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Introduction

Resolving the uncertainties associated with solutions obtained from
artificial neural networks (ANNs) is a major concern for ANN researchers[1,2].
Error bounds on the solutions are important because they are an integral part of
verification and validation. In this research, stacked generalization[3] (SG) is
applied to provide error bounds for novel solutions obtained from ANNs. An
outline of SG and its use is given in Figure 1. The data used in this demonstration
of SG are given in Figures 2 and 3. This work shows that SG can provide error
bounds on ANN results. We have applied SG to nuclear power plant fault
detection for verification of diagnoses provided by ANNs[4,5,6].

Error Bound Estimation using Stacked Generalization

Let F be an ANN trained on a training set L. Our goal is to estimate error
bounds on solutions obtained from F for untrained inputs. First, partition the

training set L into two subsets, L, and L,. The subset L, consists of a single
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input-output pattern, and L, contains the remaining patterns. An ANN f having
the same architecture as F is trained on L and then tested on L. Since the
pattern in L, is not used during training, the ANN output will deviate from the
desired output. This deviation represents the ANN’s error for an untrained input.
The input pattern in L, and a vector from the input to its nearest neighbor in L,
form an input pattern, and the deviation forms an output pattern in a new training
set. Another partition is chosen, and the process of training, testing, and obtaining
the errors is repeated until the number of partitions is equal to the number of
patterns in L. From the process, we obtain the new learning set L’. Another ANN
P is trained on L'. The underlying theory of this process can be found in
Wolpert[3,7]

When presented with a novel input pattern, F provides a solution u.
Presenting P with the input pattern and a vector from the input to its nearest

neighbor in the L gives an error bound € such that the resultant solution is u+€.

Results

For each training data set shown in Figures 2 and 3, F is trained and then
provides outputs for untrained inputs. Corresponding to the outputs, error bounds
are predicted by P. The predicted error bounds can be compared to the real RMS
errors representing the true errors of F’s outputs. Figures 2 and 3, respectively,
shows the results of a nonuniformly-selected data set and a uniformly-selected
data set. Clearly, Figure 3 provides better results. It is not always possible,
however, to obtain such well-behaved training data. These results are typical and

the methodology can be applied to any ANN model[6].
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FIGURE CAPTIONS

Figure 1.
Illustration of the stacked generalization method to provide error bounds on
novel solutions obtained from ANNs. Note that the nearest pattern is chosen in

L-(x,y) such that the pattern has the minimum of Euclidean distance from the x.

Figure 2.

Predicted error bounds on an ANN’s output. 15 data points of a sin function
y(x) = 0.4sin(nx)+0.5 are used to train the two-hidden-layer ANN, F (1-6-4-1).
The single-hidden-layer ANN, P (2-5-1), trained on the new training set predicts
the error bounds on F’s solutions. The real RMS error is based on the difference
between F’s output and the desired function y(x), which represents the true error
of the ANN for the untrained data points. The true error is compared to the

predicted error bound obtained in this work.

Figure 3.

Predicted error bounds on an ANN’s output. 21 data points of a damped cosine
function y(x) = 0.45[1+cos(4nx)exp(-x)] are used to train the ANN, F
(1-7-5-1). The ANN, P (2-5-1), trained on the new training set provides the error

bounds on the F’s solutions.
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