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Abstract

The U.S. Department of Energy’s (DOE) Yucca Mountain Site Char-
acterization Project (YMP) is investigating the suitability of the Topopah
Spring tuff in the thick vadose zone at Yucca Mountain, Nevada, as a host
rock for permanent disposal of high-level radioactive waste. As part of the
YMP, a group of field tests, called the Large Block Test (LBT), will be con-
ducted on a large electrically heated block of Topopah Spring tuff, isolated
at Fran Ridge, Nevada Test Site. The block, which will be 3 X 3 m in hori-
zontal dimensions and about 4.4 m high, will be heated by electrical heaters
installed in five boreholes drilled in a horizontal plane 2.75 m below the top
of the block. The goals of the LBT are to gain information on the coupled
thermal-mechanical-hydrological-chemical processes that will be active in
the near-field environment of a repository; to provide field data for testing
and calibrating models; and to help in the development of measurement sys-
tems and techniques. In this second progress report, we present results of
the final set of numerical modeling calculations performed in support of the
LBT design. We use a three-dimensional conduction-only model to study
the thermal behavior of the system. The results include block temperatures
and heat fluxes across the surfaces. The results are applied primarily to
the design of guard heaters to enforce adiabatic conditions along the block
walls. Conduction-only runs are adequate to estimate the thermal behavior
of the system, because earlier calculations showed that heat transfer in the
block is expected to be dominated by conduction. In addition, conduction-
only runs can be made at substantially shorter execution times than full
hydrothermal runs. We also run a two-dimensional, hydrothermal, discrete
fracture model, with 200-um vertical fractures parallel to the heaters and
occurring at a uniform spacing of 30 cm. The results show the development
of distinct dryout and recondensation zones. The dryout zones are thickest
at the fractures and thinnest in the matrix midway between the fractures.
Block temperatures are unaffected by the location of the fractures.




1. Introduction

The U.S. Department of Energy’s (DOE) Yucca Mountain Site Charac-
terization Project (YMP) is investigating the suitability of the Topopah
Spring tuff in the thick vadose zone at Yucca Mountain, Nevada, as a host
rock for permanent disposal of high-level radioactive waste. Because heat-
driven fluxes of liquid water and water vapor in the near-field repository
environment will affect waste package deterioration rates and the transport
of radionuclides away from the packages, scientists at Lawrence Livermore
National Laboratory (LLNL) and elsewhere are studying this hydrothermal
flow behavior. The studies include numerical modeling (Buscheck and Ni-
tao, 1993a, 1993b), and field and laboratory testing (Ramirez et al., 1991;
Lin and Daily, 1989).

Heat generated in the radioactive decay of the waste is expected to drive
coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the
near-field repository environment. A group of field tests to be conducted
on a large electrically heated block of Topopah Spring tuff, isolated at Fran
Ridge, Nevada Test Site, will be used to gain information on these pro-
cesses. The tests, collectively referred to as the Large Block Test (LBT),
are described by Lin et al. (1994a). The LBT will also provide data for
testing and calibration of models and will help in the development and
evaluation of measurement systems and techniques.

This is the second progress report presenting results of ongoing nu-
merical modeling calculations we are conducting in support of the LBT
design. The first report presented some preliminary hydrothermal calcu-
lations (Lee, 1995) using the VTOUGH code developed by Nitao (1989).
In this report, we use a fully three-dimensional conduction-only model to
examine the thermal response of the block to heating. We also conduct
a two-dimensional, hydrothermal, discrete-fracture analysis to investigate
the effects of fractures on the behavior of the system. All calculations for
this report were conducted using the NUFT code (Nitao, 1993). Results
of the conduction-only calculations were applied primarily to the design of
guard heaters that will be used to enforce adiabatic conditions along the
walls of the block. Conduction-only runs are adequate for estimating the
general thermal behavior of the system, because earlier calculations showed
that heat transfer in the block is expected to be dominated by conduction




(Lee, 1995). In addition, conduction-only runs require substantially lower
execution times than full hydrothermal runs.

The general design of the block is outlined in Sec. 2. The conduction-
only model is described and the results presented in Sec. 3. A model de-
scription and results are presented for the hydrothermal discrete-fracture
model in Sec. 4.

2. Description of the Block

A schematic of the block is shown in Fig. 1. The shaded area represents
the quarter-symmetry section modeled in the conduction-only analysis. A
more detailed description of the block is given by Lin et al. (1994a, 1994b).
The rock surrounding the block was excavated by mechanical excavation
and cutting using a rock saw. The isolated block has four vertical free
faces and a horizontal upper surface. Each face has a number of layers
of insulation and other materials that include the guard heater assembly.
These layers are modeled as shown in Fig. 2. The floor surrounding the
block is surfaced with a 15-cm-thick layer of concrete overlaying a layer
of gravel, also 15 cm thick. The horizontal block dimensions are 3 X 3 m
and the height is 4.4 m. The base of the block remains attached to the
underlying rock. Five parallel heater emplacement boreholes were drilled
horizontally into one block face, normal to the face, in a plane 2.75 m
below the top of the block. These borehole axes are oriented in an east-
west (EW) direction. The boreholes extend to a distance of 30 ¢m short of
the opposite face, giving a borehole length of 2.70 m. The spacing between
the boreholes is 60 ¢cm, and the distance of each end borehole from the
neighboring vertical wall is 30 cm. Each borehole will house a rod-type
electrical heater capable of delivering at least 400 W, giving a minimum
power capacity of 2000 W for the five boreholes. The first 30 cm of each
borehole will not be heated, and is assumed to be plugged with rock core for
these calculations. Heat will be delivered uniformly along the 2.4-m heated
length. A number of additional boreholes will carry instrumentation to
monitor the hydrothermal, mechanical, and chemical response of the block
to thermal loading.
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Figure 2. Insulating materials used on walls of Large Block. The composite
material is made up of layers of RTV, Viton, fiberglass, and aluminum.




3. Three-Dimensional Conduction-only Runs

We used the NUFT code (Nitao, 1993) to conduct two three-dimensional
conduction-only runs. In the first run, the block was heated without guard
heaters on the walls, allowing some heat loss through the insulation. In the
 second run, the guard heaters were assumed to be in place, giving adiabatic
conditions along the walls.

These runs provided insight into the thermal behavxor of the system,
at substantially shorter execution times than with runs that include fluid
movement. Fluid movement by advection and diffusion were switched off
to increase computational efficiency.

One of the primary purposes of these conduction-only runs was to aid in
the design of the guard heaters used to enforce adiabatic vertical block faces.
Potentially critical heat loss areas were identified so that guard heater plate
dimensions and heat-flux sensing locations could be appropriately selected.

3.1. Grid Design and Input Data

A quarter-symmetry section, shown in Fig. 1, was modeled. We assume
that heat is delivered uniformly along the length of each heater, and that
the heater powers in the five boreholes are identical. The three heater
boreholes in the symmetry model are powered to 1/4, 1/2, and 1/2 of full
borehole power, respectively.

The grid is designed to give higher resolution close to and above the
heater horizon and lower resolution at greater distances beneath the heaters.
Fig. 3 shows the grid design for x-z planes in and near the block. Larger
grid sizes at greater depths beneath the block and at greater distances to
the right are not shown. Block sizes in the y-direction are similar to those
in the x-direction. The modeled domain down to the base of the block is
20 x 15 x 31 nodes in the x, y, and z directions, respectively. Below the
base, the domain is 32 X 26 X 17 nodes. Null blocks fill the voids above
the level of the base. Mesh size varies from 2 cm in the heater horizon and
within the insulators to 10 m close to the lower boundary. The depth of
the model is 33 m.

The block is heated at a constant heater borehole temperature of 140°C.
The temperature at the upper surface is fixed at 60°C. The temperature of
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Table 1. Primary thermal properties of materials.

Thermal
conductivity Bulk density | Specific heat
Material (W/m K) (kg/m?) (J/kg K)
Tuff 2.1 2580 840
Ultratemp 0.093 560 1130
Fiberglass 0.042 25 700
Composite 0.125 1064 1190
Concrete 1.70 2580 900
Gravel 1.80 2580 900

60°C was selected to give a realistic temperature gradient above the heater
horizon. This upper boundary condition permits heat flow through the
top of the block. The vertical symmetry planes are modeled as adiabatic
boundaries. The insulated walls are bounded by an atmosphere layer, held
at a temperature of 20°C. The lower boundary, and the right boundary
below the block base, are assigned a very high specific heat, so that rock
temperatures are held constant at these boundaries. All runs are made
from an initial temperature of 20°C and an initial liquid saturation of 0.5.

The primary thermal parameters used are listed in Table 1. Thermal
properties of the rock were obtained from the YMP Reference Information
Base (1990). Thermal properties of the other materials were obtained from
Lienhard (1987).

3.2. Heating without Guard Heaters

We first address the case where no guard heaters are used on the walls, so
that the wall insulation is the only means of reducing heat loss through the
walls. Fig. 4 shows heat loss fluxes across a horizontal line in the heater
horizon on the walls. The fluxes shown are normal to the wall. Recall that
x and y are zero along a vertical axis through the center of the block; x
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Figure 4. Heat loss fluxes through block walls, shown along horizontal lines
on east-west {EW) and north-south (NS) walls in heater horizon.




is positive to the south and y positive to the west; z is zero at the top of
the block and positive downward. Because the EW line runs parallel to
the heaters, the fluxes along this line are more uniform, averaging about 37
W /m?. There is a small drop approaching the end of the heater, and then a
rise due to corner effects close to the edge of the block. Fluxes along the NS
line are less uniform, averaging about the same 37 W/m?, but displaying
highs at the heater locations and lows midway between heaters. For both
walls, the flux drops off gently going from the center toward the edge.

Fig. 5 shows heat loss fluxes across vertical lines down the EW and NS
walls. The losses peak in the heater horizon, at about 37 W /m?, as shown
in Fig. 4. There is no substantial difference in heat loss patterns between
the EW and NS walls. In addition, heat losses along vertical lines do not
vary significantly with distance from the center of the wall, provided the
location is more than 20 cm or so from the edge.

Fig. 6 shows heat loss fluxes along EW and NS lines along the top sur-
face of the block. Heat losses drop off substantially going from the center
to the edges of the top surface. Peak losses are about 27 W/m? at the cen-
ter. The negative sign indicates that heat flow is in the negative z-direction
(upward). The figure shows some heat flow into the block through the top,
close to the corners. This inward flux is due to the 60°C top boundary
temperature and the neighboring 20°C side boundary temperature. A neg-
ative temperature gradient is established from the top into the block in the
vicinity of the corners, causing some heat movement into the block.

An analysis of the power input and losses through the various free faces
highlights the need for guard heaters. With the top surface of the block
held at 60°C, and the atmosphere outside the vertical insulated faces at
20°C, a steady-state heating power of 2100 W is required to maintain a
heater borehole temperature of 140°C. This uniform heater temperature
was achieved computationally by stating the heater borehole temperatures
as a boundary condition. Integration of the heat fluxes through the free
faces shows 1240 W, or 59% of the power input, lost through the insulated
vertical faces. Losses through the top surface totaled 160 W, and 300 W
was lost through the concrete floor, out to a distance of about 3 m.
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lines. Negative and positive fluxes here imply heat flow out of and into the
block, respectively.




3.3. Heating with Guard Heaters

In this section, we present results for a run in which we assume perfect
adiabatic conditions along the vertical walls of the block. Again the top
surface is held at 60°C and the atmosphere above the concrete floor is fixed
at 20°C. As before, the heater borehole temperatures are held at 140°C.
This run is intended to generate heat flux and temperature details that more
closely represent those expected in the field, as opposed to the previous run
which was intended mainly to aid in the design of the guard heaters.

The power required to maintain a heater borehole temperature of 140°C
is reduced to a steady-state value of about 1400 W, compared to 2100 W
without guard heaters. Heat fluxes through the top are shown in Fig. 7.
Fluxes across horizontal lines through the center of the top surface, and 0.8
m from the center, are nearly identical at 55 W/m?. The heat fluxes with
guard heaters are more uniform across the top surface than without guard
heaters. These fluxes are integrated to give a loss of 500 W, in contrast to
160 W lost without guard heaters. Heat is lost through the concrete floor
at a rate of about 340 W.

Block temperatures are shown in Fig. 8. The one-year temperature
distribution is essentially one-dimensional, having nearly uniform negative
gradients directed upward and downward away from the heater horizon,
except in areas close to the heater boreholes. This pattern is similar to the
temperatures calculated in earlier hydrothermal runs (Lee, 1995).

4. Discrete Vertical Fractures

In this section we examine the effects of discrete vertical fractures striking
parallel to the axes of the heater boreholes. This is the first of a series
of discrete fracture runs we hope will help increase our understanding of
the effects of fractures on the hydrothermal behavior of the system. We
will vary the fracture orientation, aperture, and frequency, and observe the
effect on the response of the system to thermal loading. We will also try to
incorporate the major features of the fracture systems mapped in the field.

In this first run, we consider a fracture system made up of 200-um
aperture fractures with a uniform spacing of 30 cm. Fractures are assumed
to intersect the borehole axes and pass midway between two boreholes.

12
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Table 2. Primary thermal and hydrologic properties of rock.

Matrix specific heat 840 J/kg°K
Matrix thermal conductivity (wet) | 2.10 W/m°K
Matrix porosity 0.11

Matrix permeability 1.9 udarcy
Fracture aperture 200 ym
Fracture frequency ) 3.33 m™!

Fig. 9 is a schematic of the block, showing the fracture system and the
symmetry section modeled. The domain modeled is a 1/20 symmetry sec-
tion bounded by fractures on the left and right. The power required to
drive this section is equal to one quarter of the heating power contained
in one borehole. The analysis is two-dimensional and ignores some small
inaccuracy caused by asymmetry below the floor level of the block.

4.1. Grid Design and Input Data

Discretization for the symmetry section is shown in Fig. 10. Grid size varies
from 100 um at the fractures, representing half the fracture aperture, to 15
m at the bottom of the domain. The model is 68 m deep. The symmetry
boundaries, at x values of 0 and 0.3 m, are no-flow adiabatic boundaries
through the center of the fractures. The upper boundary represents the
atmosphere, which is held at 20°C and zero liquid saturation. The lower
boundary is held at the initial liquid saturation of 0.5 and initial tempera-
ture of 20°C. As before, the heaters were energized to give a heater borehole
temperature of 140°C for one year. _

The primary thermal and hydrologic properties of the rock matrix and
fractures are given in Table 2. Properties of the rock matrix were obtained
from the YMP Reference Information Base (1990).
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Figure 9. Schematic of Large Block showing locations of fractures and
heater boreholes. The shaded area is the 1/20 symmetry section modeled.
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4.2. Fracture Modeling Results

Block temperatures after one year of heating are shown in Fig. 11. The
temperature distribution is essentially one-dimensional, except at locations
within a few centimeters of the heater. Temperatures decrease with distance
both upward and downward away from the heater horizon; gradients above
the heater horizon are slightly greater than those below. The temperatures
are unaffected by the locations of the fractures.

Images of liquid saturation at 50, 100, 200, and 365 days are shown
in Fig. 12. Preferential drying occurs along the fractures at earlier times,
starting at the heater horizon. At 50 days, dryout areas are developing
along the fractures, with some penetration into the matrix evident. At
100 days, the dryout zone extends further along the fractures and deeper
into the matrix. In addition, a recondensation zone is beginning to develop
above the dryout zone. Note that the figure has a horizontal-to-vertical
scale exaggeration of 10:1, which tends to mask the fact that extension of
the dryout zone along the fractures is much more rapid than penetration
into the matrix. At 200 days, distinct dryout and recondensation zones are
established. The dryout zone is thickest at the two ends, where the fractures
are located, and thinnest in the matrix midway between the fractures. After
365 days of heating, both the dryout and recondensation zones are even
thicker, with the recondensation zone centered about 0.9 m from the top
of the block.

Fig. 13 shows the one-year temperature and liquid saturation profiles
along a vertical line midway between the two fractures. Again, distinct
dryout and recondensation zones are evident. If the dryout zone is defined
as a region with liquid saturation below half the initial value of 0.5, then
the dryout zone is about 2.0 m thick here. The temperature in this zone
is above boiling. A well-established recondensation zone occurs above the
heater horizon, with peak liquid saturation of 0.87 at a depth of about 0.9
m. The recondensation zone below the heater horizon is smaller, having a
peak liquid saturation of 0.66 at depth 5.6 m.

Images of gas pressures at 50, 100, 200, and 365 days are shown in Fig.
14. While the fractures remain at approximately barometric pressure (83
kPa at the site), the peak pressure in the system occurs within the rock
matrix, in the heater horizon. The location of this peak pressure is initially

18
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close to the heater but shifts closer to the center of the matrix with time.
It appears to be centered midway between the fractures at 200 days. The
peak pressure decreases as the system approaches steady state.

Fig. 15 shows gas pressures along the heater horizon, from the left frac-
ture to the right fracture, after 100 days of heating. The pressure goes from
barometric pressure of 83 kPa at the fractures to a high of about 260 kPa
in the matrix. This is about the highest pressure observed in the system,
and is equivalent to a gage pressure of 177 kPa (26 psig).

5. Summary and Conclusions

In this second progress report, we have presented results of the final set of
numerical modeling calculations performed in support of the LBT design.
We used a three-dimensional conduction-only model to study the thermal
behavior of the system. The results include the distribution of heat fluxes
across the block surfaces, and are used primarily for the design of guard
heaters to enforce adiabatic conditions along the block walls. We also
‘examined a two-dimensional, hydrothermal, discrete-fracture model, with
200-um vertical fractures parallel to the heaters with a uniform spacing of
30 cm. This is the first of a series of discrete fracture models we plan to
run in our efforts to improve our understanding of the role of fractures in
the hydrothermal response of the block to heating.

For the conduction-only analysis, the block was heated at a constant
heater borehole temperature of 140°C, and the temperature at the upper
surface was fixed at 60°C. Runs were made from an initial temperature of
20°C and an initial liquid saturation of 0.5. Two runs were made: the first
assuming imperfectly insulated walls, and the second assuming that guard
heaters enforce perfectly adiabatic walls. The results gave heat loss fluxes
across various surfaces. Without guard heaters, the steady-state power
required to heat the system was 2100 W, with 59% of the heat input lost
through the insulated walls, and 8% lost through the top surface. With
guard heaters, the steady-state power required was 1400 W, with 36% lost
through the top surface.

For the discrete-fracture model, distinct dryout and recondensation
zones were observed, both above and below the heater horizon. The dry-
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out zones are thickest at the fractures and thinnest in the matrix midway
between the fractures. Block temperatures seem unaffected by the location
of the fractures. The peak gage pressure in the system was about 177 kPa
(26 psig), located in the matrix at the heater horizon.
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Lastly we examine the least squares polynomial which has demonstrated the most promise
of any preconditioner implemented so far. The results plotted in Figure 18 show that for this
method there are substantial differences on how the preconditioner works at different frequencies.
At 0.9 kHz, the minimum convergence time occurs when 9 terms are employed in the polynomial,
at 7.2 kHz when 3 to 6 terms are employed, and finally at 56 kHz when 2 to 3 terms are used. The
maximum time savings over simple Jacobi scaling in each of these three cases is 24%, 18% and
13% respectively. From these results it appears that this preconditioner works better at low
frequencies. We believe that this observation may be a function of how the coefficients of the
polynomial are chosen. Remember from an earlier section that these are determined according to
the distribution of eigenvalues along the real axis. However, because our system is not positive
definite there will exist imaginary eigenvalues. It is possible that the real eigenvalue approximation
works better at lower frequencies than at higher, and thus to get better performance, the polynomial
preconditioner needs to be redesigned such that these imaginary values are taken into

consideration.

CONCLUSIONS AND DISCUSSION

In this chapter we have presented a scheme to solve for the frequency domain
electromagnetic response of a 3-D earth over a wide band of frequencies using massively parallel
computers. The problems associated with porting the serial version of the scheme to a parallel
machine have been outlined, and a variety of comparisons have been demonstrated to prove the
validity of the code. Implementing the code on the 1840 processor Intel Paragon has demonstrated
a decrease in computing time of over two orders of magnitude when compared to a high end IBM
workstation and a similar magnitude increase in the maximum model size that can be simulated. In
addition a maximum theoretical flop rate of 14.9 Gflops has been established. Finally we have
demonstrated the use of different Krylov solvers and preconditioners and found the QMR scheme
coupled with a least squares polynomial and simple Jacobi scaling to be the most efficient yet stable
method of solution that we have available.

Currently we are using the scheme in a variety of projects, for example to assist in the
design of geophysical instruments (Pellerin et al, 1995) as well as simulating airborne EM surveys
(Alumbaugh and Newman, 1995; Newman and Alumbaugh, 1994). The simulations that we are
running for these projects would have been impossible prior to the parallel implementation due to
the size of the models and/or the number of frequencies and sources involved. We believe,
however, that there is still much research to be done with regards to the implementation of this type
of scheme. The most notable location for improvement is in the area of preconditioners.
Techniques being considered are multigrid preconditioners, and methods to separately treat the real
and imaginary components of the matrix system. A thorough study of the grid stretching

25




parameters at frequencies lower than 1 MHz also needs to be undertaken. This type of study will
hopefully yield either an analytical or empirical method of choosing them based on the frequency,
conductivity of the medium, etc., similar to the-scheme employed at higher frequencies. A method
~ to accelerate the convergence for very low frequency simulations where channeling currents
dominate needs to be developed in order to simulate natural field measurements as well as extend
the frequency band down below 100 Hz; Smith (1992) has found that a static correction can be
incorporated to accommodate this. Finally, methods of dealing with the air-earth interface need to
be more closely examined. We have found that this interface tremendously complicates the
numerical problem, especially when electric dipole sources are employed on the surface.

26

1)



& (+1,3k)

a)
B o
@K
DGk +1)
k) &
X

y
/ 12

b)

© (HLilK

CIE N

Figure 1 - a) The staggered grid for the coupled Maxwell's equations (after Yee, 1966). The
electric field is sampled at the center of the cell edges, and the magnetic fields at the center of the
cell faces. Node (i,j,k) is the large dark circle in the upper-back-left hand corner of cell (i,j,k), and
has the six unknown electric and magnetic fields illustrated assigned to it. Cell (i,j,k) has a

conductivity ;. a dielectric permitivity €; j x, and magnetic permeability W;; x assigned to it. b)
The staggered grid for the Helmholtz equation for the electric fields. The dark circle at the center
represents node (i,j,k) which has the three hi-lighted components of the electric field assigned to it.
The large arrows represent the 13 unknown electric field values needed to form the equation for Ex
at node (i,j,k), with the other arrows representing the additional fields needed to form the equations
for Ey and Ez. The gray circles represent nodal points to which unknown electric field values are
assigned that are needed to complete the three equations at node (i,j,k); the open circles represent
nodal points from which no information is needed for these equations.
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Figure 2 - Illustration to demonstrate how the average admittivity is calculated halfway along a cell
edge in the y direction, and the average magnetic permeability is calculated at the center of the cell

face.
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Figure 3 - The processor communication stencil that provides for proper message passing in the
solution phase of the program. Each cube represents a neighboring processor with which a
processor located at the center of the "face contributions” cluster would need to exchange
information through message passing. '
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Figure 4 - a) Airborne simulation with sources and receivers above a non-magnetically permeable
halfspace. The three frequencies employed are 0.9 kHz, 7.2 kHz, and 56 kHz. The comparisons
are between the 3-D finite difference scheme and Lee's 1-D solution. b) Horizontal and vertical
magnetic field results for a HMD source. c) Horizontal and vertical magnetic field results for a

VMD source.
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are between the 3-D finite difference scheme and Lee's 1-D solution. b) Horizontal and vertical

magnetic field results for a HMD source. c) Horizontal and vertical magnetic field results for a
VMD source. '
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Figure 6 - a) Crosswell model with VMD source located 40m above the resistive layer. The
receiver depths range from 250 m to 350 m, and the frequencies employed are 0.1 kHz, 1 kHz and
10 kHz. The comparisons are between the 3-D finite difference scheme and the integral equation
solution of Newman et al. (1986). b) Horizontal magnetic field results. c) Vertical magnetic field
results.
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i The comparisons are between the 3-D finite difference scheme and the integral equation solution of

Newman et al. (1986). b) Horizontal magnetic field results. c) Vertical magnetic field results.
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Figure 8 - a) Crosswell model with VED source located 40m above the resistive layer. The receiver
depths range from 250 m to 350 m, and the frequencies employed are 0.1 kHz, 1 kHz and 10 kHz.
The comparisons are between the 3-D finite difference scheme and the integral equation solution of
Newman et al. (1986). b) Horizontal electric field results. ¢) Vertical electric field results.
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Figure 9 - a) Crosswell model with VED source located within the resistive layer. The receiver
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Figure 10 (cont.) d) Horizontal and vertical magnetic field results obtained with complex grid
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Figure 15 - Time of convergence, and number of iterations needed for convergence of the HMD
simulation in Figure 4 for all three frequencies using the QMR solver with Jacobi scaling.
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Figure 17 - Time of convergence, and number of iterations needed for convergence of the HMD

) simulation in Figure 4 using the QMR solver with Neumann polynomial preconditioning. The
results are plotted as a function of the number of terms employed in the polynomial with the first
entry representing simple Jacobi scaling. a) 0.9 kHz. b) 7.2 kHz. c¢) 56 kHz.
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Figure 18 - Time of convergence, and number of iterations needed for convergence of the HMD
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entry representing simple Jacobi scaling. a) 0.9 kHz. b) 7.2 kHz. c¢) 56 kHz.
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CHAPTER III

3-D MASSIVELY PARALLEL ELECTROMAGNETIC INVERSION -- THEORY

To this point, a complete solution to the 3-D inverse problem has been hindered by
insufficient computing resources. Realistic 3-D reconstructions require tens of thousands of
unknown electrical parameters to be estimated. This demand coupled with forward modeling
overhead, where up to several million field unknowns may need to be calculated to determine
model sensitivities and predicted data, make the solution of the 3-D ihverse problem non trivial.
Attempts to circumvent this difficulty have included the use of quasi-linear approximations in
both the forward as well as the inverse modeling (cf. Torres-Verdin and HaBashy, 1995 and
1994, Habashy et al., 1995, Zhandnov and Fang, 1995a) and the use of approximate model
sensitivities (Farquharson and Oldenburg, 1995). Unfortunately even these approaches suffer
when the number of parameters being estimated exceeds several thousand. Only with the advent
of massively parallel (MP) computers can a realistic attack to the problem be proposed.

Even with an MP platform one must be careful when implementing a solution to the
inverse problem. Foremost is to avoid directly inverting large matrix systems that are either
sparse or full. Rigorous modeling of 3-D EM fields can be carried out efficiently using staggered
finite differences, which produces a sparse linear system. On an MP platform this system, if
properly preconditioned, can be quickly solved using iterative Krylov subspace methods (refer
to Chapter II for examples). On the other hand, the solution of the least-squares inverse problem
requires dealing with a full linear system. However, since this system satisfies the normal
equations it can also be efficiently solved iteratively with conjugate gradient (CG) methods.
Mackie and Madden (1993) and Zhang et al. (1995) used this approach to attack the 3-D
magnetotelluric (MT) and direct current (DC) inverse problems, respectively, on scalar
platforms. Here we will apply the approach to the 3-D EM inverse problem for frequency-
domain dipolar source fields, where the source strengths and locations are known. Because the
controlled source EM problem is far more computationally demanding than both the DC problem
due to its vector nature, and the MT problem due to the sheer number of source fields to be
considered (upwards of several hundred), an MP platform is a necessity. As will be
démonstrated below such a platform allows large models to be reconstructed, which are not

underparameterized, in a reasonable amount of time.
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A key consideration in developing any inverse solution is efficient computation of model
sensitivities. Because we will solve the inverse problem from an underdetermined point of view,
we can efficiently carry out calculations involving model sensitivities using reciprocity, which
is known as the adjoint solution to the problem. The use of reciprocity, where the receivers act
as sources, can be used to limit forward modeling to the number of the transmitter and feceivef
positions at a given frequency. The traditional approach requires the number of forward solves
to be equal to the number of parameters used in the inverse. When the number of parameters
far exceeds the number of transmitters and receivers, the adjoint approach is obviously most
efficient (cf. McGillivray and Oldenburg, 1990). In fact using the adjoint approach coupled with
the CG solution of the normal equations one can even avoid forming individuai components of
the model sensitivity matrix, hence resulting in a significant savings of computational memory.

In this chapter we present the theory behind the 3-D inversion scheme, including how
the scheme must be modified to run on a parallel computer. Next synthetic data generated by
an integral equation code will be inverted. This provides an independent check on the solution
as the data are produced by a code that is very different in nature from the finite difference code

used in the inversion routine and are thus prone to different numerical errors.

THE INVERSE SOLUTION
Regularized Least Squares

As already mentioned the parameterization used in the 3-D inverse solution will be kept
sufficiently fine because we are interested in reconstructions that do not under parameterize the
earth. This forces the 3-D inverse problem to be underdetermined, which makes it unstable and
ill posed. Reliable estimates of the model parameters (m) may be possible if the least squares
inversion is stabilized with regularization (Tikhonov and Arsenin, 1977). Regularization removes
solutions that are too rough by imposing an additional constraint on the data fit. Reconstructions
are required to be smoothed versions of the earth’s electrical properties at the expense of an

increase in the error between the measured and predicted data.
Linearizing about a given earth model, m®, at a given iteration i, the following
functidnal can provide smooth reconstructions if it is minimized with respect to the }model

parameters, m, which can include both the electrical conductivity and dielectric permittivity:
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S = [(D(@-0")-A"(m-m)))' D((d-4*")-AP@m-m®)) - 3] + AWm)(Wm).  (20)

The terms in equation (20) that control how well the data are fit by the model are as follows:
1) the observed data, represented by the vector d, 2) the predicted data arising from the
reference model m® denoted by d*®, 3) a data weighting matrix D, which is diagonal and
consists of the reciprocal of the data standard deviations, the reciprocal of the data amplitude or
in some instances an identity matrix if data weighting is unwarranted, 4) the Jacobian or model
sensitivities matrix given by AP and 5) x? the estimated square-error in the observed data. In
addition t represents the transpose operator instead of the Hermitian operator because the data,
predicted data, data weighting matrix and the Jacobian matrix have been split into real and
imaginary parts, where we assume the model parameters, m, to be always real valued. The
parameters that control model smoothness are 1) the regularization matrix W, which consists of
a finite difference approximation to the Laplacian (v?) operator and is sparse and 2) the tradeoff
parameter A\, which is used to control the amount of model smoothness in the reconstruction. Its
selection requires special care if the inverse solution is to provide acceptable results. Selecting
tradeoff parameters that are too small can produce models that are physically unreasonable;
although the models produce superior data fits they are unreasonably rough. Selecting tradeoff
parameters that are too large produce highly smoothed models, however these models show poor
dependence on the data. We shall defer further discussion of this parameter until we discuss the
iterative nature of equation (20). |
Minimization of equation (20) with respect to m yields the model update,

m = [(DA®) (DAP®) + NW)(W)I* (DAX) D8d®) @1

with
6d® = (d - d*® + AP®m©). (22)
chause negative values of m are an admissible solution arising from equation (21), it is

advisable that before minimizing equation (20) it should be reformulated so one can invert for

the natural logarithm of the parameters instead of the parameters themselves (Appendix D). This
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causes the imaged properties to be always positive which is a physical requirement. By using
a log parameterization, it is also possible to incorporate a lower bound positivity constraint in

the inverse solution.

Derivation of the Jacobian Matrix Elements

Deriving a computationally efficient form of the Jacobian matrix elements is critical for
a robust inverse solution, since calculation and manipulation of these elements is the bottleneck
within the inversion. To derive these elements consider a single predicted data point, d;, defined

for a given transmitter-receiver pair as
d; = d" + g/ E,. 23)

In this equation d" is a field arising from some specified whole space or layered half space
background model at location j and E, is the scattered electric field vector arising due to 3-D
changes within this background. E, has dimension of NTx1 and is determined from the finite
difference forward solver, (discussed in Chapter II), where NT represents the number of field
unknowns. The vector g;' is an interpolator vector for the jth measurement point and is of
dimension 1xNT. This vector will interpolate fields on a staggered grid to the measurement point
and can also be used to numerically approximate magnetic field measurements through the curl

of the electric field. With this definition an element of the Jacobian matrix is written as
dd/dm, = g;' OE,/dm,. 24
From the forward problem the scattered electric fields are determined from the linear system,
KE, =s, 25)
where K is the sparse finite-difference stiffness matrix with 13 non-zero entries per row and
df:pends linearly on the electrical parameters we desire to estimaté. Because the forward problem

is formulated for the scattered fields, the source vector, s, for a given transmitter also depends

linearly on the model parameters. It is related to the difference between the model parameters
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and the background model, weighted by the background electric field, E®; refer to Chapter II
for the details. Thus differentiating equation (25) with respect to m, yields,

dE,/om, = K(ds/dm, - 0K/dmE,), (26)
and an element of the Jacobian matrix in complex form can be written as
8d;/am, = g K''(3s/0m, - K/dm,E,). @7

Model Step via Conjugate Gradients

As the number of unknowns increases beyond several thousand, using direct matrix
inversion to compute the updated model, m, in equation (21) is not feasible, even with an MP
platform. Instead we opt for an iterative solution. Since equatidn (20) satisfies the normal
equations, the conjugate gradient method of Hestenes and Stiefel (1952) can be used to get the
solution. This method offers a benefit over direct inversion in two ways: 1) following Mackie
and Madden (1993) and Zhang et al., (1995) it is possible to avoid explicitly forming the
Jacobian Matrix, AP® and its transpose altogether, thus saving considerable computer storage,
and 2) as the number of unknowns, n, increases the solution for direct inverse goes as n’
compared to n® with the iterative approach. Finally, it is much easier to implement a CG routine
on a parallel platform when compared to a full matrix inversion.

In the conjugate gradient method all one needs is one matrix-vector multiply per
relaxation step. However, because the matrix given by this operation is [(DAP®)' (DAP®) +
A(W)Y(W)], there are several other matrix-vector multiplies to be considered. First, the matrix
product of (DAPP)' with DAP® requires two matrix-vector multiplies. In addition the
regularization-matrix product with its transpose requires two more matrix-vector multiplies.
Since the latter matrix-vector multiplies are easy to implement and compute, no further
elaboration will be given to them until the MP implementation of the 3-D inverse.

For the Jacobian matrix-vector multiplies, DAP® and (DAP®)!, we have

y = DAPPy 28

and
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z = (DA™)y, 29)

where u is an arbitrary real vector, known as a CG search direction vector. The vectors y and
z are also assumed to be real in the above expressions. We now determine compact and
computationally efficient forms for the two matrix vector multiplies. These forms will also be
used to treat the matrix-vector multiplies given in equations (21) and (22), i.e. A"®m® and
(DAP®)t (D5d™), which are needed to initialize the CG solver at each iteration of the inversion.
For compact expressions, let the vector y in equation (29), the observed and predicted data, as
well as the data weighting matrix be redefined as complex. Using the results from Appendix E.

and equation (28), we have for the jth element of the first matrix vector multiply

M
y; = Cmplx(Re(gj‘ K?! T u,(ds/0m, - IK/dmE))Re(D;),
k=‘l
M
Im(g; K T u,(3s/dm, - dK/dm,E,))Im(D;)), (30)

k=1

where M is the total number of parameters to be estimated and D;; is the jth diagonal entry of
the matrix D. E, here denotes the scattered electric field arising from a given transmitter at a
specific frequency used to determine the model sensitivities and predicted data at location j.

Using the same approach one can also show that for the second matrix-vector multiply

N

z, = Re(T Cmplx(Re(D;) Re(y;), Im(D;) Im(y))" g' K™ (8s/dm, - dK/dm,E))), 31

i=1

where N is the number of complex data points used in the inversion and the symbol **’ stands
for complex conjugation. Note that even though the summation in equation (31) is over all the
daté points, parts of the sum could be over different transmitters and/or frequencies, hence E,
will change. Lastly, the derivatives ds/dm, and dK/dm, in equations (30) and (31) are rapid to
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compute analytically; it is shown in Appendix F that the vector ds/dm, and matrix IK/dm, each
have 12 non-zero entries when m, represents either the conductivity or permittivity.

In addition to the forward solves necessary to determine E, for each source, the
matrix-vector multiplies in equations (30) and (31) require solving a series of forward problems

corresponding to the total number of unique data measurements locations, where
Vj‘ = gj' K-l, (32)
or since K' = K (refer to Chapter II),

Kv; = g 33)
(note: The fact that K is symmetric is simply a statement of reciprocity). A unique measurement
location comprises the measurement of a specific field component made at a site. Thus the total
number of forward solves needed for each model update is given by N, + N,,, where N,, and
N,, are the total number of transmitters and unique receiver positions used in the inversion.
Handling the Jacobian matrix-vector multiplies in this manner is much more efficient then
attempting to explicitly solve equation (26) and using the results to form the matrix-vector
multiplies. For example if we are estimating over 30,000 parameters, this would require 30,000
separate forward solves which is impractical. On the other hand because the amount of data used
in the inversion is limited, we anticipate no more than several thousand forward solves per
model update. Limiting the number of forward solves has also been recommended by
McGillivray and Oldenburg (1990) and Oldenburg (1990) because of its efficiency and has been
used by Park (1983), Mackie and Madden (1993) and Zhang et al. (1995) in their constructions

of the inverse solution.

An Iterative Solution and Selecting the Tradeoff Parameter

Because of the computational cost of using an exact forward solution in the inversion we
do not have the luxury of slowly reducing the tradeoff parameter or determining an optimal
tl;adeoff parameter at a given iteration to insure against arbitrarily rough models. However,

experience indicates that smooth models can be produced with the strategy we are now going
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to discuss.

We initiate an inversion assuming an initial background model, where we compute the
predicted data for all transmitter locations. At the first iteration we use our scheme to efficiently
determine the matrix-vector multiplies in the CG algorithm and determine the model update via
equation (21). This model is determined once the tradeoff parameter, A, is selected. To assuzre
a smoothed solution at the first iteration, we select the tradeoff parameter as

A = Max Row Sum(DAP® [DAP®])/2¢D, 34

where i=1 for the first iteration. We have selected this method of choosing A because it is an
estimate of the largest eigenvalue of the non-regularized least squares system matrix. Thus
weighting (W){(W) by this amount allows only the largest eigenvalues to influence the solution.
The maximum row sum is easy to compute and follows from equations (28) and (29) with u
selected to be the unit vector.

To digress for the moment, we note that the CG method is designed for linear systems
that are symmetric positive definite. While the normal equations in equation (21) are symmetric,
both (DAP®)* (DAPP) and (W)'(W) posses a zero eigenvalue. Thus it appears that the matrix
describing the normal equations may be semi-definite. However when (DAP®)' (DAP®) and
(W)Y(W) are summed as (DAP®)* (DAP®) + N(W){(W), experience shows the CG algorithm
converges provided the tradeoff parameter is reasonably selected. One must avoid selecting A
too large such that non zero elements of (W)'(W) are much greater than the corresponding
elements of (DAP)* (DAP?) as this will cause a degradation of the convergence rate within the
CG algorithm.

We proceed to the next iteration if the data error (sum of square errors) is above x? . If
this is true the model is linearized again about the new model m, new predicted data and electric
fields are computed from the updated background model, and the new model update determined
with the tradeoff parameter specified with equation (34). In general we have found that for the
first few iterations this method of selecting the tradeoff parameter reduces the error by about a
factor of 2. The iterative procedure, just outlined, is continued until the data error matches X,
c«énvergence of the data error occurs, or a pre specified number of iterations has taken place.

Even with this procedure, it is possible to drive the tradeoff parameter down too quickly,
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especially when one attempts to fit the data to an unrealistic noise level or uses an excessive
number of iterations. However, it has been our experience that if the tradeoff parameter is not
relaxed sufficiently the inversion can stall out far above the estimated noise level in the data.
Our solution to this difficulty is to have a good estimate of the data noise, and monitor the
tradeoff parameter and squared error in the inversion. If excessive model structure is being
incorporated into the image, or if the inversion is over fitting the data, we stop the inversion and
relaunch it using an acceptable reconstruction and tradeoff parameter at some previous iteration.
After this restart, the tradeoff parameter is kept fixed for the rest of the inversion. In addition,
we may change the data weighting scheme if it is decided that bad data are weighted too large
or good data too little. While this strategy is somewhat subjective, it has yieldéd acceptable -
results.

At each iteration we restrict the number of relaxation steps in the CG routine since only
a modest number of steps are sufficient to produce an accurate model update, especially during
the early stages of the scheme (Zhang et al., 1995). For the first and second iterations, 20 and
40 relaxation steps are used, respectively. Subsequent iterations use 60 steps.

MASSIVELY PARALLEL IMPLEMENTATION

EM inversion in 3-D can easily require the solution of at least several hundred forward
solves per iteration. In Chapter II we demonstrate how these forward solves can be efficiently
computed on an MP machine, where each solve could constitute over five million field
unknowns. A significant portion of the storage required to preform the inversion is taken up by
the electric field solution vectors produced by these solves and are needed to complete
matrix-vector multiplies in the CG routine. Fortunately on the 1840 node Intel Paragon at Sandia
National Laboratories it is possible to execute and store all solves without writing to disk; the
Paragon has approximately 30 Gbytes of accessible memory.

As determined in Chapter II, the most efficient use of the processors is to divide the
problem as close to an equal number of unknowns for which to solve. Because each processor
needs only to make calculations for a subset of the forward and inverse problems, and because
+ the processors are making their calculations in parallel, the solution time is reduced by a factor
which is approximately equal to the number of processors employed.

The parallelization of the inverse problem is achieved by assigning a given number of
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processors in each direction of the forward modeling domain (nx in X, ny in y and nz in z).
Hence the number of processors dedicated to the problem is deiermined by nx*ny*nz. The actual
estimation of the earth’s electrical properties is carried out on the same sets of processors
dedicated to the forward problem,‘ with all the processors sharing the same data, but storing
different parts of the inversion and forward modeling domain. However, it is possible that some |
of the processors may not contain portions of the inversion domain and thus will be idle during
the CG solve. The reason for this is that cells outside the inversion domain are necessary to keep
the boundary of the forward modeling domain at distance (Figure 19). We desire parameter
estimates that are not adversely affected by grid truncation errors in the forward modeling.

We now need to address the manner in which the model is input into the parallel
machine. The input could constitute a starting model needed to launch the inverse or a restart
model in the event of a system crash or if excessive model structure was being incorporated in
the inversion. To accomplish this input, we have decomposed the data into two different sets,
a global data set and a local data set as in Chapter II.

Communication or message passing amongst the processors will be needed to complete
calculations in the inverse problem as well as for the forward problem. Communication amongst
processors consists of both the global and local variety. Global communication will be required
to treat the five dot products within a generic CG routine and an additional one in equation (30).
On the other hand, calculations involving the matrix-vector multiplies require local
communication.

Within the inversion three fypes of local communication will be needed. The first will
involve communication of electric field values on processor boundaries such that matrix-vector
products in equations (30) and (31) can be completed. This communication will occur before the
CG routine is called for efficiency. The second type of communication will involve matrix-vector
products of the CG search direction vectors with the regularization matrix times its transpose.
This occurs within the CG routine at every relaxation step because 1) we have explicitly
formulated the regularization matrix and 2) the CG vectors are constantly updated. The final type
of communication occurs after exiting the CG routine. Electrical properties of cells along
processor boundaries must be communicated with neighboring processors for proper averaging
oi" electriéal properties at cell edges; these averages are needed in subsequent forward-model

calculations. After this message passing, calculations with the forward solver can proceed with
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the next iteration, given the convergence criteria outlined above.

To deduce the communication pattern of the first type, considér eight nodes located at
the corners of a cell whose properties we wish to estimate (Figure 20). Consider the simplest
- case where each processor is in charge of only one node and cell. For example, node (i,j,k) has
the cell in Figufe 20 assigned to it as well as the three components of the electric field at
(i+%,j,k), (i,j+%,k,) and (i,j,k+%2). To complete its calculations, the processor that owns this
node and cell also needs the electric fields on the cell edges assigned to other nodés on different
processors. These processors will thus need to supply the field components. Furthermore the
processor that owns the node (i,j,k) may also have to send its electric field components to nodes
on other processors. For example, node (i-1,j,k) will require the y component of electric field
assigned to node (i,j,k). ' |

The pattern for the second type of communication can be obtained from Figure 21. The
stencil shows the required coupling between the center cell and its neighbors arising from the
Laplacian operator, as applied in the regularization matrix-vector multiplies. Again consider the
case where each processor contains only a single cell. To complete its local version of the
matrix-vector multiply, the center processor needs components of the CG search direction vector
which are assigned to the other cells and hence processors. In addition to this, the processor
holding the center cell will also be required to send components to the neighboring processors
so that they can complete their corresponding computations.

From Figure 22 the final communication pattern can be inferred. Consider the
computation of the average electrical properties at cell edges (i+'%,j,k), (i,j+%,k) and
(i,j,k+'2), which are assigned to node (i,j,k). The electrical properties of the four cells that
form each edge will be needed and the computation at these positions will be carried out on the
processor that holds the solid cell also assigned to node (i,j,k); additional cells that are required
are indicated by the dashed outlines. Let us now consider that each node, cell, and its associated
electrical properties belong to a different processor. Since the dashed cells belong to different
processors, their electrical properties need to be passed to the processor (indicated by solid cell)
that will compute the averages. In addition this processor will be required to send its electrical
pll'operties. Consider computing average electrical properties at location (i+'4,j+1,k). Since this

computation is carried out on a different processor, the electrical properties assigned to the solid
cell in Figure 22 will be needed.




The local communication pattern for the inverse problem can now be summarized in
Figure 23, where each cube represents a different processor with subsets of nodes and cells
assigned to it. For the matrix-vector multiplies involving the Jacobian matrix and its transpose,
communication consists along the faces of processors as well as along edges. Specifically
information is passed from the central processor (marked by the heavy outline) to those
neighbors that are dashed in Figure 23. Likewise those neighboring processors with solid
boundaries pass information to the central procesﬁor'. Local communication for multiplies with
the regularization mairix and its transpose involve only communication along processor faces in
Figure 23, where all the processors send the required elements of the CG vectors to the central
processor as well as receive from it. Finally, the communication needed for averaging electrical
properties of the cells at adjacent processor boundaries is an opposite sense compared with the
communication of the Jacobian matrix vector multiplies. Those face and edge processors marked
with a dashed outline send to the central processor, while those that are solid receive information
from it. To provide for the required message passing we have chosen as in Chapter II to employ
- Massage Passing Interface (MPI, Skjellum et al., 1993), instead of using machine specific
commands.

As previously mentioned the solution time will decrease with the nuh\ber of processors
employed. This is demonstrated in Figure 24 for an example described in Chapter IV of this
report. A significant speed up is observed starting from eighty processors for a single iteration
of the inverse algorithm. However as the number of processors continue to increase inter-
processor communication becomes more of a factor, resulting in an asymptotic behavior in the
solution time with increasing number of processors. Here the amount of message passing will
eventually limit the speed at which the computation can proceed. Put simply, increased message
passing implies more time communicating and less time computing. Thus optimal use of the
machine may entail running the example in Figure 24 using 200 processors and launching several
of such jobs simultaneously. On the other hand, if turn around time is an issue, then one would

want to operate near the far right end of the curve.

SYNTHETIC EXAMPLE
Figure 25 shows two different perspectives of a model used to test the 3-D inverse. The
data from this model were generated from the integral equation solution of Newman et al. (1986)
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and provides a stronger check on the inversion scheme than using data generated by the
staggered finite difference code; using data generated with the same forward code as embedded
in the inverse will be prone to the same numerical errors and thus will not be fully independent.
The test model consists of a 0.2 S/m cube, 50 m on a side, residing in a 0.005 S/m background.
'Eight wells surround the target, with 15 vertical magnetic dipole (VMD) transmitters at 10 m
intervals straddling the target. The vertical magnetic fields were calculated in all other wells at
10 m intervals, excluding the transmitter well. Because the frequency of excitation used in this
test is only 20 KHz, the dielectric properties of the target and host are not important in the
simulation and only the conductivity properties need be estimated; the magnetic permeability is
assumed constant throughout the model and set to that of free space. Gaussian noise equal to two
percent of the data amplitude was added to the data set. The data were then weighted by this
percentage before inversion. In total, the data consist of 12 600 transmitter-receiver pairs.

The inversion domain consists of 29 791 cells, but only 13 824 cells are shown in the
interwell region in Figures 25 and 26; cells outside this region are used to keep the boundary
of the inversion domain at distance so as to not affect the conductivity estimates within the
interwell region. The inversion, which was launched assuming a 0.005 S/m whole space, has
recovered fairly well the location and geometry of the cube, but a smeared version of its
conductivity within the cube boundary; the estimates vary from 0.1 to 1.0 S/m. The conductivity
estimates of the background range as low as 0.0016 S/m. It has been our experience that
improved resolution of the background and cube can be obtained by tightening the lower bound
positivity constraint. In this example, the conductivity estimates were restricted to be greater
than 0.001 S/m.

Eleven iterations were needed to obtain this reconstruction, where the reduction in
relative error against iteration count is illustrated in Figure 27. Assuming Gaussian noise with
zero mean, the inversion is assumed to have converged when the relative error approaches the
value of one. Because the final error level is still above one in Figure 27 this might suggest that
more information could be extracted from the data. However, we ascribe the final error level
to originate from bias in the data. These data were produced from a forward modeling algorithm
tl}at is different from the one used in the inverse. Finally the processing time needed to produce

the image in Figure 26 was approximately 24 hours on the Paragon, with 512 processors
utilized.




DISCUSSION

The MP inversion scheme we have presented has been demonstrated on a data set that
would be impossible to invert on scalar workstation platforms due to memory and processor
speeds (refer to Chapter IV for additional examples). An important question to ask is what is
the largest model the MP inversion can handle? Certainly the maximum model size (both
forward and inverse) will be related to the number of transmitters and receivers specified in the
data set because this will determine; the number of electric field vectors, E,, that need to be
computed and stored. Given the maximum memory on the Intel Paragon of 16 Mbytes per
processor, and considering a problem divided amongst 1728 processors (this corresponds to 12
processors assigned along each coordinate direction), Table 2 illustrates a range of problem sizes
that can be efféctively handled. If 120° nodes are used to describe the forward and inverse
modeling domain, the number of transmitters and receivers that can be used is 700. To increase

the number of transmitters and receivers it appears necessary to reduce the number of nodes.

Problem Size(Nodes): 120° 96° 723
#Tx’s and Rx’s: 700 1300 3000

Table 2. Maximum problem size that can be treated by the Intel
Paragon assuming 1728 processors. Problem size is determined by
the number of nodes or cells used in the forward modeling and
inversion and the number of transmitters (Tx’s) and unique
receivers (Rx’s) specifying a data set. Each Tx and Rx position is
for a unique frequency.

One way to increase the size of inverse problems that can be tackled is to skeletonize the
inversion domain, but retain the same parameterization level in the forward modeling domain.
The key idea here is to reduce the storage of the electric field vectors needed in the inverse. For
a given source, the electric field and predicted data are computed at the parameterization level
specified in the forward modeling. The electric field is then interpolated to the skeletonized grid
corresponding to the inverse and stored in memory. Hence the forward modeling accuracy is still

retained in the inverse. Note that the coarser grid can still produce smooth images since it can
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involve tens of thousands to hundreds of thousands of cells.

The skeletonized electric field vectors allow for the number of transmitters and receivers
to increase dramatically. Consider a problem where the inversion grid is eight times coarser than
the forward modeling grid. If 120° nodes are used in the forward calculations, the skeletonized
inversion grid, which still comprises 216 000 cells, allows for the number of transmitters and

receivers to increase from 700 to over 3000.

CONCLUSIONS

A 3-D EM inversion code has been successfully implemented and tested on an MP
~ platform. Reasonable, overnight to full day processing times have been obtained. Because of the
MP platform, reconstructions have been produced that do not underparameterize the earth; these
are reconstructions that involve tens of thousands of cells. Since the 3-D MP inverse also
includes rigorous 3-D forward modeling for computing model sensitivities and predicted data,
it is our hope that this solution will also serve as an accuracy benchmark on approximate inverse
methods now being implemented on workstation platforms (cf. Torres-Verdin and Habashy, 1995
and 1994; Zhandnov and Fang, 1995a; Habashy et al., 1995; Farquharson and Oldenburg,
1995).

In this chapter, we have presented the theory and demonstrated the 3-D inversion
capability on synthetic data. Because the ultimate goal of any inversion scheme is to use it to
image field data, in Chapter IV we demonstrate how this scheme can be used to design a 3-D
crosswell survey and invert a crosswell data set collected at the Richmond field station north of
Berkeley California. Images before and after the injection of a salt water plume will be
compared to determine the location of the injected plume. In addition, we will also show how
the scheme can be employed to analyze the reliability of the images as well as the accuracy and

errors in the data.
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Figure 19. The inversion domain is a subset of the forward modeling domain because of
forward-modeling errors near grid boundaries. Transmitters and receivers can be placed either
inside or outside the inversion domain. External transmitters and receivers could correspond to
surface or airborne configurations, while internal sources and receivers could correspond to
cross-well configurations.
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Figure 20. The electric field stencil needed to complete the Jacobian matrix-vector multiplies in
the inverse for a single cell. Node (i,j,k) has the cell and the x, y and z electric field
camponents assigned at (i+%2,j,k), (i,j+'%,k) and (i,j,k+'4), respectively. Assignment of other
electric field components to other nodes as shown in the figure follows analogously. Using
results for the single cell, a processor map can be developed to carry out the required local
communication amongst the processors.
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Figure 21. The stencil needed to complete local regularization matrix-vector multiples in the CG
routine. Using results for the single cell assigned to a single processor, a processor map can be
developed to carry out the required local communication amongst processors.
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Figure 22. The different cells needed to compute average electrical properties at edges
@i+%,j,k), (,j+%,k) and (i,j,k+%%). These edges, as well as the solid cell are assigned to node
(i,3,k). The additional face and edge cells needed to compute average electrical properties are
indicated by the dashed outlines. Using results for the single processor and cell, a processor map
can be developed to carry out the required local communication amongst processors, necessary
for subsequent forward model calculations.
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Face Communication

..........................

Edge Communication

Figure 23. Local processor communication scheme used in the 3-D MP inverse. The solid cube
depicts the central processor that is sending and receiving from its neighbors. Both face and edge
communication patterns are indicated.
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CHAPTER 1V

ANALYSIS OF A 3-D CROSS WELL EM EXPERIMENT

Although synthetic examples such as the one presented in the last chapter illustrate the
theoretical accuracy and limitations of a geophysical inversion algorithm, the real test of a scheme's
usefulness, versatility and robustness comes when data collected at a field site are inverted to
produce an image of the subsurface. In general the characteristics of the noise are much different
than the Gaussian noise assumed in synthetic tests and the data tend to be more sparsely sampled
due to survey time constraints than one would like. In addition with certain types of surveys, such
as a crosswell EM survey, the unknown accuracy of the source and receiver locations may provide
additional sources of error.

To illustrate the benefits provided by the full 3-D inversion code, as well as how these
problems affect the images, we have inverted a crosswell data set that was collected to monitor the
injection of a volume of salt water at depth. The versatility of the scheme is demonstrated by not
only producing 3-D images of the subsurface, but by also employing it for pre-imaging
experimental design and resolution analysis, as well as post-imaging error analysis. In addition,
the benefits of the massively parallel computer platform is demonstrated by the quick turn around
time for the images as well as the number of imaging experiments that can be accomplished within
a given time period.

THE RICHMOND FIELD STATION EXPERIMENT

The University of California's Richmond Field Station has been the location of a series of
salt water injection monitoring experiments since 1988, the purpose of which have been to simulate
both an enhanced oil recovery water flood as well as the injection of a contaminants and/or tracers
into an aquifer. The site contains several monitoring wells (Figure 28) as deep as 80 m which
show the geology to consist of unconsolidated alluvium to depths of 30 to 35 m overlying a
basement of sandstone and shale. The alluvium consists of muds and silts interbedded with layers
of sand and gravel and well logs show this upper section to have conductivities ranging from 0.2
to 0.02 S/m. The basement tends to be more resistive with conductivities as low as 0.001 S/m. In
addition the logs indicate that an unconformity of some type exists in the basement between the Inj
and NW wells. This unconformity is likely due to either steeply tilting stratigraphy or a fault.

Although more thorough descriptions of the experiment can be found in Alumbaugh and
Morrison (1995) and Wilt et al. (1995a), for completeness a brief description is given here. In May
of 1992, crosswell electromagnetic measurements were made by placing a vertical magnetic dipole
(VMD) source operating at 18.5 kHz in the central well, and making vertical magnetic field
measurements in the four surrounding wells (Figure 28) using the system described by Wilt et al.
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(1995a). The measurements were made at Sm receiver intervals from 5Sm to 60m depth which
yields 11 receiver positions per well. A similar range of source depths was employed using a
sampling interval of 0.5m. ,

After this baseline set of measurements had been completed, S0 000 gallons of 1 S/m salt
~ water was injected into a gravel aquifer at 30 m depth through the center well in Figure 28. A
second set of measurements were then completed using the same parameters as in the baseline
survey. In addition, post-injection repeat data sets were collected between the injector and the NW
well, and the injector and the SW well at a time interval from the original surveys of one week and
two weeks, respectively. The purpose of these repeat measurements was to better quantify the
noise characteristics of the data. The experiment ended in June of 1992 prior to pumping out the
salt water.

The purpose of this particular experiment was to analyze how well the plume location could
be determined through crosswell EM tomography. Alumbaugh and Morrison (1995a), Liu et al.
(1995) and Wilt et al. (1995a) all employ EM inversion schemes that assume a 2-D cylindrical
geometry in which the geology is symmetric about the borehole containing the source. In all three
cases the plume was clearly shown to be migrating in a northerly direction. In addition, Newman
(1995) employs a 2.5D geometry in his inversion scheme which yields similar conclusions for the
data collected between the injector and the NW well. These conclusions all agree with surface-to-
borehole dc resistivity measurements made by Beve and Morrison (1992).

Although these images were very successful in mapping the general migration route of the
plume, questions still remain about the 3-D shape of the plume. In addition, as demonstrated by
Alumbaugh and Morrison (1995a), assuming a 2-D geometry can impose artifacts in the images.if
the geology does not fit the 2-D assumption. Thus to better describe the shape of the plume as well
as more accurately resolve the geology, a 3-D inversion scheme is needed.

EXPERIMENT DESIGN AND RESOLUTION ANALYSIS

One of the critical questions when trying to image geologic structure is what acquisition
parameters are needed to adequately resolve structures in the subsurface? If the data have already
been collected then the question becomes given the survey acquisition parameters, what resolution
can we expect to achieve from the data? Thus before inverting the Richmond Field Station data we
shall employ the 3D inverse to try and answer these questions. However, because the experiment
actually took place before these simulations could be conducted, the focus here will be to predict
how well the plume and assumed electrical structure of the site can be recovered, and what
improvements could be made to the survey configuration to improve the resolution.

Figure 29 shows the synthetic model employed in this simulation. Horizontal slices of the
electrical conductivity from the zero to 60 m depth illustrate conductive sediments overlying
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resistive basement. The finer structural features that we are trying to resolve include the conductive
salt water plume at 30m depth within a thin (4m thick) aquifer, a vertical contact between resistive
units within the basement, and a thin (4m thick) conductive channel at 22m depth within the
overburden at the location of the SE well. The basement contact and the channel have been
included in the model using information from the northeast and southeast well logs. A source
sampling interval of 2.5 m was employed from Sm to 60m depth as will be employed when
imaging the data, and a receiver sampling of Sm was used as in the experiment. This yields a total
of 924 data points. The synthetic results were calculated using the finite difference code described
in Chapter II. (Note: we have not included the air-earth interface in this example. The exclusion of
this boundary is discussed in more detail in the next section.)

Because all data contain some type of error, a necessity for producing accurate images
through data inversion is to estimate the quality of the noise. To do this we have analyzed the two
repeated sets of data taken after the injection. Wilt et al. (1995a) present the average errors for
these repeat data to be 2.2% in amplitude and 0.8 degrees in phase, and 3.3% in amplitude and 1.1
degrees in phase for the INJ-NW and INJ-SW repeats, respectively. A more rigorous way to

‘analyze the noise is to look at the mean and standard deviation of the errors as a function of
common source-receiver offset. As shown in Figure 30, this type of analysis shows the
repeatability noise to decrease at the same rate as the signal amplitude for shorter offsets, and then
become approximately constant for longer offsets. This implies that at these larger offsets the noise
as a percentage of the data is going to be much larger than at the shorter offsets. The noise model
that we have employed here is based on this analysis and assumes random Gaussian noise with a
standard deviation equal to 2% of the magnetic field for amplitudes greater than 1x10-6 A/m, and a
standard deviation equal to 2x10-8A/m when the field drops below this value. The data were then
weighted within the inversion scheme with this noise distribution, which effectively downweights
the longer offset data.

The image resulting from the simulation is given in Figure 31, and in Figure 32 we have
plotted the average residual error as a function of the iteration number. Notice that the residual
decreases smoothly and flattens out as it approaches the estimated noise level. The forward and
inversion domains consist of 46x46x54 and 42x42x50 cells, respectively, and thus a total of
88 200 cells were used to estimate the electrical conductivity. However for compactness only
34 000 cells within the region of interest are shown in Figure 31. To run this using 512 processors
of the Intel Paragon took approximately 6 hours, or 1/2 hour per iteration where the inversion was
launched assuming a whole space of 0.033S/m.

Figure 31 shows that we have recovered the general geology of conductive sediments
overlying resistive basement as well as the location of the plume remarkably well. However,
notice that the sharp edges of the plume have not been recovered; this is to be expected from a
scheme that imposes smoothness constraints on the solution. In addition notice that neither the
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channel structure, the aquifer nor the contact within the basement are imaged very well. We feel
that the former is caused by too large of a receiver sampling interval in the vertical direction. We
have deduced this because the plume and the channel are both 4m thick. However the source
sampling interval within the plume is 2.5m, while the receiver sampling interval within the channel
is 5m. The plume is recovered by the finer sampling interval while the channel is not. Thus the
receiver sampling interval needs to be decreased in order to recover finer structures.

The inability to resolve the aquifer may also be attributed to insufficient receiver sampling.
However the aquifer is a resistive target of fairly low contrast with respect to the background when
compared to the conductive targets. Thus because cross well EM is an inductive method, the
aquifer may not be generating enough of a scattered response to be resolved. v

With regards to the basement contaét, we believe that the resolution can be improved if a
higher frequency is employed. This is based on the fact that the basement structure is fairly
resistive such that there is only 1/2 skin depth of attenuation between the wells compared to 1.5 to
2 skin depths attenuation in the conductive sediments. As demonstrated by Alumbaugh and
Morrison (1995b), greater attenuation implies greater resolution. Because an increase in frequency
implies an increase in attenuation, a higher frequency should provide better resolution.

However, part of the problem in accurately recovering the basement structure, especially
the formation of the relatively conductive artifact near the source well in Figure 31, can be rectified
by employing more complete data coverage around the imaging region. This is illustrated in Figure
33 where we have simulated and imaged a data set that includes four additional receiver wells
between the four original wells. This example took 7 hours to run using the same number of
processors as above. Notice that the artifact near the central well has disappeared, and that the
contact though distorted is better defined. In addition there is a minor improvement in locating the
position of the channel as well as the conductivity distribution within the plume. However notice
that the general shape of the plume has not been altered. Thus, although we may have problems
with the Richmond data in imaging structures finer than the source and receiver sampling intervals
and fully recovering the basement structure, we should be able to accurately locate the position of
the plume which was the primary objective of this experiment.

ELECTRICAL RECONSTRUCTIONS OF THE FIELD DATA
~ Initially the data were weighted using the same noise estimates as used for the synthetic
examples in the previous section. Unfortunately, the normalized residual error refused to converge
when this noise model was employed, which indicates that we were giving to much weight to poor
quality data. Thus we chose to weight the data by two percent of the maximum amplitude for each
source relative to all the receivers in a given observation well. This type of weighting puts more
emphasis on short offset positions compared to the long ones; because the data quality tends to be
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better when the source and receiver are close together, this gives greater weighting to good data.
This weighting scheme was found to allow the inversion to converge.

A second major difference between the Richmond data and the simulations above is that the
measurements at Richmond were made in the presence of the air-earth interface. Because the
inclusion of a half space interface is computationally more demanding, employing this as a
background model could cause the inversion scheme to run much slower. To determine if we
needed to employ a half-space rather than whole-space within the inversion, a synthetic data set
was calculated for the model in Figure 29 which contained this boundary, and then this data
inverted assuming a whole space. It was demonstrated that the half-space effects rapidly decreased
with increasing depth and thus it was determined that we could launch the inversion assuming a
0.033S/m conductive whole-space.

The image resulting from the pre-injection data is given in Figure 34, the post-injection data
in Figure 35, and the average residuals for the inversions in Figure 36. These each took
approximately 4 hours to run using 512 processors of the Paragon. Both images clearly show the
conductive overburden as well as the resistive basement. In addition, the plume is evident in the
post injection image (Figure 35) at 30 m depth to the north of the injector well. To emphasize the
plume we can subtract the pre-injection image from the post-injection as illustrated in Figure 37.
Although the plume is evident from 26 to 32 m depth which corresponds to the injection interval,
the thickness is not evident here because we have only included selected depth slices. ‘

Conductive zones also appear within the overburden in Figures 34 and 35 between the
receiver wells where there is no data coverage. Because these did not appear in the synthetic
example (Figure 31) one would tend to imply that these zones represent structure. One alternate
suggestion is that the different weighting scheme used to invert the data has somehow caused less
sensitivity to these regions resulting in artifacts. To rule this out we inverted the synthetic data
employing the same data weighting scheme as employed in this section and found no generation of
these phenomena. A second more plausible explaination is that these are artifacts caused by
inaccurate knowledge of the source and receiver locations. To demonstrate how this idea was
developed, we next examine the residual errors between the measured and predicted data for each
individual source-receiver combination.

ERROR ANALYSIS
Alumbaugh and Morrison (1995b) show that by plotting the residual error as a function of
source and receiver position, one can determine if there exists a non-random bias either in the data
or in assumptions made within the imaging scheme. In that particular example they show how
large biases in the residuals and artifacts in the images can result if a 2-D model geometry is
employed within the inversion for imaging data generated in a 3-D media. Here we can be fairly
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confident that because we are using a full 3-D model geometry this type of bias will not exist. Thus
any non-random component of the residual that does appear is more likely to be due to errors in the
data collection process. |

Before presenting the residual errors between the Richmond field data and the predicted
data of the final images, it is instructive to investigate the residuals from the resolution analysis
section. Here the plotted values are simply the difference between the measured and predicted data
normalized by the weighting. Figure 38 shows the residuals for the image in Figure 31 when the
receiver is in the NW well. Notice the random pattern which indicates there is no bias in the data.
This is to be expected because the noise that was added is random in nature. However, as
illustrated in Figure 39 this is not the case for the post-injection data collected in the Richmond
experiment. (The pre-injection data residuals demonstrate almost and identical response and are not
shown here.) The residual gradually increases with increasing source and receiver depth such that
the largest errors are observed when both sensors are located in the basement. Further, the
southeast well has the largest residuals, which can be as large as 10. Because the data weighting
was 2% of the maximum amplitude, this normalized value is equivalent to 20% amplitude error.
Note that the residuals in the imaginary component of the data are always less than corresponding
real component. This is expected because 1) the high resistivity of the basement coupled with the
fairly low frequency ensures that the measurements were made in the quasi-static field so that the
real part of the field is much larger than the imaginary and 2) the weighting was based on data
amplitude rather than the real and imaginary components separately.

The clustering of large residual values in the basement indicates that the data are some how
biased as the source and receiver get deeper into the earth. One possible source of this error could
be a deviation in the wells from the assumed vertical orientation. Numerical experiments with a two
layered-earth model (conductive overburden and resistive basement) showed that a similar bias can
be produced if the predicted data are calculated assuming the wells are straight but the
measurements are made in boreholes that are deviated. A deviation as little as 1/2 to 2 m at the
bottom of the wells was found to produce errors on the same order of magnitude as those
observed.

To further test this idea, the data employed in the resolution analysis portion of this chapter
were again run through the inversion scheme assuming two different scenarios: (1) the bottom of
the observation wells were assumed to be deviated in towards the injector well and (2) the bottom
of the wells were assumed to be deviated outward away from the injector. This was accomplished
by taking the synthetic data that were calculated assuming vertical wells and altering the horizontal
locations of the receivers with depth in the inversion. Specifically the inward or outward receiver
deviations at each depth were calculated by assuming zero horizontal offset at the surface and
linearly varying it downward such that at 60m depth the horizontal offset was 2 m for the southeast
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well, 0.2 m for the southwest well and 1 m for the northeast and northwest wells. These values
were selected based on the size of the data residuals observed in the field experiment. Here the data
weighting scheme employed was identical to that used in the inversion of the field data.

The data residuals for the two scenarios are illustrated in Figures 40 and 41, while the
resulting images are given in Figures 42 and 43. The residual plots show a bias along the diagonal
near the bottom of the wells which in general is very similar to those of the data. In addition notice
that if the receivers are assumed to be closer to the source than is actually occurring, the residuals
are positive along the diagonal. If the reverse is true the residuals are negative. Thus we can
crudely determine the errors in positioning of the receivers with respect to the transmitter.
However, because the injector well could also be deviated we can not determine the exact location
of the sensors with this analysis. Finally, the electrical reconstructions for the two scenarios in
Figures 42 and 43 clearly show the presence of artifacts resulting from the sensor location errors
that are similar to those observed in Figures 34 and 35. However, notice that the plume is still
fairly accurately located.

CONCLUSIONS

The 3-D inversion scheme has been successfully employed to image data collected in a
crosswell EM experiment. The scheme has not only provided images of the site, and especially of
the injected salt water plume, but also has been demonstrated to be of great use in defining the
resolution of the experiment as well as what type of errors are present in the data. From this
analysis we have determined that 1) the plume is fairly well resolved with this configuration and 2)
the wells at the Richmond Field station are most likely not vertical, but rather are deviated with
increasing depth. In addition the speed and versatility of the massively parallel computer platform
has been demonstrated; jobs that only take 3 to 4 hours on the Intel Paragon could take as long as a
week on a high end workstation.

In the near future we will be analyzing other data sets that employ different source and
receiver configurations. Although we are currently limited by the number of sources and receivers
that can be employed, we are currently looking at methods to remedy this situation as outlined in
chapter III. Finally, we would like to suggest that any geophysical imaging experiment that
includes measurements within boreholes should have the wells accurately surveyed in to determine
if any deviations exist. As illustrated here, this can have a large impact on the accuracy of the

resulting images.
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Figure 28. Layout of the Richmond-field site experiment.
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Figure 42. Conductivity reconstruction for the four well test model
assuming the wells are deviated toward the injector.
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CHAPTER V

CONCLUDING REMARKS

This report has demonstrated techniques that can be used to construct solutions to the 3-D
electromagnetic inverse problem using full wave equation modeling. To this point great progress
has been made in developing an inverse solution using the method of conjugate gradients which
employs a 3-D finite difference solver to construct model sensitivities and predicted data. The
forward modeling code has been developed to incorporate absorbing boundary conditions for
high frequency solutions (radar), as well as complex electrical properties, including electrical
conductivity, dielectric permittivity and magnetic permeability. In addition both forward and
inverse codes have been ported to a massively parallel computer architecture which allows for
more realistic solutions that can be achieved with serial machines.

While the inversion code has been demonstrated on field data collected at the Richmond-
field site, techniques for appraising the quality of the reconstructions still need to be developed.
Here it is suggested that rather than employing direct matrix inversion to construct the model
covariance matrix which would be impossible because of the size of the problem, one can
linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to
construct it.

Using these appraisal and construction tools, it is now necessary to demonstrate 3-D
inversion for a variety of EM data sets that span the frequency range from induction sounding
to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth’s electrical properties

can provide researchers opportunities to infer the flow paths, flow rates and perhaps the
| chemistry of fluids in geologic mediums. It also offers a means to study the frequency
dependence behavior of the properties in situ. This is of significant relevance to the Department
of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and
gas exploration.

A key obstacle that must be overcome if 3-D inversion is to be practical is the availability
of reliable parallel computing platforms. Unreliable and over-used platforms, such as the Intel
Paragon, while good for designing and testing research software, are not feasible for production
w‘ork. For example, typical waiting times in the queue for jobs to execute on the Paragon can

be a week or more with a high probability of a system crash at any time.
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APPENDIX A
The perfectly matched layer concept proposed in 2-D by Berenger (1993) and 3-D by Katz -
et al. (1994) was originally devloped for time domain simulation of Maxwell's equations. Here we
demonstrate that this method is valid for the 3-D frequency domain Helmholtz equation for the
scattered electric fields using the method of Chew and Weedon (1994). First we simplify equation
(7) by assuming that we are at a boundary far away from any zones of anomalous electrical
properties such that it can be written

Vi, X Ve X ES +ioy (o), +ioe, |ES = 0. (A-1)

Because we are far away from any anomalous zones, a poss1ble plane wave soluuon to equation
(A-1) along this particular boundary is glven by

ES= Es k¥ (A-2)

where k =kx§+k J+kk and r=xi+yj+zk. Because VxEJe kT ik x E§e™® T, it is easy to

show that when equation (A-2) is substituted into (A-1), the resulting expression has the form

-ky, Xk, X E® +zmup( +m)ep)E =0 (A-3)
where
A Kya A
ke=5f-i+-lj+-kik (A~4)
ey & e,
and
k.o kya Kk -
kp=-%i+-Lj+=Zk. (A-5)
hy hy hy

Using a vector identity, the left hand term in equation (A-3) can be expanded to yield
(ky -k, )E® -k (kh Es)+ iopp(op + io)ep)Es =0. (A-6)
Because we are in a homogenous region absent of any free 'secondary' charge,

V, -ES=k,-ES=0 (A7)
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and thus ‘we are left with

(kp -k JES +ioopp (o, + icoe, JES = 0 (A-8)
or
1 2. 1 2 1 .9 2
ki -k = k — ks + k =K A-
h " Me exhx x T yhy y ezhz (A-9)
where 2 = -—i(oupr(cp + icoap).

Let us now assume that the plane wave is obliquely incident on an interface at z=c where ¢
is constant. Chew and Weedon (1994) show that the solution to equation (A-9) is that of a 3-D
ellipsoid which is satisfied by

k, =K-le,h, sinBcosd (A-10)
y =K hysmﬁsm¢ (A-11)

and '
k, =K+le;h, cosH. (A-12)

In addition they find the reflection coefficients for the TE and TM modes at the boundary to be

RTE = kizexzlo — ko€l (A-13)
kyzeazl2 + kpze1 1
and
R™ _ kit 3 —koohuz 3
ki 292 + ka3

(A-14)

where the 1's represent the properties of medium the incident wave is traveling through, the 2's
designates the medium it will be transmitted to, and ¥;=0; + i0€;.

Phase matching will occur if ki, =k, and %, = kp,. To accomplish this we first set the
material properties of the two media to be identical (xj =%j)and then choose h, =e, and
h’V =ey. If we now let €1x =€y =€)y =e2y=l, and furthermore set 61 = 67 and ¢1 = ¢, then the
two reflection coefficients in (A-13) and (A-14) are zero and no reflections are generated at the
inferface. However by making e,, complex, we provide additional loss in k;, which causes the

wave to more rapidly attenuate in medium 2 than it would otherwise.
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It must be mentioned that three assumptions have been made in this analysis which can not
be incoporated into the 3-D FD modeling scheme. The first assumption is that e, e,, &, and hy,
do not vary along the 'z' interface. In the corners of the mesh these values are also varying to
incoporate absorption along the x and y interfaces, and thus perfect matching can not occur in these
locations and reflections will be generated. However we have not experienced any serious
‘problems with regards to this phenomenon. The second assumption that we have made here is that
the interface is located far away from any regions of anomalous electrical properties. Nevertheless
as the results in Figure 10d and 10e indicate, the PML is valid even when the stretching occurs
within these regions, for instance at the mesh boundary located at the bottom of the model shown
in Figure 10a. Finally, it is assumed that h; =e¢; for j=x,y,and z. As shown in Appendix C, h;is
actually a weighted average of the ¢; values assigned to two adjacent cells where the weighting
depends on the cell dimensions. However by using both a constant value of ¢; and a constant cell
size throughout the PML region, any problems with this assumption can be avoided.
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APPENDIX B
To develop an expression for the modified Helmholtz equation for the scattered electric
fields we start with the modified Maxwell's equations given in expressions (1) and (2) where the
modified derivative operators are given by expressions (3) and (4). We now define the primary,
or background fields that exist in the stretched system to be

V, X EP = —ioy HP ~ ioMP (B-1)

and

V, xHP = (op + ia)ep)Ep +JP. (B-2)

Subtracting (B-1) from (1), (B-2) from (2), and adding and subtracting an arbitrary source term to
each equation yields

V% E® = —iouH" +iop HP + (imp.Hp - icoqu) (B-3)

and :
V, xH® = (0 +iwe)Et — (cp + icosp)EP + [(o +iwe)EP — (o + ime)EP]. (B-4)

Properly subtracting the source terms yields the modified versions of Maxwell's equations for the
scattered fields:

'V, xE® = —iouH® - iw(u - Up )Hp (B-5)

and
V), xHS = (0 +i0e)E® + (0' —Op +im(e- sp))Ep. B-6)

To derive the modified Helmholtz equation from these two equations, for numerical
stability we first multiply (B-5) by Wy /i to yield

”Tf—ve X E® = —iouH® -icoup(”;uup)nl’. B-7)

Taking the curl of (B-7) results in the following expression;




v, xﬁuﬂve XE° = —iauV, X H® - i, V), x[-(i—u—ug)-ﬂp} : (B-8)

- Finally, the right hand side of equation (B-6) is substituted for the V, XH® term in the above

equation to arrive at the modified Helmholtz equation given in expression (7).
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APPENDIX C

To develop the finite difference equations we start with the modified Helmholtz equation as -
given if equation (7). First let us expand out the two first order curl operators, i.e

s_| 10E2 10Ey’ ) [10E® 10E )
VexE —(ey dy e, oz " e, 0z e Ox 3 D

[ 1 JEy® | 1 aExS]A
— - k
ex 0x e, 0y

u hy dy 198 h, 0z Hy
19 (mx—up)Hx® 1 5 (my—np)HeP ),
— - + (C-2)
Z Ky h, Ox Uz

hy 0x Ky hy oy My

In this expression, Ly for w=x,y,and z represents the magnetic permeability that is averaged

across the face of two cells in the w'th direction. Next, expanding the second order curl on the left
side of equation (7) we find that ‘

Hp OE:° 3

€y 0y

1! 1 o Hp OBy’ 1 d
vV, x| 2V xES]= — | R J
h l:u e [hyay(uzex ox hyay e, O
18 _Hp OEx’ +_1__i Hp OEZ° N
h oz Hye, Oz h, 0z{ pyey Ox
s s
19| Hp OBz +_1__?_ Hp OBy |_ (C-3)
h, 9z| ixe, 9y h, 0z\ pye, 0z
1 0f Hp 0By ) 19 Hp OB |,
h, ox| pye, dx hy x|\ Hee, dy !
1 9| Hp OExX’ +ii Hp OEz° |
h x Hye, Oz hy Ox| Hyey Ox

19 M 3B +__1__a__[ Hp aEyS] P
hy 9y |\ lxey 9y | hy dy|lye, Oz
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Now let us examine the parts of the Helmholtz equation corresponding to i, }, and k separately

since these are the three equations that we are going to be solving at each node. For the i

component we have
1 9(Mp OBy®) 1 0f Mp 9Ex®) Mpo| 1 9B, (C-4)
hy dy\ ze, OX hy dy| K., Oy h, dz\ pye, oz
g :
é%[ﬁ% 852; J + i, (0 +i0e)Ex® = ~ioop, (c' —GOp + im(e - Sp))Exp -

iny 3 (o —wpJHa iony 3 (ky—pp)Hy”
hy 9y Uz h, oz Ky .
Approximating equation (C-4) with finite differences yields

1 1
s By | -BEY | l-/—|E  -E |-
l-lzi+ Lisly (exiAXi) i+l,j+5.k Lj+z.k (eyjij) i+5.j+1k 45k
272
( |
1 1
Hp [Eys . ys‘_l J————-— Ex® L -Ex® - J 1_ +
MZH Lilg (exiAxi) i+Lj-7.k i,j-5.k (eyj-lAy j—l) \ i+75.5.k i+5.j-1,k (hyjAYj)
22 J
( )
up 1 EZS “"‘E § - 1 § - xs -—
;in+ Likel (exAx) i+ k+1 iik+g (ezkAZk) | i+d kel i+, 5k
272
o
2 EZS. 1 ZS.. e EXS.I. 'Xs.l. =7
pvyi+1 ik (exiAxi) i+Ljk-5 fjk-3 (ezk-lAZk-l) i+3.5.k i+1,j.k-1 (hzkAzk)
kg |
iop 9 Ex® =—iO,| ¥ -, [ExP - C-5
Hpdp™X 1 p(yi+1 ik p) Lk (C-5)
. ( ”"] G ) ; |
“OHp Hy? Lipadl Hy” | 1 | (hyAZ )_
il ixel wligd
uyi+%.j,k+% e uyi+%,j,k--% PphEy Sk
(*‘m;, b ’”") [” “") b 1
HP .1 Hz* L — ¢
i+ljrlk R uzi%a’-%,k plpk (hyJAyJ')
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where now y = +iwe. In this expression Aw, for w=x,y,z and I=i,j,k represents the width of
the I'th cell in the w'th direction. Similarly AW is the distance in the w'th direction between the
centers of cells 1 and 1-1. Notice in this expression how the finite differences and the stretching
parameters conveniently group together. It is also apparent that because AW is essentially the
weighted average of the widths of cells 1 and I-1, h,,, is the weighted average of e, and e, ,.

We can similarly expand the equations for the j and k terms which yields

Kp 1 EZS 1 -ES e 1 E}’S._ ] _Eys _
Hx ; J+ s (eyjAyJ) i j+1,k+—2- i,j,k-l‘i (ezkAZk) 1,]+—2-,k+l i _]+— k

1
*2
( 3
1_EZ‘S.. 1 +——_1-_— ca] Ey] —1—__
lj+l X l y_]ij 1)+1 k- I‘J,k-—z- (ezk-lAZk—I) 1,J+—2—,k 1,]+—2—,k-1 ) (hzkAZk)

{
1
= (B B |- B B |-
uZHm” N (eyjAYj) 1+5,)+1,k l+——,j,k (exiAXi) i+h,j+5.k l,]+5,k)

!J'P 1 S S 1 S S 1
Ex> -Ex*  |m—— Ey® —Ey —t
Hz ;. o (eyjij)( i-Lj+Lk 1-%,3,1(] (ex1A%iq )| itk iLj+bk ||| (AyA%;)

1'5,J+§,

iop, 5, Ey® =—iopy| § EyP -~ C-6
Hodp Yijlx up(yi,j«u%k ~p } ij+hk (©©)
T ]
- -l
. Mt TP L 1
l(D]J.p< Hx Hx L1 m—
1gel ij+i k-1
uxl _]+%,k+— ] J+ 2 K 1J+-é-, 1 R &=k

[xN
+
Jont
e
-
=
>
Pal
"4
SN’

and
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: 1
Up I N S S E:S - E —~
p.y oL ( kAzk) i+3,jk+1 i+3,j.k (exiAxi) i+1jk+3 Lik+: ]

+1 ik+d
PR
.
-BEx® -1 EZ® ~E - ! +
) (ezkAzk l--—,_],k+l i-Ljk (e,d_,Axi_l)K injok+d i-Ljk+d 1 (hgAX;)
1-—_] + .
N 1 1
p $ S - s
(e AZ )(E lj+-k+1 —Eyij—i-—l-k}_(e A ) EZ]J+1k+-— i k+—]
Yigeliad LV . kd AT AN d

up 1 [Eys B Eys ) ) _‘_1_(Ezs )
e e (eadzi ) iidket T iidk ) (e ,Ayj ) bbked 111k+— hyJAyJ

ion, y,E2° =—imp,| -5 B2 - C-7
up)’p e 1 up(yi,j,k+; )’p) l,],k-’-% (C-7)
(I‘LX‘ j‘l‘l k-l-l _up) (ux 1 k+— —up) 1
TINT) —Z 2 HxP HxP -
l p1 lj+ k+— Ly ij-Lk+l (hyAy)
% J+— k+— i 3-— k+— 272 1771
_ 4 - ]
( Yieljk+l HPJH P (uyl Likel HP]H p 1
; VieLised , ViLiked [(ga%;) [
1+ j,k+—l— jox _],k+-;— 2 2

respectively. Unfortunately the above equations will not produce a symmetric matrix. Thus
symmetric scaling must be applied with equation (C-5) being multiplied by

(exi8%; )(y;A; (s AZy ), equation (C-6) by (hyAX;)(eyAy;)(hyAZy), and (C-7) by
(hutX; )y AT; MeaAzy ).
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APPENDIX D
The inverse problem can be formulated to allow for positive parameters with a lower
bounding constraint by using a log parameterization. To accomplish this we first define a

perturbation in the model as
S(m®) = (m-m®) 1)
and then use the differential form of the natural log function to write
sm®) = (m®-¢) din(m-¢), D2)
where
Sln(m-¢) = In((m-¢)) - In(m%-¢)), (D3)

with m and m® > ¢, and e>0. Following the form of equation (20) and using equations (D1),
(D2) and (D3) we can define a new functional,

§' = [(D((@-d")-A"sIn(m-¢)))" (D((d-d®)-APP5In(m-¢))) - X’]
+ MWin(m-¢))(Winm-e)), (D4)

where the modified Jacobian matrix A™® is obtained by multiplying by columns of the original
matrix with elements of the vector (m®-¢). Minimizing the above expression with respect to

In((m-¢)), enforces the lower bound positivity constraint, where

In(m-¢) = [DA™)* (DA™) + AW)'(W)]" (DA™) (D54 (DS)
and
8d'® = (d - @*® + AP Inm%-¢)). (D6)
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Once In(m-¢) is determined, the parameters themselves follow from the expression
m = "™ + ¢ 1Y)
With this new formulation, the inversion process is designed to deliver smooth estimates of

In(m-¢). Nevertheless, with a prudent selection of the regularization parameter, we can also

expect smooth reconstructions for the model parameters, m, themselves.
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APPENDIX E
Computational efficient and compact forms of the two matrix-vector multiplies are
necessary if the inversion is to be practical. Consider fully expressing the matrix vector multiply

in equation (28) as,

k=1

where the summation is over M electrical parameters. The entry D; is the jth entry of the data
weighting matrix and A, is an element of the Jacobian matrix. These elements are assumed to
be real valued, where real and imaginary components are treated as separate elements. Because
the real and imaginary components of the Jacobian matrix ére jointly expressed in'equation 27

as
3d/am, = g! K'(3s/dm, - IK/Im,E,), (E2)

we can redefine the data weighting matrix, D, to be complex to arrive at the following

expression for the first matrix-vector multiply:

M
y; = Cmplx(Re(g K™ T u,(3s/dm, - K/dm,E))Re(Dy),
k=1
M
Im(g; K T u,(3s/3m, - dK/dm,E))Im(Dy)), (E3)

k=1

where y; is now assumed to be complex instead of real.

The second matrix-vector multiply in equation (29) can be expressed as
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2N

z, = X Ay Dy, (E4)

i=1

where 2N is the number of data used in the inversion and where components subscripts j=1,N
correspond to regl entries while components j=N+1,2N correspond to imaginary ones; note
quantities, D; aﬁd y; are regarded as real valued by this splitting. By associating real and
imaginary components as a joint term in the above summation, we can also express equation

(E4) as

N
z=XAD;y; + Aj+Nk D;injen Yien)- (ES)

j=1

Next combining elements as cmplx(Ay,A; v ), cmplx(Dy,D;n;4n) and cmplx(y;,y;.n) and
because z, must always be real, we find

N

z, = Re ¥ cmplx(D; ¥;, Djnjan Yien) cmplx(Ag, Ajinid> (ES)

i=1

where ’*’ stands for complex conjugation. By treating A, D; and y; as complex and using

equation (E2), we finally arrive at
N

z, = Re(Z Cmplx(Re(D;) Re(y), Im(Dy) Im(y))” (g K* (8s/9m, - dK/dm,E,))). E?)

i=1
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APPENDIX F
To show that the vector ds/dm, and matrix dK/dm, each has 12 non-zero entries, we start
with the vector Helmholtz equation for the scattered electric field, E,, (equation (7)), but we will

modify it such that magnetic permeability changes from free space, p,, are minimal. Thus,

vx vX E(r) + iwpug(o(r) Hwe(r)E(T) = -iwpol,(r), (F1)

with the source of the scattering given by
J.(0) ={(o(r)-o"(x)) +iw(e(r)-e(X)}E(r). (F2)

Here we have assumed an ¢! time dependence with i=\/-1, where w represents the angular
frequency. In equations (F1) and (F2) the 3-D conductivity and permittivity variations are given
by o(r) and e(r), with o®(r) and €°(r) representing the corresponding background properties,
which for purposes here are either a whole space or a layered space. The electric field of the
background media, EP(r), drives the source vector, and arises from an impressed dipole source.
The scattered fields are determined by imposing a staggered finite difference
approximation on equation (F1), using a rectangular grid with a Dirichlet boundary condition.
Each cell in this grid has a conductivity and dielectric permittivity assigned to it, where the
scattered and source fields are sampled at the edges of the cell as illustrated in Figure 20.
Because of this sampling scheme the averaged electrical properties have to be determined at the
cell edges (refer to Chapter II for the details). These averages can be evaluated by tracing out
a line integral of the magnetic field centered on the midpoint of the cell edge. The resulting
average conductivity and permittivity are simply a weighted sum of the conductivities and
permittivities of the four adjoining cells, where the weighting is based on the area of each cell
that is bounded by the line integral. This is simple application of Ampere’s Law. A study of
Figure 20 shows that with the twelve field samples, equations (F1) and (F2) will require 12
averages of conductivity and permittivity, with each average involving the conductivity and
permittivity of the indicated cell. Since with every field sample, we have one equation in the

linear system, KE, = s, where s = ], it follows that ds/dm, and the matrix dK/dm, each have

12 non-zero entries.




Distribution:

1

University of Arizona -
MGE Dept. Bldg. #12
Attn: Douglas J. LaBreque
Tucson, AZ 85721

Jim Wait

University of California
Engineering Geoscience Division
Attn: Frank Morrison

Alex Becker -

567 Evans Hall, MS-1760
Berkeley, CA 94720

UC Berkeley _

Dept. of Material Science and Mining Engineering
Attn: Michael Hoversten

577 Evans Hall

Berkeley, CA 94720

University of California

Earth Sciences Div. MS SOE 4237 _
Lawrence Berkeley National Laboratory
Attn: Ki Ha Lee

1 Cyclotron Road

Berkeley, CA 94720

Electromagnetic Instruments Inc.
Attn: Edward Nichols

P.O. Box 463

El Cerrito, CA 94530-04631

Newmont Exploration Ltd.
Attn: Perry Eaton

Misac Nabigihian

1700 Lincoln St.

Denver, CO 80203

108




Distribution (continued):

1

Colorado School of Mines
Department of Geophysics
Attn: Gary Olhoeft
Golden, CO 80401-1887

Schlumberger Doll Research

Attn: Vladimir Druskin

Tarek Habashy, Michael Oristaglio
and Brian R. Spies

Old Quarry Road
Ridgefield, CT 06877-4108

Department of Energy
Office of Research and Development, NN-20

Attn: Michael O'Connell and Karl Veith
1000 Independence Ave. SW
Washington, D.C. 20585-0420

Idaho National Engineering Laboratory
LITCO

Attn: Cathy Pfeifer

P.O. Box 1625

Idaho Falls, ID 83415

US DOE Idaho Operations
Attn: George J. Schneider
785 DOE Place

MS 1119

Idaho Falls, ID 83402

University of Illinois _

Dept. of Electrical and Computer Engineering
Electromagnetics Laboratory

Attn: Weng Chew

Urbana, IL 61801

US Environmental Protection Agency
Environmental Monitoring Systems Lab
Attn: Aldo T. Mazzella

Box 93478

Las Vegas, NV 89193-3478

109




Distribution (continued):

1

U.S. Department of Energy
Office of Energy Research

Attn: William C. Luth

ER-622

9901 Germantown Road
Germantown, MD 20874-1290

Earth Resources Laboratory

Department of Earth, Atmospheric and Planetary Sciences
Attn: Randall L. Mackie

42 Carelton Street

Cambridge, MA 02142

Geodynamics Research Institute
Texas A&M University

Attn: Mark E, Evertt

College Station, TX 77843-3114

Haliburton Energy Services Inc.
Attn: Mark Haugland

2135 Highway 6 South
Houston, TX 77077

Schlumberger LWD

Attn: John R. Lovell

200 Schlumberger Blvd. #110
Sugarland, TX 77478-3129

Western Atlas Inc.
Atlas Wireline Services
Attn: Kurt Strack
Lev Tabarovsky
P.O. Box 1407
Houston, TX 77251-1407

University of Utah

Dept. Geology and Geophysics
Attn: Michael Zhdanov

717 Browning Bldg.

Salt Lake City, UT 84112




Distribution (continued):

1  Stanley H. Ward

1 Noranda Technology Centre
Attn: John McGaughey
240 Hymus Bivd.
Point-Claire, Quebec
CANADA H9R 1G5

1 Department of Geophysics and Astronomy
University of British Columbia
Attn: Douglas W. Oldenburg
129-2219 Main Mall
Vancouver, B.C.,
CANADA V6T 1Z4

1 Ricardo Fernandez
Geodatos S.A.I.C
Roman Diaz Nx 773
Providencia
Santiago
Chile

1 Andreas Hoerdt
University of Cologne
Institute for Geophysics and Meteorology
Godesberger Str. 10
50968 Cologne
Germany

1 Mark Goldman
IPRG
P.O. Box 2286
Holon 58122
Israel

111




DPistribution (continued):

1

Evert Slob
Delft University of Technology

~ Fac. of Mining and Petroleum Engineering

Section of Applied Geophysics
Mijnbouwstraat 120

2628 RX Delft

The Netherlands

MS 1111  Scott Hutchinson, 1421

MS 1111 John Shadid,1421

MS 1110 Lydie Prevost, 1422

MS 1110 Ray Tuminaro, 1422

MS 0828 Paul Hommert, 1503

MS 0533  Billy Brock, 2343

MS 0533 William Schaedla, 2343
MS 0865 Kimball Merewether, 2753
MS 0865 Larry Warne, 2753

MS 0701  Richard Lynch, 6100

MS 0705 Lew Bartel, 6114

MS 0705 Thurlow Caffey, 6114

MS 0483 Bob Glass, 6115

MS 0750 David L. Alumabugh, 6116
MS 0750 Gregory A. Newman, 6116
MS 0843  Daniel Cress, 9131

MS 1110 David Womble, 1422

MS 1166 Doug Riley, 9352

MS 9018 Central Technical Files, 8523-2,

MS 0899  Technical Library, 4414,

MS 0619 Print Media, 12615

MS 0100 Document Processing, 7613-2
For DOE/OSTI (2)

112




