o COMNF-95703)5

An Iternative Algorithm for Correcting Sequencing
Errors in DNA Coding Regions*

Ying Xu, Richard J. Mural', and E. C. Uberbacher

Informatics Group
“omputer Science and Mathematics Division and 'Biology Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

"The submitted manuscript has been
authorized by a contractor of the U.S.
Government under contract No. DE-
AC05-840R21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes.”

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
United States Government or any agency thereof.

Presentation to be published as full article in DIMACS Workshop on Gene-Finding and Gene Structure
Prediction, Philadelphia, PA, October 13-14, 1995.

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-ACO05-840R21400 with Lockheed Martin Energy

Systems, Inc.
DISTRIBUTION OF THIS DOCUMENT IS UNUM&TEE? 1

IASTER

An Iterative Algorithm for Correcting Sequencing Errors
in DNA Coding Regions

(Extended Abstract)

Ying Xu, Richard J. Mural' and Edward C. Uberbacher
Informatics Group
Computer Sciences and Mathematics, and 'Biology Divisions
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

Abstract

Insertion and deletion (indel) sequencing errors in DNA coding regions disrupt DNA-to-
protein translation frames, and hence make most frame-sensitive coding recognition approaches
fail. This paper extends the authors’ previous work on indel detection and “correction” algo-
rithms, and presents a more effective algorithm for localizing indels that appear in DNA coding
regions and “correcting” the located indels by inserting or deleting DNA bases. The algorithm
localizes indels by discovering changes of the preferred translation frames within presumed cod-
ing regions, and then “corrects” the indel errors to restore a consistent translation frame within
each coding region. An iterative strategy is exploited to repeatedly localize and “correct” indel
errors until no more indels can be found. Test results have shown that the algorithm can accu-
rately locate the positions of indels. The technology presented here has proved to be very useful

for single pass EST/cDNA or genomic sequences, and is also often beneficial for higher quality
sequences from large genomic clones. ©

1 Introduction

This paper addresses issues related to localization and correction of indel errors in DNA coding
regions using statistical methods.

.One of the very significant properties of a DNA coding region is that it exhibits a much stronger
coding signal, measured using any frame-sensitive coding recognition method, in the translation
frame compared to the other frames. In anonymous DNA, we use the preferred translation frame
to refer to the frame with the highest coding potential. When indels occur in a coding region, its
(preferred) translation frame changes within the region. By discovering changes in the preferred
translation frames within a coding region, we can detect indels. To localize a coding indel involves
(1) accurately locating the transition point of the preferred translation frame and (2) locating the
coding regions in an anonymous DNA.

Correction .of {located) indels, unlike the localization problem, can only be expected to be
partially achieved since some information may have been lost (for example, bases that have been
deleted) when an indel error occurred. Hence the basic goal in indel correction is to recover a
consistent translation frame within a (presumed) coding region.

We previously designed and implemented a statistical method for localizing and “correcting”
indels in DNA coding regions {3]. The algorithm first locates translation frame transition points
by dividing a DNA sequence into segments in such a way that adjacent segments have different
preferred translation frames and the sum of coding potentials in the preferred translation frames
over every segment is maximized, where the coding potential is measured using an in-frame 6mer

preference model. Coding potentials are then measured around each transition point using two
fixed-size windows (30 base long), one to the left and one to the right of a transition point. Transi-
tion points within poor coding neighborhood are removed from further consideration. The rest of
the transition points are considered to be caused by indels. The sequence is “corrected” by adding
1 or 2 neutral bases like “C” at each transition point to make a consistent preferred translation
frame.

Though test results on this algorithm have shown to be quite promising, they have also revealed
some weakness of the method. As mentioned in {3], the accuracy of the error detection algorithm
drops in the following situations: (1) when an indel occurs very close to the boundary of an exon;
and (2) when a number of indels appear very close to each other (in this case, the algorithm may
only locate a portion of the indels due to the constraint on segment size in the algorithm).

In this paper, we present an improved algorithm which overcomes some of the these problems,
and also extends the indel localization/correction on a single strand to both strands of DNA.
The improved algorithm uses an iterative scheme to localize and “correct” indels in the following
manner. In each iteration, the algorithm, similar to the original one, first locates transition points
by discovering changes in the preferred translation frames, and then it, unlike the original algorithm,
partitions a sequence into (presumed) coding and non-coding regions based on coding measures.
Transition points found within a (presumed) coding region are considered to be indels. These indels
are then “corrected” by adding or deleting a base at each transition point to make a consistent

translation frame (in each coding region). The algorithm iterates on the partially-corrected DNA
sequence until no more indels can be found.

2 Algorithm ‘

2.1 Inframe 6mer preference model

Inframe 6mer preference model is a simple but yet powerful statistical method for coding signal

recognition [1]. The model consists of three preference values, pfo(X), pf1(X), pf2(X), for each of
the possible 6mers X, which are defined as follows:

fr(X) -
pfr(X)—log}:u{—), forr=10,1,2, (1)
where fo(X) is the frequency of 6mer X appearing in a coding region and in the correct translation
frame, f(X) is the frequency of X appearing in a coding region and in the correct translation
frame + 1, i.e., the first base of X is the second base of a codon, f;(X) is the frequency of X
appearing in a coding region and in the correct frame + 2, i.e., the first base of X is the last base
of a codon, and f,(X) is the frequency of X appearing in a non-coding region. In our application,
all the 6mer frequencies were calculated from a large set of DNA sequences!.
Let § = a;......a, be a DNA sequence. The preference model calculates the coding potential of
a segment d...a,, in each of the three possible translation frames, » = 0,1, 2, as follows:

pfr(ak...am) = pf(k+5—r)mod3(“’="'ak+5) + pf(k+6—r)mod3(ak+1"'ak+6)+ (2)

!The set contains 450 DNA sequences with 462608 coding bases and 2003642 non-coding bases.

pf(k+7-r)mod3(ak+2'"a’f+7) . + pf(m_r)mods(am-s...am),

where mod is the modulo function. If » = 2 gives the highest value on the right-hand side then
frame 2 is the preferred translation frame of segment ai...apn,.

2.2 Localization of transition points

A “corrupted” coding sequence (with bases deleted or inserted) can be partitioned into segments in
such a way that each of the segments has a (possibly) different preferred translation frame and its
translation to proteins in that frame is consistent with the original “uncorrupted” sequence (ignore
the boundaries between segments temporarily). We call each such boundary point a transition
point. The problem addressed in this subsection is how to localize the transition points.

In this subsection, we do not distinguish coding from non-coding regions while trying to locate
the transition points, each of them a potential indel. Two types of information are extracted
through solving an optimization problem (optimized to have the highest total coding potential):
(1) the locations of transition points, and (2) whether a base should be deleted or inserted at each
transition point if an indel was determined to have occurred. We always insert a base “C” if an
insertion is needed.

We formulate the transition point localization problem as follows. For a given DNA § = q;...a,,
we want to find a set of locations on S, with the distance between two such points larger than X
(K = 30 in our implementation), so that the base at each such location can be deleted or a new
base C can be inserted right in front of it to obtain a “corrected” sequence 5S¢ with one consistent
preferred translation frame, and the following objective function is maximized:

re’ﬂﬁfz}pf'(s)+ NP, (3)

where P is a negative value used as a penalty for each located transition point, and N is the number
of transition points found.

In the rest of this subsection, we present a fast dynamic programming algorithm to solve this
optimization problem. Now we introduce some notation. Co(%,7) denotes the value of the maximum
solution to the optimization problem (3) over the subsequence a;...a;+s, under the constraints that
the translation frame of the subsequence from the last transition point ¢ to position (i + 5) is frame
r; C1(¢,7) is defined similarly except that the distance between ¢ and (i + 5) is at least X. We
use X to represent the last 6mer in the “corrected” subsequence a;...a;—; corresponding to the
maximum solution (note that X is necessarily the last 6mer of a,...a;_; due to “corrections”), and
X (s) to represent a 6mer formed by appending the string s to the end of X after deleting the first
size — 0f(s) bases of X. Note that the reason we use @,...a;4s instead of the natural a...qa; is that
an insertion or deletion at position i may affect the coding calculation up to position ¢ + 5.

There are three possible cases at each position ¢ for calculating Co(¢,r): (1) ¢ is not a transition
point; (2) 7 is a transition point and a base should be inserted in front of #; and (3) i is a transition
point and it should be deleted. For r = 0,1,2 and 7 > 7, we have the recurrences (4) - (6).

Case 1: When there is no change in the translation frame at position ¢, we have:

5
Coli,r) = Coli = 6,7) + Y Pfii4;-rymods(X (@i8ix5)), (4)
j=0

Case 2: When there is a translation frame change at position i, and a base C is inserted in front
of position ¢, we have:

Co(i,r)= Cy(i—=6,(r+1) mod 3) + Pf(;_(r+1))mod3(X(C))+

(5)
Z?:o Pf(,'.,.j_r)mods(X(Cai---aiH)) +P,

Case 3: When there is a translation frame change at position ¢, and the base a; is deleted, we have:

5
Colis7) = C1(i - 6,(r +2) mod 3) + 3~ Pfsr;ymods(X (@is1--aits)) + P, (6)

i=1

In the general situation, Co(¢,r) is equal to the highest value of the right hand sides of (4) -
(6); and for r = 0,1,2 and ¢ > K — 5, we have:

i+5
Ci(iyr)=Co(i =K +6,7)+ D Pfi;_ymoda(@j-5--a;)- (7)
J=i=K412

The initial values for Co() and Cy() are defined as follows.

Co(j,7r) = pf(s—r)mods(al'"aﬁ)’ and Cy(¢,7) = -o00, for1 < j<6and1<i<K-6. (8)

Note that by definition,

max Co(n = 5,7 9

re{0,1,2} of '7) (9)

corresponds to the maximum solution to the optimization problem (3). Hence to locate the tran-
sition points and to obtain the information on how the sequence S should be “corrected”, we only

need to calculate Co(n — §,7), for r = 0, 1, 2, using the recurrences (4) - (8) in the increasing order
of i until ¢ reaches (n — 5).

2.3 Construction of coding envelops and “correction” of indels

While the inframe 6mer preference model can accurately compute the preferred translation frame
of a DNA the Markov model seems to be more convenient for our purpose to locate coding regions.
Our coding recognition algorithm calculates the coding potentials at each base using a 5" order non-
homogeneous Markov model [2]. For each of the three translation frames, the algorithm calculates
a coding score between 0 and 100 (0 for no coding and 100 for the highest coding possibility) within
a window of size 60 bases entered at the current base.

Using the predicted coding curves, we want to partition the DNA sequence into (presumed)
coding and non-coding segments. The basic idea for the segmentation can be described as follows.
We use two parameters Hg and H;, with 0 < Hg < H; < 100, to separate coding from non-coding

regions (for example, Ho = 25 and H; = 73). The DNA sequence is partitioned in such a way
that the sum of variations of coding measures of each segment from Hy or H; is minimized, i.e.,
segments are generated so that the coding potentials within each segment are “consistently” closer
to Ho than to H,, or vice versa. To filter noise, we require that each segment should have at least
L bases.

More specifically, we want to partition the DNA sequence S into segments 5,53, ...5,, with
each S; having at least £ bases, and find an assignment ~(S;) from {S;}ic(1,5] to {Ho, Hi}, with
h(S;) # h(Si41), in such a way that the following function is minimized. We use b;; to represent
the j** base of segment S; and c(b;;) to denote the coding measure of b;; (by the Markov model).

S 3 (elbis) - (S (10)
i

This minimization problem can be solved by a fast dynamic programming as follows. We need to
introduce a few notations first. Let P;(i,z) denote the minimum value of the minimization problem
(10) over the subsequence a,...a; under the constraint that the last segment in the minimum solution
has assignment H,, with z being 0 or 1; Py(¢,z) is defined similarly except that the last segment
can be smaller than L.

The following recurrences can be proved by an inductive argument on 7, ¢ > L.

Po(i,z) = min{Py(i - 1,z), Po(i — 1,1 —)} + (e(a;) — Hz)?, (11)
. L~-1
Pi(i,z) = Po(i— L+ 1,2) + E(a(a.-_j) - H.)2 (12)

The initial values of Py() and P)() are defined as follows. For i < £,

Py(i,z) = i(c(aj) - H;)?, and Py(i,z) = —ooc. (13)
Jj=1

Note that by definition,

zg&x}l} Py(n,z) (14)

corresponds to the minimum solution to the minimization problem (10). This value can be calcu-
lated using the recurrences (11) - (13) for each base a; from left to right until i reaches n.

Indels are determined as transition points in a presumed coding region, and they are “corrected”
by inserting or deleting a base. The algorithm recovers a consistent translation frame by deleting

one base at each presumed indel position or inserting a neutral base “C” in front of this position,
as described in Section 2.2.

2.4 An iterative strategy

The main goal of exploiting an iterative strategy is to overcome one inherent problem in the
single-pass algorithm we have presented in Sections 2.2 and 2.3: predicted indels have to be at
least K bases apart. This constraint is used to prevent short-range fluctuations in the transition

point localization algorithm, but it also intrinsically prevents discovering indels close to each other.
Practically, we have also found that by using an iterative strategy, the algorithm improves its indel
localization accuracy around exon boundaries.

The basic idea of the iterative strategy can be explained as follows. The algorithm keeps three
lists Ly, L and L3 throughout its execution. L; contains all transition points discovered up to the
current iteration; L, contains all the transition points of L, that have been determined not in any
coding region; and L3 contains the newly discovered transition points, points not in L; yet, in the
current iteration. Initially L;, L, and L3 are all empty sets. At each iteration, the “corrections”
are made on the original DNA sequence S (“corrected™ based on the accumulative information up
to the current iteration). Based on the partially “corrected” sequence, Ly, L, and L3 are updated.

2.5 Extension to two strands

The indel localization and “correction” algorithm presented in Sections 2.2 — 2.4 applies only to
one strand of a DNA. In the most general case, a DNA may contain coding regions in both strands,
and hence extension of the algorithm to two strands is necessary.

We have used a simple strategy to extend the algorithm to two strands by simply applying
the single-strand algorithm on two strands separately, and then combining the indel predictions on
both strands after resolving possible inconsistencies existing in the two versions of the “corrected”
sequence. We assume that coding regions on the forward and reverse strands do not overlap.

For the two versions of “corrected” sequence, the algorithm uses GRAIL II [3] to do coding
predictions (the system uses not just coding signals but also uses information related to splice junc-
tions, translation starts, gc compositions, exon flanking regions, etc). Then the algorithm, based on
the coding prediction on both strands, partitions the two sequences, after a simple alignment, into

regions, each of which contains coding regions only on (at most) one strand, using a strand-calling
function described in [8].

3 Implementation and Results

We have implemented the indel localization and “correction” algorithm as a front-end subsystem
of the GRAIL DNA sequence analysis system {4, 8] to construct a version of GRAIL which is very
error tolerant and also intend to use this as a testbed for further development of sequencing error-
correction technology. The algorithm is implemented in C programming language on a Sparc 10
workstation under operating system SunOS 4.1.2. As a part of the GRAIL II system (version 1.3),
the error correction subsystem can be accessed through an X-based graphical client/server system,
called XGRAIL. An executable code of the client is available to the public by anonymous ftp from
arthur.epm.ornl.gov (128.219.9.76).

Extensive tests have been conducted on the algorithm. We have used a set of 220 DN A sequences
containing 222608 coding bases and 1010517 non-coding bases as our test set. To conduct the tests,
we have artificially implanted 1% and 2% of indels, respectively, in the coding regions of the DNA
sequences, where 1% means that 1 indel was implanted every 100 (coding) bases on average with
one exception that no indels are implanted in exons of 50 bases or shorter. The indels are generated
using a uniformly-distributed random number generator.

Table I summarizes the performance of the indel localization and correction algorithm. Found
indels and falsely found indels are counted as follows. For each actual indel, if there is a predicted

indel within distance less than 30 bases it is counted as a found indel; and for each predicted indel,
if there are no actual indels within 30 bases it is counted as a falsely found indel (FE). We have used
the GRAIL coding prediction as a filter to filter out predicted indels that are within any GRAIL
predicted coding regions. The average distance is calculated as the sum of the distance between
every found indel and its corresponding actual indel divided by the number of found indels.

Table I: Performance of localization/correction algorithm

Error rate | Total indels | Found indels | Ave. Dist. | FEs | FEs after filter
1.0% 1879 1348 (72%) | 8.7 bases | 636 361
2.0% 3621 2616 (72%) 12.4 bases 574 200
References

(1] E. C. Uberbacher and R. J. Mural (1991), “Locating Protein-coding Regions in Human DNA

Sequences by a Multiple Sensors-neural Network Approach”, Proc. Natl. Acad. Sci. USA, Vol.
88, pp. 11261 - 11265.

[2] M. Borodovsky, Yu. Sprizhitskii, E. Golovanov, and A. Aleksandov (1986), “Statistical Pat-

terns in the Primary Structures of Functional Regions in E. Coli., Molekulyainaya Biologiya,
Vol. 20, pp. 1390 - 1398.

[3] Y. Xu, R. J. Mural and E. C. Uberbacher (1995), “Correcting Sequencing Errors in DNA

Coding Regions Using a Dynamic Programming approach”, CABIOS, Vol. 11, No. 2, pp 117
- 124, 1995.

[4] Y. Xu, R. J. Mural, M. Shah, and E. C. Uberbacher (1994), “Recognizing Exons in Genomic

Sequence using GRAIL II”, Genetic Engineering: Principles and Methods, Jane Setlow, Ed.,
Plenum Press, Vol. 16, pp. 241- 253, June 1994.

[5] D. J. States and D. Botstein (1991), “Molecular Sequence Accuracy and The Analysis of
Protein Coding Regions”, Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 5518 - 5522.

[6] J. Posfai and R. J. Roberts (1992), “Finding Errors in DNA Sequences”, Proc. Natl. Acad.
Sci. USA, Vol. 89, pp. 4698 - 4702.

[7] X. Guan and E. C. Uberbacher (1995), “Alignment of DNA and Protein Sequences Containing
Frameshift Errors”, CABIOS in press.

[8] E. C. Uberbacher, Y. Xu and R. J. Mural (1996), “Discovering and Understanding Genes in
Human DNA Sequence using GRAIL”, Methods in Enzymology, 1996. In press.

The following figures show two examples (sequences HUMAPQA4A and HUMFESFP with sizes
3613 and 12263, respectively) of indel predictions. The solid bars in the top represent actual exons.
The hollow rectangles in (A) repressent GRAIL II exon predictions on the corrupted sequences.
Hash marks in (B) and (C) represent positions of actual and predicted indels, respectively. Hollow
rectangles in (D) represent GRAIL exon predcitions on “corrected” sequences.

