La-ur-9s- 4470
CONF-9b 04 8- 1
Ray Tracing for Point Distribution
In Unstructured Grid Generation

Ahmed Khamayseh!, Frank Ortega?, and Harold Trease!
Communication and Computing Group!
Computational Science Methods Group?

Los Alamos National Laboratory
Los Alamos, NM 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UN.!M%TEDW




To be submitted for publication in the Proceedings of the Fifth International Conference on Numerical Grid Generation
in Computational Fluid Dynamics.
Ray Tracing for Point Distribution in Unstructured
Grid Generation

Ahmed Khamayseh, Frank Ortega, and Harold Trease

Los Alamos National Laboratory
Los Alamos, New Mezico, 87545, U.8.A.

Abstract. We present a procedure by which grid points are generated on surfaces or within three-
dimensional volumes to produce high quality unstructured grids for complex geometries. The virtue of this
method is based on ray-tracing approach for curved polyhedra whose faces may lie on natural quadrics
(planes, cylinders, cones, or spheres) or triangular faceted surfaces. We also present an efficient point
location algorithm for identifying points relative to various regions with classification of inside/on/outside.

1. Introduction. Algorithms that generate gridsfor complex geometries with multi-
materials are still in a primitive state. Typically, an unstructured grid is generated by
regarding the boundary triangulation as a front in which a new layer of tetrahedra is
built. As a result, the original front triangles become interior faces of the mesh and a
new set of front faces is created. The algorithm continues to build tetrahedra on the new
front, growing more tetrahedra until the entire region has been filled. This procedure of
constructing unstructured grids is commonly known as the advancing front method. see
Loéhner [3] and Pirzadeh [6]. A particular difficulty of this method occurs in the closing
stages of the procedure when the front is folding in on itself and the final vestiges of the
empty space are replaced by tetrahedra. It is clearly necessary, in the final stages. to
maintain good control over the size of the front faces of the unfilled region that is left.

The current study introduces an alternative approach to the popular advancing front
approach. The first step involving the generation of a tetrahedral grid is creating the three-
dimensional surface models with closed regions. These regions are composed of a Boolean
combination of quadrics and/or triangulated surfaces. The second step is to distribute
a set of points within these regions as well as on the region surfaces, and this step is
the concern of this paper. The third step is the classification, 7.e., inside/on/outside, of
the points within each region. The fourth step is the Delaunay tetrahedralization of the
points, which is required for finite volume or finite element computation. This step is called
the grid reconnection step which involves Lawson flipping (a technique commonly used to
generate Delaunay triangulations), see Lawson [2]. Lawson flips break the connectivity
of the mesh and establish a Delaunay triangulation, which is a common requirement for
computation. For a detailed discussion on reconnecting and flipping algorithms, we refer
to Painter and Marshall [5] and Trease [7]. Finally, multi-material connections are broken
at the material interfaces and new tetrahedra are created to preserve these interfaces.

Ray-tracing technique casts a set of rays through a specified region and determines
the points of intersection with the region surface. Points are then distributed along the ray
between the intersection points. In this paper we explore different types of point distribu-
tion based on ray-tracing technique. In all cases, nodes are distributed on the surfaces and

1




2

within the volume of the geometry. In order to represent the actual spatial geometry most
accurately, we may choose among Cartesian, cylindrical, or spherical coordinate systems
for each region. In order to concentrate nodal density where needed to achieve the highest
solution accuracy, we may use proportional spacing where the distance between nodes is
graded evenly away from the area needing highest resolution.

We also present an algorithm that is both general and eflicient for identifying points
relative to various regions with classification of inside/on/outside. Of course, the difficulty
of this task depends on the nature of the closed region. To identify a query point (in-
side/on/outside) relative to a region composed of quadrics, the query point must be tested
with respect to each of the region’s individual surfaces and compared with the Boolean set
operations that define the region. Testing a query point with respect to quadricsis fairly
straightforward.

The ambiguity arises when classifying a query point with respect to arbitrary surfaces.
We will present an efficient algorithm that addresses the problem of classifying a query
point with respect to triangulated polyhedra. The essence of this algorithm depends on
locating the point on the surface of the polyhedron nearest to the query point. Then an
outward normal at the nearest point is prepared for the testing. The practicality of this
algorithm is demonstrated by its robustness and efficiency for querying points, not only
relative to closed polyvhedra but also to nearly closed polyhedra as well.

The paper begins with a detailed discussion of each approach of ratio zoning using
ray tracing. It then describes the point location algorithm with the various steps of the
algorithm to locate the nearest point on the surface of the polyhedron to the query point. A
series of applications are then shown demonstrating the practicality of the present approach
of generating unstructured grids for complex configurations.

2. Point distribution using ray tracing. In order to create an efficient computa-
tional unstructured grid where the grid vertices are determined by pre-determined points,
the points must have the following properties. First, some points must lie on the surface
of the three-dimensional geometry that composes a material region so that multi-material
grid faces are correctly generated. Second, the point distribution should match the surface
contour in as many point layers as possible. Third, the user should be able to distribute
points so that the point spacing provides the basis for the best computational grid possible.
The ray-tracing (or ray-casting) technique provides the best method to accomplish these
tasks. By casting an appropriate set of rays through a selected, pre-defined geometric
region, the intersection(s) of the ray with the surface of the geometric region can be deter-
mined. These intersections provide definite line lengths whereby points can be distributed
and spaced according to the user’s needs. For example, M points can be evenly distributed
along the line segments, or the points can be ratio zoned so that more points are packed
near one end of each of the line segments.

There are four ray-casting methods used to distribute points. The first method casts
rays from a user-defined reference plane through a set of user-defined points (see Figure
1). The rays are cast normal to the reference plane through the points. For efficiency,
the user-defined points should lie on a plane that is almost parallel to the reference plane.
This planar method is suitable for creating a Cartesian based grid.




Figure 1. Node distribution by casting rays from a reference plane.

The second ray-casting method casts rays from a user-defined reference line through a set
of user-defined points (see Figure 2). The rays are cast normal to the reference line through
the points. If the user-defined points are generated as a cylinder about the reference line,
the resulting point distribution will be cylindrical. The cylindrical method is suitable for
cylinder or axis of rotation type of geometries.

Figure 2. Node distribulion by casting rays from an azis line.

The third ray-casting method sends rays from a user-defined point source through a set of
user-defined points (see Figure 3). If the user generates a spherical set of points about the
point source, a spherical-like point distribution will be generated.




Figure 3. Node distribution by casting rays from a point source.

Finally, the fourth ray-casting method is the centerline method (see Figure 4). This method
was designed to distribute points within a highly curved closed geometry such as a manifold
or o1l well bore. In this method a centerline composed of connecting line segments is created
with points distributed along the centerline. Rays are then cast from these centerline points
normal to the line segment the point lies on. If a cast point lies on the end of two line
segments, the average normal of the two line segments is used. Multiple rays are cast from
each cast point in a circular arc about the line segment.

Figure 4. Node distribution by casting rays from a “centerline”.

The algorithm that generates line segments along the ray is the same for all four
ray-casting methods. The algorithm treats each ray as an infinite line. Then, for the
selected geometric region, all intersections of the ray with all the surfaces that determine
the geometric region are calculated. These intersection points are then tested with the
Boolean surface combinations that define the geometric region surface to determine if the
point lies on the region surface. These region surface intersections are sorted along the
ray from the ray’s origin to create a set of line segments. The midpoint of each line
segment is tested to see if the midpoint lies inside the geometric region. If the segment




-

o

midpoint is inside the region, M points are distributed along the line using the user-
selected distribution method (e.g., uniform spacing, ratio zoning spacing). The algorithm
that determines whether a point is inside, on or outside a specified geometric region is
described in the next section.

3. Point classification algorithm. Suppose we are given a polyhedron P defined

by a set of nodes {I’j}:;l and a set of triangular facets {Z};l Thus,
N
P=UT
i=1
T, = (ry,ri,15,) for ¢=1,. N
r; = (z;,y;.%2;) for 7=1,...,n

We assume P is not self-intersecting and is oriented in a fashion consistent with the ori-
entations of the individual triangular facets.

Suppose we are now also given a query point ¢ and it is our task to obtain the
inside/on/outside classification of ¢ with respect to P. Our approach is to obtain the
point p on P nearest to ¢ in the standard Euclidean metric. We then devise a “normal” n,
at p such that the following normal af nearest point test can be proved to always provide
a correct result:

if p = ¢ thengisonP
elseif (¢—p)-n, <0 then ¢ is inside P

else ¢ is outside P

Now if P were a surface of C! continuity, it would be easy to see that by choosing n,
to be the “classical normal” (which is defined on such a smooth surface) then the “normal
at nearest point test” would always work. However, here P is a polyhedron consisting of
triangular facets, and so the “classical normal” does exist when p 1s in the interior of a
triangle. but it does not exist when p is on the shared edge of two triangles or is the shared
vertex of m triangles. Thus a good method for constructing an n, in these latter two cases
is crucial for the correctness of the “normal at nearest point test”.

We now present a method for choosing n, in all cases. Define n, to be a generalization
of the classical normal as follows: Determine if p lies in the interior of a triangle, on the
shared edge of two triangles, or on the shared vertex of m triangles. Then

(¢) if peT; then mnp, = n;

0 +ny,

|[mi, + 1, |
_Zﬁini

IDSLZHIE
Here n; is the outward normal on 7; and 6; is the inclusion angle at the vertex p of 7; as
shown in Figure 5.

(i) if peT;;NT;, then n, =

(z22) if pen®,7; then n, =




n;
Figure 5. Computation of synthetic normal in interior, edge,

and vertex cases of location of nearest poini.

Note that in all three cases this definition for n, is equal to the following surface integral:

h = fBe(p)ﬂ’PndS
" M spnpn dS]

where B((p) is a solid ball of sufficiently small radius at p, and n is the outward normal on
the surface B.(p) N P. This “synthetic normal” of course agrees with the classical normal
wherever the latter is defined on P. A rigorous mathematical proof of the correctness of
the algorithm which involves the synthetic normal can be found in Khamayseh et al. [1].

In our algorithm for querving points relative to a given polyhedron. the nearest point
to each query point needs to be located on the surface of the polyhedron. This step is
the most computationally expensive and time consuming one. In order to speed up the
algorithm and avoid searching every triangle for the nearest point, we propose an algorithm
that will cut down on the search time, that is, the number of operations required to locate
the nearest point on the polyhedron.

We now employ an octree subdivision of the polyhedron that will reduce the com-
plexity of the search algorithm from O(MN) to O(M log N) where M is the number of
query points and /N is the number of triangular facets. The construction of an octree data
structure for arbitrary three-dimensional objects is discussed in Meagher [4]. The octree
affords a substantial decrease in execution time because the spatial information contained
in the octree allows rapid culling of large numbers of triangles that cannot possibly contain
the nearest point to the query point.

We start out by generating a global bounding box Bp which is the smallest box (with
sides parallel to the three Cartesian coordinate planes) that will completely enclose the
polyhedron. We construct an octree hierarchical data structure by successively subdivid-
ing the bounding box Bp in each dimension to form eight sub-boxes or octants. The
subdivision is continued until some stopping criterion is satisfied. Each node in the tree
corresponds to some region of space bounded by the box associated with that node. Since
the tree is constructed in the Cartesian space, the faces of the box are subsets of the
planes of constant-z, constant-y, and constant-z. Therefore, only six coordinate extrema




-
{

are stored. If the node is not a terminal or leaf node, then it has eight children or sub-
boxes, the union of which completely fills the parent box associated with the node. In the
current implementation, the polyhedron data associated with an octant is stored in the
form of an array of pointers to surface triangles associated with that octant.

We test whether ¢ lies within the bounding box of P. If ¢ € Bp, then ¢ is outside the
polyhedron. Otherwise, we locate the leaf octant O in which ¢ resides. The parent octant
of O must contain a nonempty leaf octant O, or else it would never have been subdivided.
We compute the shortest distance from ¢ to all the vertices of all the facets residing in
such a nonempty leaf octant O':

r = guig o= rall o= vl o= vl

Then we create the query point bounding box

By = [zg—rzg+r]X[yg —ryg + 1] x [zg — 71,24 + 7.

It is now sufficient to search the subset of triangles residing in leaf octants which
overlap with B,. The search speed increases exponentially with the depth of the octree,
since children of octants that are not intersected by the box B, may be eliminated.

Now for each triangle residing in an overlapping leaf octant, we need to locate the
nearest point p; to g. p; will be either on a vertex, edge, or in the interior of the triangle.
We start first by computing the distance between ¢ and each of the three triangle vertices,
recording the nearest vertex—a possible candidate for p;.

Second. we loop over the triangle edges and evaluate

a-b

>

¢ =

JEY
wherea =r;, —r;, anda= ¢ —r;,. If t € (0,1) then the nearest point possibly belongs
to the edge and is computed as

pi = tri, +(1—1t)ry,.
This test is performed over the three edges I} = (r;, . ¥i, ), lo = (ri,. iy ). and I3 = (14,.T4;).

Third. we need to check if the p; lies in the interior of the triangle. (We need to do
so if t € (0,1) is satisfied on two or three edges.) From ¢ we move in the direction n; by
a distance d to get the projection point ¢; in the plane of the triangle 7;. The projection
point ¢; is computed using the formula

g = ¢—dn;
where d = (g — r;,) - n;. Now we determine if g; lies inside or outside of the triangle.
This is accomplished by subdividing the triangle into three triangles 77 = {ri,,ri,.¢:}.
T: = {ri,,ris, ¢}, and T3 = {ri,,r;,,¢;}. For the projection point ¢; to lie inside the
triangle, each individual area of the three sub-triangles must be positive, i.e., area(77) > 0,
area(T3) > 0, and area(73) > 0.

We conclude that p;, the nearest point on triangle 7; to the query point ¢, is the
nearest of the candidate points obtained when considering the vertices, edges, and the
interior of the triangle. Finally, the nearest point p on P to ¢ is the nearest p; over all the
triangles 7; in the overlapping leaf octants.




4. Applications. The algorithms outlined in this paper are currently used in the
grid generation and modeling code X3D at Los Alamos National Laboratory. X3D is a
tetrahedral grid generator used to solve time-dependent, multi-material grid generation
problems. We are currently applying this grid generation system to several classes of prob-
lems involving complex geometries, multiple materials, and time-dependent physics. The
physics operators that we are solving on our tetrahedral grids include computational fluid
dynamics (CFD), diffusion, and Monte Carlo transport. The current areas of application
involve radioactive waste disposal, oil-reservoir simulation, semiconductor design, and au-
tomotive CFD applications. Many of the geometric modeling concepts, algorithms, and
implementations found in the X3D system are based on the methods discussed in Trease
(7]. A

Two examples are presented to demonstrate the robustness and usefulness of our
techniques for point distribution and point location in the generation of grids for complex
geometries. Figure 6 shows an exploded view of distinct materials with grids in a MOSFET
semiconductor device with curvilinear interfaces.

i%éﬁnfgnﬁ N SRR % Em Vil
umé,, ﬁiﬁni CRRENAPEANNN
NNV mmmngﬂ ggnmm
NTERRRE n;ﬂnggﬂga ANNS) zﬁ R
N ANSSS AR SR s g
VY SN AR R N RS A A A
NN RRRRER RN R R A Y
iiiuﬂﬂmfm N ﬁfr N RRNNA S NN
mmmigsst“‘ié&%ﬂm‘ggi NN

Figure 6. Ezploded gridded regions of @ MOSFET semiconductor device with curvilinear interfaces.




9

The polyhedral regions corresponding to each individual material are constructed using
Boolean set operators on a combination of quadric and triangulated surfaces. The grid
points in each sub-region were distributed by casting rays from a reference plane to produce
a Cartesian type of point distribution.

Figure 7 shows an exploded view for a multi-material surface of revolution, challenging
because of the presence of the needlelike protrusions of the “cap” and the corresponding
indentation in the complementary part. In this example the grid points in each sub-
region were distributed by casting rays from an axis line to produce a cylindrical type of
point distribution. The graphics for these two examples indicate the lack of any incorrect
point classifications due to the algorithm, because any such errors would result in visible
roughness on the interfaces between the exploded materials.

Figure 7. Ezploded gridded regions of a challenging geometry containing sharp prolrusions.

5. Conclusion. This paper describes an alternative method to the advancing front
method in which the grid points are concentrated where they are needed to increase the
accuracy of the solution. The four options of point distribution are based on casting
rays through the material regions and finding the intersections of the rays with surfaces
of the regions whereby points are distributed. These options were designed to create a




10

distribution of grid points that best fits the geometric configuration. This point distribution
is necessary in order to generate high quality unstructured grids while still preserving multi-
material interface integrity.

We have also presented the “normal at nearest point” algorithm for solving the point
location problem for polyhedra. This technique has been chosen for solving all point loca-
tion problems in Los Alamos National Laboratory’s X3D grid generation code. Using X3D,
we have successfully tested the algorithm on complex grids involving nontrivial material
interfaces and have detected no point location errors even under finite machine precision.

REFERENCES

[1] A.Khamayseh, F. Ortega, and A. Kuprat, A Robust Point Location Algorithm for General Polyhedra.
Computer Aided Geometric Design, {submitted).

[2] C. L. Lawson, Software for Ct Surface Interpolation, in Mathematical Software III, edited by John
R. Rice, Academic Press, 1977.

[8] Lohner, Generation of Three-Dimensional Unstructured Grids by the Advancing Front Method, ATAA
26th Aerospace Science Meeting, Reno, AIAA Paper 89-0365, 1989.

[4] D. Meagher, Geometric modeling using Octree Encoding, Computer Graphics and Image Processing,
vol. 19, pp. 129-147, 1982.

[5] J.W. Painter and J.C. Marshall, 3-D Reconnection and Fluzing Algorithms, Proceedings of the second
Free Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, New York, vol. 393, pp.
139-148, 1990.

I6] S. Pirzadeh, Unstructured Viscous Mesh Generation by the Advancing Layers Method, AIAA 11th
Applied Aerodynamics Conference, Monterey, AIAA Paper 93-3453, 1993.

[7] Trease, H.E., Three-Dimensional Free Lagrangien Hydrodynamics, Proceedings of the first Free
Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, New York, vol. 238, pp. 145-
157, 1985.




