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A Scalable Approach to Modeling Groundwater Flow on
Massively Parallel Computers

Steven F. Ashby
Robert D. Falgout
Andrew F. B. Tompson

Lawrence Livermore National Laboratory

Abstract

We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of
computing platforms, ranging from workstations to massively parallel computers. Specifically,
we advocate the use of scalable conceptual models in which the subsurface model is defined
independently of the computational grid on which the simulation takes place. We also describe
a scalable multigrid algorithm for computing the groundwater flow velocities. We are thus able
to leverage both the engineer’s time spent developing the conceptual model and the computing
resources used in the numerical simulation. We have successfully employed this approach at
the LLNL site, where we have run simulations ranging in size from just a few thousand spatial
zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)—all using
the same conceptual model.

1 Introduction

Groundwater contamination is a serious problem throughout the United States and the world. At the
Lawrence Livermore National Laboratory (LLNL), for instance, chemical solvents were dumped onto
the ground surface in the 1940’s (when the present site was a naval air station), and over time, these
contaminants (now classified as hazardous wastes) have migrated through the unsaturated zone and
into the more mobile groundwaters (Figure 1). These contaminants are moving slowly (25m/year)
toward aquifers that provide drinking water for the city of Livermore. LLNL, as the current property
owner, is obligated (under the SuperFund Act) to determine the extent of the contamination (i.e.,
plume distribution), and then design, implement, and monitor remediation procedures. Similar
problems plague the DOE complex (most notably the Hanford, Savannah River, and Nevada Test
Site facilities), as well as U.S. industry.

In carrying out their cleanup mission, colleagues in the Environmental Protection Department
have installed over 400 monitoring wells. These wells provide data that is used to characterize
the nature of the subsurface medium and the contaminant plume. For example, hydrologists use
well tests and core samples to determine the types of soils comprising the subsurface. Direct
measurements of contaminant concentrations also are made. Once the subsurface is characterized
and the contaminant plume is identified, various remediation procedures are evaluated. The most
commonly used procedure is pump-and-treat, in which the contaminated groundwater is extracted
via a pumping well and- treated above ground. Although pump-and-treat is widely used, it is slow
and expensive. For example, it might take decades and hundreds of millions of dollars to clean up
a site like LLNL. Consequently, environmental remediation engineers at LLNL and elsewhere are
studying alternative, more cost-effective cleanup strategies. These include microbial biofilters [16]
and dynamic steam stripping [14], both of which offer the promise of substantially reduced cleanup
times, yielding potential savings of tens of millions of dollars.

Numerical simulations are increasingly being used to help guide the remediation process.
Engineers use simulations to evaluate competing remediation strategies and to choose the best
one for a given site. Once a procedure has been chosen, additional simulations can be used to
manage it in the most cost-effective fashion. For example, simulations can be used to determine
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FiG. 1. Contaminants have migrated through the unsaturated zone into the more mobile groundwaters
at LLNL. We are working with colleagues in the Environmental Protection Department to develop a scalable
model of the subsurface for use in the ParFlow simulator.

the optimal pumping configuration (i.e., well locations and pumping rates) in a pump-and-treat
strategy. Such a priori design optimization [8] can save millions of dollars over the course of a
cleanup effort. Simulations also can be used to perform rational, scientific risk assessment and to
demonstrate regulatory compliance.

1.1 Modeling a Complex Subsurface

Most simulation codes in use today make unrealistic assumptions about the nature of the subsurface
medium and its associated flow behavior. These codes are generally incapable of modeling the
complicated phenomena that arise in fluid flow through three-dimensional porous media. For
example, many codes assume that the subsurface is one- or two-dimensional and homogeneous in
composition and spatial distribution. The few three-dimensional codes that exist typically assume
that the subsurface is composed of uniform layers (as in Figure 2, left). Such codes rely on the use of
“effective” (or average) medium properties, for example, the use of a single hydraulic conductivity
value to represent an entire layer. In reality, the subsurface is fully heterogeneous, that is, each
layer is itself heterogeneous (as in Figure 2, right). This means that the hydraulic conductivity is
spatially varying within layers, as well as across layers.

Such fine-scale heterogeneities can have a profound impact on contaminant plume migration, as
shown in Figure 3. In this figure, we show two snapshots in time: one from a simulation based on a
model with homogeneous layers (Figure 2, left) and one from a simulation based on a model with
heterogeneous layers (Figure 2, right). The dispersion of the contaminant plume is dramatically
different in the two cases. In the homogeneous case, we see the effect of the layers: as the plume
moves through the subsurface, the portion in the top, more permeable layer begins to separate from
the portion in the second, less permeable layer. In the heterogeneous case, however, preferential
flow paths result in a much more disperse plume.

Some modeling codes attempt to compensate for the inadequacy of a homogeneous model by
incorporating “effective medium” parameters [7, 9], in which an effective hydraulic conductivity
value and dispersion coefficient are used to mimic the effects of the heterogeneities. Although this
parsimonious approach can be used to approximate gross flow and transport behavior in an idealized
medium, and often yields an improved simulation, it typically fails to predict plume travel times
correctly. Moreover, this approach still requires that the variability of the hydraulic conductivity
(or some other medium property) be measured and characterized. We advocate a complementary
approach in which the same measurements and characterization of fine-scale heterogeneities are




Fic. 2. Conceptual model of o subsurface (ezaggerated ten-fold in the vertical) with a clay layer, fault
zone, and five layers. The layers are homogeneous on the left and heterogeneous on the right.

FiGg. 3. Snapshots in time in two simulations: one (on the left) using ¢ model with homogeneous
layers, and one (on the right) using a model with heterogeneous layers.

used within a sophisticated computational framework that is capable of directly resolving property
variability. Specifically, we develop a number of equally likely hydraulic conductivity reaiizations
that we use in a series of simulations (see §2.1). This approach allows us to simulate the extreme
behavior (arising from the fine-scale heterogeneities) that can impact plume migration {and the
conclusions one might draw about a particular remediation strategy) without needing to reproduce
the exact property values at every point in the computational grid.

1.2 Parallel Computing is Needed

The need to resolve fine-scale heterogeneities necessitates the use of high performance computing
technology. Consider, for example, the LLNL site. The sheer physical size of the site (several square
kilometers and hundreds of meters deep) and the need to resolve the heterogeneities to within meters
leads to huge problems: one might need as many as 109-10° spatial zones (on a uniform mesh) to
model the LLNL site adequately. Although adaptive and/or local mesh refinement might reduce
the problem size by an order of magnitude, one is still left with a large problem. Moreover, we wish
to run hundreds of time-dependent simulations as we explore different conceptual models, evaluate
competing remediation strategies, and seek to optimize a given procedure. Parallel processing makes
this possible.

To address the need for a simulation code that exploits the power of massively parallel
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processing, we have formed a multidisciplinary team to build a new code for modeling fluid flow
and chemical transport through heterogeneous porous media. We have brought together experts
in subsurface modeling (geostatistical realizations), advanced computing methods (algorithms and
parallel computing), and environmental restoration (expertise in the use of models) to develop the
simulator and to apply it to real sites. The simulator, which we call PARFLOW (for parallel flow),
enables both detailed (i.e., high resolution) and large-scale {e.g., regional modeling) simulations of
complicated sites.

The PARFLOW simulator was built from scratch in C to be portable and scalable across a
variety of computing platforms. The primary target architecture is distributed memory MIMD
machines with message passing, which allows us to run on workstation clusters and massively parallel
computers. Our main workhorse is the 256-node CRAY T3D located at LLNL, but earlier versions
of the simulator have been run on a 1024-node nCUBE/2 and a 128-node IBM SP-1. In addition,
we can run on shared memory multiprocessors (e.g., SGI Power Challenge). The simulator has even
been run on a Pentium PC under Windows 95.

This portability is important for two reasons. First, we wish to support a variety of platforms
to maximize the utility of the code (i.e., its marketability). Second, we see the code being used in
a scalable fashion, and we wish to support this concept. Specifically, we imagine engineers running
relatively small simulations on PCs and workstations to gain an understanding of a site, and then
scaling up to the MPP only when detailed simulations are needed. It is critical that the same code
(and graphical user interface) be available across the hierarchy of platforms.

Portability, however, is not enough. We also require that PARFLOW be scalable, meaning that
it can efficiently use additional processors to solve proportionately larger problems. For example, if
we can solve a 1M zone problem on 16 processors of an MPP in ten seconds, we want to be able to
solve a 16M zone problem on 256 processors in ten seconds as well. As a corollary, we emphasize
that one should always seek to use the smallest number of processors necessary to do the job. If too
many processors are allocated, scalability is lost, and the resources are inefficiently used.

2 Building a Scalable Subsurface Model

The first step in the simulation process is to construct a conceptual model of the subsurface. Here,
one typically works with geologists and hydrologists to identify the “gross” geologic features (called
“hydrostratigraphic units,” or more simply, “geounits”). For example, in Figure 2, there is a low
permeability clay layer, five roughly horizontal layers, and a fault zone (represented by the plane).
Each of these geounits is then identified with a specific soil type.

In traditional, PC-based simulation efforts, each soil type might be assigned a single hydraulic
conductivity value. In other words, the geounit is assumed to be effectively homogeneous. Moreover,
the conceptual model is defined on a computational grid (on which the discrete problem will be
solved). That is, the user specifies hydraulic conductivity values for each cell in some computational
domain, often with the aid of a kriging program. So long as the computational grid is relatively
small, say a few thousand cells, this approach is manageable. However, as we discussed earlier, we
may need tens of millions of spatial zones to adequately resolve the fine-scale heterogeneities that
can have a profound impact on the subsurface contaminant migration. It is therefore necessary to
employ automatic algorithms in the definition of the hydraulic conductivity field. Moreover, since
we may wish to run a hierarchy of simulations of varying sizes (on different platforms), it is essential
that our conceptual model be scalable.

In PARFLOW, the conceptual subsurface model is independent of the underlying computational
grid. That is, features such as geounits are defined in real-space coordinates, and the resolution
of these features is dictated by the hydrologists and geologists developing the model, not by the
resolution of a computational grid. This gives the modeler the freedom to express the model as
it is truly envisioned. For example, a sloping plane is represented as a sloping plane without the
stair-stepping effect associated with a discrete (computational) grid.

The representation of these grid-independent features typically requires a small amount of data
relative to that required by grid-dependent representations. Furthermore, the model need not be
changed each time the computational grid is changed. For example, one way to represent the
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sloping plane mentioned above is with two adjacent triangles. Here, one need only store four real-
space coordinates (vertices), and six integers that describe which vertices make up the two triangles.
This representation is read into PARFLOW, where it is then mapped onto a computational grid to
form what we refer to as a computational model. In most groundwater codes, the conceptual model
coincides with some computational model. This approach has the drawback of requiring large
amounts of storage for the problem data, which must be read into the simulator. In addition, the
conceptual model must be recreated each time one wishes to employ a new computational grid.
(This is often so expensive that modelers continue to use a coarse computational grid even when a
finer grid is clearly needed.)

To define our conceptual model, we use the GMS software [20]. GMS allows one to interactively
manipulate the geounits on a PC or workstation, and then store the results mathematically. For
example, we typically use triangulated networks to represent surfaces and layers (similar to the
sloping plane example above), and these triangulations are generated via GMS. These triangulated
surfaces are written to a file in a compact, mathematical representation, and can then be read
directly into PARFLOW to generate the computational model.

This scalable approach is extremely valuable, and is one of the strengths of the PARFLOW
simulator. One is free to use a PC or workstation to define the conceptual model, and to fine-tune it
by hand, without restricting the model to a particular computational grid. The user need only define
the conceptual model once, and is then free to run a variety of simulations of varying resolution.
For example, the engineer might want to run a large number of “what if” scenarios to get a feel
for a particular site. These simulations could be run on a workstation using a relatively coarse
computational grid. Once the engineer is satisfied with the model and its parameters, the resolution
of the simulation can be increased without changing the underlying conceptual model. The engineer
simply changes a few input parameters and runs the simulator on a workstation cluster or MPP,
depending on the size of the problem and the available resources. In this way, we allow the user to
amortize the cost of the conceptualization process—which is the most time-consuming part of any
modeling effort.

2.1 Dealing With a Paucity of Data

In our model, soil heterogeneity is reflected in the spatial variation of the hydraulic conductivity
K. Unfortunately, property measurements are typically too sparse to specify the kind of detail
required in our model. (Recall that 10°~10° mesh points may be needed to properly resolve the
subsurface heterogeneities, and one never has this much hard data.) At the LLNL site, for instance,
there are over 400 monitoring wells collecting data on the subsurface medium and contaminant
plume. Although this data can be supplemented with so-called soft data (obtained, for example, by
cross-well tomography), there are still relatively few data points. Consequently, hydrologists and
geologists often describe fine-scale heterogeneity with statistical interpolation techniques [10, 11, 19].
Here, measured values and statistical characteristics of 2 medium property may be used to produce
a number of equally-representative realizations of the property distribution. These realizations may
then be used to study subsurface behavior in a Monte Carlo fashion. Although these realizations
cannot give the precise value of the hydraulic conductivity at an (z,¥, z) coordinate, they do provide
a more realistic representation of property variability between measured data points. This may, in
turn, lead to more realistic simulations of flow and transport behavior over large spatial regions.
Such simulations can aid site managers in determining where to concentrate their remediation efforts,
thereby enabling a more cost-effective site cleanup. Moreover, these simulations can help answer
the question: Will a given remediation strategy confine the contamination to the prescribed area?
Let us discuss the realization issue a little further. We wish to devise some way of mathematically
representing K in a reasonably realistic manner. To do this, we will (i) interpolate the small number
of known measurements and /or (ii) generate hypothetical “property realizations” that retain specific
features of the variable properties [10, 11]. For example, one might assume that the variability of K
can be described by a spectral random field [17]. Briefly, this means that property values at all points
are assumed to be drawn from a “distribution” with a known (or measurable) mean, variance, and
spatial correlation. {Correlation is used as a simple measure of the spatial persistence of property
values.) An important feature is that the inherent length scales of variation are controlled by the
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correlation model and not by the spacing between the actual measurement locations.

This type of model is frequently used to describe hydraulic conductivity distributions for both
theoretical and computational investigations [1, 12, 15, 17, 19]. Distributions of In K values measured
at field sites (including LLNL) often appear to be Gaussian. Estimates for the mean, variance, and
correlation scales of this In K distribution can be made from preliminary data analyses, and this
statistical information can be used to generate one or more property realizations. These realizations
will not necessarily match data measured at any specific point, but this can be imposed if desired.
When this type of realization is used in computational experiments, one is typically interested in the
generic effects induced by the variable nature of the property. For example, one might be interested
in modeling the dilution of a given chemical species as it moves distances much greater than the
correlation scale.

2.2 Random Fields Via Turning Bands

To obtain spectral random field realizations, we use Tompson’s turning bands algorithm [18].
Given certain statistical parameters that describe the hydraulic conductivity (including mean,
variance, and spatial correlation), this algorithm generates a realization for the subsurface. That
is, it generates a set of points with the specified statistical properties. These points provide the
conductivity values needed in the model. See [18] for details.

In our early experiments, we used a serial code to generate the realization and then distributed
the conductivity values across the processes. This proved to be too time-consuming. (It took longer
to distribute the data than to solve the associated linear system!} Consequently, we implemented a
parallel version of the turning bands algorithm within PARFLOW. The subsurface realization is now
computed in parallel on the proper processes—with no communication. See [5] for details. This
is extremely advantageous when we run very large problems, as well as when the code is run in a
Monte Carlo fashion to determine the most probable subsurface flow behavior.

We are currently implementing the “sequential Gaussian simulation” (SGS) method for
generating a conditioned hydraulic conductivity realization. This method produces statistically
better random fields, and despite its name, is more fully parallelizable than turning bands.

Once a realization is devised, the resulting model can be validated via history matching. Here,
a simulation is run from some previous time to the present, and the results are compared to known
data. If the predicted state differs significantly from the observed state, the model can be tuned
by varying the statistical parameters and/or other model parameters (e.g., boundary and initial
conditions). A more sophisticated approach to model validation and tuning is to embed the simulator
in an optimization code (for determining the best model parameters).

3 Numerical Solution Approach

At present, we are focusing our attention on groundwater flow in a confined aquifer. Qur model of
fluid flow is based on Darcy’s Law for single phase flow in a saturated porous medium. We use the
following form of the equation,

(1) ~V-(K-VR)-Q = 0

where h is the hydraulic head (for which we wish to solve), K is hydraulic conductivity (i.e., the
mathematical representation of the subsurface), @ is a source term (representing recharge, e.g.). At
present, the problem domain is assumed to be a paralielepiped. The boundary conditions may be
either Dirichlet (constant head) or Neumann (no flux).

We solve for the hydraulic head on a discrete (logically rectangular) mesh. In the numerical
investigations to date, we have used a single uniform grid (with steplengths Az, Ay, Az), but in the
future we will implement adaptive and/or local mesh refinement (which is needed around pumping
wells, for instance). We employ a standard 7-point finite volume spatial discretization, which results
in a large system of linear equations. The solution of this linear system (discussed below) yields the
fluid pressures, from which the groundwater velocity field is then calculated. The velocity field is
then passed to another code to simulate contaminant transport. At present, we have the choice of a
particle tracking method with reactive chemistry and a second-order, grid-based Godunov method.



3.1 Multigrid Solution of the Linear System

The dominant cost in computing the fluid flow velocity field is the solution of the linear system of
equations, Ah = g, resulting from the discretization of the elliptic partial differential equation (1).
The coefficient matrix of this linear system is symmetric positive definite with the usual 7-stripe
pattern (corresponding to the 7-point discretization stencil and a natural ordering of the unknowns).
Since we are interested in detailed simulations (i.e., very large systems), we must use an iterative
linear solver; a direct method such as Gaussian elimination would be prohibitively expensive (both
in terms of CPU time and storage requirements). Within the hydrology community, the most
commonly used iterative methods are SIP and SSOR. Although these methods are adequate for
many problems, they suffer in comparison to the preconditioned conjugate gradient method (PCG)
[6]. For example, polynomial preconditioned conjugate gradients was shown [13] to be an order of
magnitude faster than SIP and SSOR.

The choice of preconditioner is critical to the performance of PCG. Typical preconditioners
include incomplete Cholesky and diagonal scaling. Although incomplete Cholesky is extremely
effective on serial machines, it is difficult to implement efficiently on parallel machines. Diagonal
scaling is often surprisingly eflective, but it does not scale, meaning that the number of iterations
required for convergence (to some specified tolerance) increases with the problem size (e.g, as the
resolution increases). In PARFLOW, we have implemented a multigrid preconditioned conjugote
gradient solver, denoted MGCG. In this algorithm, the preconditioning step is effected via one V-
cycle of the multigrid algorithm described in the next paragraph. As we will show, this algorithm
(and our implementation of it) are scalable.

Our multigrid algorithm employs standard V-cycles with a choice of damped Jacobi or pointwise
red/black Gauss-Seidel smoothing options. (Pre- and post-smoothing is done.) Since the vertical
dimensions are usually much smaller than the horizontal dimensions, we typically encounter highly
skewed grid cell aspect ratios. We have devised an heuristic semi-coarsening strategy to deal with
this grid-based anisotropy. Specifically, we semi-coarsen in the direction with smallest grid spacing
(i.e., strongest coupling). In the case of a tie, we coarsen first in z, then in y, and finally in 2. Since
the K function (i.e, the hydraulic conductivity field) in equation (1) varies by as much as ten orders
of magnitude, it is necessary to employ operator-induced prolongation and restriction, as well as an
algebraic definition of the coarse grid operator. This approach is extremely effective, especially when
used as a preconditioner (rather than as a stand-alone solver). See [3, 4] for a detailed description
of this algorithm and its performance on the CRAY T3D massively parallel computer.

3.2 Implementation Issues

The PARFLOW simulator was written in C from scratch with scalable parallelism as an underlying
design criterion. The problem data (e.g., the hydraulic conductivities) are generated in parallel on a
virtual process grid topology consisting of P = p X ¢ X r processors. The computations are arranged
to avoid explicit data redistribution (which can be expensive).

To achieve portability, we employ a message-passing paradigm. Specifically, we isolate all
communications in a layer we call AMPS, which is then layered on top of standard message-
passing libraries such as the Reactive Kernel (for homogeneous workstation clusters), PVM (for
heterogeneous machine clusters), and SHMEM (for best performance on the CRAY T3D). We
also have emulated message-passing on shared memory machines (e.g., the multiprocessor SGI
PowerChallenge). This approach allows us to port PARFLOW to new machines in as few as two
days: only the relatively small AMPS layer needs to be rewritten and the rest of the simulator ports
immediately.

One of the key operations in our MGCG linear solver is matrix-vector multiplication. Here
we exploit the fact that we are using a standard 7-point discretization on a structured mesh.
Specifically, we represent the matrix as a distributed stencil, with the matrix stencil coefficient
distributed analogous to the problem data. To effect the matrix-vector multiplication, one first
exchanges inter-processor boundary data, and then each processor can independently carry out its
part of the global matrix-vector multiplication. On machines with the appropriate hardware, the
communication costs can be masked by properly arranging the computations.




TABLE 1
A scalable MGCG algorithm: As we refine the computational grid, the number of MGCG iterations
remains nearly constant.

Problem Size J2CG MGCG
Ny | ny | ny || iters time || iters | time
17| 17 9 456 1.1 9 0.4

33| 33| 17| 963 5.7 10 0.7
65| 65| 33 189 57.1 10 21
129 | 129 | 65 |} 3706 | 772.1 11| 12.6
257 | 257 1 129 | 7391 | 1549.5 11| 12.9

3.3 Algorithmic Performance

In earlier papers [2, 3, 4, 5], we examined the algorithmic and parallel performance of our MGCG
algorithm. In this paper, we will summarize a few of those results, especially with respect to
scalability. In these results, we compare MGCG to PCG with 2-step Jacobi preconditioning. The
iterations were halted once the relative residual was less than 10~ in the 2-norm.

One of the most attractive features of multigrid is that it cen be a scalable algorithm, meaning
that the number of iterations remains constant as the computational grid is successively refined. Of
course, the CPU time still increases since each successive problem is larger, but the time increases
linearly with the problem size. As the results in Table 1 show, our MGCG algorithm is scalable.

Specifically, we consider the following experiment, in which we show that the rate of convergence
is independent of grid resolution. The physical domain is 2 = 1024 x 1024 x 25.6 with no-flow
boundary conditions on the top and bottom, and constant hydraulic head of one on the vertical
faces. We consider successively refined grids consisting of ny X ny X n, spatial zones (i.e., grid
spacing of A, = 1024.0/(n, — 1), Ay = 1024.0/(ny — 1), A; = 25.6/(n, — 1)). The turning bands
parameters are y = 4, ¢ = 1.5, A; = 128, A\, = 128, and A, = 6.4. The timings in the first four
rows are for P = 2 X 4 x 4 processors of the CRAY T3D; in the last row, we used P =4 x 8 x 8
Processors.

The number of MGCG iterations required for convergence remains approximately constant
(about ten iterations) for problems ranging in size from 2,601 zones to 8,520,321 zones. Moreover,
the CPU time grows slowly. In contrast, the number of iterations required by the J2CG algorithm
increases exponentially, and the CPU time grows rapidly. For the 8M zone experiment, MGCG is
more than two orders of magnitude faster than J2CG. Moreover, we wish to emphasize that J2CG
is faster than the solvers used in most groundwater codes today. Finally, in a preview of our next
topic (scalability of algorithm implementation), compare the MGCG timings in rows four and five.
In row four, we solved a problem with 1M spatial zones on 32 processors in about 13 seconds—the
same time required to solve a problem eight times larger on 8 x 32 = 256 processors (row five).

Although scalability of the algorithm is important, it also is important that the algorithm’s
parallel implementation be scalable. This means that we must handle communications in an efficient
manner. In Figure 4 we demonstrate the scalability of our MGCG implementation on the CRAY
T3D. (We have obtained similar results on other MPPs.) In this experiment, we fixed the problem
size per processor at 64 x 64 x 32 and enlarged the computational domain (i.e., problem size)
by increasing the number of processors. Scaled speedup is defined as Mp/M;, where Mp is the
MFLOPs achieved on P processors. (Note that this definition measures only the scalability of our
implementation of the algorithm, and not the scalability of the algorithm itself.) Ideally, the curve
should be flat and close to 1. Observe the typical early drop off (going from one to two processors)
and the nearly flat scalability curve. Scaled efficiency is near 80%. In this experiment, we used
Cray’s SHMEM primitives to get best AMPS message-passing performance.

In our last set. of experiments, we study the effects on MGCG convergence of increasing the
degree of heterogeneity in the subsurface model. We use the same test problem as in Table 1 with
N =129 x 129 x 65 grid cells (i.e., grid spacing of A = 8 x8x0.4). The turning bands parameters are
u=4, A, =16, A, =16, and A, = 0.8, and we vary 0. The timings are for P = 2 x 4 x 4 processors
of the CRAY T3D. The results of this experiment are given in Table 2. Here, we increase ¢ from
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TABLE 2
Modest dependence on the degree of heterogeneity: As we increase the variability of the hydraulic
conductivity field (i.e., the K function) via the turning bands’ o parameter, the number of MGCG iterations
grows slowly.

J2CG MGCG
o| o% iters | time | iters | time
0.0 [ 0x10° || 1701 | 3544 91 104
0.5 | 6x10° || 3121 | 650.3 91 104
1.0 | 7x 10! || 3388 | 705.7 91 104
1.5 | 1x10% || 3670 | 764.6 11 | 125
2.0 | 4x10% || 4273 | 889.5 17 | 18.8
2.5 | 4x10° || 5259 | 1094.4 26 | 28.2

0.0 (homogeneous) to 2.5 (extremely heterogeneous). The second column shows the variation in
K, which manifests itself in the condition number of the underlying matrix A. As o increases, the
condition number of A grows rapidly, and the problems becomes increasingly more difficult. Thus,
the iteration counts for both J2CG and MGCG increase with ¢. However, notice that the MGCG
iteration counts increase much more slowly than those for J2CG. (There is no reason to expect a
constant number of iterations in this case since the problems are fundamentally different.) Once
again, we see that the MGCG solver makes it possible to solve large problems relatively fast.

3.4 Detailed Simulations Using ParFlow

The PARFLOW simulator is being applied to several real sites, including LLNL, as part of its
validation process. We have run a variety of simulations using 1M and 8M spatial zones. In addition,
we have run a few “LLNL-like” problems with as many as 50M spatial zones. These studies have
demonstrated the feasibility of using massively parallel computers and advanced numerical methods
to enable more realistic simulations of complicated sites than is possible using traditional codes on
conventional machines. This capability makes it possible to predict cleanup times more accurately.
More important, engineers can use such simulations to evaluate more reliably competing remediation
strategies and, once a procedure has been selected, to manage it in the most cost-effective manner.
For example, detailed simulations can be used to determine the optimal pumping configuration in
a pump-and-treat remediation scenario. Finally, simulations can be used to perform probabilistic
risk assessment via a Monte Carlo approach.

4 Summary and Current Directions

In this paper we have described a scalable approach to modeling groundwater flow on parallel
computers. The use of massively parallel processing power is motivated by the need to resolve
fine-scale subsurface heterogeneities for large sites; upwards of one billion spatial zones may be
required. Of course, in practice, one would run such detailed simulations only after a large number
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Fic. 4. Our implementation of the MGCG algorithm scales well on the CRAY T3D.
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of smaller, preliminary simulations. Our simulator supports this mode of operation by running on a
variety of computing platforms, ranging from PCs and workstations to large MPPs like the CRAY
T3D. Moreover, we advocate the use of scalable conceptual models, in which the subsurface model
is defined independently of the underlying computational grid.

We also have developed and implemented a scalable algorithm for the solution of the pressure
equation. This allows us to make efficient use of additional processors to solve proportionately
larger problems—in the same amount of time. Thus, we have devised a fully scalable approach
to the simulation of groundwater flow. Both the conceptual model and the numerical solution are
scalable to any size computational grid. This means that we can leverage both the engineer’s time
(spent developing the conceptual model) and the computing resources (applied to the numerical
simulation). We have successfully employed this approach at the LLNL site, where we have run
simulations ranging in size from just a few thousand spatial zones (similar to what PC-based codes
would use) to more than 8M spatial zones. )

We are commercializing some of this work in collaboration with our industrial partners,
International Technology Corporation and Cray Research, Incorporated. As a prelude to commercial
use of the simulator, we are conducting verification and validation studies. Specifically, we are
comparing PARFLOW to other, commonly used codes such as MODFLOW and CFEST. Our
preliminary results show that we obtain qualitatively similar results, but we can solve much larger
problems much faster. In addition, we are developing a prototype graphical user interface that will
facilitate use of the PARFLOW simulator. This GUI will, for example, enable an engineer to move
easily between the various stages of the simulation process, from model conceptualization (via GMS
on a PC) to running the simulation (via PARFLOW on a workstation cluster or MPP) to visualizing
the results (via AVS on a graphics workstation).
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