Ty = [(1- )@t + Qg + 1+ %) + 70, (6Qq + )] /B[1 + 0 (7 ~ 1] . (15)
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This result, which can be derived from a more general two-temperature model [16], is independent
of the particular form of the gas-phase equation of state. In the limit @, — 0, Eq. (15) collapses to
the result obtained for the single-step model [7]. Equations (10), (13) and (14), being first integrals
of Egs. (3), (7) and (8), now take the place of the latter in our model.

Equations (12) and (15) imply that there are significant variations in 7} and ug with the
upstream gas-to-solid density ratio 7, which in turn is proportional to the pressure gy according
to # = py/ps = Wrﬁ;/ psR°T,¢. This important effect arises from the thermal expansion of the
gas, the two-phase nature of the flow in the solid/gas and liquid/gas regions, and the fact that, for
nonzero ¢y, some of the heat released by combustion must be used to help raise the temperature

of the gas-phase species within the porous solid from unity to Tp [7]. Consequently, both T and

b
9

analysis, is that T; does not depend just on the total heat release Q; + Q4 = Q associated with

u. are typically decreasing functions of 7. An additional effect, revealed by the two-step reaction
the complete conversion of the energetic solid to final gas products, but also on the heat release
Qg specifically associated with the gas-phase reaction. This, too, is a two-phase-flow effect that
arises from the fact that reactive intermediate species exist within the voids in the porous solid,
and the heat released by these intermediates affects the final burned temperature, which, for a
given total heat release @, increases as the fractional heat release associated with the gas-phase

reaction increases.
The Asymptotic Limit and the Outer Solution

Further analytical development leading to the determination of A; requires an analysis of
the reactive liquid/gas region £ > 0. Equations (5), (6) and (14) constitute three equations
for Y, T and « in this region, with u, then determined from Eq. (11) and the equation of
state, and the eigenvalue A; determined by the boundary conditions. In order to handle the
Arrhenius nonlinearities in Egs. (5) and (6), we exploit the largeness of the activation energies
Ny, and consider the formal asymptotic limit Ng; > 1 such that Ny/N; = v ~ O(1) and § =
Q1 —Tb_l)Nl > 1, where 3 is the Zel’dovich number. This ordering of the activation energies, along
with a corresponding order relation for the ratio Ag/A; to be introduced shortly, helps to insure
that both the condensed and gas-phase reactions are active in a single thin reaction zone, since
departures from these orderings can result in separated reaction zones [17].

In the limit 8 — oo, the Arrhenius terms are exponentially small unless 7" is within O(1/8)
of Ty. Consequently, all chemical activity is concentrated in a zone whose thickness is O(1/8).
On the scale of the (outer) coordinate £, this thin region is a sheet whose location is denoted

by & = z, — T, where z,. > z,,. Hence, the liquid/gas region is comprised of a preheat zone
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(0 < & < &) where chemical activity is exponentially small, the thin reaction zone where the two
chemical reactions are active and go to completion, and a burned region & > &,.. Denoting the
outer solutions on either side of the reaction zone by a zero superscript, we conclude from Eq. (5),
(10) - (12) and the equation of state,
al = { ?" ' g; gf , ug+1=[(a—a,+fa,)/fad|[Y +w(l -Y)]T, (16)
) T

where the latter is valid for all £&. Thus, there is a jump in ¢, and hence in 42

g)
zone. Similarly, in obtaining the complete outer solution for Y and T, it is necessary to connect

across the reaction

the solutions on either side of the reaction zone by deriving appropriate jump conditions across
& = &,. This will entail an analysis of the inner reaction-zone structure, whereupon an asymptotic
matching of the inner and outer solutions will yield these jump conditions and an expression for
A;. In connection with this procedure, it is convenient, and physically appealing, to attempt a
representation of the reaction-rate terms in Eqgs. (5) and (6) as delta-function distributions with
respect to the outer spatial variable £ [12,13]. Using the results (16), the system of equations for

the outer variables Y and 7° thus become

.. 0 0
-0 = (L, €<0i (MG =REE-&), €50, ()
d A o d [ odY® |
% [(ao—as -I-ras)YO—ao] = (l/bLe)d—f (ao—d£—> ‘—Pgé(f—fr —H) , £€>0, (18)
0

(1—a3+f5a,)(T°—1)=(1—a,+fas)%—, £<0, : (19)

R . 0

[5(1 — ) + b(a® = as + )] T® + (0 — a5 + asf)Q, Y = [I(1 — %) + [a?] %

” . (20)
= — (1 - (@ + Q) +b(1 — a5 + s Th, £>0,

where P, and P, are the source strengths of the distributions at £ = &, and & = &. + H. Here, P,

+ (Qql/bLe)a®

P, and H are to be determined, where the O(1/8) width of the merged reaction zone implies that
H is of this order (or smaller) as well.

The solution of Egs. (17) - (20) subject to the melting and boundary conditions is given by
Fi=(1-a,)/r, Pg=1—a,+fasd,

. $+[(1-9)(1—s) — (1~ astFa,p)e~(-artiadblel/l| Fole—t/l/ (1 —autiay), €<
Y (f) = [(1_as+fas¢)/(l_aa+f'as)] [l_e(l—a,+f'as)bLe(f—fr—H)/l], L <E<é&E+H

0, £>&+H, (21)
1+ (Tm—l) e[(l—a,+-f-5a,)/(l-a,+fa,)]£, £<0
T0(¢) = B+ (Tn—B) e{[‘b(l-—aa)-i-f'ba;]/[l(l—a.,):l-las]}f’ 0<E<ér (22)
Bi + (Ty— By) et —as+fas)E—4-—H)/L & <E<&+H

Ty = Bi + (1 -, +70:0)Qqe/b(1 —s +70s), &> &+H,
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where

=[(1 =) (1+7s) +7bes] /161 — ) +7bes), Bi=[(1—a,)(Qu+1+7s)+7bas] /b(1 -0 +7ars)
g,={[1(1—a,)+ia3]/[b(1—a3)+f5a3]}1n{[31—B+(Tb—Bl)e-5<1—a=+*“=>H/f]/(Tm—B)}. (23)

A sketch of the outer solution is shown in Fig. 1. Since the interval &, < £ < H lies within the
merged reaction zone, only that portion of Egs. (21) and (22) for £ < & and & > & + H actually
represents the outer solution. Consequently, there is an O(H) jump in Y° and T° across this zone
[from & = &7 to € = (& + H)*]. Alternatively, for small H, an expansion of §(¢ - & — H) in Eq.
(18) about H = 0 introduces the derivative §'(§ — &) [13], which implies discontinuities in Y% and
TO at £ = &.. These discontinuities are determined by H, which, like A;, is an eigenvalue. Both

are calculated by matching the outer solution to that of the inner reaction-zone problem.
Reaction-Zone Solutions

To analyze the chemical boundary layer at &., we introduce a stretched inner variable 7 =
B(§ —&-) and a normalized temperature © = (T'—1) /(T — 1). We then seek solutions in this region
asa~ap+fB lar 4+ ug~ug Bl e, Y ~ BTy 87 b, 0~ 145710 4 - -
Ay~ B(Ao+B71A1+---)and H ~ B~ hy+B72hy +- - -, where the u; are calculated in terms of the
oy, ¥; and 0; from Eq. (16), which is valid in the reaction zone. We also order the rate-coefficient
ratio Ag/A; = #(pL)""1(Ay/ A;) el Me = gn ), where X is an O(1) parameter. This scaling, along
with the previous ordering of the activation energies, partly defines one regime that is consistent
with a merged reaction-zone structure.

Substituting these expansions into Egs. (5), (6) and (14), the leading-order inner variables
g, y1 and 0, are governed by

dao . 01
an =rho(1 — ao)e™, (24)

dé d
[+ (- D) n‘ [(Qq/bLe(T; — 1)]ao-ﬂ = {[(0 =BTy + Qu + Qul/(Ts — ) }(1 — a0), (25)
d dy1 dao
(i/bLe) - ( oG ) = T+ Mo(coyiB/uTy) e . (26)
Solutions to these equations as 77 — =+co must match with the outer solution as £ 1 £ and as
£ | (& + H)*, leading to the matching conditions

ag—1, 6,—0, y13—-0as n—+oo, (27)

0o =0, 0 ~En+FEh, y~ (5Le/i) [+ (1 — as +Fad)h] as n— —o0,

1 b(1 — a,) + fha, (28)

= [(Tb -B)/(T, ~-1 = —[(Tb - B))/(Ty - 1)]%(1 — as + Tag).

11— o) +la,




Solution of the complete inner problem given by Egs. (27) - (31) will only be possible for certain
values of h; and Ag, the leading-order coefficients in the expansions of H and A;.

Employing ap as the independent variable, Eqs. (25) and (26) take the form

o d
[+ ( - )ao] e dal

+ [[Qq/bLe(Ty — 1)] croe® %1; = [(b-B)Ts + Qi + Qq] /(Ts — 1)rAo, (29)

(erl/bLe) d [ao(l — ag)e? Zy:] = —1+4 (\/7)(coy1¢/wT)" e~ D% /(1 - ag). (30)

A closed-form solution to this system is not readily apparent, and thus further analytical develop-
ment is restricted to a perturbation analysis of Egs. (29) and (30) in the limit that Qg is small
relative to Q;. Since this implies that most of the heat release occurs in the first stage of the two-
step reaction process, at least some of the initial exothermic gas-phase decomposition reactions
should be lumped with the overall reaction (1a), regarding the resulting decomposition products
as the gas-phase intermediates I(g). Thus, we formally introduce a small bookkeeping parameter e,
where O(87!) < € < O(1), and write Qg = eQ;, where Ql ~ O(1). We now seek solutions to the
leading-order inner problem in the form ap ~ ad+ead+---, y1 ~ Y +eyt+---, 6; ~ 69 +€b} +

Ao~ AJ+eAl+---,and hy ~ h) +€h] +

Substituting these latest expansions into Eqs. (24), (29) and (30), a closed subsystem

g0 69
d a0

— [ BBy + Q. /(B — 1)rAS, d—;’n—g=rA8<1-—a8>e"‘f (31)

[L+ (- 1)) e
is obtained, subject to ¢ — 1, 67 — 0 as 7 — +0o0, and @ — as, 09 ~ E¥n as n — —o0, where
EY{ is given by E; in Eq. (28) with T} replaced by its leading-order approximation B;. The first
of Eqgs. (31) is readily integrated from o = a, (at 7= —0c0) to any af <1 (n < +00) to give

¢}
- %o -
e = [(b— 5)B1/(By — )rAY] / da/[L+ (- ). (32)

Qg

Evaluating Eq. (32) at o3 = 1 (at which 69 = 0) thus determines AJ as

{ (I~ 5)By +Qul/(By — 1yr(l ~ D} {I/l1 + (T - Deul}, 11 33
(1 - a)[(b—B)By + Qu/(B1 — Dl 1=1.

Substituting this result into Eq. (32) for arbitrary ap, we thus obtain

(0)_{1n{]n[l+(l~l)a0]—In[l+(l——l)a,]}—ln{lnl— [l + ({ — Des)}, z;sz

In(ed — a,) - In(1 — a,), (34)

The determination of a3(n), and hence 69(n), then follows directly from the second of Eqs. (35).

For example, when [ =1 (equal gas and liquid thermal conductivities), we obtain

018(77) = {as + e[(b—-B)Bl+Qz](1—a,)n/t(Bl—1)}/{1 + e[(b—fz)B1+Qz](1—a,)n/l(31-1)} : (35)
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where the matching condition at 7 = —oo has been used to evaluate the constant of integration.
From Eq. (33), the leading-order expression for A; is independent of the effects of the second
reaction, which has been assumed to have a relatively small thermal effect. Consequently, the first
effects of the two-step mechanism on the burning rate appear at O(e), which requires the calculation
of A}. We proceed by first calculating 9, which is determined from the leading-order version of
Eq. (30). For simplicity, we consider the parameter regime a, = ale, [=l+e'andv=1+e,
corresponding to O(e) porosities, O(e) differences in the conductivities of the condensed and gaseous
phases, and O(ef3) differences in the activation energies of the two reaction steps. Also, we consider
only a first-order gas-phase reaction (n = 1), and assume that (A\g/rwASTO)(bLe/rl) = Ao + €1,
where T,? =(@Qi+1+7)/ b is the leading-order approximation to 7}, with respect to e. The
parameter group (Ag/rwASTP)(bLe/rl) is a gas-to-liquid ratio of diffusion-weighted reaction rates,
referred to as consumption rates {12,13], which represent relative rates of depletion, taking into
account both chemical reaction and, for the gas phase, species diffusion. The fact that larger Lewis
numbers are associated with higher rates of depletion of the gaseous reactant stems from the higher
concentration of this species in the reaction zone that results from a smaller mass diffusivity.

In the parameter regime just outlined, 69 and AJ simplify to
6) =Inof, AJ=[bQ:+(b—b)(1+7)]/rlQ+1+7 —b), oS(n)=e™o"/[1+em237], (36)

or 7 = (1/rA8)In[ad/(1 — af)]. Hence, the leading-order version of Eq. (30) for 3 is given by

d?y? (2 1 )dy? My) _ (bLe/rIAd)

2 _ _ = , 37
def® T \of TT= 08/ 20l T B -al T (@)1 o) 0

subject to y? — 0 as @ — 1. An appropriate matching condition as & — 0, however, cannot
be obtained directly from Eq. (28) because that equation was derived under the assumption that
as # 0, whereas to leading order in €, ¢, is zero. Indeed, at this level of approximation, the outer
variable Y? has no meaning for ¢ < 0, since there is essentially no gas in this region. To derive
proper matching conditions on 3¢ and, for later use, v}, we consider the local mass fraction Z
of the intermediate gas-phase species with respect to the total mass of all species, gaseous and
condensed {16]. Thus, Z = fap,Y/[fa/py + (1 —a)] = FéaY/{féa+r(l —a)[Y +w(l -Y)|T} is
unambiguous as & — 0, where it must vanish. From the outer solution written in terms of 7, the
required behavior of Z as n — ~o0 is Z ~ e~ (FgalbLe/rwT2l)(—F¢n+ h]). Hence, substituting

the inner expansions into the definition of Z and imposing this asymptotic behavior implies

ady? -0, oSyl ~ —aly? + al(bLe/l) [ - (F¢/rA)Inad +AY] as o] — 0, (38)
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where we have written these conditions in terms of o, using the fact that o — o}

as ad — 0.
Formal solutions to Eq. (37) can be expressed in terms of hypergeometric functions, but since

we desire explicit representations for use in the next-order problem, we focus on such solutions

that may be obtained for certain values of Ag. In particular, solutions for Ap =1 [16] and Ao =

that satisfy the matching conditions are given by

1+ [(1-ad)/af]In{(1 —ef)/af] +Inaf/ad(1-af), =1

(3—08)/(1—af) +2Iad/(1 - ad)?, =4, O

= —(bLe/2rIA) - {
We observe that although ady$ — 0 as o — 0, 3 itself is unbounded, exhibiting the behavior

Inaf, Ao=1 0
(bLe/TIAY) - {lna8+3/2, o = 4 as ag — 0. (40
Profiles of the leading-order inner variables as functions of # are shown in Fig. 2.

The reaction-zone problem at the next order in ¢ determines o}, yi, 61 and A}, as well as kS,

which is still unknown. As before, the problem for o and 6} decouples and is given by

dad
—oi_nq =r[AJ(1 — ad)8} + A(1 —0f) - Aoao] (41)
ot -
L 1 4 1L be(r? - 1)]ad 2 = ~Chad + 111 - o), (42)
al =0, 0] -0 as n— +o0; af —al, 01 ~ Eln+ E}nd as - —o0, (43)

where
Co=[(b-HTY + Q) /(TP - 1) =rlA3, Ci=[QXT? - 1)+ THQ +b-H)] /(TP - 1)°,
Bl = al(#h - b)/l+ [ol(T? - 1) + T} (1 + 7% — 0) /UTL - 1)°, E}=-QL/UTP -1),

and Ty ~ TY + €T +- -+, with T = (@ +1+7,)/b and T} = Q1/b—#(TP —1)al. We observe that
T}, and hence C; and E}, all depend on c}, reflecting, to this order of approximation, a linearly
decreasing dependence of the burned temperature on the porosity of the solid.

Transforming to aJ as the independent variable, Egs. (41) and (42) become

da0

s +1 -0 ao =61 + AL/AY, (45)

o 24y}

1—al) deg’

subject to Eq. (43) expressed in terms of of. Rewriting Eq. (45) as (d/dof)[ed/(1 — )] =

(6} + A§/AS)/(1 — @) and substituting this result into the derivative of Eq. (46), we obtain
o} 1 do} 8 ____ @ 1 d [ o2dil) _A/A I/
dof T ogdel T BT -0 ~ Tremy—1) ool | do§] " a0 "3

0 do} , .
rIAS ao dal +Co =Cy —rit Aoao {Q;rlAg / [bLe(T,? - 1)]}(a8) (46)

(47)
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where 3{ is given by Eq. (39). Homogeneous solutions of Eq. (47) are (1—a8)In [a§(1 — a8)~1] +1
and 1 — B, so that the general solution for #} may be constructed by reduction of order and

substituted into Eq. (45) to determine of. Thus, for example,

6l =¢ 1+(1—a°)1n(——c—¥8—> +c(1—a°)—A°+iI( —ad)Inal
1= ¢ 0 1 _ag 2 0 AO 2l 0] 0
Q5 11 - 908 Ino 5Inog o 13 o al
- - B (%)
RS =T 2(1 —al) T Ay T3l T2t 7 (1= ediin (5 _ag) (48)

+2(1-ad) [ + ng(ao)] Ina§ + 2Lig(1 — of) — 2(1 — af) [2Lis(af) + Lis(1 — af)] }

0 71

o’ [

oy =cs(1—ad) + (1 —ad) [clag In (.ﬁ) + coa + 57 (efInad — of) ]
—

Q;(1—af) 1 Inaf 1+ 4aj 72 13\ 0
_ (1 2)a8l 49
T A (T°—1){2(1—a0) (1+1—a8> 501 — al) (3 + 2)a° 1% (49)

- -153-(.!8 In(1 — Q) + 2adLis(a8) In o — 2Lis(1 — af) — 4adLis(ad) — 2a3Lis(1 — ag)},
for Ag = 4, where ¢, ¢ and c3 are integration constants, and the polylogarithms Li,(a), n > 2, are
defined recursively for all complex a by Liz(e) = — f7 &1 In(1 —&) d& = 3732, 0/5%, Lin>a(a) =
Jo @& Lin—1(&) d& = Z;';l o /4™, where the series representation is convergent for |a| < 1 [18].
For 0 < a < 1, Lis(e) and Lig(a) are monotonic functions that range from Li2(0) = Liz(0) = 0 to
Liz(1) = 72/6 and Liz(1) = 1.20205690. Also, Liz(a) + Liz(1 — @) = 72/6 — Ina In(1 — a), which
was used to obtain Eqs. (48) and (49). Application of the matching conditions then determines

A}, ¢1, c2(h9) and c3 as

A§=Q}(21-2n)/6rl(T{-1) + E} /r — AQlY/2l, 2 =Q}{[3—n+6Lis(1)]/3rAJ — A }/U(TY-1),
1= —Qp(9+7?)/3rIAY(TY-1) + E} /rAd — 1Y/2l, cs=al + QL (2n-3)/6rIAJ(TP-1). (50)

An expression for h{ may be determined by continuing with the perturbation analysis, but it

can be deduced directly from the second matching condition (38) which, for A = 4, gives
~ ol (bLe/A[(1 — 7o) Ina + rAShS +3/2] /af as of — 0. (51)

Since 1/a ~ exp(~rA3n) as n — —oco, Eq. (51) implies that y] grows exponentially as  — —co
unless the right-hand side is identically zero. Since only algebraic growth of the inner solution
is compatible with an asymptotic matching with the outer solution, as indicated in Eq. (28), we
conclude from Eq. (51) that #¢ = 1 + O(e) and h? = (—3/2)/(rAJ). This required restriction of

7 to values that are relatively close to 1/¢ > 1 corresponds to high upstream gas-phase densities,
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or pressures, and may be interpreted as a compatibility condition, required for the existence of a
merged-flame solution, that accompanies our ordering of the activation energies and consumption
rates when gas-phase heat release is small. According to Eq. (16) for ug, it essentially limits
the two-phase-flow effect to that associated with thermal expansion of the gas. Larger rates of
gas-phase transport relative to the condensed phase would cause the gas-phase reaction to occur
increasingly downstream of the condensed reaction, leading to a breakdown in the merged-flame
structure analyzed here, but it is anticipated that larger gas-phase consumption rates would allow
for larger gas-phase convective transport arising from smaller upstream gas densities. Profiles of

a} and 6] for Ag = 4 are shown in Fig. 2.
Discussion of the Burning Rate and Conclusions

The dimensional propagation speed U, from the definition of A; given in Eq. (2), is given by

U2~ (N A1/5s8s) O [1+€TH2—T0) /TA(TY = 1)+ | (AS+eAd 4+ - ) Tl N0 A=l /TP +-) 62
52

0

~ (X A1/ pa%)(BYAG)e™ NP T/ TEDF {1 1€} (2~ T3) /T (T9 ~ 1)~ A /AG)+-- },
where T3, which appears in the definitions of the nondimensional activation energy N; and the
Zel’dovich number 8, has been expanded according to the expansion given below Eq. (44), and we
have introduced the e-independent definitions NP = E;/R°TY and 80 = (T? — 1)N?/TP. Substi-
tuting the expressions obtained in the previous section for A3 and A} and setting the bookkeeping
parameter ¢ equal to unity (implying ol = o, ! =[—1 and Q; = Qg), we obtain the asymptotic

expression for the burning rate, in the specific merged-flame parameter regime considered here, as

02 ~ (RoAif 58) [rUTS 1)/ (6T —1-,)] p% P P Qe /MTE-D=0u o4 {1 4 (P — 1) /21
+ [Qe/(TY - 1) (0T) — 1 —7,)][(2- TP (bTy —~1—7,)/bT% — (21-27%) /6 — (1+7,—b)/b]  (53)
— [/ OT - 1= 1))~ T BT 1= Y T + (T = 1) (b= b) — (1-$) (L +7%=b)] + -}

for Ap = 4, with a similar expression for Ag = 1. The first effects of heat release associated with
the second step of the reaction model are determined by the terms proportional to Qg in Eq. (53).

The dominant effects associated with gas-phase heat release are determined by the second
exponential factor in Eq. (53), which is exponentially large unless ¢,/Qg ~ b=YTP — 1)7 1. val-
ues of o,/Q, less (greater) than this critical value thus produce a significant increase (decrease)
in the burning rate over that of a nonporous material governed solely by the condensed reaction,
corresponding to whether or not the perturbation in the burned temperature, which arises from
nonzero porosity and the additional heat release associated with the gas-phase reaction, is posi-

tive or negative. Since Qg is positive, the additional heat release associated with the gas-phase
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reaction enhances the burning rate, but decreasing amounts of solid material that correspond to
increasing porosities lead to a lower overall heat release associated with the condensed-phase reac-
tion, resulting in a critical value of porosity for which these counteracting effects balance. Plots of
U = U(Q,, @s)/U(0,0) are shown in Fig. 3.

Although the primary effect associated with nonzero porosity and a second gas-phase reaction
step is thus thermodynamic in nature, additional effects are revealed by those terms arising from
the correction A} to the leading-order burning-rate eigenvalue A9, which give rise to the last two
terms proportional to both @, and o, and the term proportional to [ —1 within the curly brackets
in Eq. (53). For example, it is readily seen that a value of the gas-phase thermal conductivity
greater (less) than that of the liquid phase tends to increase (decrease) the propagation speed,
since larger values of [ — [ allow for greater heat transport from the reaction zone back to the
preheat region, providing a type of “excess enthalpy” effect for the condensed phase portion of
the reaction. The result for the case in which Ag = 1, corresponding to a smaller pre-exponential
reaction-rate coefficient for the gas-phase reaction, is identical to Eq. (53), except for the fact that
the numerator 21 — 272 = 1.26 is replaced by 72 — 6 = 3.87 in the second term proportional to
Qg in that equation. Thus, as expected, a smaller gas-phase consumption rate results in a smaller
overall burning rate when the corresponding rate for the condensed-phase reaction is unchanged.

In conclusion, the present analysis has sought to describe some of the effects associated with
the deflagration of porous energetic materials arising from two-phase-flow in the presence of a
multiphase sequential reaction mechanism. In contrast to previous work in which the condensed
and gas-phase reactions were spatially separated, a merged-flame parameter regime, in which both
reactions are operative and proceed to completion in a single thin reaction zone, was considered in
the present study. Although additional parameter constraints were required to support a merged-
flame structure, such a structure was calculated for the case of a high-pressure deflagration in
which the relative flow of gas with respect to the condensed material arises primarily from thermal
expansion of the former. This result is consistent with typical experiments involving the nitramine
propellants HMX and RDX that show the tendency of the primary gas flame to move closer to the

propellant surface as the pressure increases. Further parametric studies are in progress and will be

reported in future publications.




Subscripts,
a1l s
b
m

U

Nomenclature

pre-exponential rate coefficient
mass diffusion coefficient
heat capacity

activation energy

heat release

gas constant

time

temperature variable
velocity variable
propagation speed

molecular weight

spatial coordinate

gas-phase mass-fraction variable
gas-phase volume fraction
heat of melting

thermal conductivity
density

gas-phase mass-fraction ratio
superscripts:

gas, liquid, solid phase
downstream burned value
melting-surface value

upstream unburned value
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Fig. 1.

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

Outer structure of the leftward-propagating deflagration wave. The solid/gas region lies
to the left of £ = 0, and the liquid/gas region to the right. The shaded area denotes the
region & < & < & + H, which, despite the explicit representation afforded by the outer
delta-function formulation, actually lies within the inner reaction zone. The region to
the right of the reaction zone consists of purely gaseous products. Parameter values used
wereb=r=Le=l=¢=1,5=f‘=f=.8, 0y =.25Q,=5Q,=H=.5v=-.2,
Tm =2.

Inner structure of the leftward-propagating deflagration wave for the case Ap = 4. The
curves were drawn for the parameter regime analyzed in the paper, based on the parameter
values used in Fig. 1 (choosing € = .5, the latter imply that the scaled parameters
al =a,/e=.5,Ql =Qy/e=1end ' = (I~ 1)/e = -.4).

Approximate nondimensional propagation speed U = U (Qq,05)/ 7(0,0), corresponding
to the case A\g = 4, as a function of a5 for Q4 = .1 (solid), .2 (dash), .3 (chain-dash),

4 (dot) and .5 (chain-dot), where the remaining parameter values were taken to be the

same as those used in the previous figures.
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