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PATENT

METHOD AND APPARATUS FOR DETERMINING
MATERIAL STRUCTURAL INTEGRITY

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to non-destructive methods and apparatus
for determining the structural integrity of materials. More particularly, the
present invention réléltes "fo the combinatioﬁ of laser vibrometry and “
vibrational analysis techniques for determining macro- and microstructural
irregularities in materials. The United States Government has rights in this
invention pursuant to Contract No. DE-AC(09-89SR18035 between the U.S.
Department of Energy and Westinghouse Savannah River Company.

2. Discussion of Background:

Material testing for quality control and related areas continues to be
mostly destructive in nature despite efforts to develop non-destructive
alternatives that are more feasible in terms of price, convenience and
reliability. Although destructive testing is quite often more accurate because
the condition of the material is made manifest rather than inferred, the
obvious disadvantage is that the material or product tested is destroyed or
rendered useless by the testing process.

Most non-destructive testing evaluates material composition and

structure by relying on the interaction of the tested material with sound waves

or electromagnetic radiation. Such methods involve monitoring the effect of
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pressure or electromagnetic waves passing through the material as they are
influenced by flaws or inhomogeneities in the test structure.

The analysis in most non-destructive testing of this type relies on the
relationship between the material's resonant frequency and the strength and
quality of the material's structure. The resonant frequency of a material
depends upon, among other things, the material's shape, density, stiffness and
the like.

Typically, the tested material structure is vibrated using a known force
and the vibrational velocity of the tested area is measured. Using known
techniqueé,vthe data is used to compute the resonant frequency of the tested
area. Qualitative evaluations afe then made based on the resonant frequency
using known relationships. |

Means for non-destructively vibrating test objects include gas jets,
magnetic ﬁelds, acoustic, optical and electro-mechanical waves, all of which
are discussed in U.S. Patent 4,641,527, issued to Hiroi, et al. Alternatively,
acoustic waves produced by transducers can provide necessary vibration, as
disclosed in U.S. Patent 4,824,250, issued to Newman, and U.S. Patent
4,723,448, issued to Veligdan. Suitable vibrational velocity measuring means
include laser vibrometers or other means for comparing the direction and
reflection of laser beams about a vibrated area. For example, see U.S. Patent
3,482,436, issued to Neish, et al. for a vibration—respdnsive apparatus.

Laser beams are known for use in non-destructive testing to detect
structural defects. For example, in U.S. Patent 3,604,253, a laser beam is
projected onto a test object, the object is vibrated and the pattern of light
reflected from the object is analyzed. As the frequency and intensity of

vibrations are varied, changes appear in the pattern of light, thus indicating

defects in the object. Also, J.W. Lemmens, Inc. has developed a non-
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destructive materials testing system that makes use of the relationship between
resonant frequency and the structural soundness of materials.

A less common characteristic feature used in non-destructive testing of
material structures is the phenomenon of damping. Damping, in general,
refers to a material's ability to absorb externally-induced vibration due to its
microstructure. Measurements of damping characteristics, such as damping
factors and damping loss factors, are typically used in vibration control
applications. Damping loss factors have not been used in determining or
evaluating the strength, degree of abnormalities or overall quality in material
structures and bonded areas between structures, such as solder joints, welds
and the like. |

Vibrational analysis methods for measuring damping characteristics of
materials, such as the resonance dwell method, are well known for vibrational
control applications. In the resonance dwell method, the damping loss factor
is determined from the width of the mobility curve as a function of frequency
at the half power points. In short, the width of the mobility curve at this point
divided by the resonant frequency around which the mobility curve is plotted,
yields the damping loss factor of the inspected area.

There is a need for a more effective, non-destructive testing method for
determining the integrity of material structures and bonding means

therebetween.
SUMMARY OF THE INVENTION

According to its major aspects and broadly stated, the present invention

is a non-destructive method and apparatus for determining the structural

integrity of materials and components. In particular, the present invention




combines laser vibrometry with damping analysis techniques to determine the
damping loss factor of a material or component, preferably materials such as
the pinch weld of reservoir fill stems. The method comprises the steps of
vibrating the area being tested over a known frequency range and measuring
5 vibrational force and velocity as a function of time over the known frequency
range. Vibrational velocity is preferably measured by a laser vibrometer, but
can be measured by any non-contacting means having equivalent measurement
accuracy. Measurement of the vibrational force depends on the vibration

method. If an electromagnetic coil is used to vibrate a magnet secured to the

10 area being tested, _the.ﬁ the vibrational force can be determined by the amount
of coil current used in.vibréting the iixagnet. If a reciprocating transducer is
used to vibrate a magnet secured to the area being tested, then the vibrational
force can be determined by a force gauge in the reciprocating transducer.
Using known vibrational analysis, a plot of the drive point mobility of the

15  material over the preselected frequency range is generated from the
vibrational force and velocity measurements. The damping loss factor, which
is related to the structural integrity of the material, is derived from the drive
point mobility plot using the resonance dwell method. Once computed, the
damping loss factor can be compared with a reference damping loss factor to

20 evaluate the structural integrity of the material.

A major feature of the present invention is the use of vibrational
analysis, specifically, the determination of the damping loss factor, for
structural integrity evaluation. In the prior art, damping and vibration
analysis are used in vibration control. Also, structural integrity analysis

25 typically makes use of the correlation between the resonant frequency of an

object and its structural quality. The advantage of ﬁsing damping analysis for

structural integrity evaluation is that the structural integrity of an object can
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be determined non-destructively. Further, currently available equipment,
such as laser vibrometers, allows the damping analysis to be performed
quickly, accurately and, if desired, remotely. Determining the damping loss
factor of an object offers a qualitative and quantitative measurement of
structural integrity. Furthermore, the damping loss factor can be determined
very quickly using known analysis techniques in conjunction with available
curve-fitting software.

Another feature of the present invention is the use of a laser vibrometer
for determining vibrational velocity, which is used in computing the damping
loss factor and thus for evaluating the overall structural integrity of the object
being tested. The laser vibrometer transmits laser light to the vibrated area
and collects laser light scattered or reflected therefrom. Comparisons of the
transmitted light with the scattered light results in wavelength interference
related to the vibrational velocity of the vibrated area. The laser vibrometer
is more accurate and convenient than other devices for measuring vibrational
velocity. Also, the laser vibrometer is non-contacting and thus does not
corrupt or confound the damping data of the object being tested. The laser
vibrometer is especially convenient in that laser light can be transmitted and
collected from a remote location, thus allowing inspection of materials in
hazardous or difficult to reach locations.

Other features and advantages of the present invention will be apparent

to those skilled in the art from a careful reading of the Detailed Description of

a Preferred Embodiment presented below and accompanied by the drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings,

Fig. 1 is a schematic diagram of a test arrangement demonstrating the
present invention;

Fig. 2 is a graph of drive point mobility as a function of frequency of a
test material according to the test arrangement of Fig. 1; and

Fig. 3 is a schematic diagram of the present invention according to a

preferred embodiment.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

In the following description similar components are referred to by the
same reference numeral in order to simplify the understanding of the
sequential aspect of the drawings.

The present invention uses the damping loss factor of a material to
determine qualitatively the structural integrity of a material. "Structural
integrity" refers generally to its soundness, or, more specifically, to the
absence of macro- and microstructural irregularities that are known or suspect
to affect the strength of the material. In this manner, anelastic properties of
materials such as weld locations, structures made by precision casting
operations and the like are determined using known measuring devices in
combination with standard digital analysis techniques normally used in
vibration control analysis.

The damping loss factor, in general, is an indication of a material's

ability to absorb vibrations. The presence of microscopic cracks, voids,

dislocations and other irregularities generally enbances a material's ability to
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absorb vibrations, but is also considered adverse to the overall strength and
quality of the macro- and microstructure. Thus, the damping loss factor of a
material provides an indication of the overall quality of the material's
structural integrity. A material of relatively high quality will have fewer
structural irregularities, will not absorb vibration as well and thus will have a
lower damping loss factor than a relatively poor quality material having
significantly more structural irregularities. Therefore, the damping loss
factor is directly related to the structural integrity of a material.

The damping loss factor, once determined, can be compared to known
standards of refere:_nce materials or used with other measurements in
determihing the nafure of é material's structural integrity. For example, in
welded structures, if the weld is of high quality, then the damping loss factor
will be very close to or indistinguishable from the base material. If there are
defects or inhomogeneities in the weld microstructure, then the damping loss
factor will be larger. Similar observations are true for single-piece materials
formed by precision casting operations.

Typically, damping factors in metals are low and changes in them due to
a defective weld may increase the damping loss factor of the structure by a
factor of 2 or 3. However, since the damping loss factor is usually on the
order of parts per million (ppm), a damping loss factor increased by a factor
of 3 will still be a very small number. Thus, it is necessary that the damping
loss factor to be measured with high degree of accuracy, such as with a non-
contacting method.

Because the damping loss factor of a material can vary simply by the
nature or orientation of its support mechanism, measuring the damping loss

factor accurately involves the elimination or minimization of such external

factors. Thus, a material must be supported or bound at its nodes, that is,
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where the vibrations are effectively "zeroed out" and have virtually no
amplitude. Moreover, to insure the highest degree of accuracy, a complete
modal analysis of the material being tested should be performed for each
different material shape.

Also, it is necessary that the resonant frequency of the material being
tested be known in order to establish proper testing parameters. Usually, the
resonant frequency is known via previous testing methods or theoretical
analysis. Also, with precision cast or machined materials, an initial resonant
frequency determination is sufficient since precision cast materials produced
subsequently are nearly identical in size, shape and density.

Referring now to Fig. 1, an experimental arrangement of the present
invention is shown schematically. In the experimentation, the material being
tested is a slender metal bar 22 formed from two pieces welded together as
shown by weld 24 (in actuality, weld 24 cannot be seen by the human eye).
Preferably, metal bar 22 is approximately 20 cm in length and has a
rectangular cross-section whose width is approximately 1 cm and whose
thickness is approximately 0.5 cm, although bars of other sizes have been
tested and are quite adequate. For experimental purposes, metal bar 22 is
preferred because it's relatively simple shape has well known mode shapes and
resonance frequencies.

- Metal bar 22 is suspended from a support 26 by a vibrationally-isolated
means (shown generally as 28) in the form of silk threads 32 attached to
springs 34 having spring constants chosen to provide adequate vibration
isolation from support 26. Thus, in this arrangement, metal bar 22 is
vibrationally isolated.

Next, a small magnet 36 is glued to metal bar 22 at weld 24. An

electromagnetic coil 38, connected to a signal generator 42 through an
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electrical conductor 43, is positioned in close proximity to magnet 36 so that
when signal generator 42 passes a sufficient amount of current through
electromagnetic coil 38, the magnetic field thus created vibrates magnet 36.
The vibrational force with which magnet 36 is vibrated is related to and easily
determined from the amount of current passing through electromagnetic coil
38. Thus, a current probe 44 is operably positioned to measure the amount of
current passing through electromagnetic coil 38.

In order to measure the vibrational velocity at wéld 24, a laser
vibrometer 46 in cooperation with a reflecting means 48, preferably a mirror,
is used to direct a beam of laser: iigh'tvtransmitted‘ from laser vibrometer 46
(shown generally as 5‘2) at weld 24 Lasef vibrometer 46 also collects the "
laser light that is scattered or reflected by weld 24 (shown generally as 54).

Measuring vibrational velocity using a laser vibrometer is based on the
measurement of the very slight shift in the wavelength of laser light when it
scatters or is reflected from a moving object. Combining the transmitted light
with the scattered light causes interference, which interference is related to the
amount of the shift and thus related to the vibrational velocity of the area on
which the laser light is directed. ‘

Referring again to Fig. 1, a frequency shifter 56 and a frequency
tracker 58 are operably connected to laser vibrometer 46. Frequency shifter
56 shifts the frequency of laser light beam 52 being transmitted by laser
vibrometer 46 in known increments and over a preselected frequency range.
Frequency tracker 58 monitors the frequency shifts of laser light beam 52
transmitted by laser vibrometer 46 as well as the interference created when

the transmitted and reflected laser light are combined. Frequency tracker 58

uses the degree of interference to generate a voltage signal proportional to the
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vibrational velocity at weld 24. Preferably, an oscilloscope 62 is used to
monitor raw data from frequency tracker 58.

Vibrational force measurements taken by current probe 44 and
vibrational velocity measurements observed by laser vibrometer 46, frequency
tracker 58 and frequency shifter 56 are fed into an analyzer 64 (as shown by
lines 66 and 68, respectively). Preferably, analyzer 64 is a Fast Fourier
Transform (FFT) analyzer, which transforms the time-varying vibrational
force f(t) and velocity v(t) measurements into the frequency domain as F(f)
and v(f), respectively. Using analyzer 64, the Transforms are computed very
rapidly. Then, analyzer 64 takes the ratio of the Transforms, known as the
drive point mobiiity, énd Idisplay's the magnitude and f)hase. From this
display, the resonant frequencies of metal bar 22 are easily identified as the
periodic peaks in the display.

From this display, a particular resonant frequency is chosen and the
experimental procedures are repeated, except using a much smaller frequency
range centered around the chosen resonant frequency. For example, in actual
experimentation using the arrangement as shown in Fig. 1, the resonant
frequency for the second mode of metal bar 22 was found to be 427.117 Hz.
Using this resonant frequency, the time-varying vibrational force f(t) and
velocity v(t) were measured over a frequency range from approximately
426.2 Hz to approximately 427.8 Hz. The Transforms of f(t) and v(t) were
computed and the ratio of the Transforms (also known as drive point
mobility) was determined over the preselected frequency range. A computer
72 connected to analyzer 64 was used to plot the mobility over the preselected

frequency range, as shown by graph 80 in Fig. 2. A peak 82 in the graph 80

represents the preselected resonant frequency (in this case 427.117 Hz).
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The damping loss factor is computed from the shape of the mobility
curve over the preselected frequency range. Specifically, the damping loss
factor is computed by locating the center frequency (corresponding to the
resonant frequency and shown as a peak on the drive point mobility plot of
Fig. 2) and dividing the half power bandwidth (-3dB) of the curve by that
frequency. Such analysis techniques are well known and can be found in
various references discussing modal analysis techniques, such as Vibration
Damping, by A.D. Nashif, D.I.G. Jones and J.P. Henderson.

For the experimental arrangement illustrated in Fig. 1, the frequency
range was approximately 1.95 mHz. The half powér points were 427.105 Hz
and 427.123 Hz for a bandwidth of 18 mHz and a damping loss factor of
0.000042 or 42 ppm (18mHz/427.113 Hz).

As mentioned previously, the damping loss factor of a material is
derived from the drive point mobility over a preselected frequency range. To
determine the drive point mobility accurately, especially in low damped
systems where the damping loss factor Will be low, noise must be minimized
in the measurement process. Also, extraneous energy losses must be

minimized in both the excitation and measurement process. However, the

" nature of the experimentation is such that bias errors will not contribute to

errors in the measurement. That is, the random noise is translated into an
increased half power bandwidth during the Fourier Transform operation.
Also, fixed errors in the force or velocity will be reflected by a scale shift, but
not a shift in bandwidth or center frequency. Therefore, as long as the errors
remain fixed during the measurement process, the end result will not be
affected.

Energy losses in the system can be introduced in one of many forms,

including air damping, vibrational excitation of the support system, dissipation
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in the supports and dissipation due to air friction. Also apparent losses can
result from modal overlap when an excitation frequency is near the resonance
frequencies of more than one mode.

Ideally, all of the sources of errors are identified and made sufficiently
small. However, since it is impossible to eliminate all of the error sources
present, the objective is to minimize their effects so that changes in damping
from one test article to another of the same size, shape and material can be
determined.

Fig. 3 illustrates a schematic representation of a suitable arrangement 20
for the present invention in evaluating the structural integrity of a pinch weld
in a fill stem 84 bf a rasefvoir 86. Due to- the need for minimizing external
errors, reservoir 86 is mounted on a low friction, vibrationally isolated
suspension system (not shown). Such a suspension system would depend on
the size and shape of reservoir 86, but one of suitable means is preferably a set
of diamond or air bearings.

Similar to the experimental arrangement shown in Fig. 1, magnet 36 is
positioned in direct contact with one side of fill stem 84 and electromagnetic
coil 38 is positioned in close proximity to magnet 36 so that magnet 36
vibrates when-signal generator 42 passes current through electromagnetic coil
38 to create an electric field having sufficient strength. Alternatively, any
suitable non-contacting device having a measurable vibrational force can be
used to vibrate magnet 36 instead of electromagnetic coil 38. For example, a
reciprocating transducer (not shown) can be positioned in contact with magnet
36 and displacement of the transducer can be correlated to the amount of
vibrational force being applied to magnet 36. As previously discussed, the
vibrational force supplied by electromagnetic coil 38 to magnet 36 is related

to the amount of coil current passing through electromagnetic coil 38.
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Laser vibrometer 46 is preferably positioned to direct transmitted laser
light beam 52 at fill stem 84 at a location opposite to magnet 36. Laser
vibrometer 46 also collects laser light 54 scattered or reflected by fill stem 84.
As discussed previously, the wavelength of the scattered light has been shifted
slightly and the degree of interference created by combining transmitted light
52 with scattered light 54 is related to the vibrational velocity at the area of
interest, in this case, along fill stem 84.

Frequency shifter 56, frequency tracker 58 and oscilloscope 62 perform
in the same way as described above in the experimental arrangement of Fig. 1.
Also; analyzer 64 is fed measurements from current probe 44 relating to
vibrational force and voltage signals from frequency tracker 58 relating to
vibrational velocity. FFT analyzer 64 and computer 72 combine to determine
and plot the drive point mobility and ultimately the damping loss factor, in the
manner as discussed above.

The process is almost instantaneous since the Fourier Transforms and
the ratio of Transforms are computed in near real-time by analyzer 64 and
rapid curve fitting routines are available for computer 72 to calculate the
damping loss factor once the input data has been received by computer 72
from analyzer 64.

It will be apparent to those skilled in the art that many changes and
substitutions can be made to the preferred embodiment herein described

without departing from the spirit and scope of the present invention as defined

by the appended claims.
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ABSTRACT OF THE DISCLOSURE

A non-destructive method and apparatus for determining the structural
integrity of materials by combining laser vibrometry with damping analysis
techniques to determine the damping loss factor of a material. The method
comprises the steps of vibrating the area being tested over a known frequency
range and measuring vibrational force and velocity as a function of time over
the known frequency range. Vibrational velocity is preferably measured by a
laser vibrometer. Measurement of the vibrational force depends on the
vibration method. If an electromagnetic coil is used to vibrate a magnet
secured to the area being tested, then the vibrational force is determined by
the amount of coil current used in vibrating the magnet. If a reciprocating
transducer is used to vibrate a magnet secured to the area being tested, then
the vibrational force is determined by a force gauge in the reciprocating
transducer. Using known vibrational analysis methods, a plot of the drive
point mobility of the material over the preselected frequency range is
generated from the vibratibnal force and velocity measurements. The
damping loss factor is derivéd froin a plot of the drive point mobility over the

preselected frequency range using the resonance dwell method and compared

with a reference dampihg loss factor for structural integrity evaluation.
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