Q7938

Experimental Physics and Industrial Control System (EPICS)
Input / Output Controller (IOC)
Application Developer‘s Guide

Martin R. Kraimer E,
May 1994 CENsp

FEBH;U,,(

APS Release 3.11.6
eleas OST[

Features Described but not yet implemented:

dbgrep

dbt

Breakpoints
dbFastLink Routines

These features will be available in Release 3.12

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLlM!TED %5

., e PR e f - o — ———— e e

Contents

PREFACE ix

CHAPTER1: EPICS OVERVIEW 1

1.1 Basic Attributes 1

1.2 Hardware - Software Platforms (Vendor Supplied) 2

1.3 I0C Software Components 3

1.3.1 DATABASE 3

1.3.2 Database Access 4

1.3.3 Database Scanning 4

1.3.4 Record Support, Device Support, and Device Drivers 4
1.3.5 Channel Access 5

1.3.6 Database Monitors 5

1.4 Channel Access 5

1.4.1 Client Services 5

142 Search Server 6

1.4.3 Connection Request Server 6
1.4.4 Connection Management 6
1.5 OPI Tools 6

1.5.1 Channel Access Tools 6
1.5.2 Other OPI Tools 7

1.6 EPICS Core Software 7

CHAPTER 2: IOC Test Facilities 8

2.1 Database List, Get, Put 8

2144 db! - Database List 8

2.1.2 dbgrep - List record names that match a pattern 8
2.1.3 dba- Database address 8

21.4 dbgf - Get Field 9

215 dbpf - Put Field 9

2.1.6 dbpr - Print Record 9

21.7 dbir - test record 10

2.2 Breakpoints 10

221 dbb - Set Breakpoint 10

222 dbd - Remove breakpoint 10

2.2.3 dbs - Single Step 10

2,24 dbc - Continue 10

225 dbp - Print fields of suspended record 11
2.2.6 dbap - Auto Print 11

2,27 dbstat - Status 11

2.3 Hardware Reports 11

2.3.1 dbior - I/O Report 11

232 dbher - Hardware Configuration Report 12
24 Scan Reports 12

2.4.1 scanpp! - Print Periodic Lists 12

242 scanpel - Print EventLists 12

243 scanpiol - Print I/O Event Lists 12

2.5 Channel Access Reports 12

2.5.1 client_stat Channel Access Clients status 12

iii

Contents

25.2 dbel Print Event List 13

2.5.3 veclist - Print interrupt vector list 13

2.6 Environment Variables 13

2.6.1 epicsPrtiEnvParams - Print environment variables 13

2,7 Database System test routines 13

274 dbt Measure time to process arecord 13

272 dbtgf - Test Get Field 13

2,73 dbtpf - Test Put Field 14

274 dbipn - Test Put Notify 14

275 dblls - List Lock Sets 14

2.7.6 dbls - List Structures 14

2.8 Old Database Access Testing 14

2.8.1 gft - Get Field Test 15

2.8.2 pft - Put Field Test 15

2.8.3 tpn - Test Put Notify 15

CHAPTER3: GENERAL PURPOSE FEATURES s

3.1 General Purpose Tasks 16

3.1.1 Callback Tasks 16

3.1.2 Task Watchdog 17

3.2 Error Handling 18

3.2.1 Overview 18

3.22 Return Status Values 19

3.23 Interface to System Wide Error Handling System 20

CHAPTER 4 : DATABASE LOCKING, SCANNING, and
PROCESSING 21

4.1 Database Links 21

4.1.1 Process Passive 21

4.1.2 Maximize Severity 22

4.2 Database Locking 22
4.3 Database Scanning 22
4.4 Record Processing 23

4.5 Guidelines for Creating database links 23
4.5.1 Rules Relating to Database Links 24
4.6 Guidelines for Synchronous Records 26

4.7 Guidelines for Asynchronous Records 27

4.8 Cached Puts 29

CHAPTERS5 : STATIC DATABASE ACCESS 30
5.1 Definitions 30

5.1.1 DBBASE 30

51.2 DBENTRY 30

5.1.3 Database Configuration Field types 31

iv

Contents

514 Link Types 31
5.2 EXAMPLE - Dump All Records 32

5.3 Allocating and Freeing Structures 32
5.4 Read and Write database 33

5.5 Manipulating Record Descriptions 33
5.6 Manipulating Record Instances 33
5.7 Manipulating Field Descriptions 34
5.8 Manipulating Field Values 34

5.9 Manipulating Menu Fields 34

5.10 Manipulating Link Fields 35

5.11 Dump Routines 36

512 Utility Programs 36

56.12.1 atdb - Ascii to Database 36

5.12.2 dbta - Database to Ascii 37

CHAPTER6: RUNTIME DATABASE ACCESS 38
6.1 Database Include Files 38

6.1.1 Fundamental Database Definitions 38

6.2 Runtime Database Access 40

6.2.1 Database Request Types and Options 41

6.2.2 dbAccess.h 42

6.2.3 Database Access Routines 43

6.2.4 Channel access database links 48

6.3 Old Database Access Interface 49

CHAPTER7: DATABASE SCANNING 50
7.1 Overview 50

7.2 Scan Related Database Fields 50

7.21 SCAN 50

7.22 PHAS 50

7.23 EVNT - Event Number 51

7.24 PRIO - Scheduling Priority 51

7.3 Software components which interact with the Scanning system 51

7.3.1 choiceGbl.ascli 51

7.3.2 dbScan.h 51

7.33 Initializing Database Scanners 52

7.3.4 Adding and Deleting records from scan list 52
7.3.5 Declaring Database Event 52

7.3.6 Interfacing to I/O Event scanning 52

7.4 Implementation Overview 54

7.4.1 Definitions and Routines common to all scantypes 54
7.4.2 Event Scanning 55

7.43 I/O Event scanning 55

7.4.4 Periodic Scanning 56

Contents

7.4.5 ScanOnce 57

CHAPTER 8: RECORD and DEVICE SUPPORT ss

8.1 Overview of Record Processing 58
8.2 Record Support and Device Support Entry Tables 59
8.3 Example Record Support Module 60

8.3.1 Declarations 60

8.3.2 init_record 61

8.3.3 process 62

8.3.4 Miscellaneous Utility Routines 63

8.35 Alarm Processing 63

8.3.6 Raising Monitors 64

8.4 Global Record Support Routines 65

8.4.1 Alarm status and severity 65

8.4.2 Alarm Acknowledgment 66

8.4.3 Generate Error: Process Variable Name, Caller, Message 66
8.4.4 Generate Error: Status String, Record Name, Caller 66
8.4.5 Generate Error: Record Name, Caller, Record Support Message 66
8.4.6 Get Graphics Double 66

8.4.7 Get Control Double 67

8.4.8 Get Alarm Double 67

8.4.9 Get Precision 67

8.4.10 Get Time Stamp 67

8.4.11 Forward link 67

8.4.12 Get Input Link 67

8.4.13 Put Qutput Link 67

8.4.14 Initialize Fast Input Link 68

8.4.15 Initialize Fast Qutput Link 68

8.4.16 Get Fast Input Link 68

8.4.17 Put Fast Output Link 68

8.5 Record Support Routines 68

8.5.1 Generate Report of each Field in Record 68
8.5.2 Initialize Record Processing 68

8.5.3 Initialize Specific Record 69

8.5.4 Process Record 69

8.5.5 Special Processing 69

8.5.6 Get Value 69

8.5.7 Convert dbAddr Definitions 69

8.5.8 Get Array Information 69

8.5.9 Put Array Information 70

8.5.10 Get Units 70

8.5.11 Get Precision 70

8.5.12 Get Enumerated String 70

8.5.13 Get Strings for Enumerated Field 70
8.5.14 Put Enumerated String 70

8.5.15 Get Graphic Double Information 70
8.5.16 Get Control Double Information 71

8.5.17 Get Alarm Double Information 71

8.6 Example Device Support Modules 72

8.6.1 Synchronous Device Support Module 72
8.6.2 Asynchronous Device Support Module 73

8.7 Device Support Routines 75
8.7.1 Generate Device Report 75

vi

Contents

8.7.2 Initialize Record Processing 75

8.7.3 Initialize Specific Record 76

8.7.4 Get I/O Interrupt Information 76

8.7.5 Other Device Support Routines 76

8.8 Device Drivers 76

CHAPTER 9: Device Support Library 77

9.1 Overview 77

9.2 Device Support Library Routines 77

9.2.1 Registering VME Addresses 77

9.2.2 Interrupt Connect Routines 77

9.23 Macros and Routines for Normalized Analog Valuss 78
CHAPTER 10: I0C DATABASE CONFIGURATION 79

10.1 Overview of IOC Database Configuration 79
10.2 Self Defining Records 80
10.3 Ascii Definition Files 81

10.3.1 dbRectype 81

10.3.2 Choice 81

10.3.3 cviTable 81

10.3.4 devSup 82

10.3.5 drvSup 83

10.3.6 Record Description Files 83

10.4 ASCH Build Utilities 84
10.5 DCT - Database Configuration Tool 85

CHAPTER 11 : IOC INITIALIZATION ss
11.1 Introduction 86
11.2 initHooks 87

11.3 dbLoad - Load the Database 88
1.4 Specify release 88

11.5 Set environment variables 88
11.6 Get Resource Definitions 88
11.7 Initialize logging 89

11.8 Start task watchdog 89

11.9 Start callback tasks 89

11.10 Initialize Channel Access Links - Pass 1 89
11.11 Initialize Driver Support 89
11.12 Initialize Record Support 89
11.13 Initialize Device Support 89

vii

Contents

11.14 Initialize Timing System 89

11.15 Initialize Database 90

11.16 Initialize Channel Access Links - Pass2 90
11.17 Finish device support 90

11.18 Initialize Database Scanners 90

11.19 Acceptinterrupts 90

11.20 Perform initial processing 90

11.21 Start Channel Access Server 90

91

CHAPTER 12: DATABASE STRUCTURES
12.1 Macros for accessing Database Structures 91

12.1.9 Defined in dbRecType.h 91

12.1.2 Defined in dbRecords.h 91

12.1.3 Defined in dbRecDes.h 92

12,14 Defined in choice.h 92

12.1.5 Defined in recSup.h 93

12.1.6 Defined in devSup.h 93

12.1.7 Defined in drvSup.h 93

12.2 Database Structures 94

12.2.1 dbRecType.h - Record Types 94
12.2.2 dbRecords.h - Record Locations 94
1223 dbRecDes.h - Record Description 95
1224 choice.h - Choice Definitions 98
1225 cviTable.h 99

12.2.6 recSup.h - Record Support 100
12.2.7 devSup.h - Device Support 101

12.2.8 drvSup.h - Driver Support 102

viii

EPICS: IOC Application Developer‘s Guide May 12 1994

PREFACE

This document describes the core software that resides in an Input/Output Controller (IOC), one of
the major components of EPICS. The plan of the book is:

EPICS OVERVIEW

An overview of all of EPICS is presented. This allows the reader to see how
the JOC software fits into EPICS. This is the only chapter that discusses OPI
software and Channel Access.

IOC TEST FACILITIES
Test routines that can be executed via the vxWorks shell

GENERAL PURPOSE FEATURES

This chapter describes general purpose tasks,and error handling conventions.
DATABASE LOCKING, SCANNING, and PROCESSING

This chapter provides an overview of three closely related IOC concepts. It
is given so that later chapters are more meaningful.

STATIC DATABASE ACCESS

This chapter describes a database access library that works on Unix and
vxWorks and on initialized or uninitialized EPICS databases.

RUNTIME DATABASE ACCESS

The heart of the IOC software is the memory resident database. Rather then
describing database structures first, the runtime database access routines are
discussed. This is an easier way of understanding the capabilities of the
database.

DATABASE SCANNING

This chapter describes the database scan tasks, i.e. the tasks that request
records to be processed.

RECORD and DEVICE SUPPORT

The concepts of record and device support are discussed. This information
is necessary for anyone who wishes to provide his/her own record and device
support.

DEVICE SUPPORT LIBRARY

ix

EPICS: IOC Application Developer‘s Guide May 12, 1994

A set of routines are provided so that device support modules can use shared
resources such as VMS address space.

IOC DATABASE CONFIGURATION

This chapter describes the various ascii definition files used by EPICS as
well as the build utilities that read the ascii files and turn them into files
understood by EPICS. Anyone writing record and or device support must
understand how to modify one or more of these ascii files.

IOC INITIALIZATION

A great deal happens at IOC initialization. This chapter takes some of the
mystery from initialization.
DATABASE STRUCTURES

A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it does not describe
other EPICS tools which run in an IOC such as the sequencer. It also does not describe Channel
Access which is, of course, one of the major IOC components.

The basic model of what an IOC should do and how to do it were developed by Bob Dalesio at
LANL/GTA. The principle ideas for channel access were developed by Jeff Hill of LANL/GTA.
Bob and Jeff also were the principle implementers of the original IOC software. They developed
this software over a period of several years with feedback from LANL/GTA users. Without their
ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the major
goal being to provide easily extendible record and device support. Marty Kraimer (ANL/APS) was
primarily responsible for designing the data structures needed to support extendible record and
device support and for making the changes needed to the IOC resident software. Bob Zieman (ANL/
APS) designed and implemented the UNIX build tools and JOC modules necessary to support the
new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration
Tool (DCT) necessary to support the new facilities. Janet Anderson developed methods to system-
atically test various features of the IOC software and is the principal implementer of changes to
record support.

Since 1991 many improvements and refinements have been made to EPICS.
The reader of this manual should also have the following documents:

EPICS Record Reference Manual, Janet Anderson and Marty Kraimer

EPICS Source/Release Control, Bob Zieman and Marty Kraimer

The current EPICS software development team consists of the following individuals:
LANL/GTA: Bob Dalesio, Jeff Hill, Deb Kerstiens, Matt Needes, and Andy Kozubal

ANL/APS: Janet Anderson, Mark Anderson, Ben-chin Cha, Marty Kraimer, Nick Karonis,
Jim Kowalkowski, and John Winans.

EPICS: I0C Application Developer‘s Guide May 12, 1994

CHAPTER 1 : EPICS OVERVIEW

EPICS consists of a set of software components and tools with which Application Developers can
create a control system. The basic components are:

OPI Operator Interface. This is a UNIX based workstation which can run various
EPICS tools.
I0C Input Output Controller. This is VME/VXI based chassis containing a Mo-

torolla 68xxx processor, various I/O modules, and VME modules that pro-
vide access to other I/O buses such as GPIB.

LAN Local area network. This is the communication network which allows the
IOCs and OPIs to communicate. EPICS provides a software component,
Channel Access, which provides network transparent communication be-
tween a Channel Access client and an arbitrary number of Channel Access
Sservers.

Figure 1 shows the basic physical structure of a control system implemented via EPICS.
P 3l oP1

LAN]
T L

Figure 1 : EPICS based Control System

The rest of this chapter gives a brief description of EPICS:
Basic Goals A few basic design goals on which EPICS was developed.
Platforms The vendor supplied Hardware and Software platforms EPICS supports.
IOC Software EPICS supplied I0C software components.
Channel Access EPICS software that supports network independent access to IOC databas-
es.
OPI Tools EPICS supplied OPI based tools.

EPICS Core A list of the EPICS core software, i.e. the software components without
which EPICS will not work.

1.1 Basic Attributes

The basic attributes of EPICS are:

Tool Based: EPICS provides a number of tools for creating a control system. This mini-
mizes the need for custom coding and helps ensure uniform operator inter-
faces.

Distributed: ~ An arbitrary number of IOCs and OPIs can be supported. As long as the
network is not saturated, no single bottle neck is present. A distributed system
scales nicely. If a single IOC becomes saturated, it’s functions can be spread

EPICS: IOC Application Developer‘s Guide May 12, 1994

over several IOCs. Rather than running all applications on a single host, the
applications can be spread over many OPIs.

Event Driven: The EPICS software components are all designed to be event driven to the
maximum extent possible. For example rather than having to poll IOCs for
changes, a channel] access client can request that it be notified only when
changes occur. This design leads to efficient use of resources as well as to
quick response times.

High Performance: A SPARCbased workstation can handle several thousand screen updates
a second with each update resulting from a channel access event. A 68040
IOC can process more than 6,000 records per second including generation
of any channel access events.

1.2 Hardware - Software Platforms (Vendor Supplied)

OPI
Hardware
Software
LAN
Hardware
Software
10C
Hardware
Software

Unix based Workstation. Currently Sunds. Hope to support HP RISC
workstation in near future.

UNIX
X Windows
Motif Toolkit

Ethernet now. FDDI in the future.
TCP/IP protocols via sockets.

VME/VXI bus and crates.

Motorola 68020 and 68040

Various VME modules (ADCs, DAC, Binary I/O, etc.)
Allen Bradley Scanner (Most AB I/O modules)

GPIB devices

BITBUS devices

vxWorks operating system.
Real time kernel
Extensive”Unix like” libraries

EPICS: IOC Application Developer‘s Guide May 12, 1994

1.3 TOC Software Components

Figure 2 contains an overview of the IOC software components and their interactions.

[Erannel Access] «—>- Fequencer]

e

Ecanners|< y- [Database Access|<€—1—>

A N

rd

A 4

Y
Y

river or Device Interrupt Routines| [Device Support]
3 A A

Y

vice Urivers

Y @ Y. ¢

Figure 2 System Overview

DATABASE: The memory resident database plus associated data structures.

Database Access:Database access routines. With the exception of record and device support,
all access to the database is via the database access routines.

Scanners: The mechanism for deciding when records should be processed.
Record Support:Each record type has an associjated set of record support routines.
Device Support:Each record type has one or more sets of device support routines.

Device Drivers:Device drivers access external devices. A driver may have an associated
driver interrupt routine.

Channel Access: Theinterface between the external world and the IOC. It provides a network
independent interface to database access.

Monitors: Database monitors are invoked when database field values change.
Sequencer A finite state machine.
Lets briefly describe the major components of the IOC and how they interact.

1.3.1 DATABASE

The heart of an IOC is a memory resident database together with various memory resident
structures describing the contents of the database. EPICS supports a large and extensible
set of record types, e.g. ai (Analog Input), ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and
others are specific to particular record types. Every record has a record name and every field
has a field name. The first field of every database record holds the record name, which must
be unique across all IOCs attached to the same TCP/IP subnet.

EPICS: IOC Application Developer‘s Guide May 12, 1994

A number of data structures are provided so that the database can be accessed efficiently.
Most software components, because they access the database via database access routines,
do not need to be aware of these structures.

1.3.2 Database Access

With the exception of record and device support, all access to the database is via the channel
or database access routines. See Chapter CHAPTER 6 : for details.

1.3.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Four types of
scanning are possible: Periodic, Event, I/O Event, and Passive.

Periodic: A request can be made to process a record periodically. A number of time
intervals are supported.
Event: Event scanning is based on the posting of an event by any IOC software

component. The actual subroutine call is:

post_event(event_num)

I/0 Event The I/O event scanning system processes records based on external inter-
rupts. An IOC device driver interrupt routine must be available to accept the
external interrupts.

Passive Passive records are processed as a result of linked records being processed
or as a result of external changes such as channel access puts.

1.3.4 Record Support, Device Support, and Device Drivers

In order to remove record specific knowledge from database access, each record type has
an associated record support module. Similarly, in order to remove device specific knowl-
edge from record support, each record type can have a set of device support modules. If the
method of accessing hardware is complicated, a device driver can be provided to shield the
device support modules. Many record types, in particular all types not associated with
hardware, do not have device support or drivers.

The IOC software is designed so that the database access layer knows nothing about the
record support layer other than how to call it. The record support layer in turn knows nothing
about it’s device support layer other than how to call it. Similarly the only thing a device
support layer knows about it’s associated driver is how to call it. This design allows a
particular installation and even a particular IOC within an installation to choose the set of
record types, device types, and drivers it wishes to use. The remainder of the IOC system
software is unaffected.

Because an Application Developer can develop his own record support, device support, and
device drivers, these topics are discussed in greater detail in a later chapter.

Every record support module must provide a record processing routine. It is this routine that
is called by the database scanners. Record processing consists of some combination of the
following functions (particular records types may not need all functions):

Input Read inputs. Inputs can be obtained, via device support routines, from hard-
ware, from other database records via database links, or from other IOCs via
channel access links.

Conversion Conversion of raw input to engineering units or of engineering units to raw
output values.

EPICS: IOC Application Developer‘s Guide May 12, 1994

Output Write outputs. Output can be directed, via device support routines, to hard-
ware, to other database records via database links, or to other IOCs via chan-
nel access links.

Raise Alarms Check for and raise alarms.
Monitor Trigger monitors related to channel access callbacks.
Link Trigger processing of linked records.

1.3.5 Channel Access
Channel access is discussed in the next section.
1.3.6 Database Monitors

The routines described in this section provide a callback mechanism for database value
changes. This allows the caller to be notified when database values change without con-
stantly polling the database. A mask can be set to specify value changes, alarm state changes,
and/or archival changes.

At the present time only channel access uses database monitors. No other software should
use the database monitors. Because they are of interest only to channel access, the monitor
routines will not be described.

1.4 Channel Access

Channel access provides network transparent access to IOC databases. It is based on a client
server model. Each IOC provides a channel access server which is willing to establish
communication with an arbitrary number of clients. Channel access client services are avail-
able on both OPIs and IOCs. A client can communicate with an arbitrary number of servers.

1.4.1 Client Services

The basic channel access client services are:

Search Locate the IOCs containing selected process variables and establish commu-
nication with each one.

Get Get value plus additional optional information for a selected set of process
variables.

Put Change the values of selected process variables.

Add Event Add change of state callback. This is a request to have the server send infor-
mation only when the associated process variable changes state. Any com-
bination of the following state changes can be requested: change of value,
change of alarm status and/or severity, and change of archival value. Many
record types provide hysteresis factors for value changes.

In addition to process variable values, get and add event requests can also request any
combination of the following additional information:

Status Alarm status and severity.

Units Engineering units for this process variable.

Precision Precision with which to display floating point numbers.
Time Time when the record was last processed.

Enumerated A set of ascii strings defining the meaning of enumerated values.
Graphics High and low limits for producing graphs.

EPICS: I0OC Application Developer‘s Guide May 12, 1994

Control High and low control limits.
Alarm The alarm HTHI, HIGH, LOW, and LOLO values for the process variable.

It should be noted that channel access does rot provide access to database records as records.
This is a deliberate design decision. This allows new record types to be added without
impacting any software that accesses the database via channel access. A channel access
client can communicate with multiple IOCs having differing sets of record types.

1.4.2 Search Server

Channel access provides a server which waits for channel access search messages. These
are generated when a channel access client (for example when an Operator Interface task
starts) searches for the IOCs containing process variables the client uses. This server accepts
all search messages, checks if any of the process variables are located in this IOC, and, if
any are found, replies to the sender.

1.4.3 Connection Request Server

For each IOC containing process variables it uses, the channel access client issues connec-
tion requests. The connection request server accepts the request and establishes a connection
to the client. Each such connection is managed by a separate task (actually two tasks). Ca_get
and ca_put requests map to dbGetField and dbPutField database access requests.
Ca_add_event requests result in database monitors being established. Database access and/
or record support routines trigger the monitors via a call to db_post_event.

1.4.4 Connection Management

Channel access provides a connection management service. When a channel access server
fails (e.g. it’s IOC crashes) the client is notified. and when a client fails (e.g. it’s task crashes)
the server is notified. When a client fails, the server breaks the connection. When a server
crashes, the client automatically re-establishes communication when the server restarts.

1.5 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based
on whether or not they use channel access. Channel access tools are real time tools, i.e. they
are used to monitor and control IOCs.

1.5.1 Channel Access Tools

MEDM Motif version of combined display manager and display editor.

DM Display Manager. This tool reads one or more display list files created by
EDD, establishes communication with all necessary IOCs, establishes mon-
itors on process variables, accepts operator control requests, and updates the
display to reflect all changes.

ALH Alarm Handler. This is a general purpose alarm handler driven by an alarm
configuration file.

AR Archiver. This is a general purpose tool to acquire and save data from IOCs.

Sequencer A tool which runs in an IOC and emulates a finite state machine.

BURT Backup and Restore Tool. A general purpose tool to save and restore Channel
Access channels. The tool can be run via Unix commands or via a Graphical
User Interface.

EPICS: IOC Application Developer‘s Guide May 12, 1994

KM
PROBE
XMCA

XMSEQ

CAMATH
CAWINGZ

Knob Manager - A Channel Access interface for the sun dials (a set of 8
knobs)

A tool which allows the user to monitor and/or change a single process
variable specified at run time.

A tool which allows the user to monitor and/or change a set of process
variables specified at run time.

A GUI which allows the user to prepare sequence programs that can be run
on Unix or on an IOC.

A Channel Access interface for Mathematica.
A Channel Access interface for Wingz.

1.5.2 Other OPI Tools

DCT

EDD

SNC

Build Tools

Database Configuration Tool. This tool is used to create a run time database
for an IOC

Display Editor. This tool is used to create a display list file for the Display
Manager. A display list file contains a list of static, monitor, and control
elements. Each monitor and control element has an associated process vari-
able.

State Notation Compiler. It generates a C program that represents the states
for the IOC Sequencer tool.

Tools are available to create the various database components from ascii
definition files.

Source/Release EPICS provides a Source/Release mechanism for managing EPICS.
1.6 EPICS Core Software

EPICS consists of a set of core software and a set of optional components.
The core software, i.e. the components of EPICS without which EPICS would not function,

are:;

Channel Access - Client and Server software
DATABASE

Scanners

Monitors

DCT

Build Tools
Source/Release

All other software components are optional. Of course any application developer would be
crazy to ignore tools such as EDD/DM (or MEDM). Likewise an application developer
would not start from scratch developing record and device support. Most OPI tools do not,
however, have to be used. Likewise any given record support module, device support mod-
ule, or driver could be deleted from a particular IOC and EPICS will still function.

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 2 : I0C Test Facilities

2.1 Database List, Get, Put

This section describes a number of ioc test routines that are of interest to both application
developers and system developers. All routines can be executed from the vxWorks shell.
The parentheses are optional, but the arguments must be separated by commas. All character
string arguments must be enclosed in””.

The user should also be aware of the field TPRO, which is present in every database record.
If it is set True then a message is printed each time it’s record is processed and a message
is printed for each record processed as a result of it being processed.

2.1.1 dbl - Database List

Format:
dbl “<record type>”

Examples

dbl
dbl “ai”

This command prints the names of the records in the run time database. If <record type> is
not specified all records are listed. If <record type> is specified then only the names of the
records for that type are listed.

2.1.2 dbgrep - List record names that match a pattern

Format:
dbgrep "<pattern>"
Examples

dbgrep ”S0*”

dbgrep "*gpibAi*”
Lists all record names that match a pattern. The pattern can contain any characters that are
legal in record names as well as ”*”, which matches one or more of any character.

2.1.3 dba- Database address

Format:
dba “<record_name.field_name>”
Example

dba “aitest”
dba ”aitest. VAL”

EPICS: IOC Application Developer‘s Guide May 12, 1994

This command calls dbNameToAddr and then prints the value of each field in the dbAddr
structure describing the field. If the field name is not specified then ”VAL” is assumed (the
two examples above are equivalent).

2.1.4 dbgf - Get Field

Format:
dbgf "<record_name.field_name>”
Example:

dbgf "aitest”
dbgf “aitest. VAL”

This performs a dbNameToAddr and then a dbGetField. It prints the value of each element
of the dbAddr structure as well as the field value. If the field name is not specified then”VAL”
is assumed (the two examples above are equivalent).

2.1.5 dbpf - Put Field

Format:
dbpf "<record_name.field_name>”,”<value>"

Example:

dbpf “aitest”,”5.0”
This command performs a dbNameToAddr followed by a dbPutField and dbgf. If
<field_name> is not specified ”VAL” is assumed.

2.1.6 dbpr - Print Record

Format:

dbpr "<record_name>” <interest level>
Example

dbpr “aitest”,2

This command prints all fields of the specified record up to and including those with the
indicated interest level. Interest level has one of the following values:

0 Fields of interest to an Application developer and that can be changed as a
result of record processing.

1 Fields of interest to an Application developer and that do not change during
record processing

2 Fields of major interest to a System developer

3 Fields of minor interest to a System developer

4 Fields of no interest. This is used only for pad fields

EPICS: IOC Application Developer‘s Guide May 12, 1994

2.1.7 dbtr - test record

Format:
dbtr "<record_name>"

This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Thus it’s
purpose is to test record processing.

This command tests dbPutNotify using old database access calls. This routine is of most
interest to system developers for testing database access.

2.2 Breakpoints

Abreakpoint facility has been developed that allows one to step through database processing
on a per lockset basis. This facility has been constructed in such a way that the execution
of all locksets other than ones with breakpoints will not be interrupted. This was done by
executing the records in the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing break-
points. A record that is processed through external means, e.g.: a scan task, is called an
entrypoint into that lockset. The ”dbstat” command described below will list all detected
entrypoints to a lockset, and at what rate they have been detected.

2.2.1 dbb - Set Breakpoint

Format:

dbb "<record_name>"

Sets a breakpoint in a record. Automatically spawns the “bkptCont,” or breakpoint contin-
uation task (one per lockset). Further record execution in this lockset is run within this task’s
context. This task will automatically quit if two conditions are met, all breakpoints have
been removed from records within the lockset, and all breakpoints within the lockset have
been continued.

2.2.2 dbd - Remove breakpoint
Format:
dbd "<record_name>"
Removes a breakpoint from a record.
2.2.3 dbs - Single Step
Format:

dbs “<record_name>"

Steps through execution of records within a lockset. If this command is called without an
argument, it will automatically step starting with the last detected breakpoint.

2.2.4 dbc - Continue

Format:

dbc "<record_name>”

10

EPICS: IOC Application Developer‘s Guide May 12, 1994

Continues execution until another breakpoint is found. This command may also be called
without an argument.

2.2.5 dbp - Print fields of suspended record

Format:

dbp
Prints out the fields of the last record whose execution was suspended.

2.2.6 dbap - Auto Print

Format;

dbap <record_name>”

Toggles the automatic record printing feature. If this feature is enabled for a given record,
it will automatically be printed after the record is processed.

2.2,7 dbstat - Status

Format:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all
the records with breakpoints set, what records have the autoprint feature set (by dbap), and
what entrypoints have been detected. It also displays the vxWorks task ID of the breakpoint
continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so #B: 00001 T: 0x23cafac
Entrypoint: so #C. 00001 C/S: 0.1
Breakpoint: so (ap)
LSet: 00008 #B: 00001 T: O0x22feedc

Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at record
”’s0.” The other is not currently stopped, but contains abreakpoint at record ”output.” ”LSet:”
is the lockset number that is being considered. ”#B:” is the number of breakpoints set in
records within that lockset. ”T:” is the vxWorks task ID of the continuation task. ’C:” is the
total number of calls to the entrypoint that have been detected. ”C/S:” is the number of those
calls that have been detected per second. (ap) indicates that the autoprint feature has been
turned on for record ’so.”

2.3 Hardware Reports
2.3.1 dbior - I/O Report

Format:

dbior ”<driver_name>” <interest level>

11

EPICS: I0C Application Developer‘s Guide May 12, 1994

This command calls the report entry of the indicated driver. If <driver_name> is not specified
then the report for all drivers is generated. It also calls the report entry of all device support
modules. Interest level is one of the following:

0 Print only a list of modules found.
1 Print additional information.
2 Print even more info. The user may be prompted for options.

2.3.2 dbhcr - Hardware Configuration Report

This command produces a report of all hardware links. To use it issue, on the ioc, the
command:

dbhcr > report

The report will probably not be in the sort order desired so on unix issue the command:
sort report > report .sort

report.sort should contain the sort order you desire.

2.4 Scan Reports
2.4.1 scanppl - Print Periodic Lists

Format:
scanppl

This routine prints a list of all records in the periodic scan lists.
2.4.2 scanpel - Print Event Lists

Format:
scanpel

This routine prints a list of all records in the event scan lists.
2.4.3 scanpiol - Print I/O Event Lists

Format:
scanpiol

This routine prints a list of all records in the I/O event scan lists.
2.5 Channel Access Reports
2.5.1 client_stat Channel Access Clients status

Format:

client_stat

12

EPICS: IOC Application Developer‘s Guide

2.5.2 dbel Print Event List

Format:

dbel ”<record_name>"

This routine prints the channel access event list for the specified record.

2.5.3 veclist - Print interrupt vector list

Format:

veclist

2.6 Environment Variables

2.6.1 epicsPrtEnvParams - Print environment variables

Format:

epicsPrtEnvParams

2.7 Database System test routines

May 12, 1994

These routines are normally only of interest to EPICS system developers NOT to Application

Developers.
2.7.1 dbt Measure time to process a record

Format:

dbt ”<record_name”

Times the execution of 100 successive processings of record “record_name.” Note that
process passive and forward links within this record may incur the processing of other
records in its lockset. This function is a wrapper around the VxWorks timexN() function,
and directly displays its output. Therefore one must divide the result by 100 to get the

execution time for one processing of “record_name.”
2.7.2 dbtgf - Test Get Field

Format:
dbtgf ”<record_name.field_name>”
Example:

dbtgf "aitest”
dbtgf aitest.VAL”

13

EPICS: I0C Application Developer‘s Guide May 12, 1994

This performs a dbNameToAddr and then calls dbGetField with all possible request types
and options. It prints the results of each call. This routine is of most interest to system
developers for testing database access.

2.7.3 dbtpf - Test Put Field

Format:
dbtpf ”<record_name.field_name>",’<value>"

Example:

dbtpf “aitest”,”5.0”
This command performs a dbNameToAddr and then calls dbPutField followed by dbgf for
each possible request type. This routine is of most interest to system developers for testing
database access.

2.7.4 dbtpn - Test Put Notify

Format:
dbtpn “<record_name.field_name>”,”<value>"

Example:

dbtpn aitest”,”5.0”
This command performs a dbNameToAddr and then calls dbPutNotify and has a callback
routine that prints a message when it is called. This routine is of most interest to system
developers for testing database access.

2.7.5 dblls - List Lock Sets
Format;

dblls lock_set

This command generates a report showing the lock set to which each record belongs. If
lock_set is O all records are shown otherwise only records in the specified lock set are shown.

2.7.6 dbls - List Structures

This test routine prints a formatted dump of the internal database structures. It is completely
menu driven. Only system developers will be normally be interested in this routine because
it assumes that the user understands the internal data structures.

2.8 Old Database Access Testing

These routines are mostly of interest to EPICS system developérs. They are used to test the
old database access interface, which is still used by channel access.

14

EPICS: IOC Application Developer‘s Guide May 12, 1994

2.8.1 gft - Get Field Test

Format:
gft ”<record_name.field_name>”
Example:

gft "aitest”
gft "aitest. VAL”

This performs a db_name_to_addr and then calls db_get_field with all possible request
types. It prints the results of each call. This routine is of most interest to system developers
for testing database access.

2.8.2 pft - Put Field Test

Format:
pft "<record_name.field_name>",”<value>"
Example:

pft “aitest”,”5.0”

This command performs a db_name_to_addr, db_put_field , db_get_field and prints the
result for each possible request type. This routine is of most interest to system developers
for testing database access.

2.8.3 tpn - Test Put Notify

Format:

tpn “<record_name.field_name>”,”<value>"
Example:

tpn “aitest”,”5.0”
This routine tests dbPutNotify via the old database access interface.

15

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 3 : GENERAL PURPOSE FEATURES

Before proceeding with a description of the JOC software, it is first necessary to have a short
diversion describing some general purpose IOC features.

3.1 General Purpose Tasks

3.1.1 Callback Tasks

EPICS provides three general purpose IOC callback tasks. The only difference between the
tasks is scheduling priority: Low, Medium,and High. The low priority task runs at a priority
just higher than channel access, the medium at a priority about equal to the median of the
periodic scan tasks, and the high at a priority higher than the event scan task. The callback
tasks provide a service for any software component that needs a task under which to run.
The callback tasks use the task watchdog (described below). They use a rather generous
stack and can thus be used for invoking record processing. For example the I/O event scanner
uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:
1 Include callback definitions:

#include <callback.h>
2 Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;
It is permissible for this to be part of a larger structure, e.g.
struct {

CALLBACK mycallback;

}o

3 Call routines (actually macros) to initialize fields in CALLBACK:
callbackSetCallback(VOIDFUNCPTR, CALLBACK *)
This defines the callers callback routine. The first argument is the address of a
function returning VOID. The second argument is the address of the CALL-
BACK structure.
callbackSetPriority(int, CALLBACK *)
The first argument is the priority, which can have one of the values: priorityLow,
priorityMedium, or priorityHigh. These values are defined in callback.h. The
second argument is again the address of the CALLBACK structure.
callbackSetUser(VOID *, CALLBACK *)

This call is used to save a value that can be retrieved via a call to

16

EPICS: IOC Application Developer‘s Guide May 12, 1994

callbackGetUser(VOID *,CALLBACK *)
4 Whenever a callback request is desired just call

callbackRequest(CALLBACK *)

This call can be made from interrupt level. The callback routine is passed a single
argument, which is the same argument that was passed to callbackRequest, i.e.,
the address of the CALLBACK structure.

Lets look at an example use of the callback tasks.
#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];
}myStruct;

void myCallback(CALLBACK *pcallback)
{
struct myStruct *pmyStruct;

callbackGetUser(pmyStruct,pcallback)
printf("begid=%s endid=%s\n",&pmyStruct->begid[0],&pmyStruct->endid[0]);

example(char *pbegid, char*pendid)
{

strepy(&myStruct.begid[0],pbegid);
strepy(&myStruct.endid[0],pendid);
callbackSetCallback(myCallback,&myStruct.callback);
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:

example(”begin”,”end”)
This simple example shows how to use the callback tasks with your own structure that

contains the CALLBACK structure at an arbitrary location. Note that things can be simpli-
fied if CALLBACK is located at the beginning of the structure.

3.1.2 Task Watchdog

EPICS provides an IOC task which is a watchdog for other tasks. Any task can make a
request to be watched. The task watchdog runs periodically and checks each task in it’s task
list. If any task is suspended, an error message is issued and, optionally, a callback task is
invoked. The task watchdog provides the following features:

1 Include module

#include <taskwd.h>

17

EPICS: IOC Application Developer‘s Guide May 12, 1994

2

Insert request
taskwdInsert(int tid, VOIDFUNCPTR callback, (VOID *)userarg);

This is the request to include the task with the specified tid in the list of tasks to
be watched. If callback is not NULL then if the task becomes suspended, the
callback routine will be called with a single argument userarg.

Remove request
taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when
the original task goes into the suspended state.

Insert request to be notified in any task suspends
taskwd AnyInsert(int tid, VOIDFUNCPTR callback, (VOID *)userarg);

The callback routine will be called whenever any of the tasks being monitored
by the task watchdog task suspends.

Remove request for taskwd AnyInsert

taskwd AnyRemove(int tid);

3.2 Error Handling

3.2.1 Overview

The error handling facilities provided by the IOC include the following features:

1

2

3
4
5

6

Whenever possible IOC routines return a status value. (0, non 0) means (OK,
ERROR).

The include files for each IOC subsystem contains macros defining error status
symbols and strings.

Routines are provided for run time access of the error status symbols and strings.
A routine errMessage provides access to a system wide error handling system.

A global variable errVerbose indicates if routines should call errMessage for
errors belonging to a particular client.

In the future a system wide error handling system will be provided

Errors detected by an IOC can be divided into classes: Errors related to a particular client
and errors not attributable to a particular client. An example of the first type of error is an
illegal channel access request. For this type of error a status value should be passed back to
the client. An example of the second type of error is a device driver detecting a hardware
error. This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

1

In many cases it is not possible for the routine detecting an error to decide which
type of error occurred.

18

EPICS: IOC Application Developer‘s Guide May 12, 1994

2 It is normally only the routine detecting an error that knows how to generate a
fully descriptive error message. Thus if a routine decides that the error belongs
to a particular client and merely returns an error status value the ability to gen-
erate a fully descriptive error message is lost.

3 If a routine always generates fully descriptive error messages then a particular
client could cause error message storms.

4 While developing a new application the programmer normally prefers fully de-
scriptive error messages. For a production system, however, the system wide
error handler should not normally receive error messages cause by a particular
client.

If used properly, the error handling facilities described in this chapter can process both types
of errors.

3.2.2 Return Status Values

Whenever it makes sense IOC routines return a long word status value encoded similar to
the vxWorks error status encoding. The most significant two bytes indicate the subsystem
module within which the error occurred. The low order two bytes is a subsystem status
value. In order that status values do not conflict with the vxWorks error status values all
subsystem numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For example the define
for the database access routines is:

#define M_dbAccess(501 << 16)/*Database Access Routines*/

Directory “epics/share/epicsH” contains an include library for every IOC subsystem that
returns standard status values. The status values are encoded with lines of the following
format:
#define S_xxxxxxx value /*string value*/
For example:
#define S_dbAccessBadDBR (M_dbAccessl3) /*Invalid Database Request*/
For example, when dbGetField detects abad database request type, it executes the statement:
return(S_dbAccessBadDBR);

The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */}

19

EPICS: IOC Application Developer‘s Guide May 12, 1994

3.2.3 Interface to System Wide Error Handling System

Either errMessage or errPrintf can be used as an interface to the system wide error handling
system. At the present time they end up calling logMsg. Facilities have been added to EPICS
to trap logMsg calls and direct them to a system wide log file. In the future a more generalized
system wide error handling system, which allows an error handling program to receive error
messages from all or selected IOC’s, can be provided.

errMessage

Routine errMessage (actually a macro that calls errPrintf) has the following format:

void errMessage(
long status,
char *message);

status 0 Find latest vxWorks or Unix error.

-1 Don’t report status.

If any other value this is as defined in previous section.
ErrMessage, via a call to errPrintf, prints the message, the status symbol and string values,
and the name of the task which invoked errMessage. It also prints the name of the source
file and the line number from which the call was issued.

The calling routine is expected to pass a descriptive message to this routine. Many sub-
systems provide routines built on top of errMessage which generate descriptive messages.

An IOC global variable errVerbose, defined as an external in errMdef.h, specifies verbose
messages. If errVerbose is true then errMessage should be called whenever an error is
detected even if it is known that the error belongs to a specific client. If errVerbose is false
then errMessage should be called only for errors that are not caused by a specific client

errPrintf

Routine errPrintf has the following format:

void errPrintf(
long status,
—FIE_,
LINE,
char *fmtstring
<argl>,

)

status 0 Find latest vxWorks or Unix error.
-1 Don’t report status.
If any other value this is as defined in previous section.

__FILE__As shown or NULL if the file name and line number should not be printed.
__LINE__As shown

The remaining arguments are just like the arguments to the C printf routine. errVerbose
determines if the filename and line number are shown.

20

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 4 : DATABASE LOCKING, SCANNING, and PRO-
CESSING

Before describing particular components of the IOC software, it is helpful to give an overview of
three closely related topics: Database locking, scanning, and processing. Locking is done to prevent
two different tasks from simultaneously modifying related database records. Database scanning is
the mechanism for deciding when records should be processed. In simple terms record processing
involves obtaining the current value for input fields and outputs the current value of output fields.
Life gets more complicated as records become more complex.

One powerful feature of the DATABASE is that records can contain links to other records. This
feature also causes considerable complication. Thus before discussing locking, scanning, and pro-
cessing database links are described.

4.1 Database Links

A database record may contain links to other records. Each link is one of the following types:
INLINK An input link is used to fetch data.
OUTLINK An output link is used to write data.

INLINKSs and OUTLINKS can be one of the following: constant, database
link, channel access link, or a reference to a hardware signal.

FWDLINK A forward link refers to a record that should be processed whenever the
record containing the forward link completes processing.

NOTE: If a forward link is not a database link it is just ignored.
This chapter only discusses database links. Links are defined in file link.h.
Database links are referenced by calling one of the following routines:
1 dbGetLink - The value of the field referenced by the input link retrieved.
2 dbPutLink - The value of the field referenced by the output link is changed.

3 dbScanPassive - The record referred to by the forward link is processed if it is
passive.

A forward link only makes sense if it refers to a passive record that the application developer

wants processed after the record containing the record. For input and output links, however,
two other attributes can be specified by the application developer. Let’s discuss each sepa-
rately.

4.1.1 Process Passive

This option, which is either true or false, determines if the linked record should be processed
before getting a value from an input link or after writing a value to an output link. The record
will be processed, via a call to dbProcess, only if the record is a passive record and
process_passive is true.

21

EPICS: IOC Application Developer‘s Guide May 12, 1994

4.1.2 Maximize Severity

This option, which is true or false, determines if alarm severity is propagated across links.
For input links the alarm severity of the record referred to by the link is propagated to the
record containing the link. For output links the alarm severity of the record containing the
link is propagated to the record referred to by the link. In either case, if the severity is
changed, the alarm status is set to LINK_ALARM.

The method of determining if the alarm status and severity should be changed is called”max-
imize severity”. In addition to it’s actual status and severity, each record also has a new
status and severity. The new status and severity are initially O, which means NO_ALARM.
Every time a software component wants to modify the status and severity, it first checks the
new severity and only makes a change if the severity it wants to set is greater than the current
new severity. If it does make a change, it changes the new status and new severity, not the
current status and severity. When database monitors are checked, which is normally done
by arecord processing routine, the current status and severity are set equal to the new values
and the new values reset to zero. The end result is that the current alarm status and severity
reflect the highest severity outstanding alarm. If multiple alarms of the same severity are
present the status reflects the first one detected.

4.2 Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously
by two different tasks. In addition it prevents “outside” tasks from changing any field while
the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
dbScanUnlock(precord);

The basic idea is to call dbScanlock before performing any operations that can modify
database records and calling dbScanUnlock after the modifications are complete. Because
of database links (Input, Output, and Forward) a modification to one record can cause
modification to other records. All records linked together, except possibly for input links
declared NPP and NMS, are placed in the same lock set. DbScanLock locks the entire lock
set not just the record requested. DbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1 The periodic, I/O event, and event tasks lock before and unlock after processing:
2 dbPutField locks before modifying a record and unlocks afterwards.

3 dbGetField locks before reading and unlocks afterwards.
4

Any asynchronous record support completion routine must lock before modify-
ing a record and unlock afterwards.

All records linked via OUTLINKSs and FWDLINKs are placed in the same lock set. Records
linked via INLINKSs with process_passive or maximize_severity true are also forced to be
in the same lock set. The lock sets are determined during ioc initialization.

4.3 Database Scanning

Database scanning is the mechanism which requests that a database record be processed.
Four types of scanning are possible:

22

EPICS: IOC Application Developer‘s Guide May 12, 1994

Periodic - Records are scanned at regular intervals.
I/O event - A record is scanned as the result of an I/O interrupt.
Event - A record is scanned as the result of any task issuing a post_event request.

Passive - A record is scanned as aresult of a call to dbScanPassive. DbScanPassive
will issue a record processing request if and only if the record is passive and is not
already being processed.

A dbScanPassive request results from a task calling one of the following routines.

dbScanPassive Only record processing routines, dbGetLink, dbPutLink, and dbPutField call db-
ScanPassive. Record processing routines call it for each forward link in the record.

dbPutField This routine changes the specified field and then, if the field has been declared
process_passive, calls dbScanPassive. Each field of each record type has the at-
tribute process_passive declared true or false in the ascii definition file. Thus this
attribute is a global property, i.e. the Application Developer has no control of it.
This use of process_passive is used only by dbPutField. If dbPutField finds the
record already active (this can happen to asynchronous records) and it is supposed
to cause it to process, it arranges for it to again be processed when the current
processing completes.

dbGetLink If the link specifies process passive, this routine calls dbScanPassive. Whether or
not dbScanPassive is called, it then obtains the specified value.

dbPutLink This routine changes the specified field. Then, if the link specifies process passive,
it calls dbScanPassive. DbPutLink is only called from record processing routines.
Note that this usage of process_passive is under the control of the Application
Developer. If dbPutLink finds the record already active because of a dbPutField
directed to this record then it arranges for the record to again be processed when
the current processing completes.

All non record processing tasks (Channel access, Sequence Programs, etc.) call dbGetField
to obtain database values. DbGetField just reads values without asking that a record be
processed.

PN =

4.4 Record Processing

A record is processed as a result of a call to dbProcess. Each record support module must
supply a routine”process”. This routine does most of the work related to record processing.
Since the details of record processing are record type specific this topic is discussed in
greater detail in chapter CHAPTER 8 :.

4.5 Guidelines for Creating database links

The ability to link records together is an extremely powerful feature of the IOC software.
In order to use links properly it is important that the Application Developer understand how
they are processed. As an introduction consider the following example:

> [EHEPP] >
Bl —> FWaCmE]—> E]—> FmmE]—> [

Figure 3 Example of Database Links

23

EPICS: I0C Application Developer‘s Guide May 12, 1994

Assume that A, B, and C are all passive records. The notation states that A has a forward link to B
and B to C. Chas an input link obtaining a value from A. Assume, for some reason, A gets processed.
The following sequence of events occurs:

1
2
3

4
5
6

A begins processing. While processing a request is made to process B.
B starts processing. While processing a request is made to process C.
C starts processing. One of the first steps is to get a value from A via the input link.

At this point a question occurs. Note that the input link specifies process passive (sig-
nified by the PP after InLink). But process passive states that A should be processed
before the value is retrieved. Are we in an infinite loop? The answer is no. Every record
contains a field PACT (processing active), which is set true when record processing
begins and is not set false until all processing completes. When C is processed A still
has PACT true and will not be processed again.

C obtains the value from A and completes its processing. Control returns to B.
B completes returning control to A
A completes processing.

This brief example demonstrates that database links needs more discussion.
4.5.1 Rules Relating to Database Links

Processing Order

The processing order is guaranteed to follow the following rules:

1

3

Lock Sets

Forward links are processed in order from left to right and top to bottom. For
example the following records are processed in the order FLNK1, FLNK2,
FLKN3,
FLNK4.

_’EFENKTI—> FLNKZ]
fanout |
FLRNK3] - FLNK4]

If a record has multiple input links (calculation and select records) the input is
obtained in the natural order. For example if the fields are named INPA, IN-
PB,...,INPL, then the links are read in the order A then B then C, etc. Thus if
obtaining an input results in a record being processed, the processing order is
guaranteed.

All input and output links are processed before the forward link.

All records, except possibly for NPP&NMS input links, linked together directly or indirectly
are placed in the same lock set. When dbScanLock is called the entire set, not just the
specified record, is locked. This prevents two different tasks from simultaneously modifying
records in the same lock set.

24

EPICS: IOC Application Developer‘s Guide May 12, 1994

PACT - processing active

Each record contains a field PACT. This field is set true at the beginning of record processing
and is not set false until the record is completely processed. In particular no links are pro-
cessed with PACT false. This prevents infinite processing loops. The example given at the
beginning of this chapter gives an example. It will be seen in sections 4.6 and 4.7 that PACT
has other uses.

Process Passive: Link option

Input and output links have an option called process passive. For each such link the appli-
cation developer can specify process passive true (PP) or process passive false (NPP).
Consider the following example:

P > [ECTEPP] >l
[Faime] —> E

& —>|:
[Fame] —>]

k > [ELTEPP] >

Figure 4 Incorrect link definition

Assume that all records except fanout are passive. When the fanout record is processed the
following sequence of events occur:

1 Fanout starts processing and asks that B be processed.

B begins processing. It calls dbGetLink to obtain data from A.

Because the input link has process passive true, a request is made to process A.
A is processed, the data value fetched, and control is returned to B

B completes processing and control is returned to fanout. Fanout asks that C be
processed.

C begins processing. It calls dbGetLink to obtain data from A.

Because the input link has process passive true, a request is made to process A.
A is processed, the data value fetched, and control is returned to C.

C completes processing and returns to fanout

10 The fanout completes

W bW

O 0 N &

25

EPICS: IOC Application Developer‘s Guide May 12, 1994

Note that A got processed twice. This is unnecessary. If the input link to C is declared no
process passive then A will only be processed once. Thus we should have.

£ > [ACKPP] 1
EwdLik] —> E]

Bl —{:
—>%I

> LK NPP]
Figure 5 Correct Link definition

Process Passive; Field attribute

Each field of each database record type has an attribute called process passive. This attribute
is specified in the ascii record definition file. Thus it is not under the control of the application
developer. This attribute is used only by dbPutField. It determines if a passive record will
be processed after dbPutField changes a field in the record. Consult the record specific
information in the record reference manual for the setting of individual fields.

Maximize Severity: Link option

When database input or output links are defined via DCT, the application developer can
specify if alarm severities should be propagated across links. For input links the severity is
propagated from the record referred to by the link to the record containing the link. For
output links the severity of the record containing the link is propagated to the record refer-
enced by the link. The alarm severity is transferred only if the new severity will be greater
than the current severity. If the severity is propagated the alarm status is set equal to
LINK_AILLARM. See section 4.1.2 for details.

4.6 Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus
the application developer never needs to consider the possibility of delays when he defines
aset of related records. The only consideration is deciding when records should be processed
and in what order a set of records should be processed.

Lets review the methods available to the application programmer for deciding when to

process a record and for enforcing the order of record processing.

1 Arecord can be scanned periodically (at one of several rates), via I/O event, or
via Event.

2 For each periodic group and for each Event group the phase field can be used to
specify processing order.

3 The application programmer has no control over the record processing order of
records in different groups.

4 The disable fields (SDIS, DISA, and DISV) can be used to disable records from
being processed. By letting the SDIS field of an entire set of records refer to the
same input record, the entire set can be enabled or disabled simultaneously. See
the Record Reference Manual for details.

26

EPICS: IOC Application Developer‘s Guide May 12, 1994

4.7

5 A record (periodic or other) can be the root of a set of passive records that will
all be processed whenever the root record is processed. The set is formed by
input, output, and forward links.

6 The process passive option specified for each field of each record determines if
a passive record is processed when a dbPutField is directed to the field. The
application developer must be aware of the possibility of record processing being
triggered by external sources if dbPutFields are directed to fields that have pro-
cess passive true.

7 The process passive option for input and output links provides the application
developer control over how a set of records are scanned.

8 Quite general link structures can be defined. The application programmer should
be wary, however, of defining arbitrary structures without carefully analyzing
the processing order.

Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB
input record. When the record is processed the GPIB request is started and the processing
routine returns. Processing, however, is not really complete until the GPIB request com-
pletes. This is handled via an asynchronous completion routine. Lets state a few attributes
of asynchronous record processing.

During the initial processing for all asynchronous records the following is done:
1 PACT is set true

2 Data is obtained for all input links

3 Record processing is started

4 The record processing routine returns

The asynchronous completion routine performs the following algorithm:
1 Record processing continues

2 Forward links are processed

3 Record specific alarm conditions are checked

4 Monitors are raised

5 PACT is set false.

Lets note a few attributes of the above rules:

1 Asynchronous record processing does not delay the scanners.

2 Between the time record processing begins and the asynchronous completion
routine completes, no attempt will be made to again process the record. This is
because PACT is true. The routine dbProcess checks PACT and does not call the
record processing routine if it is true. Note, however, that if dbProcess finds the
record active 10 times in succession, it raises a SCAN_ATL.ARM.

3 Forward and output links are triggered only when the asynchronous completion
routine completes record processing.

27

EPICS: IOC Application Developer‘s Guide May 12, 1994

With these rules the following works just fine

[ESYN]—> [bScanPassive] —> B]

When dbProcess is called for record ASYN, processing will be started but dbScanPassive
will not be called. Until the asynchronous completion routine executes any additional at-
tempts to process ASYN are ignored. When the asynchronous callback is invoked the db-
ScanPassive is performed.

Problems still remain. A few examples are:
Infinite Loop

Infinite processing loops are possible.

ﬁBScﬁiPasswe I N
— >

db P

[bscankassive |

Assume both A and B are asynchronous passive records and a request is made to process
A. The following sequence of events occur.

1 A starts record processing and returns leaving PACT True.

2 Sometime later the record completion for A occurs. During record completion
arequest is made to process B. B starts processing and control returns to A which
completes leaving it’s PACT field True.

3 Sometime later the record completion for B occurs. During record completion
arequest is made to process A. A starts processing and control returns to B which
completes leaving it’s PACT field True.

Thus an infinite loop of record processing has been set up. It is up to the Application
Developer to prevent such loops.

Obtain Old Data

A dbGetLink to a passive asynchronous record can get old data.

Pl «— FEG] <— E

If A is a passive asynchronous record then the dbGetLink request forces dbProcess to be
called for A. DbProcess starts the processing and returns. DbGetLink then reads the desired
value which is still old because processing will only be completed at a later time.

28

EPICS: IOC Application Developer‘s Guide May 12, 1994

Delays

Consider the following:

[ESYN] —> [bScanPassive] —> [ASYN|—>- [bScanPassive] —>-

The second ASYN record will not begin processing until the first completes, etc. This is not
really a problem except that the application developer must be aware of delays caused by
asynchronous records. Again note that scanners are not delayed only records downstream
of asynchronous records.

Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous
processing routine completes what happens? If the asynchronous routine completes before
the watch dog task runs everything is ok. If it doesn’t? I think this is a more general question
of the consequences of having the watchdog timer restart a scan task. At APS we currently
do not allow scanners to be automatically restarted.

4.8 Cached Puts

The rules followed by dbPutLink and dbPutField provide for ”cached” puts. This is neces-
sary because of asynchronous records. Two cases arise.

The first results from a dbPutField, which is a put coming from outside the database, i.e.
channel access puts. If this is directed to a record that already has PACT true because the
record started processing but asynchronous completion has not yet occurred, then a value
is written to the record but nothing will be done with the value until the record is again
processed. In order to make this happen dbPutField arranges to have the record reprocessed
when the record finally completes processing.

The second case results from dbPutLink finding a record already active because of a dbPut-
Field directed to the record. In this case dbPutLink arranges to have the record reprocessed
when the record finally completes processing. Note that it could already be active because
it appears twice in a chain of record processing. In this case it is not reprocessed because
the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record
while it is active, each new value is placed in the record but it will still only be processed
once, i.e. last value wins.

29

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 5 : STATIC DATABASE ACCESS

An IOC database is created on a Unix system via a Database Configuration Tool and stored in a
Unix file Two flavors of unix files are supported: a binary file whixh uses an extension on .database,
and an ascii format which uses an extension of .db A database file is loaded into an ioc via a dbLoad
command and initialized via the iocInit command. A database file contains a number of self defining
records which are described later in this manual. EPICS provides two sets of database access
routines: Static Database Access and Runtime Database Access. Static database access can be used
on Unix or ioc database files. Runtime database access only works on initialized IOC databases.
Static database access is described in this chapter and runtime database access in the next chapter.
Static database access provides a simplified interface to a database, i.e. much of the complexity is
hidden. All choice fields are accesses via a common type called DCT_MENU. A set of routines are
provided to simplify access to link fields. All fields can be accessed as character strings. This
interface is called static database access because it can be used to access an unitialized as well as
an initialized database.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static
database access interface. An IOC database is created on a Unix system viaa database configuration
tool and stored in a Unix file with a file extension of ”.database”. Two routines (dbRead and dbWrite)
access a Unix database file. These routines read/write a database file to/from a memory resident
EPICS database. All other access routines manipulate the memory resident database.

An include file dbStaticLib.h contains all the definitions needed to use the static database access
library. Two structures (DBBASE and DBENTRY) are used to access a database. The fields in these
structures should not be accessed directly. They are used by the static database access library to
keep state information for the caller.

5.1 Definitions
5.1.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide
definitions of the form:

#include <dbStaticLib.h>
DBBASE*pdb;
pdb=dbAllocBase();
5.1.2 DBENTRY
A typical declaration for a database entry structure is:

DBENTRY *pentry;

pentry=dbAllocEntry(pdb);

Most static access to a database is via a DBENTRY structure. As many as desired can be
allocated. Each is, however, associated with a particular database. The user should NEVER
access the fields of DBENTRY directly.

Most access routines accept an argument which contains the address of a DBENTRY. Each
routine uses this structure to locate the information it needs and gives values to as many
fields in this structure as possible. All other fields are set to NULL.

30

EPICS: 10C Application Developer‘s Guide May 12, 1994

5.1.3 Database Configuration Field types

Each database field has a type as defined in the previous chapter. For static database access
a new and simpler set of field types are defined. This allows a simpler interface definition.
In addition some database fields can be arrays. For DCT,-however, all fields are scalars.

The DCT field types are:

DCT_STRING Character string.
DCT_INTEGER Integer value

DCT_REAL Floating point number

DCT_MENU A set of choice strings

DCT_MENUFORM A set of choice strings with associated form.
DCT_INLINK Input Link

DCT_OUTLINK Output Link
DCT_FWDLINK Forward Link
DCT_NOACCESS A private field for use by record access routines

A DCT_STRING field contains the address of a NULL terminated ascii string. The field
types DCT_INTEGER and DCT_REAL are used for numeric fields. A field that has any of
these types can be accessed via the dbGetString, dbPutString, dbVerify, and dbGetRange
routines.

The field type DCT_MENU has an associated set of ascii strings defining the choices.
Routines are available for accessing menu fields. A menu field can also be accessed via the
dbGetString, dbPutString, dbVerify, and dbGetRange routines.

The field type DCT_MENUFORM is like DCT_MENU but in addition the field has an
associated link field. The information for the link field can be entered via a set of form
manipulation fields.

DCT_INLINK (input), DCT_OUTLINK (output), and DCT_FWDLINK (forward) specify
that the field is a link structure as defined in dbStaticLib.h. Link fields, which have an
associated set of static access routines, are described in a little more detail in the next
subsection. A field that has any of these types can also be accessed via the dbGetString,
dbPutString, dbVerify, and dbGetRange routines.

5.1.4 Link Types

Links are the most complicated types of fields. A link can be a constant, reference a field
in another record, or can refer to a hardware device. For hardware links two additional
complications arise. The first is that field DTYP, which is a menu field, determines if the
INP or OUT field is a device link. The second is that the information that must be specified
for a device link is bus dependent. In order to shelter database configuration tools from these
complications the following is done for static database access.

1 Static database access will treat DTYP as a DCT_MENUFORM field.

The information for the link field related to the DCT_MENUFORM can be
entered via a set of form manipulation routines associated with the
DCT_MENUFORM field. Thus the link information can be entered via the
DTYP field rather than the link field.

Each link is one of the following types:
DCT_LINK_CONSTANT Constant value.

31

EPICS: IOC Application Developer‘s Guide May 12, 1994

DCT_LINK_FORM Constant with associated DCT_MENUFORM field.
DCT_LINK_PV A process variable link.
DCT_LINK_DEVICE A device link with associated DCT_MENUFORM field..

Database configuration tools can change any link between being a constant and a process
variable link. Routines are provided to accomplish these tasks. A device link can be given
values via the form routines described below.

The routines dbGetString, dbPutString, and dbVerify can be used for link fields but should
not be used to prompt the user for PV or DEVICE links. They are meant to be used for
constant links or to save and restore ascii versions of the database.

5.2 EXAMPLE - Dump All Records

The following example demonstrate how to use the database access routines. If this is the
first time you are reading this manual just quickly look at the example and then come back
to it after reading the rest of the chapter. The example shows how to locate each record and
display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;
long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecdes(pdbentry);
if(status) {printf("No record descriptions\n™); return;}
while(!status) {
printf("record type: %s”,dbGetRecdesName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n™);
else printf("\n Record: %s\n”,dbGetRecordName(pdbentry));
while(!status) {
status = dbFirstFielddes(pdbentry, TRUE);
if(status) printf(’ No Fields\n”);
while(!status) {
printf(” %s:%s”,dbGetFieldName(pdbentry),dbGetString(pdbentry));
status=dbNextFielddes(pdbentry, TRUE);

}

status = dbNextRecord(pdbentry);
}
status = dbNextRecdes(pdbentry);

}
printf(’End of all Records\n”);
dbFreeEntry(pdbentry);

5.3 Allocating and Freeing Structures

DBBASE *dbAllocBase(void);

void dbFreeBase(DBBASE *pdbbase);

DBENTRY *dbAllocEntry(DBBASE *pdbbase);

void dbFreeEntry(DBENTRY *pdbentry);

void dbInitEntry(DBBASE *pdbbase, DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);

32

EPICS: IOC Application Developer‘s Guide May 12, 1994

These routines allocate and free DBBASE and DBENTRY structures. dbAllocBase allocates
and initializes a memory resident database. dbFreebase frees all memory used by the data-
base. Note that it is possible to work with more then one memory resident database at the
same time.

The user can allocate and free DBENTRY structures as necessary. Each DBENTRY is,
however, tied to a particular database.

The routines dbInitEntry and dbFinishEntry are provided in case the user wants to allocate
a DBENTRY structure on the stack.

The routine dbCopyEntry allocates a new entry, via a call to dbAllocEntry, copies the in-
formation from the original entry, and returns the result.

5.4 Read and Write database

long dbRead(DBBASE *pdbbase,FILE *fp);

long dbWrite(DBBASE *pdbbase,FILE *fpdctsdr,FILE *{p);

dbRead reads a file containing any combination of self defining records and adds the infor-
mation to the memory resident database. dbWrite writes the memory resident database into
a file. dbWrite requires two file pointers. The first is a file containing record description
information. The second references the output database file.

Although an arbitrary number of database files can be read each must contain the same set
of record descriptions. If any mismatch occurs dbRead will return an error. If dbRead returns
a non zero value do not call any of the other routines described in this chapter.

5.5 Manipulating Record Descriptions

long dbFindRecdes(DBENTRY *pdbentry,char *recdesname);
long dbFirstRecdes(DBENTRY *pdbentry);

long dbNextRecdes(DBENTRY *pdbentry);

char *dbGetRecdesName(DBENTRY *pdbentry);

int dbGetNRecdes(DBENTRY *pdbentry);

long dbCopyRecdes(DBENTRY *from,DBENTRY *to);

These routines manipulate the record description. An EPICS database consists of an arbitrary
number of record descriptions. The above routines provide access to the following infor-

mation:
Name dbGetRecdesName returns the record description name, e.g. *ai”
Number dbGetNRecdes returns the number of record descriptions, i.e. the number of

record types.
5.6 Manipulating Record Instances

long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);

long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry); /*first of record type*/
long dbNextRecord(DBENTRY *pdbentry);

int dbGetNRecords(DBENTRY *pdbentry);

char *dbGetRecordName(DBENTRY *pdbentry);

long dbRenameRecord(DBENTRY *pdbentry, char *newname)
long dbCopyRecord(DBENTRY *from,DBENTRY *to);

33

EPICS: IOC Application Developer‘s Guide May 12, 1994

These routines are used to create, delete, locate, etc. record instances. Note that other than
dbFindRecord all routines assume that one of the record description routines has been used
to locate a record type. dbFindRecord also calls dbFindField if the record name includes an

extension.

Routines are provided for accessing the following information:

Name dbGetRecordName returns the record name

Number dbGetNRecords returns the total number of record instances for current

record type.
5.7 Manipulating Field Descriptions

long dbFindField(DBENTRY *pdbentry,char *pfieldName);

long dbFirstFielddes(DBENTRY *pdbentry,int dctonly);

long dbNextFielddes(DBENTRY *pdbentry,int dctonly);

int dbGetFieldType(DBENTRY *pdbentry);

int dbGetNFields(DBENTRY *pdbentry,int dctonly);

char *dbGetFieldName(DBENTRY *pdbentry);

char *dbGetPrompt(DBENTRY *pdbentry);

int dbGetPromptGroup(DBENTRY *pdbentry);

These routines manipulate the field descriptions for a particular record type. Note that if a
record instance has previously been located they also update the location of the field itself.

5.8 Manipulating Field Values

char *dbGetString(DBENTRY *pdbentry);

long dbPutString(DBENTRY *pdbentry,char *pstring);

char *dbVerify(DBENTRY *pdbentry,char *pstring);

char *dbGetRange(DBENTRY *pdbentry);

int dbIsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field
types except DCT_NOACCESS but should NOT be used to prompt the user for information
for DCT_MENU, DCT_MENUFORM, or DCT_LINK_xxx fields. dbVerify returns
(NULL, a message) if the string is (valid, invalid). Please note that the strings returned are
volatile, i.e. the next call to a routines that returns a string will overwrite the value returned
by a previous call. Thus it is the callers responsibility to copy the strings if the value must
be kept.

DCT_MENU, DCT_MENUFORM and DCT_LINK_xxx fields can be manipulated via
routines described in the following sections. If, however dbGetString and dbPutString are
used they do work correctly. For these field types they are intended to be used only for
creating and restoring ascii versions of a database.

5.9 Manipulating Menu Fields

MENU and MENUFORM fields

char **dbGetChoices(DBENTRY *pdbentry);

int dbGetMenuIlndex(DBENTRY *pdbentry);

long dbPutMenulndex(DBENTRY *pdbentry,int index);
int dbGetNMenuChoices(DBENTRY *pdbentry);

long dbCopyMenu(DBENTRY *from,DBENTRY *to);

These are the routines that should be used for DCT_MENU and DCT_MENUFORM fields.

34

EPICS: IOC Application Developer‘s Guide May 12, 1994

MENUFORM fields

These routines are used with a DCT_MENUFORM field (a DTYP field) but actually ma-
nipulate an associated field DCT_INLINK or DCT_OUTLINK field.

int dbAllocForm(DBENTRY *pdbentry)

long dbFreeForm(DBENTRY *pdbentry)

char **dbGetFormPrompt(DBENTRY *pdbentry)

char **dbGetFormValue(DBENTRY *pdbentry)

long dbPutForm(DBENTRY *pdbentry, char **value)

char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number
of elements in the form. dbGetFormPrompt returns a pointer to an array of pointers to
character strings specifying the prompt string. dbGetFormValue returns the current values.
dbPutForm, which can use the same array of values returned by dbGetForm, sets new values.
dbVerifyForm can be called to verify user input. It returns NULL if no errors are present.
If errors are present it returns a pointer to an array of character strings containing error
messages. Lines in error have a message and correct lines have a null string. The following
is skeleton code showing use of these routines:

char **yalue;

char **prompt;

char **error;

int n;

n = dbAllocForm(pdbentry);

if(n<=0) {<Error>}

prompt = dbGetFormPrompt(pdbentry);

value = dbGetFormValue(pdbentry);

for(i=0; i<n; i-++) {
printf(”%s (%s) : \n”,prompt[i],valuefi])
scanf(’%s”,value[i])

}
if(dbPutForm(pdbentry,value)) {
error = dbVerifyForm(pdbentry,value)
if(error) for(i=0; i<n; i++) {
if(errorfi]) printf(’Error: %s (%s) %s\n”,prompt[i],value[i},error[i])

}
dbFreeForm(pdbentry);
All value strings are MAX_STRING_SIZE in length.

A set of form calls for a particular DBENTRY, MUST begin with a call to dbAllocForm
and end with a call to dbFreeForm. The values returned by dbGetFormPrompt, dbGetForm-
Value, and dbVerifyForm are valid only between the calls to dbAllocForm and dbFreeForm.

5.10 Manipulating Link Fields

All Link Fields

int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

35

EPICS: IOC Application Developer‘s Guide May 12, 1994

These are routines for manipulating DCT_xxxLINK fields. dbGetNLinks and dbGetLink-
Field are used to walk through all the link fields of a record. dbGetLinkType returns one of
the values: DCT_LINK_CONSTANT, DCT_LINK_FORM, DCT_LINK_PV, or
DCT_LINK_DEVICE.

Constant and Process Variable Links

long dbCvtLinkToConstant(DBENTRY *pdbentry);

long dbCvtLinkToPvlink(DBENTRY *pdbentry);

long dbPutPvlink(DBENTRY *pdbentry,int pp,int ms,char *pvname);

long dbGetPvlink(DBENTRY *pdbentry,int *pp,int *ms,char *pvname);

These routines should be used for modifying DCT_LINK_CONSTANT ot DCT_LINK_PV
links. They should not be used for DCT_LINK_FORM or DCT_LINK_DEVICE links,
which should be processed via the associated DCT_MENUFORM field described above.

5.11 Dump Routines

5.12

5.12.1

void dbDumpRecords(DBBASE *pdbbase, char *recdesname,int modOnly);
void dbDumpPvd(DBBASE *pdbbase);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

Utility Programs

NOTE: The routines described in this section are provided to translate between the old DCT
short form reports and .database files. Everyone is STRONGLY encouraged to start using
the GDCT format and use dbLoadRecords and/or dbLoadTemplate to load databases into
iocs. Thus the atdb and dbta should be considered temporary commands. See The GDCT
document for details.

atdb - Ascii to Database
atdb <dctsdr> <database>

e.g.
atdb default.dctsdr example.database < example.rpt

This program. which accepts it’s input from stdin, creates a new database file and poputates
it with records defined in the ascii file. The ascii file is a file in the old DCRT short form
format or a file generated by the dbta utility with the -s option.

It should also be noted that instead of terminating records with a AL (the old short form
report), it is also permissable to terminate records with $$end. Thus, in addition to short
form reports, the following is valid input to atdb:

PV: <record name> Type: <record type>
<field name> <value>
<as many fields as desired>
$$end
PV: <record name> Type: <record type>
<field name> <value>

<as many fields as desired>

36

EPICS: I0C Application Developer‘s Guide May 12, 1994
$$end

Use dbta, described next, on an existing database without the -s option to see an example.
5.12.2 dbta - Database to Ascii

dbta [-v] [-s] <filename>

e.g.

dbta -s example.database > newexample.rpt

This utility generates an ascii file from a database file. If -v is specified then all prompt fields
are generated otherwise only fields with non default values are displayed. If -s is specified,
then the generated file can be used as input to the old DCT or to atdb.

37

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 6 : RUNTIME DATABASE ACCESS

This chapter describes routines for manipulating and accessing an initialized ioc database.
This chapter is divided into the following sections:

1 Database related include files. All of interest are listed and those of general
interest are discussed briefly.

2 Runtime database access. These routines are used within an IOC to access an
initialized database.

3 Old Database Access. This is the interface still used by Channel Access and thus
by channel access clients.

6.1 Database Include Files

Directory epics/share/epicsH contains a number of database related include files. A complete
list is:

dbDefs.h Miscellaneous database related definitions
dbBase.h Base pointers for database structures
choice.h Choice Structures (Cvt, Gbl, Rec, and Dev)
cvtTable.h Conversion Structures

dbAccess.h Runtime database access definitions
dbDefs.h Basic database related definitions
dbFldTypes.h Field type definitions

dbRecDes.h Record and field description structures
dbRecType.h Record type structures

dbRecords.h Database record locations structures
devSup.h Device support structures

drvSup.h Driver support structures

link.h Link structures

recSup.h Record support structures

sdrHeader.h Self Defining Record header structures

dbDefs, dbFldTypes, and dbBase are discussed in this section. dbAccess is discussed with
runtime database access. The other include files are of interest to someone needing details
about the database structures. See last chapter for details.

6.1.1 Fundamental Database Definitions
dbDefs.h

This file contains a number of database related definitions. The most important are:
PVNAME_SZ The number of characters allow in the record name.

FLDNAME_SZ The number of characters allowed in a field name. This has the value 4.
The process variable directory routines depend on this value because they
treat the value as an unsigned long data type.

MAX_STRING_SIZE The maximum string size for string fields or menu choices.
DB_MAX_CHOICES The maximum number of choices for a choice field.

38

EPICS: IOC Application Developer‘s Guide May 12, 1994

dbFldTypes.h

This file defines the possible field types. A fields type is perhaps it’s most important attribute.
Changing the possible field types is a fundamental change to the IOC software, because
many IOC software components are aware of the field types.

The field types are:

DBF_STRING Ascii character string
DBF_CHAR Signed character
DBF_UCHAR Unsigned character
DBF_SHORT Short integer
DBF_USHORT Unsigned short integer
DBE_LONG Long integer
DBF_ULONG Unsigned long integer
DBF_FLOAT Floating point number
DBF_DOUBLE Double precision float
DBF_ENUM An enumerated field

DBF_GBLCHOICE A global choice field

DBF_CVTCHOICE A conversion choice field

DBF_RECCHOICE A record specific choice field
DBF_DEVCHOICE A device choice field

DBF_INLINK Input Link

DBEF_OUTLINK Output Link

DBF_FWDLINK Forward Link

DBF_NOACCESS A private field for use by record access routines

A field of type DBF_STRING,..,.DBF_DOUBLE can be a scalar or an array. A
DBF_STRING field contains a NULL terminated ascii string. The field types
DBE_CHAR,...,.DBF_DOUBLE correspond to the standard C data types.

DBF_ENUM is used for enumerated items, which is analogous to the C language enumer-
ation. An example of an enum field is field VAL of a multi bit binary record.

The field types DBF_ENUM,...,.DBF_DEVCHOICE all have an associated set of ascii
strings defining the choices. For a DBF_ENUM, the record support module supplies values
and thus are not available for static database access. The database access routines locate the
choice strings for the other types.
DBF_INLINK and DBF_OUTLINK specify link fields. A link field can refer to a signal
located in a hardware module, to a field located in a database record in the same IOC, or to
a field located in a record in another IOC. A DBF_FWDLINK can only refer to a record in
the same IOC. Link fields are described in a later chapter.
DBF_INLINK (input), DBF_OUTLINK (output), and DBF_FWDLINK (forward) specify
that the field is a link structure as defined in link.h. There are three classes of links:
1 Constant - The value associated with the field is a floating point value initialized

with a constant value. This is somewhat of a misnomer because constant link

fields can be modified via dbPutField or dbPutLink.
2 Hardware links - The link contains a data structure which describes a signal

connected to a particular hardware bus. See link.h for a description of the bus

types currently supported.

3 Process Variable Links - This is one of three types:

39

EPICS: IOC Application Developer‘s Guide May 12, 1994

a PV_LINK: The process variable name.
b DB_LINK: A reference to a process variable in the same IOC.
¢ CA_LINK: A reference to a variable located in another IOC.

DCT always creates a PV_LINK. When the IOC is initialized each PV_LINK is con-
verted either to a DB_LINK or a CA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.
dbBase.h

The database and all it’s associated structures are located via the following set of variables
defined in structure dbBase (defined in dbBase.h):

struct dbBase {

struct choiceSet *pchoiceCvt;

struct arrChoiceSet *pchoiceGbl;

struct choiceRec *pchoiceRec;

struct devChoiceRec *pchoiceDeyv;

struct arrBrkTable *pcvtTable;

struct recDes *precDes;

struct recType *precType;

struct recHeader *precHeader;

struct recDevSup *precDevSup;

struct drvSup *pdrvSup;

struct recSup *precSup;

struct pvd *pdbPvd; /* DCT pvd - remove when DCT goes away */
void *ppvd;/* pointer to process variable directory*/
char *pdbName;/* pointer to database name*/

struct sdrSum *psdrSum;/* pointer to default sum */

long sdrFileSize; /*size of default.dctsdr file*/

long pvtSumFlag; /*internal use only*/

b
6.2 Runtime Database Access

With the exception of record and device support, all access to the database is via the channel
or database access routines. Even record support routines access other records only via
database or channel access. Channel access, in turn, accesses the database via database
access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe
the set of routines that constitute database access. This provides a good look at the facilities
provided by the database. It may seem strange that the structure of the IOC database is not
described at this point but this would result in confusing detail. The structure is explained
in the last chapter.

Before describing database access one caution must be mentioned. The only way to com-
municate with an IOC database from outside the IOC is via channel access. In addition, any
special purpose software, i.e. any software not described in this document, should commu-
nicate with the database via channel access, not database access, even if it resides in the
same JOC as the database. Since Channel Access provides network independent access to
a database, it must ultimately call database access routines. The database access interface
was changed in 1991, but channel access was never changed. Instead a module was written
which translates old style database access calls to new. This interface between the old and
new style database access calls is discussed in the last section of this chapter.

The database access routines are:

40

EPICS: IOC Application Developer‘s Guide

dbCommonlInit
dbNameToAddr

dbGetField
dbGetLink
dbFastLinkGe t
dbGet

dbPutField
dbPutLink
dbFastLinkPut
dbPutNotify
dbNotifyCancel
dbPut

dbBufferSize
dbValueSize

dbScanPassive
dbProcess

dbScanLockInit
dbScanLock
dbScanUnlock

dbCaAddInLink

dbCaAddOutLink

dbCaGetLink
dbCaPutLink

May 12, 1994

Initialize Database Common
Locate a database variable.

Get values associated with a database variable.

Get value of field referenced by database link

Fast get value of field referenced by database link

Routine called by dbGetLink and dbGetField and dbCa functions

Change the value of a database variable.

Change value referenced by database link

Fast change value referenced by database link

A database put with notification on completion

Cancel dbPutNotify

Routine called by dbPutxxx and by the dbCa functions.

Determine number of bytes in request buffer.
Number of bytes for a value field.

Process record if passive
Process Record

Initialize scan locking
Lock Database
Unlock Database

Initialize a channel access database input link

Initialize a channel access database output link

Get the current value for a channel access database input link
Put a value to a channel access database output link

6.2.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request
types and request options. When dbPutField or dbGetField are called one of the arguments
is a database request type. This argument has one of the following values:

DBR_STRING
DBR_CHAR
DBR_UCHAR
DBR_SHORT
DBR_USHORT
DBR_LONG
DBR_ULONG
DBR_FLOAT
DBR_DOUBLE
DBR_ENUM

returns a NULL terminated string

returns a signed char

returns an unsigned char

returns a short integer

returns an unsigned short integer

returns a long integer

returns an unsigned long integer

returns an IEEE floating point value

returns an IEEE double precision floating point value
returns a short which is the enum item

41

EPICS: IOC Application Developer‘s Guide May 12, 1994

The request types DBR_STRING, ..., DBR_DOUBLE correspond exactly to valid data
types for database fields. DBR_ENUM corresponds to database fields that represent a set
of choices or options. In particular it corresponds to the fields types DBF_ENUM,
DBF_DEVCHOICE, DBF_CVTCHOICE, DBF_GBLCHOICE, and DBF_RECCHOICE.
The complete set of database field types are defined in dbFldTypes.h.

dbGetField also accepts argument options which is a mask containing a bit for each addi-
tional type of information the caller desires. The complete set of options is:

DBR_STATUS returns the alarm status and severity

DBR_UNITS returns a string specifying the engineering units
DBR_PRECISION returns a long integer specifying floating point precision.
DBR_TIME returns the time

DBR_ENUM_STRS returns an array of strings
DBR_GR_IL.ONG returns graphics info as long values
DBR_GR_DOUBLE returns graphics info as double values
DBR_CTRL_LONG returns control info as long values
DBR_CTRL_DOUBLE returns control info as double values
DBR_AL_LONG returns alarm info as long values
DBR_AL_DOUBLE returns alarm info as double values

6.2.2 dbAccess.h

Before describing the routines a few data structures must be described. The structures are
defined in dbAccess.h. The first structure is dbAddr.

struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; /* address of field */
void *pfldDes; /* address of struct fldDes*/
long no_elements; /* number of elements (arrays)*/
short record_type; /* type of record being accessed*/
short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field being accessed */
short special; /* special processing */

short choice_set; /* index of choiceSet GBLCHOICE & RECCHOICE*/
short dbr_field_type} /* field type as seen by database request*/
/*DBR_STRING,...,.DBR_ENUM,DBR_NOACCESS*/

precord Address of record. Note that its type is a pointer to a structure defining the
fields common to all record types. The common fields appear at the beginning
of each record. A record support module can cast precord to point to the

specific record type.

pfield Address of the field within the record. Note that pfield provides direct access
to the data value.

pfidDes This points to a structure containing all details concerning the field. See

Chapter CHAPTER 12 : for a description of this structure.

no_elements A string or numeric field can be either a scalar or an array. For scalar fields
no_elements has the value 1. For array fields it is the maximum number of
elements that can be stored in the array.

record_type Anindex specifying the record type. See CHAPTER 12 : for how this is used.

42

EPICS: IOC Application Developer‘s Guide May 12, 1994

special Some fields require special processing. This specifies the type. Special pro-
cessing is described later in this manual.

choice_set For global and record choice fields (described below), this specifies a choice
set.

dbr_field_type This specifies the optimal database request type for this field, i.e. the request
type that will require the least cpu overhead.

The file dbAccess.h contains macros for using options. A brief example should show how
they are used. The following example defines a buffer to accept an array of up to ten float
values. In addition it contains fields for options DBR_STATUS and DBR_TIME.
struct buffer {

DBRstatus

DBRtime

float value[10];
} buffer;

The associated dbGetField call is:

long options,number_elements,status;

options = DBR_STATUS | DBR_TIME
number_elements = 10;
status = dbGetField(paddr, DBR_FLOAT,&buffer,&options,&number_elements);

Consult dbAccess.h for a complete list of macros.
Structure dbAddr contains a field dbr_field_type. This field is the database request type that

most closely matches the database field type. Using this request type will put the smallest
load on the IOC.

Channel access provides routines similar to dbGetField, and dbPutField. It provides remote
access to dbGetField, dbPutField, and to the database monitors described below.

6.2.3 Database Access Routines

The most important goal of database access can be stated simply: Provide quick access to
database records and fields within records. The basic rules are:

* Call dbNameToAddr once and only once for each field to be accessed.
* Read field values via dbGetField and write values via dbPutField.

The routines described in this subsection are used by channel access, sequence programs,
etc. Record processing routines, however, use the routines described in the next section
rather then dbGetField and dbPutField.

dbNameToAddr - Locate a process variable.

dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

Given a process variable name, this routine locates the process variable and fills in the fields
of structure dbAddr. The process variable name is of the form “<record
name>.<field_name>”. For example the value field of a record with record name
”sample_name” is "sample_name.VAL”. Note that the name is case sensitive. All field
names are all upper case letters.

43

EPICS: IOC Application Developer‘s Guide May 12, 1994

DbNameToAddr locates a record via a process variable directory. It fills in a structure
(dbAddr) describing the field. DbAddr contains the address of the record and also the field.
Thus other routines can locate the record and field without a search. Although the PVD
allows the record to be located via a hash algorithm and the field within a record via a binary
search, it still takes about 80 microseconds (25MHz 68040) to located a process variable.
Once located the dbAddr structure allows the process variable to be accessed directly.

dbCommonlInit -

This routine is called by ioclnit to initialize fields in database common. It is only described
here for completeness.

dbGetField - Get values associated with a process variable.

dbGetField(
struct dbAddr *paddr,
short dbrType,/* DBR_xxx */
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

Thus routine locks, calls dbGet, and unlocks.
dbGetLink - Get value from the field referenced by a database link

dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
struct dbCommon *pdest, /*addr of destination record*/
short dbrType,/* DBR_xxx */
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

This routine is called by database access itself and by record support and/or device support
routines in order to get values from other database records via input links. It calls dbGet to
obtain data and also implements the process passive and maximize severity link options.

dbFastLinkGet

dbFastLinkGet(
struct link *plink,
struct dbCommon *precord,
void *pdest);

This routine gets a value from an input link to pdest. Do not call this routine unless you
have a properly initialized channel access or database link. This routine is not intended to
be called directly by record support, use recGblGetFastLink() instead.

dbGet - Get values associated with a process variable.

dbGet(
struct dbAddr *paddr,
short dbrType,/* DBR_xxx *f
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/

EPICS: IOC Application Developer‘s Guide May 12, 1994

long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

Thus routine retrieves the data referenced by paddr and converts it to the format specified
by dbrType.

“options” is a read/write field. Upon entry to dbGet options specifies the desired options.
When dbGetField returns, options specifies the options actually honored. If an option is not
honored, the corresponding fields in buffer are filled with zeros.

“nRequest” is also a read/write field. Upon entry to dbGet it specifies the maximum number
of data elements the caller is willing to receive. When dbGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful when
only option data is desired.

”pfl” is a field used by the channel access monitor routines. All other users must set
pfi=NULL.

dbGet calls one of a number of conversion routines in order to convert data from the DBF
types to the DBR types. It calls record support routines for special cases such as arrays. For
example, if the number of field elements is greater then 1 and record support routine
get_array_info exists, then it is called. It returns two values: the current number of valid
field elements and an offset. The number of valid elements may not match dbAd-
dr.no_elements, which is really the maximum number of elements allowed. The offset is
for use by records which implement circular buffers.

dbPutField - Change the value of a process variable.

dbPutField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer, [*addr of data*/
long nRequest); /*number of elements to write*/

This routine is responsible for accepting data with one of the DBR_xxx formats, converting
it as necessary, and modifying the database. Similar to dbGetField, this routine calls one of
a number of conversion routines to do the actual conversion and relies on record support
routines to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for
dbPutField is:

1 If the DISP field is true then, unless it is the DISP field itself which is being
modified, the field is not written.

2 The record is locked.
3 dbPutis called.

4 If the dbPut is successful then:
If this is the PROC field or if both of the following are true: 1) the field is a
process passive field, 2) the record is passive.

a If the record is already active ask for the record to be reprocessed
when it completes.

b Call dbScanPassive after setting putf true to show the the process
request came from dbPutField.

5 The record is unlocked.

45

EPICS: IOC Application Developer‘s Guide May 12, 1994

dbPutLink - Change the value referenced by a database link

dbPutLink(
struct db_link *pdbLink, /*addr of database link*/
struct dbCommon *psource, [*addr of source record*/
short dbrType, /¥ DBR_xxx*/
void *pbuffer, /*addr of data to write*/
long nRequest); /*number of elements to write*/

This routine is called by database access itself and by record support and/or device support
routines in order to put values into other database records via output links. It performs the
following functions:

1 Calls dbPut.
2 Implements maximize severity.

3 If the field being referenced is PROC or if both of the following are true: 1)
process_passive is true and 2) the record is passive then:

a If the record is already active because of a dbPutField request then
ask for the record to be reprocessed when it completes.

b otherwise call dbScanPassive.
dbFastLinkPut - Fast putLink

dbFastLinkPut(
struct link *plink,
struct dbCommon *precord,
void *psource);

This routine puts the value at psource to an output link. Do not call this routine unless you
have a properly initialized channel access or database link. This routine is not intended to
be called directly by record support, use recGblPutFastLink() instead.

dbPutNotify - Put and Notify when complete

typedef struct putNotify {
/*The following members MUST be set by user*/
void (*userCallback)(struct putNotify *);
struct dbAddr *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/
void *usrPvt; [*for private use of user*/
/*The following is status of request. Set by dbPutNotify*/
long status;

/*The following are private to database access*/

CALLBACK callback;

void *]ist; /*list of records for which to wait*/

int nwaiting;

notifyCmd cmd;

unsigned char rescan; /*Should dbPutNotify be called again*/
}PUTNOTIFY;

46

EPICS: IOC Application Developer‘s Guide May 12, 1994

long dbPutNotify(PUTNOTIFY *pputnotify);
void dbNotifyCancel(PUTNOTIFY *pputnotify);

The following routine is used only by old database access.

int dbPutNotifyMapType(PUTNOTIFY *pputnotify,short dbr_type)
The status value stored in PUTNOTIFY can be one of the following:

0 Success
S_db_Blocked The request failed because a dbPutNotify conflict occured.
S_xxxx The request failed due to some other error.

dbPutNotify is a request to notify the caller when all records that are processed as a result
of the put complete processing. The complication occurs because of asynchronous records.
The following is true:

1 The user supplied callback is called when all processing is complete or when a
S_db_Blocked is detected. If everything completes synchronously the callback
routine will be called BEFORE dbPutNotify returns. The user supplied callback
routine must not issue any calls that block such as Unix I/O requests.

2 In general a set of records may need to be processed as a result of a single
dbPutNotify. If database access detects that another dbPutNotify request has
resulted in arecord in the set being already active then the user callback is called
with status=S_db_Blocked.

3 Ifarecord in the set is found to be active because of a dbPutField request then
when the record completes a new dbPutNotify will be issued.

4 Ifarecord is found to be active for some other reason then nothing is done. This
is what is done now and any attempt to do otherwise could easily cause existing
databases to go into an infinite processing loop.

5 Itisexpected that the caller will arrange a timeout in case the dbPutNotify takes
too long. In this case the caller can call dbNotifyCancel.

dbPut - Put a value to a database field

dbPut(
struct dbAddr *paddr,
short dbrType,/* DBR_xxx*/
void *pbuffer, /*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data with one of the DBR_xxx formats, converting
it as necessary, and modifying the database. Similar to dbGet, this routine calls one of a
number of conversion routines to do the actual conversion and relies on record support
routines to handle arrays and other special cases.

dbBufferSize - Determine the buffer size for a dbGetField request

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest); /* number of elements*/

47

EPICS: IOC Application Developer‘s Guide May 12, 1994

This routine returns the number of bytes that will be returned to dbGetField if the request
type, options, and number of elements are specified as given to dbBufferSize. Thus it can
be used to allocate storage for buffers.

NOTE: THIS SHOULD BECOME A CHANNEL ACCESS ROUTINE
dbValueSize - Determine the size a value field

dbValueSize(
short dbrType); /* DBR_xxx*/

This routine returns the number of bytes for each element of type dbrType.
NOTE: THIS SHOULD BECOME A CHANNEL ACCESS ROUTINE

dbScanPassive - Process record if it is passive.

dbScanPassive(
struct dbCommon *pfrom,
struct dbCommon *pto); /* addr of record*/

This request specifies the record requesting the scan , which may be NULL, and the record
to be processed. If the record is passive and pact=FALSE then dbProcess is called. Note
that this routine is called by dbGetLink, dbPutField, and by record processing routines for
forward links. In addition to calling dbProcess this routine is responsible for creating lists
needed for dbPutNotify.

dbProcess - Request that a database record be processed.

dbProcess(
struct dbCommom *precord);/* addr of record*/

Request that record be processed. Record processing is described in detail below.
Database Locking

Database locking is described in the next chapter. For now lets just state that a database
record must be locked before it is modified and unlocked afterwards.

The routines provided are:

dbScanLocklInit(/* called only by iocInit*/
int nset); /* number of lock sets*/

dbScanLock(
struct dbCommon *precord);/*addr of record*/

dbScanUnlock(
struct dbCommon *precord);/*addr of record*/

6.2.4 Channel access database links

The routines described here are used to create and manipulate channel access connections
from database input or output links. At ioc initialization an attempt is made to convert all
process variable links to database links. For any link that fails, it is assumed that the link is
a channel access link, i.e. a link to a process variable defined in another ioc. The routines
described here are used to manage these links.

48

EPICS: IOC Application Developer‘s Guide May 12, 1994

The routines provided are:

dbCaAddInLink(
struct link *plink,
void *precord,
char *pfieldName);

dbCaAddOutLink(
struct link *plink,
void *precord,
char *pfieldName);

dbCaGetLink(
struct link *plink);

dbCaPutLink(
struct link *plink);
For a description of these routines see:

Links in a Distributed database: Theory and Implementation,
Nicholas T. Karonis and Martin R. Kraimer, December 1991

6.3 Old Database Access Interface

Channel access has not yet been modified to support the database access routines described
above. The database access interface was changed because as more database field types and
request options were defined the previous database access interface become harder and
harder to modify. In order to make the transition to the new database access without obso-
leting all software that used channel access an interface module was written. Thus module
translates old database calls to new. Several of the channel access arguments directly map
to database access arguments. Thus existing channel access clients use the old database
access interface.

Since this manual concentrates on IOC software, this is not the place to describe the old
database interface. Other documents describe it. The header file db_access.h also provides
descriptive information.

49

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 7 : DATABASE SCANNING

7.1 Overview

Database scanning is the mechanism for deciding when to process a record. Four types of
scanning are possible:

Periodic: A record can be processed periodically. A number of time intervals are sup-
ported.
Event: Event scanning is based on the posting of an event by another component of

the software via a call to the routine post_event.

I/O Event: The original meaning of this scan type is a request for record processing as
aresult of a hardware interrupt. The mechanism allows for a broader mean-
ing.

Passive: Passive records are processed only via requests to dbScanPassive. This hap-
pens when database links (Forward, Input, or Output), which have been
declared "Process Passive” are accessed during record processing. It can also
happen as a result of dbPutField being called (This normally results from a
channel access put request).

Scan Once Inorder to provide for caching puts, The scanning system provides a routine
scanOnce which arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains data-
base fields involved with scanning. It next discusses the interface to the scanning system.
The last section gives a brief overview of how the scanners are implemented.

7.2 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is
quite permissible to change any of the scan related fields of a record dynamically. For
example, a display manager screen could tie a menu control to the SCAN field of a record
and allow the operator to dynamically change the scan mechanism.

7.2.1 SCAN

This field, which specifies the scan mechanism, has an associated menu of the following
form:

Passive Passively scanned.

Event Event Scanned. The field EVNT specifies event number
I/OIntr /O Event scanned.

10 Second Periodically scanned - Every 10 seconds

1 Second Periodically scanned - Every .1 seconds
7.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example
all records periodically scanned at a 2 second rate are in the same scan set. All Event scanned
records with the same EVNT are in the same scan set, etc. For records in the same scan set,
all records with PHAS=0 are processed before records with PHAS=1, which are processed
before all records with PHAS=2, etc.

50

EPICS: IOC Application Developer‘s Guide May 12, 1994

In general it is not a good idea to rely on PHAS to enforce processing order. It is better to
use database links.

7.2.3 EVNT - Event Number

This field only has meaning when SCAN is set to Event scanning, in which case it specifies
the event number. In order for a record to be event scanned EVNT must be in the range
0,...255. It should also be noted that some EPICS software components will not request
event scanning for event 0. One example is the eventRecord record support module. Thus
the application developer will normally want to define events in the range 1.,...,255.

7.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority,
e.g. the I/O event scan facility uses this field.

7.3 Software components which interact with the Scanning system
7.3.1 choiceGbl.ascii

This file contains definitions for a menu related to field SCAN. The definitions are of the
form:

GBL_SCAN ”Passive”

GBL_SCAN “Event”
GBL_SCAN /O Intr”
GBL_SCAN ”10 second”

GBL_SCAN .1 second”

The first three definitions must appear first and in the order shown. The remaining definitions
are for the periodic scan rates, which must appear in order of decreasing rate. At IOC
initialization the menu values are read by scan initialization. The number of periodic scan
rates and the value of each rate is determined from the menu values. Thus periodic scan
rates can be changed by changing choiceGbl.ascii and running the makeSdr utility. The only
requirement is that each periodic definition must begin with the value and the value must
be in units of seconds.

7.3.2 dbScan.h

All software components that interact with the scanning system must include this file.
The most important definitions in this file are:

/* Note that these must match the first four definitions in choiceGbl.ascii*/

#define SCAN_PASSIVE 0
#define SCAN_EVENT 1
#define SCAN_IO_EVENT 2

#define SCAN_IST_PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);

void post_event(int event);
void scanAdd(struct dbCommon *);

51

EPICS: IOC Application Developer‘s Guide May 12, 1994

void scanDelete(struct dbCommon *);
void scanOnce(void *precord);

int scanppl(void); [*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/

void scanlolnitJOSCANPVT *);
void scanloRequestIOSCANPVT);

The first set of definitions defines the various scan types. The next two definitions (IOS-
CANPVT and interruptAccept) are for interfacing with the I/O event scanner. The remaining
definitions define the public scan access routines. These are described in the following
subsections.

7.3.3 Initializing Database Scanners

The routine scanlnit is called by iocInit. It initializes the scanning system. Thus except for
understanding the scanning system this routine is not of interest.

7.3.4 Adding and Deleting records from scan list
The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *)
scanDelete(struct dbCommon *)

These routines are called by scanlnit at ioc initialization time in order to enter all records
created via DCT into the correct scan list. The routine dbPut calls scanDelete and scanAdd
each time a scan related field is changed (Each scan related field is declared to be SPC_SCAN
in dbCommon.ascii). scanDelete is called before the field is modified and scanAdd after
the field is modified. Thus except for understanding the scanning system these routines are
not of interest.

7.3.5 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:
post_event(event)

This can be called by virtually any IOC software component. For example sequence pro-
grams can call it. The record support module for eventRecord calls it.
7.3.6 Interfacing to I/O Event scanning

Interfacing to the I/O event scanner is done via some combination of device and driver
support.

1 Include <dbScan.h>
2 For each separate event source the following must be done:
a Declare an IOSCANPVT variable, e.g.

static IOSCANPVT ioscanpvt;
b Call scanlolnit, e.g.

scanlolnit(&ioscanpvt);

52

EPICS: I0C Application Developer‘s Guide May 12, 1994

3 Provide the device support get_ioint_info routine. This routine has the format:

long get_ioint_info(

int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This routine is called each time the record pointed to by precord is added or
deleted from an I/O event scan list. cmd has the value (0,1) if the record is being
(added to, deleted from) an I/O event list. This routine must give a value to *ppvt.

4 Whenever an I/O event is detected call scanloRequest, e.g.
scanloRequest(ioscanpvt)

This routine can be called from interrupt level. The request is actually directed
to one of the standard callback tasks. The actual one is determined by the PRIO
field of dbCommon.

The following code fragment shows an event record device support module that supports
I/O event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>

#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {
long number;
DEVSUPFUNreport;
DEVSUPFUNInit;
DEVSUPFUNInit_record;
DEVSUPFUNget_ioint_info;
DEVSUPFUNread_event;
}devEventTestloEvent={
5,
NULL,
init,
NULL,
get_ioint_info,
NULL};
static IOSCANPVT ioscanpvt;
static void int_serviceJOSCANPVT ioscanpvt)

scanloRequest(ioscanpvt);

static long init()

53

EPICS: IOC Application Developer‘s Guide May 12, 1994

{

scanlolnit(&ioscanpvt);
intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);

return(0);
static long get_ioint_info(
int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)

{
*ppvt = ioscanpvt;
return(0);

}
7.4 Implementation Overview

The code for the entire scanning system resides in dbScan.c, i.e. periodic, event, and I/O
event. This section gives an overview of how the code in dbScan.c is organized. The listing
of dbScan.c must be studied for acomplete understanding of how the scanning system works.

7.4.1 Definitions and Routines common to all scan types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;

ELLLIST list;
short modified;
long ticks; /*used only for periodic scan sets*/

|5

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon*precord;

}

Later we will see how scan_lists are determined. For now just realize that scan_list.list is
the head of a list of records that belong to the same scan set (For example all records that
are periodically scanned at a 1 second rate are in the same scan set). The node field in
scan_element contain the list links. The normal vxWorks IstLib routines are used to access
the list. Each record that appears in some scan list has an associated scan_element. The
SPVT field which appears in dbCommon holds the address of the associated scan_element.

The lock, modified, and pscan_list fields allow scan_elements, i.e. records, to be dynami-
cally removed and added to scan lists. If scanList, the routine which actually processes a
scan list, is studied it can be seen that these fields allow the list to be scanned very efficiently
if no modifications are made to the list while it is being scanned. This is, of course, the

normal case.
The dbScan.c module contains several private routines. The following access a single scan
set:

printList Prints the names of all records in a scan set.

scanList This routine is the heart of the scanning system. For each record in

a scan set it does the following:

dbScanLock(precord);

54

EPICS: IOC Application Developer‘s Guide May 12, 1994

dbProcess(precord);
dbScanUnlock(precord);

It also has code to recognize when a scan list is modified while the
scan set is being processed.

addToList This routine adds a new element to a scan list.
deleteFromList This routine deletes an element from a scan list.

7.4.2 Event Scanning

Event scanning is built around the following definitions:

#define MAX_EVENTS 256

#define EVENT_QUEUE_SIZE 1000

static struct scan_list *papEventfMAX_EVENTS];

static SEM_ID eventSem;

static RING_ID eventQ;

static int eventTaskld;

papEvent is an array of pointers to scan_lists. Note that the array has 256 elements, i.e. one
for each possible event number. In other words, each event number has it’s own scan list.
No scan_list is actually created until the first request to add an element for that event number.

The event scan lists have the following memory layout.

papEvent —> [
D_). can_list
list —> Fcan_element —> Fcan_element —
node node
i;.record i;i'ecord

At ioclnit time a task “eventTask” is spawned. It waits on semaphore eventSem. When
post_event is called it puts the event number on the ring buffer eventQ and issues a semGive
for eventSem. This wakes up eventTask which calls scanList for the appropriate scan_list.

7.4.3 1/O Event scanning

I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;
struct scan_list scan_list;*
struct io_scan_list*next;

}
static struct io_scan_list *ios]_head[NUM_CALLBACK_PRIORITIES]={NULL,NULL,NULL};

The array iosl_head and the field next are only kept so that scanpiol can be implemented
and will not be discussed further. I/O event scanning uses the general purpose callback tasks
to perform record processing, i.e. no task is spawned for I/O event. The callback field of
io_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

55

EPICS: IOC Application Developer‘s Guide May 12, 1994

scanloInit(IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source.
Scanlolnit allocates and initializes an array of io_scan_list structures; one for each callback
priority and puts the address in pioscanpvt. Remember that three callback priorities are
supported (low, medium, and high). Thus for each interrupt source the following structures

exist:
ioscanpve—> [_1
ploscanpy []—> [o—scan_Tst —> Fcan_Tist —> [can_element - .
.callback node
D scan_list list
precord

When scanAdd or scanDelete are called, they call the device support routine get_ioint_info
which returns pioscanpvt. The scan_element is added or deleted from the correct scan list.

scanloRequest(IOSCANPVT pioscanpvt)

This routine is called to request I/O event scanning. It can be called from interrupt level. It
looks at each io_scan_list referenced by pioscanpvt (one for each callback priority) and if
any elements are present in the scan_list a callbackRequest is issued. The appropriate call-
back task calls routine ioeventCallback, which just calls scanList.

7.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;

static struct scan_list **papPeriodic;

static int *periodicTaskId;

NPeriodic, which is determined at iocInit time, is the number of periodic rates. PapPeriodic
is a pointer to an array of pointers to scan_lists. There is an array element for each scan rate.
Thus the following structures exist after iocInit.

papPeriodic> []
]

—> pcan_list
list —) Kcan_element —3- BCan_element _ .
node node
precord precord

A periodic scan task is created for each scan rate. The following routines implement periodic
scanning:

initPeriodic()

This routine first determines the scan rates. It does this by accessing the SCAN field of the
first record it finds. It issues a call to dbGetField with a DBR_ENUM request. This returns
the menu choices for SCAN. From this the periodic rates are determined. The array of
pointers referenced by papPeriodic is allocated. For each scan rate a scan_list is allocated
and a periodicTask is spawned.

56

EPICS: I0C Application Developer‘s Guide May 12, 1994

periodicTask(struct scan_list *psl)

This task just performs an infinite loop of calling scanList and then calling taskDelay to
wait until the beginning of the next time interval.

7.4.5 Scan Once
void scanOnce(void *precord)

A task onceTask waits for requests to issue a dbProcess request. The routine scanOnce puts
the address of the record to be processed in a ring buffer and wakes up onceTask.

57

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 8 : RECORD and DEVICE SUPPORT

The purpose of this chapter is to describe record and device support in sufficient detail so that a C
programmer can write new record and/or device support modules. Before attempting to write new
support modules, you should carefully study a few of the existing support modules. If an existing
support module is similar to the desired module most of the work will already be done.

From the previous discussion, it should be clear that many things happen as result of record pro-
cessing. The details of what happens are dependent on the record type. In order to allow new record
types and new device types without impacting the core IOC system, the concept of record support
and device support has been created. For each record type a record support module exists. It is
responsible for all record specific details. In order to allow arecord support module to be independent
of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines that can be called by database access
routines. This set of routines implements record specific code. Each record type can define a standard
set of device support routines specific to that record type.

By far the most important record support routine is ’process”, which dbProcess calls when it wants
to process a record. This routine is responsible for all the details of record processing. In many
cases it calls a device support I/O routine. The next section gives an overview of what must be done
in order to process a record. Next is a description of the entry tables that must be provided by record
and device support modules. The remaining sections give example record and device support mod-
ules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record
specific include files as defined in epics/share/epicsH/rec. Thus they are the only routines that access
record specific fields without going through database access.

8.1 Overview of Record Processing

The most important record support routine is ”process”. This routine determines what record
processing means. This section describes the overall model followed by record processing.
Before the record specific ”process” routine is called, the following has already been done:

Decision to process a record.
Check that record is not already active (PACT true).
Check that the record is not disabled.

The process routine, together with it’s associated device support, is responsible for the
following tasks:

Set record active while it is being processed

Perform I/O (with aid of device support)

Check for record specific alarm conditions

Raise database monitors

Request processing of forward links
A complication of record processing is that some devices are intrinsically asynchronous. It
is NEVER permissible to wait for a slow device to complete. The method to follow is to
perform the following steps:
1 Initiate the I/O operation and set PACT true.
2 Determine a method for again calling process when the operation completes

3 Return immediately without completing record processing

58

EPICS: IOC Application Developer‘s Guide May 12, 1994

4 When process is called after the I/O operation complete record processing
5 Set PACT false and return
The examples given below show how this can be done.

8.2 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located
via the data structures defined in epics/share/epicsH/recSup.h. The concept of record support
routines isolates the iocCore software from the details of each record type. Thus new records
can be defined and supported without affecting the ioc core software.

Each record type also has zero or more sets of device support routines. Record types without
associated hardware, e.g. calculation records, normally do not have any associated device
support. Record types with associated hardware normally have a device support module
for each device type. The concept of device support isolates ioc core software and even
record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is
the same for every record type. These routines are located via a record support entry table
(RSET), which has the following structure

struct rset {/* record support entry table */

long number; /*number of support routines*/
RECSUPFUN report; /*print report */
RECSUPFUN init; /*init support *f
RECSUPFUN init_record;/*init record */
RECSUPFUN process; /*process record */

RECSUPFUN special; /*special processing*/

RECSUPFUN get_value;/*get value field */

RECSUPFUN cvt_dbaddr;/*cvt dbAddr */
RECSUPFUN get_array_info;

RECSUPFUN put_array_info;

RECSUPFUN get_units;

RECSUPFUN get_precision;

RECSUPFUN get_enum_str;/*get string from enum item*/
RECSUPFUN get_enum_strs;/*get all enum strings*/
RECSUPFUN put_enum_str;/*put enum item from string*/
RECSUPFUN get_graphic_double;

RECSUPFUN get_control_double;

RECSUPFUN get_alarm_double;

|5

Each record support module must define it’s RSET. The external name must be of the form:
<record_type>RSET

Any routines not needed for the particular record type should be initialized to the value
NULL. Look at the example below for details.

Device support routines are located via a device support entry table (DSET),which has the
following structure:

59

EPICS: IOC Application Developer‘s Guide

struct dset {/* device support entry table */

long number; /*number of support routines*/
DEVSUPFUN report; [*print report */
DEVSUPFUN init; [*init support */
DEVSUPFUN init_record;/*init support for particular record*/
DEVSUPFUN get_ioint_info;/* get io interrupt information*/

/*other functions are record dependent*/

L

May 12, 1994

Each device support module must define it’s associated DSET. The external name must be
the same as the name which appears in devSup.ascii.

Any record support module which has associated device support must also include defini-
tions for accessing it’s associated device support modules. The field ”dset”, which is located
in dbCommon, contains the address of the DSET. It is given a value by ioclnit.

8.3 Example Record Support Module

This section contains the skeleton of a record support package. The record type is xxx. Lets
assume that the record has the following fields in addition to the dbCommon fields: VAL,
PREC, EGU, HOPR, LOPR, HIHI, LOLO, HIGH, LOW, HHSV, LLSV, HSV, LSV, HYST,
ADEL, MDEL, LALM, ALST, MLST. These fields will have the same meaning as they
have for the ai record. Consult the Record Reference manual for a description.

8.3.1 Declarations

/* Create RSET - Record Support Entry Table*/
#define report NULL

#define initialize NULL

static long init_record();

static long process();

#define special NULL

static long get_value();

#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();

static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxXxRSET={
RSETNUMBER,
report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,

60

EPICS: IOC Application Developer‘s Guide May 12, 1994

get_enum_strs,
put_enum,_str,
get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET*/
struct xxxdset { /* analog input dset */
long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /*returns: (-1,0)=>(failure,success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;
|5

/* forward declaration for internal routines*/
static void alarm();
static void monitor();

The above declarations define the Record Support Entry Table (RSET), a template for the
associated Device Support Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support
routines supplied for this record type. Note that forward declarations are given for all routines
supported and a NULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

8.3.2 init_record

static long init_record(pxxx,pass)

struct xxxRecord *pXxX;
int pass;
{
struct xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (struct xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,”’xxx: init_record”);
return(S_dev_noDSET);

/* must have read_xxx function defined */

if((pdset->number < 5) Il (pdset->read_xxx ==NULL)) {
recGblRecordError(S_dev_missingSup,pxxx,”’xxx: init_record”);
return(S_dev_missingSup);

if(pdset->init_record) {
if((status=(*pdset->init_record)(pxxx))) return(status);

return(0);
}
This routine, which is called by iocInit twice for each record of type xxx, checks to see if
it has a proper set of device support routines and, if present, calls the init_record entry of
the DSET.

61

EPICS: I0OC Application Developer‘s Guide May 12, 1994

During the first call to init_record (pass=0) only initializations relating to this record can be
performed. During the second call (pass=1) initializations that may refer to other records
can be performed. Note also that during the second pass, other records may refer to fields
within this record. A good example of where these rules are important is a waveform record.
The VAL field of a waveform record actually refers to an array. The waveform record support
module must allocate storage for the array. If another record has a database link referring
to the waveform VAL field then the storage must be allocated before the link is resolved.
This is accomplished by having the waveform record support allocate the array during the
first pass (pass=0) and having the link reference resolved during the second pass (pass=1).

8.3.3 process

static long process(pxxx)
struct xxxRecord *pPXXX;

{

struct xxxdset ~ *pdset = (struct xxxdset *)(pxxx->dset);
long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) Il (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt keep calling*/
pxxx->pact=TRUE;
recGbIRecordError(S_dev_missingSup,pxxx,”’read_xxx");
return(S_dev_missingSup);

}

[*pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */

if(!pact && pxxx->pact) return(0); /* return if beginning of asynchronous processing™®/
pxxx->pact = TRUE;

recGblGetTimeStamp(pxxx);

/* check for alarms */

alarm(pxxx);

/* check event list */

monitor(pxxx);

/* process the forward scan link record */
recGblFwdLink(pxxx);

pxxx->pact=FALSE;

return(status);
}
The record processing routines are the heart of the IOC software. The record specific process
routine is called by dbProcess whenever it decides that a record should be processed. Process
decides what record processing really means. The above is a good example of what should
be done. In addition to being called by dbProcess the process routine may also be called by
asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines.
Lets assume that the read_xxx is an asynchronous routine (an example is given below). The
following sequence of events will occur:

process is called with pact false

read_xxx is called. Since pact is false it starts I/O, arranges callback, and sets pact true
read_xxx returns

62

EPICS: I0C Application Developer‘s Guide May 12, 1994

because pact went from false to true process just returns

Any new call to dbProcess is ignored because it finds pact true.

Sometime later the callback occurs and process is called again.

read_xxx is called. Since pact is true it knows that it is a completion request.
read_xxx returns

process completes record processing

pact is set false

process returns

At this point the record has been completely processed. The next time process is called
everything starts all over from the beginning.

8.3.4 Miscellaneous Utility Routines

static long get_value(pxxx,pvdes)
struct xxxRecord *pXXX;
struct valueDes *pvdes;

pvdes->field_type = DBF_FLOAT;
pvdes->no_elements=1;

(float *)(pvdes->pvalue) = &pxxx->val;
return(0);

}

static long get_units(paddr,units)
struct dbAddr *paddr;
char *units;

{

struct xxxRecord*pxxx=(struct xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));

return(0);

}

static long get_graphic_double(paddr,pgd)
struct dbAddr *paddr;
struct dbr_grDouble *pgd;

{

struct xxxRecord*pxxx=(struct xxxRecord *)paddr->precord;

if(paddr->pfield == (void *)(&pxxx->val)) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;

} else recGblGetGraphicDouble(paddr,pgd);

return(0);

/* similar routines would be provided for get_control_double and get_alarm_double*/

These are a few examples of various routines supphed by a typical record support package.
The functions that must be performed by the remaining routines are described in section 8.4

8.3.5 Alarm Processing

static void alarm(pxxx)

struct xxxRecord*pxxx;
{
double val;
float hyst,lalm,hihi,high,low,lolo;

63

EPICS: IOC Application Developer‘s Guide May 12, 1994

unsigned short hhsv,llsv,hsv,Isv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo; high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->llsv; hsv=pxxx->hsv; Isv=pxxx->lsv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */

if (hhsv && (val >= hihi Il (Jalm==hihi) && (val >= hihi-hyst)))) {
if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)) pxxx->lalm = hihi;
return;

}

/* alarm condition lolo */

if (llsv && (val <= lolo Il ((lalm==lolo) && (val <= lolo+hyst)))) {
if(recGbiSetSevr(pxxx,LOLO_ALARM,pxxx->lIsv)) pxxx->lalm = lolo;
return;

/* alarm condition high */

if (hsv && (val >= high Il ((lalm==high) && (val >= high-hyst)))) {
if(recGbISetSevr(pxxx, HIGH_ALARM,pxxx->hsv)) pxxx->lalm = high;
return;

/* alarm condition low */

if (Isv && (val <=1ow [l (lalm==low) && (val <= low-thyst)))) {
if(recGblSetSevr(pxxx, LOW_ALARM,pxxx->Isv)) pxxx->lalm = low;
return;

}

/*we get here only if val is out of alarm by at least hyst*/

pxxx->lalm=val;

return;
}
This is a typical set of code for checking alarms conditions for an analog type record. The
actual set of code can be very record specific. Note also that other parts of the system can
raise alarms. The algorithm is to always maximize alarm severity, i.e. the highest severity
outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm
storms from occurring in the event that the current value is very near an alarm limit and
noise makes it continually cross the limit. The above algorithm ensures that the alarm being
reported will not change unless the value changes by the hysteresis value.

8.3.6 Raising Monitors

static void monitor(pxxx)
struct xxxRecord*pxxx;
{
unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */

delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;

if (delta > pxxx->mdel) {

64

EPICS: I0C Application Developer‘s Guide May 12, 1994

/* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pxxx->mlst = pxxx->val;

/* check for archive change */

delta = pxxx->alst - pxxx->val;

if(delta<0.0) delta = 0.0;

if (delta > pxxx->adel) {
/* post events on value field for archive change */
monitor_mask {= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

/* send out monitors connected to the value field */
if (monitor_mask){
db_post_events(pxxx,&pxxx->val,monitor_mask);

return;
}
The first part of the code will be common to most record types. Note that nsta and nsev will
have the value 0 after this routine completes. This is necessary to ensure that alarm checking
starts fresh after processing completes. The code also takes care of raising alarm monitors
when a record changes from an alarm state to the no alarm state. It is essential that record
support routines follow the above model or else alarm processing will not follow the rules.

IMPORTANT: The record support module is responsible for calling db_post_event for any
fields that change as a result of record processing. Also it should NOT call it for fields that
do not change.

8.4 Global Record Support Routines

A number of global record support routines are available. These routines are intended for
use by the record specific processing routines but can be called by any routine that wishes
to use their services.

The name of each of these routines begins with “recGbl”.
8.4.1 Alarm status and severity

Alarms may be raised in many different places during the course of record processing. The
algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alarm is
raised. If more than one alarm of the same severity is found then the first one is reported.
This means that whenever a code fragment wants to raise an alarm, it does so only if the
alarm severity it will declare is greater then that already existing. Four fields (in database
common) are used to implement alarms: sevr, stat, nsev, and nsta. The first two are the status
and severity after the record is completely processed (also the value at the beginning of
processing). The last two fields (nsta and nsev) are the status and severity values to set during
record processing. Two routines are used for handling alarms. Whenever a routine wants to
raise an alarm it calls recGblSetSevr. This routine will only change nsta and nsev if it will
result in the alarm severity being increased. At the end of processing, the record support
module must call recGblResetAlarms. This routine sets stat=nsta, sevr=nsev, nsta=0, and

65

EPICS: IOC Application Developer‘s Guide May 12, 1994

nsev=0. In stat or sevr has changed value since the last call it calls db_post_event and returns
a value of DBE_ALARM. If no change occured it returns 0. Thus after calling recGblRe-
setAlarms everything is ready for raising alarms the next time the record is processed. The
example record support module presented above shows how these macros are used.

recGblSetSevr(
void *precord,
short nsta,
short nsevr);

returns: (TRUE, FALSE) if (did, did not) change nsta and nsev.

unsigned short recGblResetAlarms(
void *precord);
returns: Initial value for monitor_mask

8.4.2 Alarm Acknowledgment

Database common contains two additional alarm related fields: acks (Highest severity un-
acknowledged alarm) and ackt (does transient alarm need to be acknowledged). These field
are handled by iocCore and recGblResetAlarms and are not the responsibility of record
support. These fields are intended for use by the alarm handler at some future time.

8.4.3 Generate Error: Process Variable Name, Caller, Message

recGblDbaddrError(

long status,

struct dbAddr*paddr,

char *pcaller_name); /* calling routine name */
This routine can be called whenever an error is returned from a call to dbNameToAddr,
dbGetxxx, or dbPutxxx. It interfaces with the system wide error handling system to display
the following information: Status information, process variable name, calling routine.

8.4.4 Generate Error: Status String, Record Name, Caller

recGblRecordError(
long status,
void *precord,/* addr of record*/
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine.

8.4.5 Generate Error: Record Name, Caller, Record Support Message

recGblRecsupError(
long status,
struct dbAddr*paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine, record support entry name.

8.4.6 Get Graphics Double

recGblGetGraphicDouble(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

66

EPICS: I0C Application Developer‘s Guide May 12, 1994

This routine can be used by the get_graphic_double record support routine to obtain graphics
values for fields which it doesn’t know how to set.

8.4.7 Get Control Double

recGblGetControlDouble(
struct dbAddr *paddr,
struct dbr_ctrlDouble *pcd);

This routine can be used by the get_control_double record support routine to obtain control
values for fields which it doesn’t know how to set.

8.4.8 Get Alarm Double

recGblGetAlarmDouble(
struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by the get_alarm_double record support routine to obtain control
values for fields which it doesn’t know how to set.

8.4.9 Get Precision

recGblGetPrec(
struct dbAddr *paddr,
long *pprecision);

This routine can be used by the get_precision record support routine to obtain the precision
for fields which it doesn’t know how to set the precision.

8.4.10 Get Time Stamp

recGblGetTimeStamp(void *precord)
This routine gets the current time stamp.

8.4.11 Forward link

recGbIFwdLink(
void *precord);

This routine can be used by process to request processing of forward links.
8.4.12 Get Input Link

recGblGetLinkValue(
struct link*plink,
void *precord,
short dbrType,
void *pdest,
long *poptions,
long *pnRequest);

This routine gets a value from an input link. If the link is a constant this call amounts to a NOP.
8.4.13 Put Output Link

recGblPutLinkValue(
struct Iink*plink,
void *precord,
short dbrType,
void *pdest,
long *pnRequest);

67

EPICS: I0C Application Developer‘s Guide May 12, 1994

This routine writes a value to an output link. If the link is a constant this call amounts to a

NOP.
8.4.14 Initialize Fast Input Link
recGblInitFastInLink(
struct link *plink,
void *precord,
short dbrType,
char *ca_string);

Initialize a fast input link. This routine should be used if scalar data with options is desired.
If the link is not a channel access link or a database link this amounts to a NOP. "ca_string”
is the uppercase name of the field that channel access is to get a value from.

8.4.15 Initialize Fast Output Link

recGblInitFastOutLink(
struct link *plink,
void *precord,
short dbrType,
char *ca_string);

Initialize a fast output link. This routine should be used if scalar data is to be written via the
link. If the link is not a channel access link or a database link this amounts to a NOP.
”ca_string” is the uppercase name of the field that channel access will take its value from.

8.4.16 Get Fast Input Link

recGblGetFastLink(
struct link *plink,
void *precord,
void *pdest);

Gets a value from a fast input link. This routine can only be used if the link was initialized
via recGblInitFastInLink. If the link is a constant link this amounts to a NOP.

8.4.17 Put Fast Output Link

recGblPutFastLink(
struct link *plink,
void *precord,
void *psource);

Puts a value to a fast output link. This routine can only be used if the link was initialized
via recGblInitFastOutLink. If the link is a constant link this amounts to a NOP.

8.5 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to
a specific record type must be declared NULL.

8.5.1 Generate Report of each Field in Record

report(void *precord);/* addr of record*/
This routine is not used by most record types. Any action is record type specific.

8.5.2 Imitialize Record Processing

init(void);

68

EPICS: I0C Application Developer‘s Guide May 12, 1994

This routine is called once at ioc initialization time. Any action is record type specific. Most
record types do not need this routine.

8.5.3 Initialize Specific Record

init_record(
void *precord,/* addr of record*/
int pass);

IocInit calls this routine twice (pass=0 and pass=1) for each database record of the type
handled by this routine. It must perform the following functions:
Check and/or issue initialization calls for the associated device support routines.
Perform any record type specific initialization.
During the first pass it can only perform initializations that affect the record referenced by
precord. During the second pass it can perform initializations that affect other records.
8.5.4 Process Record

process(void *precord);/* addr of record*/
This routine must follow the guidelines specified previously.

8.5.5 Special Processing

special(

struct dbAddr *paddr,

int after); /*(FALSE,TRUE)=>(Before,After)Processing*/
This routine implements the record type specific special processing for the field referred to
by dbAddr. Note that it is called twice. Once before any changes are made to the associated
field and once after. File special.h defines special types. This routine is only called for user
special fields. A field is defined to be user special in the ascii record definition.

8.5.6 Get Value

get_value(
void *precord,/* addr of record*/
struct valueDes *p); /*addr of value description struct*/

This routine returns a description of the VAL field of the record. The structure valueDes,
which is defined in recSup.h, is defined as follows:

struct valueDes {
int field_type,
long no_elements,
void *pvalue}

8.5.7 Convert dbAddr Definitions

cvt_dbaddr(struct dbAddr *paddr);

This routine is called by dbNameToAddr if the field has special set equal to SPC_DBADDR.
A typical use is when a field refers to an array. This routine can change any combination of
the dbAddr fields: no_elements, field_type, field_size, and special. For example if the VAL
field of a waveform record is passed to dbNameToAddr, cvt_dbaddr would change dbAddr
so that it refers to the actual array rather then VAL.

8.5.8 Get Array Information

get_array_info(
struct dbAddr ~ *paddr,

69

EPICS: IOC Application Developer‘s Guide May 12, 1994

long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value of the
specified array. The offset field is meaningful if the array is actually a circular buffer.

8.5.9 Put Array Information

put_array_info(
struct dbAddr *paddr,
long old_offset,
long nRequest);

This routine is called after new values have been placed in the specified array.
8.5.10 Get Units

get_units(
struct dbAddr ~ *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.
8.5.11 Get Precision

get_precision(

struct dbAddr *paddr,

long *precision);
This routine gets the precision, i.e. number of decimal places,which should be used to
convert the field value to an ascii string. Note that recGblGetPrec should be called for fields
not directly related to the value field.

8.5.12 Get Enumerated String

get_enum_str(
struct dbAddr ~ *paddr,

char *p);
This routine sets *p equal to the ascii string for the field value. The field must have type
DBF_ENUM.

8.5.13 Get Strings for Enumerated Field

get_enum_strs(
struct dbAddr ~ *paddr,
struct dbr_enumsStrs*p);

This routine gives values to all fields of structure dbr_enumStrs.
8.5.14 Put Enumerated String

put_enum_str(

struct dbAddr *paddr,

char *p);
Given an ascii string, this routine updates the database field. It compares the string with the
string values associated with each enumerated value and if it finds a match sets the database
field equal to the index of the string which matched.

8.5.15 Get Graphic Double Information
get_graphic_double(

struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

70

EPICS: I0C Application Developer‘s Guide May 12, 1994

This routine fills in the graphics related fields of structure dbr_grDouble. Note that recG-
blGetGraphicDouble should be called for fields not directly related to the value field.

8.5.16 Get Control Double Information

get_control_double(
struct dbAddr *paddr,
struct dbr_ctrlDouble*p);/* addr of return info*/

This routine gives values to all fields of structure dbr_ctrlDouble. Note that recGblGetCon-
trolDouble should be called for fields not directly related to the value field.

8.5.17 Get Alarm Double Information

get_alarm_double(
struct dbAddr *paddr,
struct dbr_alDouble*p);/* addr of return info*/

This routine gives values to all fields of structure dbr_alDouble.

71

EPICS: IOC Application Developer‘s Guide

May 12, 1994

8.6 Example Device Support Modules

In addition to a record support module, each record type has an arbitrary number of device
support modules. The purpose of device support is to hide device specifics from record
processing routines. Thus support can be developed for a new device without changing the
record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk
to the hardware directly or how to call a device driver which interfaces to the hardware.
Thus the device support routines are the interface between hardware specific fields in a
database record and device drivers or the hardware itself.

The common portion of every database record contains two device related fields:
dtyp Device Type.
dset Address of Device Support Entry Table.

The field dtyp is filled in by DCT. It contains the index of the menu choice as defined in
devSup.ascii. IocInit uses this field and the device support structures defined in devSup.h
to initialize the field dset.

8.6.1 Synchronous Device Support Module

/* Create the dset for devAiSoft */
long init_record();
long read_ai();

struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;

DEVSUPFUN special_linconv;
}devAiSoft={

NULL,

NULL,

init_record,

NULL,

read_ai,
NULL};

static long init_record(pai)
struct aiRecord*pai;

{

long status;
/* ai.inp must be a CONSTANT or a PV_LINK or a DB_LINK or a CA_LINK*/
switch (pai->inp.type) {
case (CONSTANT) :
pai->val = pai->inp.value.value;
break;
case (PV_LINK) :
status = dbCaAddInLink(&(pai->inp), (void *)pai,”VAL”);
if(status) return(status);
break;
case (DB_LINK) :
break;

72

EPICS:

}

IOC Application Developer‘s Guide May 12, 1994

default :

recGblRecordError(S_db_badField, (void *)pai,
”devAiSoft (init_record) Illegal INP field”);
return(S_db_badField);
}

/* Make sure record processing routine does not perform any conversion*/

pai->linr=0;
return(0);

static long read_ai(pai)

{

}

struct aiRecord*pai;

long status;
long options=0;
long nRequest=1;

status=recGblGetLink Value(&(pai->inp.value.db_link),(void *)pai,DBR_DOUBLE,
&(pai->val),&options,&nRequest);
}

if(status) return(status);
return(2); /*don’t convert*/

The example is devAiSoft, which supports soft analog inputs. The INP field can be a constant
or a database link or a channel access link. Only two routines are provided (the rest are
declared NULL). The init_record routine first checks that the link type is valid. If the link
is a constant it initializes VAL If the link is a Process Variable link it calls dbCaGetLink to
turn it into a channel access link. The read_ai routine obtains an input value if the link is a
database or channel access link otherwise it doesn’t have to do anything.

8.6.2 Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the
following sequence of operations:

1

6

When first called pact is false. It arranges for a callback (myCallback) routine
to be called after a number of seconds specified by the VAL field. callbackRe-
quest is an epics supplied routine. The watchdog timer routines are supplied by
vxWorks.

It prints a message stating that processing has started, sets pact true, and returns.
The record processing routine returns without completing processing.

When the specified time elapses myCallback is called. It locks the record, calls
process, and unlocks the record. It calls the process entry of the record support
module, which it locates via the rset field in dbCommon, directly rather than
dbProcess. dbProcess would not call process because pact is true.

When process executes, it again calls read_ai. This time pact is true.

read_ai prints a message stating that record processing is complete and returns
a status of 2. Normally a value of 0 would be returned. The value 2 tells the
record support routine not to attempt any conversions.

Whenread_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called
everything starts all over.

73

EPICS: IOC Application Developer‘s Guide May 12, 1994

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;
}devAiTestAsyn={
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
struct callback {
CALLBACK callback;
sruct dbCommon*precord;
WDOG_ID wd_id;
|5

static void myCallback(pcallback)
struct callback *pcallback;

{
struct dbCommon *precord=pcallback->precord;
struct rset *prset=(struct rset *)(precord->rset);
dbScanLock(precord);

*(prset->process)(precord);
dbScanUnlock(precord);

}

static long init_record(pai)
struct aiRecord*pai;

{
struct callback *pcallback;

/* ai.inp must be a CONSTANT#*/

switch (pai->inp.type) {

case (CONSTANT) :
pcallback = (struct callback *)(calloc(1,sizeof(struct callback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback,pcallback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

”devAiTestAsyn (init_record) Illegal INP field”);

return(S_db_badField);

74

EPICS: I0C Application Developer‘s Guide May 12, 1994

return(0);

static long read_ai(pai)
struct aiRecord*pai;

{
struct callback *pcallback=(struct callback *)(pai->dpvt);

int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :
if(pai->pact) {
printf(”%s Completed\n”,pai->name);
return(2); /* don‘t convert*/
} else {
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,pcallback);
printf(’%s Starting asynchronous processing\n”,pai->name);
wdStart(pcallback->wd_id,wait_time,callbackRequest,(int)pcallback);
pai->pact = TRUE;
return(0);

default :
if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat!=SOFT_ALARM) {
recGblRecordError(S_db_badField, (void *)pai,
”devAiTestAsyn (read_ai) Illegal INP field™);

}

return(0);

8.7 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to
a specific record type must be declared NULL.

8.7.1 Generate Device Report

report(

FILE fp, /* file pointer*

int interest);
This routine is responsible for reporting all I/O cards it has found. If interest is (0,1) then
generate a (short, long) report. If a device support module is using a driver, it normally does
not have to implement this routine because the driver generates the report.

8.7.2 Inmitialize Record Processing
init(
int after);

This routine is called twice at ioc initialization time. Any action is device specific. This
routine is called twice: once before the database records are initialized and once after. After
has the value (0,1) (before, after) record initialization.

75

EPICS: IOC Application Developer‘s Guide May 12, 1994

8.7.3 Initialize Specific Record

init_record(
void *precord);/* addr of record*/

The record support init_record routine calls this routine.
8.7.4 Get /O Interrupt Information

get_ioint_info(

int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task. If cmd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an I/O scan list. See the chapter
on scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not
described in this document because, hopefully, it will go away in the near future. When it
calls this routine the arguments have completely different meanings.

8.7.5 Other Device Support Routines

All other device support routines are record type specific.
8.8 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to
isolate device support routines from details of how to interface to the hardware. Device
drivers have no knowledge of the internals of database records. Thus there is no necessary
correspondence between record types and device drivers. For example the Allen Bradley
driver provides support for many different types of signals including analog inputs, analog
outputs, binary inputs, and binary outputs.

In general only device support routines know how to call device drivers. Since device support
varies widely from device to device, the set of routines provided by a device driver is almost
completely driver dependent. The only requirement is that routines report and init must be
provided. Device support routines must, of course, know what routines are provided by a
particular device driver.

File drvSup.h describes the format of a driver support entry table. File drvSup.ascii defines
the supported device drivers.

76

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 9 : Device Support Library

9.1 Overview

Include file devLib.h provides definitions for a library of routines useful for device and
driver modules. These are a new addition to EPICS and are not yet used by all device/driver
support modules. Until they are, the registration routines will not prevent addressing con-
flicts caused by multiple device/drivers trying to use the same VME addresses.

9.2 Device Support Library Routines
9.2.1 Registering VME Addresses
Definitions of Address Types

typedef enum {
atVMEAL1S6,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName[]

"VME A16”,
"VME A24”,
"VME A32”

)
int EPICStovxWorksAddrType[]

VME_AM_SUP_SHORT IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA
b

Register Address
long devRegisterAddress(
epicsAddressType addrType,
void *baseAddress,
unsigned size,
void **pLocal Address);

This routine is called to register a VME address. This routine keeps a list of all VME address
requested and returns an error message if an attempt is made to register any addresses that
are already being used. *pLocal Address is set equal to the address as seen by the caller.

Unregister Address
long devUnregisterAddress(
epicsAddressType addrType,
void *baseAddress);

This routine releases addresses previously registered by a call to devRegisterAddress.
9.2.2 Interrupt Connect Routines

Definitions of Interrupt Types
typedef enum {intCPU, intVME, intVX1} epicsInterruptType;

77

EPICS: IOC Application Developer‘s Guide

Connect

long devConnectInterrupt(
epicsInterruptType intType,

unsigned vectorNumber,
void (*pFunction)(),
void *parameter);
Disconnect
long devDisconnectInterrupt(
epicsInterruptType intType,
unsigned vectorNumber);
Enable Level
long devEnablelnterruptLevel(
epicsInterruptType intType,
unsigned level);
Disable Level
long devDisableInterruptLevel(
epicsInterruptType intType,
unsigned level);

9.2.3 Macros and Routines for Normalized Analog Values

Normalized getField
long devNormalizedGblGetField(
long raw Value,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,

CALLBACK *pcallback);

May 12, 1994

This routine is just like recGblGetField, except that if the request type is DBR_FLOAT or
DBR_DOUBLE, the normalized value of rawValue is obtained, i.e. rawValue is converted

to a value in the range 0.0<=value<.1.0

Convert Digital value to a Normalized Double Value

#define devCreateMask(NBITS)((1<<(NBITS))-1)
itdefine devDigToNmI(DIGITAL,NBITS) \

(((double)(DIGITAL))/devCreateMask(NBITS))
Convert Normalized Double Value to a Digital Value.

#define devNmlIToDig(NORMAL,NBITS) \

(((long)(NORMALY)) * devCreateMask(NBITS))

78

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 10 : JOC DATABASE CONFIGURATION

This chapter describes the ascii files that must be modified and/or created in order to provide new
record support, device support, and/or device drivers. Before the ascii files are described, an over-
view of database configuration and the concept of self defining record (SDR) files is presented.
Although it is not necessary for the application developer to understand these concepts, the discus-
sion should clear up the mystery of what happens to the ascii definition files.

The serious reader should obtain a listing of all the ascii files in epics/share/ascii. See the Source/
Release Control document for instructions to generate a listing.

10.1 Overview of IOC Database Configuration

NOTE: Everyone is STRONGLY encouraged to start using the GDCT ascii database format and
dbLoadRecords and dbLoadTemplates. See the GDCT document for details.

The IOC database is a memory resident database plus assorted data structures. Many of the data
structures are configured via ascii definition files. Let’s briefly discuss the steps involved up to and
including initialization of an IOC database.
1 Create ASCI Files. Each configuration component has one or more associated
ascii definition files. The components and related ascii files are:

dbRecType.ascii - The allowable record types

choiceGbl.ascii - Global choices, i.e. options common to multiple record types.

choiceRec.ascii - Record specific choices.

cvt*.ascii - A group of ascii files for defining conversion options.

devSup.ascii - Device support.

drvSup.ascii - Driver support.

dbCommon.ascii - Definition of fields common to all record types.

*Record.ascii - Record specific field definitions.

2 CreateaDCT SDR File. Build utilities are provided to process the ascii definition
files. The build utilities convert each ascii file to a self defining record (SDR)
file. An SDR file contains a set of one or more self defining records. Two or more
SDR files can be concatenated to create a file that is again an SDR file. A script
file”makesdr” executes the appropriate build utilities and concatenates the output
files so that an SDR file appropriate for input to DCT is generated.

3 OLDSTYLE:
Create a database via DCT. DCT reads the SDR file generated by makesdr and
accepts user input. The user creates and/or modifies an arbitrary number of
records. When done DCT generates a file <name>.database. This file, which is
also in SDR format, contains all the SDR records from the input SDR file as well
as SDR records for the actual database records.
NEW STYLE
Create the database file via GDCT. It saves a file with the extension .db

4 OLD STYLE:
After an JOC is booted and iocCore is loaded, the commands:

dbLoad(’<database>")

79

EPICS: IOC Application Developer‘s Guide

NEW STYLE:

dbLoad("default.dctsdr")
dbLoadRecords("<file>.db")

OLD AND NEW

iocInit(”<resource file>”

are executed. dbLoad reads the SDR file containing the database.

The Source/Release control manual describes the details of creating the sdr files. This man-
ual merely describes the contents of the ascii files.

10.2 Self Defining Records

Self defining records provide the following features:
1 Many different types of information can be stored in the same file.

2 Two or more files containing self defining records can be combined with the
Unix cat command to form a new file that is also in self defining record format.

3 Record structures can contain pointer fields. In files all pointers are kept as
offsets. When sdrLoad reads a self defining record all offsets are automatically

converted to addresses.
Each self defining record consists of a header (sdrHeader) followed by data. The header has

the following format:
struct sdrHeader {

long magic; /* magic number */
long nbytes; number of bytes of data which follow header*/
short type; /* sdr record type*/
short pad;
long create_date;/* creation date in standard unix format*/
}
The allowable types are:

SDR_DB_RECTYPE
SDR_DB_RECORDS
SDR_DB_RECDES
SDR_CHOICEGBL
SDR_CHOICECVT
SDR_CHOICEREC
SDR_CHOICEDEV
SDR_DEVSUP
SDR_CVTTABLE
SDR_DRVSUP
SDR_RECSUP

Record Types

The actual database records.
Record and field descriptions.
Global choices.

Conversion choices.

Record specific choices.
Device support choices.
Device support description structures.
Conversion tables

Driver support structures.
Record support structures

May 12, 1994

NOTE:SDR_DB_RECTYPE is needed to decipher many of the other SDRs. If needed it
must always be the first SDR in a file.

80

EPICS: IOC Application Developer‘s Guide May 12, 1994

Each type of self defining record is created by one of the build utilities or by DCT. Two
subroutines are provided for use by any programs that want to use self defining records. The
two routines are sdrlLoad and sdrUnload. These routines are described in section

10.3 Ascii Definition Files

10.3.1 dbRectype

This file, which defines the valid record types, has the format:
”<record type>”

10.3.2 Choice
choiceGbl
The global choice table has the following format:

<choice_set>"<choice_string>"

The values for <choice_set> are defined in choiceGblLh.
choiceRec

This file contains choices special to particular record types. For each record type the fol-
lowing definitions are accepted:

“record type” <choice_set> “<choice_string>"

The choice sets are defined in various record specific include files.
10.3.3 cvtTable

Raw data can be converted to engineering units via one of the following
1 No Conversion.

2 Linear Conversion.

3 Breakpoint table.

A conversion file consists of a set of definitions. The first two lines define no conversion
and linear conversion. The remainder of the file defines breakpoint tables.

There are two methods of preparing breakpoint tables. The first method is to directly provide
the breakpoint table. The second is to provide a table of raw values corresponding to equally
spaced engineering values.

The format for directly defining a breakpoint table is as follows:

”<name>" BreakTable
<raw value> <eng value>

ENDTABLE

81

EPICS: IOC Application Developer‘s Guide May 12, 1994

The format for generating a breakpoint table from a data table of raw values corresponding
to equally spaced engineering values is:

<header line>

<data table>

ENDTABLE

The header line contains the following information:

Name Ascii string

Low Value Eng Engineering Units Value for 1st breakpoint table entry
Low Value Raw Raw value for 1st breakpoint table entry

High Value Eng Engineering Units: Highest Value desired.

High Value Raw Raw Value for High Value Eng.

Error Allowed error (Engineering Units)

First Table Engineering units corresponding to first data table entry
Last Table Engineering units corresponding to last data table entry
Delta Table Change in engineering units per data table entry

An example definition is:

”NO CONVERSION”

"LINEAR”

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

ENDTABLE

”Example Breakpoint” BreakTable
00

1000.1

20002.5

30003.9

40005.5

40968.0

ENDTABLE

10.3.4 devSup

This file defines the device support for each record type. For each record type the following
definitions are accepted:

“record type” <link_type> “’<dset_name>" “<choice_string>"

where

” record type” Name of the record type

<link_type> Link type as defined in link.h

<dset_name> ascii name of the device support entry table.
<choice_string> String value for this choice.

82

EPICS: I0C Application Developer‘s Guide May 12, 1994

10.3.5 drvSup
This file contains the name of each driver entry table.It has the form:

"<drvet_name>”"

10.3.6 Record Description Files

An ascii definition file must exist for each record type (for example ai.ascii). This file
describes each field of the record except the fields defined by db_common.ascii.

Preceding the field definitions is a line of the form
RECTYPE <type>"

Each field is defined by a number of definitions. The following definitions appear for all

fields:
prompt Prompt string enclosed in double quotes
fldname Field Name string
special Special Processing
aslev Access Security Level
field_type Field Type as specified in db_fldtypes.h
process_passive Should dbPutField cause passive record to be processed
interest Interest level

The remaining definitions depend of the field_type.
field_type: DBF_STRING

size Field Size
promptflag YES or NO

field_type: = DBF_UCHAR, DBF_SHORT, DBF_LONG, DBF_ULONG,
DBF_FLOAT, DBF_DOUBLE, or DBF_ENUM.

initial Initial Value

promptflag Oorl

If promptflag is >=1 then the following are defined:

lowfl CON or VAR

rangel Field name(VAR) or Value(CON) for low
operating range

highfl CON or VAR

range?2 Field name(VAR) or Value(CON) for high

operating range

If field_type is DBF_UCHAR, DBF_SHORT, DBF_LONG, or DBF_ULONG:

cvt_type CT_DECIMAL or CT_HEX
field_type: DBF_GBLCHOICE, or DBF_RECCHOICE.

initial Initial Value

choice_set Index of choice set

promptflag YES or NO

83

EPICS: IOC Application Developer‘s Guide May 12, 1994

field_type: DBF_CVTCHOICE, or DBF_DEVCHOICE.

initial Initial Value
promptflag YES or NO
field_type: DBF_INLINK, DBF_OUTLINK, or DBF_FWDLINK.
promptflag YES or NO
field_type: DBF_NOACCESS.
size Field Size
XXX Code to be inserted in the .h file.

10.4 ASCII Build Utilities

The ascii definition files are not used directly by IOC software or by the Database Config-
uration Tool (DCT). Instead they are translated by one of a set of “Build” utility programs.
This section lists each build utility, the ascii input files it accepts, and the SDR file it gen-
erates.

It also lists the input and output for DCT.

bldCvtTable

This program reads file cvtTable.ascii and generates two files: cvtTable.sdr and
choiceCvt.sdr.

INPUT: cvtTable.ascii

OUTPUT: SDR_CVTTABLEcvtTable.sdr
SDR_CHOICECVTchoiceCvt.sdr

bldGblChoice
This program reads file choiceGbl.ascii (after it is processed by cpp) and generates file
choiceGbl.sdr.
INPUT: choiceGbl.ascii (after processing by cpp)
OUTPUTS: DR_CHOICEGBLchoiceGbl.sdr
bldRecChoice
INPUT: choiceRec.ascii (after processing by cpp)

SDR_DB_RECTYPE dbRecType.sdr

OUTPUT: SDR_CHOICEREC choiceRec.sdr
bldDevSup

INPUT: devSup.ascii
SDR_DB_RECTYPEdbRecType.sdr

OUTPUT: SDR_DEVSUPdevSup.sdr
SDR_CHOICEDEVchoiceDev.sdr

84

EPICS: IOC Application Developer‘s Guide May 12, 1994

bldRecDef
INPUTS:
SDR_DB_RECTYPE dbRecType.sdr
dbCommon.ascii All .ascii after cpp. dbCommon must be first

<ai, etc>.ascii
OUTPUTS:

SDR_DB_RECDES dbRecDes.sdr
SDR_DB_DCTRECDES dbDctRecDes.sdr
<aiRecord, etc>.h

bldDbRecType

INPUT: dbRectype.ascii

OUTPUT: SDR_DB_RECTYPE dbRecType.s
bldDrvSup

INPUT: drvSup.ascii From stdin

OUTPUT: SDR_DRVSUP devSup.sdr
10.5 DCT - Database Configuration Tool

INCLUDES:
choice.h
dbDctRecDes.h
dbDefs.f
dbFldTypes.h
dbRecords.h
dbRecType.h

INPUTS: All inputs concatenated into file <appl>.dctsdr

SDR_DB_RECTYPE
SDR_DB_RECDES
SDR_CHOICEGBL
SDR_CHOICECVT
SDR_CHOICEREC
SDR_CHOICEDEV
SDR_DEVSUP

IN/OUT: The records are all stored in SDR_DB_RECORDS format. The ”.database” file
contains the dctsdt records plus all database record.

85

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 11 : IOC INITIALIZATION

11.1 Introduction

After vxWorks is loaded at IOC boot time, the following commands are issued to load and
initialize the control system software:

Id < targetmv167/iocCore

Id < targetmv167/drvSup

1d < targetmv167/recSup
Id < targetmv167/devSup

1d < initHooks.o

dbLoad(’<database file>)
and/or
dbLoadRecords("<.db file>")
and/or
dbLoadTemplates("<.db file>,"<template_def>")

ioclnit (”'<'rc.¢source file>")
The first four commands load various components of the EPICS software.

InitHooks.o is an optional routine that, if supplied, is called after most steps of ioc initial-
ization,

One or more dbLoad, dbLoadRecords, and dbLoadTemplate commands load the database
files generated by DCT. Note that all the databases must have identical SDR records with
the exception, of the SDR_DB_RECORDS.

iocInit performs the following functions:

coreRelease
epicsSetEnvParams
getResources
iocLoglnit
taskwdlInit
callbacklInit
dbCaLinkInit(1)
initDrvSup
initRecSup
initDevSup
ts_init
initDatabase
dbCaLinkInit(2)
finishDevSup
scanlnit()
interruptAccept
initialProcess
rsrv_init

86

EPICS: IOC Application Developer‘s Guide May 12, 1994

11.2 initHooks

This routine, if loaded before ioclnit is invoked, is called by ioclnit after each significant
initialization step. When called it passes a single argument identifying the step just com-
pleted. The argument is defined in epicsH/initHooks.h as follows:

#define INITHOOKatBeginning 0
#define INITHOOKafterSetEnvParams 1
#idefine INITHOOKafterGetResources 2
#define INITHOOKafterLoglnit 3
#define INITHOOKafterCallbackInit 4
#idefine INITHOOKafterCaLinkInit1 5
#define INITHOOKafterInitDrvSup 6
#idefine INITHOOKafterInitRecSup 7
fidefine INITHOOKafterInitDevSup 8
#idefine INITHOOKafterTS_init 9
fidefine INITHOOKafterInitDatabase 10
#define INITHOOKafterCaLinkInit2 11
#define INITHOOKafterFinishDevSup 12
#define INITHOOKafterScanlnit 13
#define INITHOOKafterInterruptAccept 14
#define INITHOOKafterInitialProcess 15
#define INITHOOKatEnd 16
The following is the default initHooks.c file. It merely declares the ioc as the master timing

10C.

#include <vxWorks.h>
#include <initHooks.h>
extern void setMasterTimeToSelf();

/* If this function (initHooks) is loaded, iocInit calls this function
* at certain defined points during IOC initialization */

void initHooks(callNumber)

int callNumber;
{
switch (callNumber) {
case INITHOOKatBeginning :
break;

case INITHOOK afterSetEnvParams :
/* Note: EPICS_IOCMCLK_INET enabled in the resource.def file*/
/* will override this call to setMasterTimeToSelf */
setMasterTimeToSelf();
break;

case INITHOOKafterGetResources :
break;

case INITHOOKafterLoglnit :
break;

case INITHOOKafterCallbacklnit :
break;

case INITHOOKafterCaLinkInit1 :
break;

case INITHOOKafterInitDrvSup :
break;

case INITHOOKafterInitRecSup :
break;

case INITHOOKafterInitDevSup :
break;

case INITHOOKafterTS_init :
break;

case INITHOOK afterInitDatabase :
break;

case INITHOOK afterCaLinkInit2 :
break;

87

EPICS: I0C Application Developer‘s Guide

May 12, 1994

case INITHOOKafterFinishDevSup :

break;

case INITHOOKafterScanlnit :

break;

case INITHOOK afterInterruptAccept :

break;

case INITHOOK afterInitialProcess :

break;

case INITHOOKatEnd :
break;

default:
break;

}

return;

}

11.3 dbLoad - Load the Database

Multiple dbLoad commands can be issued to load multiple database files. Each must have
identical SDR records except, of course, the SDR_DB_RECORDS. The ioc needs the fol-

lowing self defining records:

SDR_DB_RECTYPE
SDR_DB_RECORDS
SDR_DB_RECDES
SDR_CHOICEGBL
SDR_CHOICECVT
SDR_CHOICEREC
SDR_CHOICEDEV
SDR_DEVSUP
SDR_CVTTABLE
SDR_DRVSUP
SDR_RECSUP

11.4 Specify release

Record Types

Database records.

The record and field descriptions.
The global choices.

The conversion choices.

The record type specific choices.
The device support choices.

The device support description structures.
The conversion tables

The driver support structures.
The record support structures

Print a message specifying the EPICS release.

11.5 Set environment variables

At one time a number of epics related environment variables were defined. Many of the
values associated with the variables were also needed by the iocs. Although another mech-
anism, not using environment variables, is now used on unix, the values are still needed on
the iocs. These values are defined by a routine epicsEnvParams, which is stored in the epics/
share/site directory. Note that the values defined by epicsEnvParams can be overridden by
the resource definition file described in the next section.

11.6 Get Resource Definitions

GetResource gives values to IOC global variables. The resource file contains lines with the

following format:

global_nametypevalue

global_name is the name of the global variable to be changed. Type must be one of the

88

EPICS: IOC Application Developer‘s Guide May 12, 1994

following:

DBF_STRING
DBF_SHORT
DBF_LONG
DBF_DOUBLE

Value is value to be assigned to the global variable. For example if you want to change the
inet addresses of the unix and ioc master time servers the following lines should appear in

the resource file:
EPICS_SYSCLK_INET DBF_STRING XXX XXX XXX XXX
EPICS_IOCMCLK DBF_STRING <KX XXX XXX XXX>

11.7 Imitialize logging

Initialize the logging system. This system traps all logMsg calls and sends a copy to a Unix
file.

11.8 Start task watchdog

Start the task watchdog task. This task accepts requests to watch other tasks. It runs peri-
odically and checks to see if any of the tasks is suspended. If so it issues an error message.
It can also optionally invoke a callback routine.

11.9 Start callback tasks

Start the general purpose callback tasks. Three tasks are started with the only difference
being scheduling priority.

11.10 Initialize Channel Access Links - Pass 1
Calls dbCaLinkInit specifying that it is the first call.
11.11 Imitialize Driver Support
InitDrvSup locates each device driver entry table and calls the init routine of each driver.
11.12 Inmitialize Record Support
InitRecSup locates each record support entry table and calls the init routine.
11.13 Initialize Device Support

InitDevSup locates each device support entry table and calls the init routine with an argu-
ment specifying that this is the initial call.

11.14 Initialize Timing System

.....

timing support is used, otherwise software timing is used. If the IOC has been declared to
be a master timer, the initial time is obtained from the UNIX master timer, otherwise the
initial time is obtained from the JOC master timer.

89

EPICS: IOC Application Developer‘s Guide May 12, 1994

11.15 Initialize Database

InitDatabase makes four passes over the database performing the following functions:

Pass 1: Initializes following fields: rset, dset, mlis

Calls record support init_record (First pass)
Pass 2: Attempts to convert PV_LINKs to DB_LINKSs
Pass 3 Calls record support init_record (second pass)
Pass 4 Determines lock sets

11.16 Initialize Channel Access Links - Pass 2
Calls dbCaLinkInit specifying that it is the second call.
11.17 Finish device support

InitDevSup locates each device support entry table and calls the init routine with an argument
specifying that this is the finish call.

11.18 Initialize Database Scanners
The periodic, event, and io event scanners are initialized and started.
11.19 Accept interrupts

A global variable “interruptAccept” is set true. Until this time no request should be made
to process records and all interrupts should be ignored.

11.20 Perform initial processing
DbProcess is called for all records that have PINI true.
11.21 Start Channel Access Server

The channel access server is started.

90

EPICS: IOC Application Developer‘s Guide May 12, 1994

CHAPTER 12 : DATABASE STRUCTURES

This chapter describes the internal structures describing an IOC database. It is of interest mostly to
EPICS system developers but serious application developers may also find it useful. This chapter
is intended to make it easier to understand the IOC source listings.

The database attributes defined in this chapter are fixed, i.e. they are common to all IOC databases.
They are defined via C include files. Any changes to these include files can affect many IOC software
components, which will have to be modified and recompiled. A serious reader of this chapter should
obtain a listing of all the files in epics/share/epicsH.

In the IOC a single global variable (pdbBase) contains the address of the dbBase structures that
defines the run time database. The various structures mentioned in dbBase are described in this
chapter. Any IOC source module using the macros and other routines mentioned in this chapter
must include a definition:

extern dbBase *pdbBase;

Then a particular routine accessing a database structure can either reference it via pdbBase or create
a local copy which must be initialized via pdbBase.

12.1 Macros for accessing Database Structures
This section describes macros that make it easier to access the database structures.
12.1.1 Defined in dbRecType.h
Typical Usage:
char *pstr;
if(/(pstr=GET_PRECNAME(precType,type)) {/*action if not found*/}
GET_PRECNAME(PRECTYPE,REC_TYPE)
Typical Usage:
char *pstr;

if(!(pstr=GET_PRECNAME(precType,type)) {/*action if not found*/}
This macro returns a pointer to the record name.

12.1.2 Defined in dbRecords.h
GET_PRECLOC(PRECHEADER,REC_TYPE)
Typical Usage:

struct recLoc *precLoc;
if(!(precLoc=GET_PRECLOC(precHeader,type)) {/*action if not found*/}

This macro returns a pointer to the record location structure.

91

EPICS: IOC Application Developer‘s Guide May 12, 1994

12.1.3 Defined in dbRecDes.h
GET_PFLDDES(PRECTYPDES,IND_FLD)
Typical Usage:

struct fldDes *pfldDes;
if(!(pfidDes=GET_PFLDDES(precTypDes,ind)) {/*action if not found*/}

This macro returns a pointer to the field description structure for a particular field of the
record type defined by precTypDes.

GET_PRECTYPDES(PRECDES,IND_REC)
Typical Usage:

struct recTypDes *precTypDes;
if(!{(precTypDes=GET_PRECTYPDES(precDes,ind)) {/*action if not found*/}

This macro returns a pointer to the record type description structure.
12.1.4 Defined in choice.h
GET_CHOICE(PCHOICE_SET,IND_CHOICE)
Typical Usage:
char *pchoice;

if(!(pchoice=GET_CHOICE(pchoiceSet,ind)) {/*action if not found*/}
This macro returns a pointer to the string defining a particular choice.

GET_PCHOICE_SET(PARR_CHOICE_SET,IND_ARR)
Typical Usage:

struct choiceSet *pchoiceSet;
if(!(pchoiceSet=GET_PCHOICE_SET(parrChoiceSet,ind)) {/*action if not found*/}

This macro returns a pointer to the structure defining a particular choice set.
GET_PARR_CHOICE_SET(PCHOICE_REC,IND_ARR)
Typical Usage:

struct arrChoiceSet *parrChoiceSet;
if(!(parrChoiceSet=GET_PARR_CHOICE_SET(pChoiceRec,ind)) {/*action*/}

This macro returns a pointer to the structure defining an array of choice sets.
GET_DEV_CHOICE(PDEV_CHOICE_SET,IND_CHOICE)
Typical Usage:

struct devChoice *pdevChoice;
if(!(pdevChoice=GET_DEV_CHOICE(pdevChoice,ind)) {/*action*/}

This macro returns a pointer to the structure defining a device choice.

92

EPICS: IOC Application Developer‘s Guide May 12, 1994

GET_PDEV_CHOICE_SET(PCHOICE_DEV,IND_REC)
Typical Usage:

struct devChoiceSet *pdevChoiceSet;
if(!(pdevChoiceSet=GET_PDEV_CHOICE_SET(pchoiceDev,ind)) {/*action*/}

This macro returns a pointer to the structure defining the device choices for a particular
record.

12.1.5 Defined in recSup.h
GET_PRSET(PRECSUP,REC_TYPE)
Typical Usage:

struct rset *prset;
if(!(prset=GET_PRSET(precSup,type)) {/*action if not found*/}

This macro returns a pointer to a record support entry table.
12.1.6 Defined in devSup.h
GET_PDSET(PDEVSUP,DTYPE)

Typical Usage:

struct dset *pdset;
if(!(pdset=GET_PDSET(pdevSup,type)) {/*action if not found*/}

This macro returns a pointer to a device support entry table.
GET_PDEVSUP(PRECDEVSUP,REC_TYPE)
Typical Usage:

struct devSup *pdevSup;
if({(pdevSup=GET_PDEVSET (precDevSup,rectype)) {/*action if not found*/}

This macro returns a pointer to a structure defining the ndevice support entry tables for a
particular record type.

12.1.7 Defined in drvSup.h
GET_PDRVET(PDRVSUP,TYPE)
Typical Usage:

struct drvet *pdrvet;
if(!(pdrvet=GET_PDRVET(pdrvSup,type)) {/*action if not found*/}

This macro returns a pointer to a driver entry table.
GET_PDRVNAME(PDRVSUP,TYPE)
Typical Usage:

char *pdrvName;
if(!(pdrvName=GET_PDRVNAME(pdrvSup,type)) {/*action if not found*/}

93

EPICS: IOC Application Developer‘s Guide May 12, 1994

This macro returns a pointer to the driver name.
12.2 Database Structures

The following is a partial description of various database related structures. The associated
include files are located in epics/share/epicsH. The include files themselves should be con-
sulted for a complete description. Each file describing database structures contains the
following:

* Structure definitions for the associated information.

* A brief description of the memory layout.

* A set of macros for accessing the structures.

For the purposes of understanding this document it is sufficient to show the structure dec-
larations and the associated memory layout. If you are going to study program listings you
should first study the complete include files. In particular become familiar with the macros
which access the structures. The actual IOC code almost always uses macros to access the
structures.

12.2.1 dbRecType.h - Record Types

This file describes the possible record types. All include files which define structures con-
taining components for multiple record types assume that the record type order is that
specified by structue recType.

struct recType {

long number; /*number of types*/
char **papName;/*ptr to arr of ptr to name*/

Y

precType Feclype

number
papName | —onu—3.

D 99,39

C]— Tai
” 7
|:|____>. ao

Figure 6 : Record Types

Figure 6 shows the memory layout of the record type structures. This is among the simpler
of the IOC structures thus let’s discuss a few details. The external variable dbRecType points
to structure recType. This structure contains two elements: number and papName. Number
specifies the number of record types. papName is a pointer to an array of pointers to record
names. Notice in the figure the unnamed array of pointers. It is permissible for any pointer
in the array to be null.This type of structure will be seen many times in the following
subsections. Thus whenever a variable starts with *pap” it means “pointer to array of point-

”

ers”.
12.2.2 dbRecords.h - Record Locations

These structures describe the location of the actual database records.

94

EPICS: IOC Application Developer‘s Guide May 12, 1994

typedef struct{
ELLNODE next;
void *precord;
} RECNODE;
struct recLoc{/* record location*/
long rec_size; [*record size in bytes*/
long record_type;/*record type */
ELLLIST *preclist /*LIST head of sorted RECNODEs*/
I
struct recHeader{ /*record header*/
long number; *number of record types*/
struct recLoc *¥papRecLoc;/*ptr to arr of ptr to recLoc*/
};
precHeader FecHeader
number

papRecLoc 5

I:I > recL.oc
(I rec_size
record_type
I] pList —>LIST—> RECNODE
next —>RECNODE...

—> <record>

precord

Figure 7 : Database Records

Figure 7 shows the memory layout of the database records.
12.2.3 dbRecDes.h - Record Description

These structures describe each record type and each field of each record type.

/* conversion types*/
#define CT_DECIMAL 0
#define CT_HEX 1

/* lowfl, highfl */
#define CONO

#define VARI

#define PROMPT_SZ 24
union fld_types{

char char_value;
unsigned char uchar_value;
short short_value;
unsigned short ushort_value;
long long_value;
unsigned long ulong_value;
float float_value;
double double_value;
unsigned short enum_value;

b

struct range {
long fldnum;
unionfld_typesvalue;

|5

95

EPICS: IOC Application Developer‘s Guide

struct

h

fldDes{ /* field description */

char prompt[PROMPT_SZ]; /*Prompt string for DCT*/

char fldname[FLDNAME_SZ];/*field name*/

short offset; /*Offset in bytes from beginning of record*/
short size; /*length in bytes of a field element*/

short special; /*Special processing requirements*/

short field_type;/*Field type as defined in dbFldTypes.h */

short process_passive;/*should dbPutField process passive records*/
short choice_set;/*index of choiceSet GBLCHOICE & RECCHOICE*/

short cvt_type;/*Conversion type for DCT */
short promptflag;/*Does DCT display this field*/
short lowfl; /*Is rangel CON or VAR */
short highfl; /*Is range2 CON or VAR */
short interest; /*interest level for reporting*/
union fld_types initial;/*initial value */

struct range rangel; /*Low value for field (Used by DCT)*/
struct range range2; /*High value for field (Used by DCT)*/

struct recTypDes{ /* record type description */

b
struct

¥

short rec_size;/* size of the record*/

short no_fields;/* number of fields defined*/

short no_prompt;/* number of fields to configure*/
short no_links;/* number of links*/

short *link_ind;/* addr of array of ind in apFldDes*/
unsigned long *sortFldName;/* addr of array of sorted fldname*/
short *sortFldInd;/* addr of array of ind in apFldDes*/

struct fldDes **papFldDes;/* ptr to array of ptr to fldDes*/

recDes{ /* record description */
long number;/*number of recTypDes*/
struct recTypDes **papRecTypDes;/*ptr to arr of ptr to recTypDes*/

extern struct recDes *dbRecDes;

May 12, 1994

nk index
> fink index
precDes recDes W
eld name
nung)er D ” Keld name
papRecTypDes | —>- I FecTypDes
rec_size
D no_fields
no_prompt ind fidDes
no_links ind fldDes
*link_ind _ een
*sortFldName
*sortFidind —_—
**papFldDes
1™ papss
I prompt

Figure 8 : Record Descriptions

96

EPICS: IOC Application Developer‘s Guide May 12, 1994

Figure 8 shows the memory layout of the record descriptions. Lets first discuss structure
recTypDes and then fldDes.

Structure recTypDes describes the information specific to each record type. It contains the
following information:

rec_size The size of a record in bytes.

no_fields The number of fields in a record.

no_prompt The number of prompt fields, i.e. fields that are configured via DCT.
no_links The number of link fields in a record.

link_ind Address of an array of field indices for the link fields.

sortFldName Address of an array of sorted field names. Note that the array is an array of
long words. Thus the field names must be a maximum of 4 characters in
length.

sortFldInd Addrsss of an array of indexes into apFldDes for the sorted field names. Thus
when a sorted field name is located the field description can be located via
this array.

papFldDes Pointer to an array of pointers to field descriptions.

Structure fldDes contains a complete description of a field. The database access routines
and various utilities such as DCT use these definitions to access the database (the fields
common to all record types are also used). Thus, with the exception of record and device
support routines, the software has no knowledge of particular record types. This makes it
possible to add new record and device support and/or modify existing support without
affecting most of the IOC and utility software. Lets discuss each field attribute:

prompt This is the prompt string used by DCT.

fldname The field name.

offset Offset in bytes from the beginning of the record.

size Size of the field in bytes.

special Is special processing required when field value is changed. This is discussed

in detail below,
field_type The field type, i.e. DBF_xxx.

process_passive This field determines in dbPutField requests to this field will cause passive
records to be processed.

choice_set This is used by DBF_GBLCHOICE and DBF_RECCHOICE field types to
specify the associated choice set.

cvt_type This is used by DCT to display and decode field values. It applys only to
the field types DBF_UCHAR through DBF_ULONG. It must have the value
CT_DECIMAL or CT_HEX.

promptflag Is this a field the user can configure via DCT?

lowfl Specifies if rangel is constant or a variable. Must have the value CON or
VAR.

highfl Similar to lowfl except for range?2.

interest Interest level for this field. This is used for reporting purposes. For example
dbpr honors this field. The lower the value the higher the interest level.

initial Initial value for field.

97

EPICS: IOC Application Developer‘s Guide May 12, 1994

12.24

rangel Low value for field. If lowfl =VAR then this must specify another field in
the same record.
range?2 High value for field. Similar to rangel. Note that the field value must lie in

the range “rangel<=value<=range2”.
choice.h - Choice Definitions

struct choiceSet { /* This defines one set of choices*/
long number; /*number of choices */
ch **papChoice;/*ptr to arr of ptr to choice string*/
};

struct arrChoiceSet{ /*An array of choice sets for particular record type*/
long number; [*number of choice sets */
struct choiceSet **papChoiceSet;/*ptr to arr of ptr to choiceSet*/
b

struct choiceRec{ /*define choices for each record type*/
long number; number of arrChoiceSet*/
struct arrChoiceSet **papArrChoiceSet;

/*ptr to arr of ptr to arrChoiceSet*/

I

/* device choices */

struct devChoice{
long link_type;/*link type for this device*/
char *pchoice;/*ptr to choice string*/

struct devChoiceSet { /* This defines one set of device choices*/
long number; /*number of choices */
struct devChoice **papDevChoice; /*ptr to arr of ptr to devChoice*/
char **papChoice;/*ptr to arr of ptr to choice string*/

struct devChoiceRec{ /*define device choices for each record type*/
long number; /*number of devChoiceSet*/
struct devChoiceSet **papDevChoiceSet;
/*ptr to arr of ptr to devChoiceSet*/
b

Figure 9 shows the memory layout of the choice definitions. In the database a choice field

is stored as an unsigned short value. The meaning is determined via the associated choice

structures. Four types of structures are referenced via the following pointers (stored in struct

dbBase):

pchoiceCvt Specifies a conversion choice.

pchoiceGbl Specifies a member of a set of global choices. These are choices that are
common to all record types.

pchoiceRec Specifies a member of a set of record choices. These are choices that are
special to the particular record type.

pchoiceDev Specifies adevice choice, i.e. the set of device support routines for this record.
Each record type has it‘s own sets of device support routines.

98

EPICS: IOC Application Developer‘s Guide

iceset ‘

number

papChoice

“hoiceSet]

number

papChoiceSet

iceRec ‘

number

papArrChoiceSet

—> [—> “<choice string>"

|

|

ChoiceRec
number

papDevChoiceSet

|

12.2.5 cvtTable.h

struct brkInt{ /* breakpoint interval */
raw;

long
float
float

(100 00 00 a0

slope;

|

|

}

choicedet
number
papChoice

——

foicedet
number
papChoiceSet

100 0

May 12, 1994

?<choice string>"

- ChoiceSet
number
papChoice —> [] —> "<choice strii
devChoiceSet
number
papDevChoice > []—> [evChoice
papChoice link
— ‘ mnk_type
E] ﬁ pChoice —> ”<choi
D X, . . A
<choice string>"

Figure 9 : Choice Definitions

eng;

/*raw value for beginning of interval*/
/*slope for interval
[*converted value for beginning of interval*/

b
struct brkTable { /* breakpoint table */

char
long
long
long

*name;
number;
rawLow;

*/

[*breakpoint table name*/
/*number of brkiInt in this table*/
I*lowest raw data value allowed */
rawHigh;/*highest raw data value allowed*/

struct brkInt**papBrkInt;/* ptr to array of ptr to brkInt */

5
struct arrBrkTable { /* array of brkTable */

long

number;

/*number of break tables*/

99

EPICS: IOC Application Developer‘s Guide May 12, 1994

struct brkTable**papBrkTable;/* ptr to array of ptr to brkTable*/
b

pevtTabie—>

K [able
number
papBrkTable | _. -
D rk’lable

name

number

papBIkINT >]

d—

rkint

raw
slope
eng

Figurel0: Conversion Tables

12.2.6 recSup.h - Record Support

typedef long (*RECSUPFUN) ();/* ptr to record support function*/
struct rset {/* record support entry table */

long number; /*number of support routines*/
RECSUPFUN report; [*print report */
RECSUPFUN init; /*init support */
RECSUPFUN init_record;/*init record */
RECSUPFUN process; /*process record */
RECSUPFUN special; /*special processing*/
RECSUPFUN get_value;/*get value field */
RECSUPFUN cvt_dbaddr;/*cvt dbAddr ¥/
RECSUPFUN get_array._info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str;/*get string from enum item*/
RECSUPFUN get_enum_strs;/*get all enum strings*/
RECSUPFUN put_enum_str;/*put string to enum item*/
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;
};

struct recSup {
long number; /number of record types*/
struct rset **papRset;/*ptr to arr of ptr to rset*/

b
#define RSETNUMBER ((sizeof(struct rset) - sizeof(long))/sizeof(RECSUPFUN))

100

EPICS: I0OC Application Developer‘s Guide

precSup— > FoCSTD

number
papRset 5

Y

May 12, 1994

i

Figure 10 : Record Support

S 1
numbers
report

Figure 10 shows the memory layout of the record support definitions. Each record type must
have an associated set of record support routines. Note that only the record and device
support routines use the record structure declarations while accessing a record. The record
support routines are intended to isolate the rest of the IOC software from details of record

access and processing.

12.2.7 devSup.h - Device Support

typedef long (*DEVSUPFUN) ();/* ptr to device support function*/

struct dset {/* device support entry table */

long number; /*number of support routines*/
DEVSUPFUN report; /*print report*/
DEVSUPFUN init; /*init support*/

DEVSUPFUN init_record;/*init support for particular record*/
DEVSUPFUN get_ioint_info;/*get I/O interrupt information*/

[*other functions are record dependent*/
Y
struct devSup {

long number; *number of dset */

char **papDsetName;/*ptr of arr of ptr to name*/
struct dset **papDset;/*ptr to arr of ptr to dset*/

I§

struct recDevSup {

long number; /*number of record types*/
structdevSup **papDevSup;/*ptr to arr of ptr to devSup*/

|

extern struct recDevSup *devSup;

101

EPICS: IOC Application Developer‘s Guide May 12, 1994

precDevSup—y- fecDevSup
number

papDevSup | >

I:] - [devoup
[numbers
papDsetName >[]><DEST ma
papDest -
]~ PEsT [

number
ﬁ report D

Figure 11 : Device Support
Figure 11 shows the memory layout of the device support definitions. The device support
routines are intended to isolate the record processing routines from device specific details.
12.2.8 drvSup.h - Driver Support

typedef int (*DRVSUPFUN) ();/* ptr to driver support function*/
struct drvet {/* driver entry table */

long number; /*number of support routines*/
DRVSUPFUN report; [*print report*/
DRVSUPFUN init; /*init support*/
DERSUPFUN reboot; /*reboot entry*/
/*other functions are device dependent*/
};
struct drvSup {
long number; /*number of dset */
char **papDrvName;/*ptr to arr of ptr to drvetName*/
struct drvet **papDrvet;/*ptr to arr ptr to drvet*/
b

#define DRVETNUMBER ((sizeof(struct drvet) -sizeof(long))/sizeof(DRVSUPFUN))

pdrvSup—> [drvSup

numbers
papDrvName

apDrvet
pap > 1 — grer

>
[:l number E

l:l report

Figure 12 : Driver Support

—-"<driver name>”

Figure 12 shows the memory layout of the driver support definitions.

102

