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Here we carry out a systematic numeircal study of the flow of granular materials
down an inclined plane using the models that stem from both the continuum theory |
approach and the kinetic theory approach. We also look at the existence of solutions,
multiplicity and stability of solutions to the governing equations.

1.2.2 Relation to the DOE Mission
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The goal of this research is to provide a better understanding of the mechanics of the such
materials.
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1.1 Additional Project Personnel

Mr. R. Gudhe worked on this project for his doctoral dissertation.

1.2 Project Overview

1.2.1 Project Objectives

The mechanics of the flowing granular materials such as coal, agricultural products,
-fertilizers, dry chemicals, metal ores, etc. have recieved a great deal of attention as it has
relevance to several important technological problems. Despite wide interest and more
than five decades of experimental and theoretical investigations, most aspects of the
behavior of flowing granular materials are still not well understood. So Experiments
have to be devised which quantify and describe the non-linear behavior of the granular
materials, and theories developed which can explain the experimentally observed facts.




2. SCIENTIFIC AND TECHNICAL CONTENT

As many models have been suggested for describing the behavior of granular
materials, from both continuum and kinetic theory viewpoints, we proposed to investigate
the validity and usefulness of representative models from both the continuum and kinetic
theory points of view, by determining the prediction of such a theory, in a representative
flow, with respect to existence, non-existence, multiplicity and stability of solutions. The
continuum model to be investigated is an outgrowth of a model due to Goodman and
Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and
Richman (1985) and Boyle and Massoudi (1989). In the following sections we present
detailed results regarding the same. Interestingly, we find that the predictions of all the
theories, in certain parameter space associated with these models, are qualitatively
similar. This ofcourse depends on the values assumed for various material parameters in
the models, which as yet are unknown, as reliable experiments have not been carried out

as yet for their determination.

2.1 Numerical Study of the Flow of Granular Materials Down an
Inclined Plane Using a Continuum Model

A granular material is defined as an assembly of discrete solid components dispersed
in space such that the solid constituents are in contact with the near neighbors. The
behavior of granular materials governed by interparticle cohesion, friction, and collisions.
So any theory attempting to describe the behavior of the flow of granular materials
should embody these features and characteristics. For example, granular materials are not
solids since they take the shape of the vessel containing them; and they cannot be
considered as a fluid as they can be piled into heaps. In fact granular material exhibit
behavior like non-Newtonian fluids and non-linearly elastic solids.

The Cauchy stress tensor T in a granular material seems to depend on the manner in




which the granular material is distributed, i.e., the volume fraction v and possibly also its
gradient, and the symmetric part of the velocity gradient D. Thus, we shall assume that:

T =f(v, Vv, D), (2-1)

Using standard arguments in mechanics, it is possible to find restrictions on the form
of the above constitutive expression based on the assumption of frame-indifference,
isotropy, ezc. [cf. Truesdell and Noll (1965)]. There could be further restrictions on the
form of the constitutive expression because of internal constraints like incompressibility,
and conformity with thermodynamics. A constitutive model that predicts the possibilty
of both of the normal stress-differences and that is properly frame invariant is given by
[cf. Goodman and Cowin (1971, 1972), Rajagopal and Massoudi (1990)]:

T={BW+BMV- -VW+B,Wv)rD}1

+B,v) Vv ® Vv +B,(v) D, 2-2)
where B,(v) is similar to pressure in a compressible fluid and is given by an equation of
state, B,(v) is like the second coefficient of viscosity in a compressible fluid, ,(v) and
B4(v) are the material parameters connected with the distribution of the granular materials
- and B4(V) is the viscosity of the granular material. The above model allows for normal-
stress differences, a feature observed in granular materials. In general, the material
properties 3, through B, are functions of the density (or volume fraction v), temperature,
and the principal invariants of the stretching tensor D, given by

D= %[ (Vu) + (Vu)T], 2-3)

where u is the velocity of the particles. In equation (2-2), 1 is the identity tensor, V the
gradient operator, ® indicates the outer (dyadic) product of two vectors, and
designates the trace of a tensor. Furthermore, v is related to the bulk density of the

material p, through

p=rV,
where 7 is the actual density of the grains at the place x and time ¢ and the field v is called
the volume fraction (or the volume distribution) and is related to the porosity n or the

void ratio e by




v==l=-n=—-= with) <v <l

As mentioned earlier that By(v) plays the role of pressure in a compressible gas, with
v now playing the role of a density. Assumption of a form similar to that for ideal gases
leads as to conclude that B, varies linearly with volume fraction. The works of Walton
-and Braun (1986) support the assumption that the viscosity is a function of both the solid
volume fraction v and the stretching tensor D, and varies as a quadratic function of v, D
being held fixed. Following, Rajagopal and Massoudi (1990) we shall assume that the
material parameters have the structure

Bo(v) = kv 24)
By(v) =Byo + Byyv + Brov?

Ba(v) = Bag + BV + BpV?

By(V) = Bag + Byyv + B5pv?
By(v) =Byg + Byyv + BppV? (2-3)

The above representation can be viewed as a Taylor series approximation for the
material parameters. Such a quadratic dependence, atleast for the viscosity B, is borne out
on the basis of dynamic simulations of particle interactions [cf. Walton and Braun
(1986)]. Further restrictions on the coefficients can be obtained by using the following
argument. Since the stress should vanish as v — 0, we can conclude that

By =Byp=0
The rationale for the structure given above can be found in Rajagopal and
Massoudi (1990). Also, Johnson et al. (1991a, b) used this model to study two phase
flows. Further, Rajagopal and Massoudi (1990) and Rajagopal et al. (1992) have shown
that

k<0 (2-6)
as compression should lead to densification of the material.

Consider the flow of granular materials down an inclined plane modeled by the
continuum model proposed by Rajagopal and Massoudi (1990) (cf. Figure 1) due to the
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action of gravity. The flow of granular materials down an inclined plane has been studied
by several authors [cf. Goodman and (1971), Savage (1979), Hutter, Szidarovszky, and
Yakowitz (1986a, b), Johnson and Jackson (1987)]. However, none of the above studies
incorporate thermal effects and therefore do not consider the balance of energy. While
Hutter et al. (1986a, b) allow for a quantity referred to as "fluctuating energy” and
provide an equation for its determination, this equation is not the energy equation. The
fluctuating energy represents variations of the velocity from a mean velocity and is like
turbulent fluctuations. While the spirit of this approach and that of Hutter et al. (1986a, b)
are different, the governing equations for the velocity field could be cast into a form that
is similar to theirs. Hutter et al. (1986a, b) show that the existence or non-existence of
solutions to their equations depend on the type of boundary conditions that they impose,
and to our knowledge this is the first study which investigates the question of how the
boundary conditions influence the existence of solutions. Recently, Rajagopal, Troy, and
Massoudi (1992) studied questions regarding existence and uniqueness of solutions to the
equations governing the flow of granular materials down an inclined plane, in which
thermal effects are taken into account and the energy equation is also included. They
delineate a range of values for the material parameters, which are assumed to be constant,
which ensure existence of solutions to the equations under consideration. They also
prove rigorously that for certain range of values of the parameters no solutions exist,
while for others there is multiplicity of solutions. In this problem, we consider the
steady one-dimensional flow of incompressible granular materials (i.e., Y = constant)
down an inclined plane, where the angle of inclination is c. But in general one has to
study an unsteady two-dimensional problem. Here, we assume that the flow is a fully
developed steady flow. Let us further suppose that the inclined plane is maintained at a
constant temperature ©_, which is at a higher temperature than the temperature of the
surrounding environment ©_, and, as a result, there is transfer of heat. Further, suppose
the heat flux vector q satisfies Fourier’s law with constant thermal conductivity, i.e.,

q=-K V6, @7
where © is the temperature and K is the thermal conductivity, which in general is a
function of volume fraction and ©. At this juncture it would be appropriate to point out
that in theories for granular materials based on a kinetic theory approach, the fluctuations
in the velocity field give rise to the notion of granular temperature. The convective heat
transport, within the context of such theories, is determined by the fluctuations in the
velocity field. It is also the conventional wisdom that this mechanism is important for the
heat transfer process. In this approach, we have ignored the fluctuations in the velocity




11

field as the theory does not allow for such velocity fluctuations, and moreover within the
context of the continuum theory, the phenomena of heat transfer is incorporated in the
energy equation. To include in addition to the energy equation, the notion of granular
temperature would be inconsistent with this approach. We feel that this approach is
applicable when the packing of the material is reasonably compact and the fluctuadons
from the mean are not significant. For a fully developed flow, within the context of a
_continuum theory, wherein the flow is unidirectional as in this case, fluctuations of the
velocity normal to the flow direction cannot be incorporated. While this may be a
shortcoming of this approach we see that even with the neglect of such fluctuations, heat
transfer within the context of the continuum model has a pronounced effect on the nature
of the solution [cf. Schlunder (1980, 1982), Wunschmann and Schiunder (1980),
Buggisch and Loffelmann (1989)].

For the problem under consideration, the following assumptions are made:

» Steady motion
¢ Incompressible granular materials, i.e., ¥ = constant
* Negligible radiant heating, i.e.,r =0

e The constitutive equation for the stress tensor is given by equation (2-2), and
density, velocity, and temperature fields are assumed to be of the form

vV =V(y)
u=U®) (2-8)
8=00)

We shall consider three cases. The first is the case that B, through B, and the thermal
conductivity K are assumed to be constants. -In the second case, it is assumed that §; and
B, are constant, B, and B, have a quadratic variation in volume fraction and the thermal
conductivity K is linear in the volume fration. In the third case, we consider a purely
mechanical problem and assume B, through $, have a quadratic variation in the volume
fraction.
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2.1.1 Case I: B, through B, and thermal conductivity K are constant

Here, we assume f, through B, and the thermal conductivity K to be constant, with {3
given by equation (2-4). With the above assumptions, the conservation of mass is
identically satisfied and from the balance of linear momentum and balance of energy we
end up with three coupled ordinary differential equations. These equations are
appropriately non-dimenionalized and are solved numerically using a collocation code
COLSYS [cf. Ascher et al. (1981)]. The non-dimensional parameters R, R,, R;, and R,
are given by

2B, +
R, = k , R, = Bl ﬁ4)
hyg nyg
B uy B, “er
R3—2h2’Yg’ R4=2K(@w_@&) (2-9)

It follows from Rajagopal and Massoudi (1990) that R, must always be less than zero
- for the solution to exist and all the other non-dimensional parameters, i.e. Ry, R; and R,
must be greater than zero.

Boundary Conditions

In general, whether it is the kinetic theory approach or the continuum approach, the
need for additional boundary conditions arises. In the continuum theories of Goodman
and Cowin (1971, 1972) and its modificadons [cf. Ahmadi (1982a, b), Passman et al.
(1980), and Johnson et al. (1991a, b)], two boundary conditions on the volume fraction
are required. In the numerical solution of shearing motion of a fluid-solid flow, Passman
et al. (1980) prescribed the values of the volume fraction at the two plates. An alternative
way is to use experimental results, if they are available. Later, Johnson et al. (1991a, b)
considered this issue and suggested using an integral condition.

In the kinetic theory approach, additional boundary conditions are also necessary for
the value of the fluctuating energy [which is related to what is usually referred to as the
granular temperature]. There have been many attempts at looking at this issue [cf. Haff
(1983, 1986), Hui et al. (1984, 1986), Hutter et al. (19864, b), and Jenkins (1992)]. The
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effect of boundaries on the flow of granular materials has been studied experimentally by
Hanes and Inman (1985). Hanes and Inman (1985) performed the experiment by glueing
particles on the wall. Craig et al. (1987) have also looked at the effect of boundary
conditions.

Whether it is the continuum approach or the kinetic theory approach, slip may occur
at the wall, especially when the interstitial fluid is a gas, and therefore the classical
adherence bounda.ry condition at the wall no longer applies. In this approach, we follow a
procedure similar to that of Hutter et al. (1986a, b) in specifying the slip at the wall.
Perhaps, the idea of specifying slip at the wall goes back to Navier! [cf. Schowalter
(1988)] who introduced a constant {; to describe slip, where at the wall

du,

Cu= R (2-10)
where u is the slip velocity, u, the fluid velocity, and » the normal of the wall directed
into the fluid. There has been evidence for many years that for flows of some non-
Newtonian fluids slip occurs at the wall. In fact, it is possible that the boundary condition
is more complex in that the material stick-slips on the boundary. If the shear stress is
below a certain value, the material adheres to the boundary while it slips above a critical
value of the shear stress. Such a phenomenon has been observered in polymeric materials
and is the source of a lot of surface instabilities observed in polymeric extrudates. An
attempt to generalize condition (2-10) for non-Newtonian fluids was made by Pearson
and Petrie (1964) in the form

u,=f(t,) T, (2-11)
where T, is the wall shear stress. Hutter et al. (1986a, b) and Szidarovszky et al. (1987)
use a similar relatonship to relate the slip velocity, u,, and the fluctuating energy of the
flow, 0, of avalanches on an inclined plane. Specifically, they use

u =f(H) 1, (2-12)
6 =g, 2, (2-13)
2 -
where, T = 3 Q+Cxx (2-14)

1Eor a review of slip boundary conditions, see Lugt and Schot (1974).
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vz (2—v)

) = 80 =3

p=yv

1 . 3v N V2
I=v 2(1-v)3? 2(Q1Q-v) »
where o is the particle diameter, ¢ is the coefficient of restitution, and /i and g, depend on

8oV) = (2-15)

the surface roughness. Hutter et al. (19864, b) suggest the following forms for f; and g,

f0D=CEDT @1
m-1
8,0 =Cud* | 2-17)
with sliding coefficients Cand C and power-law exponents n and m. The case -0

corresponds to the classical no-slip boundary condition. Szidarovszky et al. (1987)
provide an alternative boundary condition for (2-13) in the form of

de
=y,
dy

which indicates that the gradient of the fluctuating energy at the wall is proportional to

a0+ (2-18)

the fluctuating energy.

It is assumed that the slip velocity is proportional to the stress vector at the wall. That
is

A
u, = £5((Tn),, (Tn)) | ) 2-19)
where T is the stress tensor, n is a unit normal vector, and f;in general could be a
function of surface roughness, volume fraction, shear rate, etc.

For the problem under consideration, Rajagopal et al. (1992), proved rigorously that
the equations admit non-unique solutions, one in which the volume fraction increases
monotonically, and the other in which it decreases monotonically, from the inclined plane
to the free surface. Multiple solutions are depicted for case IT and is not given for case I
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and case [II. By observing the exact solution obtained for the volume fraction [cf. Gudhe
et al. (1993)], it can be seen that the volume fraction profile increases monotonically
from the inclined plane to the free surface. This solution is not physically expected, but
by carrying out the stability analysis, it is possible to check whether this solution is stable
or not. A parametric study of the numerical solutions of volume fraction, velocity, and
temperature profiles is carried out and the results are presented in the form of graphs [cf.
Gudhe et al. (1993)]. Figures 2-through 5 depict the variation of the volume fraction,
velocity and temperature for various values of the non-dimensional parameters, and are
self-explanatory.
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Figure 1. Flow Down An Inclined Plane
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2.1.2 Case II: B, Varies quadratically in v and the thermal conductivity K
varies linearly in v with §,, B, and 8, being constant

Here the viscosity of the granular material and its thermal conductivity are allowed to
vary with the volume fraction in a manner that is consistent with the physics of the
problem. The equations for the conservation of mass, momentum, and energy are solved
numerically and we explicitly demonstrate the non-unique solutions, corresponding to the
same flow rate of the granular materials. Further, it is assumed that B,, B, and B, are
constant. However, the viscosity B, is assumed to be of the form [cf. Johnson et al.
(1991a, b)]:

B; = ﬁ; v +Vv3), where, ﬁ3 is a constant (2-20)

Based on the numerical simulations of Walton and Braun (1986) that suggest a
quadratic variation in volume fraction. However, their analysis allows for the viscosity to
vary with the shear rate, a feature that is not present in this work. Even so, at fixed shear
rate, their simulation implies a quadratic variation in the volume fraction. For K, it is

~.. assumed that [cf. Bashir and Goddard (1990) and Batchelor and O’Brien (1977)]:

K=K, (1+3(W), (2-21)
(y; =1
where, C = W (2-22)

Here, y, = ratio of conductivity of the particle to that of the matrix, and K is the
conductivity of the matrix.

With the above assumptions and the flow field given by equation (2-8), the
conservation of mass is identically satisfied and from the balance of linear momentum
and balance of energy we end up with three coupled ordinary differential equations.
‘These equations are solved numerically. It follows from Rajagopal and Massoudi (1990)
that R; must always be less than zero for the solution to exist and all the other non-
dimensional parameters, i.e. R,, R,;, A;, A, and A must be greater than zero. For the
problem under consideration, Rajagopal et al. (1992), proved rigorously that the
equations admit non-unique solutions, one in which the volume fraction monotonically
increases, and the other in which it monotonically decreases, from the inclined plane to
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the free surface. Here, a parametric study of the equations is carried out and delineate
how the various non-dimensional parameters affect the structure of the solution. For more

details we refer to Gudhe et al. (1993).

The non-dimensional parameters R,,, A4, A,, A and fare given by

2
=._El_- A =.§3_EL- A -_-__%__.
n mpyg’ 3T 2hyg’ 472K (0,0
A
. gh = fhyg
g e,-e T g (2-23)

In Figure 6, multiple solutions for the volume fraction are depicted, one in which the
volume fraction increases from the plane to the free surface and the other which has the
opposite character. Figures 7 to 11 depict the variation of velocity and temperature for
various values of the non-dimensional numbers.

The existence of multiple solutions leads immediately to the question of stability
of these solutions and this is taken up later.
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2.1.3 Case II: B, through B, vary quadratically in v

It is assumed that B, and B, are given by equations (2-4) and (2-10) with B,, B, and B,
to be quadratic in volume fraction are given by

B, = B; (1+v+v?), where, ﬁl is a constant (2-24)
B, = ﬁz (1+v+v3, where, ﬁz is a constant (2-25)
By = 34 (1+v+vd, where, ﬁ4 is a constant - (2-26)

In this case, we consider the purely mechanical problem. With the above assumptions
and the flow field given by (2-8), ,, the conservation of mass is identically satisfied and
from the balance of linear momentum we end up with two coupled ordinary differential
equations. These equations are solved numerically. It follows from Rajagopal and
Massoudi (1990) that R, must always be less than zero for the solution to exist.

2.1.4 Comparision of case I, I and III results

The volume fraction,velocity and temperature profiles are compared for case I, II and
II. In Figure 12, the volume fraction profiles are shown for case I and III for the same
values of non-dimensional paramters and for case II it is same as Case L The velocity
profiles are shown for Case I, II and III in Figure 13. Notice, that the velocity depends
upon the form assumed for 8, through B,. Finally, in Figure 14 the temperature profiles
are shown for case I and II. We notice that significant changes in the temperature profile
can be effected depending upon the form assumed for the thermal conductivity of the
particles.
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2.2 Numerical Study of the Flow of Granular Materials Down an
Inclined Plane Using Kinetic Theory Approach

Once again we consider the flow of granular materials down an inclined plane (cf.
Figure 1) due to the action of gravity.

2.2.1 Case A: Jenkins and Richman constitutive equations

Richman and Marciniec (1990) studied the above problem using the consitutive
equations proposed by Jenkins and Richman (1985a) by making approximation that the
field variable could be replaced by the average value. This simplified the problem and
made it possible for Richman and Marciniec (1990) to obtain exact solutions. Here, the
full equations for the flow of granular materials down an inclined plane are derived. The
constitutive equation for the Cauchy stress tensor T is given by [cf. Richman and
Marciniec (1990)]




27

T=—-{4pGFO}1+2pED 2-27)
Where, Fv)=1+ ZI(—}' (2-28)
2

Ev)=1+ n(_1+51__/2§_0_)_ (2-29)

_V(2-v)
GV =55 (2-30)

Sop GO

= _—_SPn‘ = (2-31)

In the above equation T denotes the Cauchy stress, v the volume fraction of the solid,
Ddenotes the deviatoric part of stretching tensor D  associated with the solid motion and
0 the granular temperature.

For the problem under consideration, it is assumed that the volume fraction, velocity
and granular temperature to be of the form

v =V(y)
u=Uy)i
6 =06(y) (2-32)

With the above flow field the conservation of mass is automatically satisfied. From
the balance of linear momentum and pseudo-energy we have three coupled ordinary
differntial equations. These equations are solved numerically. A parametric study of the
numerical solutions of volume fraction, velocity and granular temperature profiles is
carried out and the results are presented in the form of graphs. The value of B is chosen
from the predictions of the boundary conditions for the energy flux, from the solution of
Richman and Marciniec (1990).

The manner in which the volume fraction, velocity and granular temperature change
with the angle of inclination (o) and Q are shown in Figures 15, 16 and 17 when ¢ = 0.95
and e, = 0.8 (;‘\ =5,and r= .414). Notice, that the volume fraction decreases from the
surface of the plane to the free surface, the velocity increases from the plane to the free
surface and the granular temperature increases from the surface of the plane to the free
surface. Similarily, in the second case profiles of granular temperature are shown in
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Figures 18 when e =0.8 and e, = 0.95 (? =.5and r= .414). Here, it is observed that the
granular temperature decreases from the surface of the inclined plane to the free surface.
We notice that the analytical solution of Richman and Marcineic (1990) agrees
reasonably well with the solutions to the full equations.

See Figure 15 v is not equal to zero at y/B = 0, and notice that the solutions due to
Richman and Marcineic (1990) for the volume fraction always attain the value zero at the
free surface due to the prescription of the boundary condition. The solution to the full
equations on the other hand do not go to zero. This in general would lead to difficulties
with regard to the satisfying null normal tractions on the boundary. However, it is
observed that coresponding to the solutions, the stresses are very small, of the order of
1073, which suggests the possiblity that it may be feasible to patch up a thin boundary
layer at the surface within which the stresses may decrease to zero. However, within the
context of the equations and boundary conditions, there is no alternative but to accept the
value that is a consequence of the solution to the boundary value problem. It is also
possible that allowing B to be determined by the solution rather than prescribing it, from
the Richman and Marciniec (1990) analysis might lead to the vanishing of the normal
stress at the free boundary.
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2.2.2 Case B: Boyle and Massoudi constitutive equation

Boyle and Massoudi (1989) proposed a model which can exhibit normal-stress effects
by including the effects of the gradient of the volume distribution function. The granular
stress tensor T is the sum of the two terms, reflecting that momentun can be transported
by the uninterrupted streaming of granules T, and by the essentially instantaneous
transport from one center to another during a collision T.. The granular stress tensor T
follows. from that of Lun et al. (1984), but there is an additional contibution to T from M

(or T,,) that is given by
T 4 0 V(;Z - 2M+uM 1 2
m=3MN&P V'(-l—:mg( +aM1) (2-33)

The stress tensor for a rapidly sheared granular material is found by summing the
above individual contributions, which is given by

2y

8
2k qisqv
Tne-mg 3NV

T={p9(1+4nvg0)+(

8 3
{1+§n(3n-—2)vgo}~—ubn)V.u

4 v, o
+ ganope—————trM}l
(1-vVy?
2y 8 8 6
_{—-———-—-n (2_n)go(1+§nvgo)[1+-5-n(3n Z)Vgo]+§llbﬂ}D
8 v, o
+3ngopev—————2M \ (2-34)
(1-vVy
. 256 u vt g,
where, pb=.__5n_
6V,
AR
7 o
M=Vv ® Vv
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V, repesents the volume per neighboring particle.

Rajagopal and Massoudi (1990) proposed a continuum model that incorporates the
normal-stress effects caused by gradient of the volume distribution functdon. In that
model B, B,, B,, By and B, are the undetermined coefficients. However, Boyle and
Massoudi (1989) have correlated the material parameters with that of the kinetic model
(equation (2-34)) proposed by using Enskog’s dense gas theory, from which the
undetermined coefficients are determined.

The flow of granular materials down an inclined plane is modeled by the constitutive
equation for the Cauchy stress given by equation (2-34). we assume that the granular
temperature is constant and the volume fraction, velocity to be of the form

v =v(y)
u=U@)i (2-35)

With the above flow field the conservation of mass is automatically satisfied. From
the balance of linear momentum we get two coupled ordinary differntial equations. These
equations are solved numerically using a collocation code COLSYS [cf. Ascher et al.
(1981)]. A parametric study for the volume fraction and velocity profiles is carried out
and the results are presented in the form of graphs. The appropriate non-dimensional
numbers in the governing equation are given by[cf. Gudhe et al. (1993)]

E, E,V, D 3EV,
Lyg’ 3T Dyg

6 E;u, 3E,u, E u,V,
’ D5=-—-—T-—; D5="—2—‘—
LzygV; 2L%yg 8L%vg

D,= (2-36)

where,

E, =v80, E,=v07n

2 _ 164 (3n-1)

Betnewy BT 50w
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E - 128 (3n-2) _ 768
57 75(2-1) 25=
E = % y9n o2 V2

(1280312 1536
Er=un { @) 25 }‘ @37

The manner in which the volume fraction and velocity profiles change with D, and ¥
is shown in Figures 19 and 20 respectively. Notice that the volume fraction decreases
from the surface of the plane to the free surface and attains a zero value for the volume
fraction at the free surface. Figure 21 shows the effect of D, on velocity profiles. Here,
the velocity decreases as D, increases. Finally, Figure 22 depicts how the velocity profile
changes, when D is changed.
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2.3 Linearized Stability

If the solution to the governing equations of motion is disturbed, then the solution is
asymptotically stable if that disturbance eventually decays to zero and unstable if the
disturbance grows in amplitude in such a way that the solution departs from initial state
or reaches some constant value, yeilding a new solution. Once the stable or unstable
states are classified for the governing equations, then the locus which seperates the two
classes of states is defined as marginal stablity or neutral stablity curve. The numerical
solutions obtained in the preceeding chapters are the basic flows. The linearized stability
of these previously obtained numerical solutions will be investigated now.

Linearized stability is concerned with the behavior of infinitesimal disturbances only.
The results of this type can only give conclusive information about instability.
Linearized stablity does not yeild sufficient conditions for stability, that is, if the solution
is unstable to small disturbances then it will be unstable to finite disturbances, while on
the otherhand, if the solution is stable to small disturbances it is not necessarily stable to
finite disturbances. The locus which separates both the stable and the unstable regions is
called the marginal stability of the system. A marginal state is a state of neutral stability.
If s = 0 at marginal stability, there is said to be exchange of stabilities, where the
disturbance is expressed in the usual normal mode [cf. equation (3-41)].

The states of marginal stability can be of two kinds. In the first kind, the amplitudes
of a small disturbance can grow aperiodically, and in the second kind they can grow by
oscillatons of increasing amplitude. In the former case, the transition from stable to
unstable flow takes place through a marginal state thereby exhibiting a stationary pattern
of motions, then one says that the principal of the exchange of stabilities is valid. In the
latter case, the transition takes place via a marginal state exhibiting oscillatory motions
with a certain definite characteristic frequency, then we have the case of overstability.

2.3.1 Stability analysis for the continuum theory model

The linearized stability analysis will be illustrated here only for Case I of the
previously obtained numerical solutions. Consider solutions which cousist of the basic
flow plus an infinitesimal perturbance of the form
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V=viev, : (2-38)
u=U+¢eu : (2-39)
V=gu,

A . . . .
where v and U correspond to the basic solution of the governing equations and vy, u;, u,
represent the disturbance. The basic flow is assumed to have the form

v =v()
U=UQi (2-40)

Now substituting equations (2-38) and (2-39) into the conservation of mass and
balance of linear momentum, the equations corresponding to the basic flow i.e. at order
zero are same as Case II. In general, in addition to perturbing the velocity field and the
volume fraction, it is necessary to perturb the free surface. The basic solution will not
hold in all of the perturbed domain. In the case of the flow of the Navier-Stokes fluid
down an inclined plane, since the basic solution is known explicitly, it is extended into
the perturbed domain as though the basic solution holds in all of the perturbed domain. It
is expected that the error made by doing this is small enough to be neglected if the
perturbance of the domain is small. However, if the solution to the basic flow is
numerical, then such an extension is not unique. Here, we do not allow for the
perturbation of the free surface. Such a stability study is incomplete in that it addresses
only the disturbances corresponding to a special case. Ofcourse, a small disturbance
without such a constraint may prove to be unstable, nullifying the instability predictions.
It is assumed that the disturbances are spatially periodic. That is the perturbed quantities
have the form

v, = vp(y—) &t giox (2-41)
u = U, () et e (2-42)
u, = U, () e e (2-43)

Where v, is the amplitude of the volume distribution function,
U, and U, are the amplitudes of the perturbed velocity,
i is the imaginary number such that 2= -1,
C is the wave number (real) and
s=(+i.

It would be approptiate at this stage to observe that there is no equivalent of Squire’s
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theorem for parallel flows of granular materials and in general we should study three
dimensional disturbances. However, the equations, even for the class of disturbances
(2-41) through (2-43), are so complicated that at this stage we wish to restict ourself to
this case. We then substitute (2-41) through (2-43) into the governing equations and
boundary conditions, and set s = 0 as we are interested in the marginal stability curve.
Also, in the present problem the free surface is fixed, i.e. same as the basic solution
domain (; = 1). The final equations are

U, U, du,, . .du,
M, —Z+ M, +iM,) + M, +iM) —+ Mg +iM) —
dy? dy? dy &

Mg +iM) U, + Mg+ iM) U, =0 (2-44)

-/ ./ o au,  &U,

dy? dy dy>

dau,,
+ (Mg +iMyg) —=+ M+ iMy) Uy + My +iMy) U =0 (2-45)

dy
subjected to the boundary conditions

dZUPy av,, ~ dU, ' .
pr=f iCy +(Cz+iC3)—d:—+C4—_—-+(C5+LC6) Upy+(C7 +iCy) Upz
'y

dy? dy
U,,=0 (2-46)
1 av U ) -
f :1-{ £ +ichpx}dy=O (2-47)
0
U, dy
dU du,,
By +iB)—2 +B,~F 4+ (B, +iBs) Uy +(Bs+iB) U, =0 (2-48)
dy dy
U au du,,
iBy—L2+ (By+iBy)—L2 + B, —+iBp U, + (B3 +iB) U, =0 (249)
dy? dy dy

Equations (2-46), , are the boundary conditions at y = 0 on the inclined plane and
equations (2-48) and (2-49) are the boundary conditions at 3; = ( at the free surface. In
the above equations ¢ is the wave number and all the co-efficients depend on the base
solution. In the above the co-efficients M, - M,,, B, - B,,, C, - C; all depend on the basic
solution [cf. Gudhe et al. (1993)].
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The base solutions equations corresponding to Case II and the stability equations
(2-44) and (2-45) subjected to boundary conditions (2-46), (2-47), (2-48) and (2-49) are
solved numerically using a collocation code COLSYS [cf. Ascher et al. (1981)] and
IMSL routines to obtain the base solution and the marginal stability curves. The non-
dimensional parameters A,,, R,, and Fr that appear in the governing equations are given

by

2
B, uy By Uy
As “Evg Ry = Brg Fr= e (2-50)

The base solution equations admit non-unique solutions for the same values of R, and
R,, one in which the volume fraction monotonically increases and the other in which it
monotonically decreases from the inclined plane to the free surface as shown in Figure 6.
However, it is observed from the stability analysis that the solution in which the volume
fraction monotonically increases from the inclined plane to the free surface is an unstable
solution. In Figure 23, ;‘l_gvs o (marginal stability curve) is plotted for different values of

R, for the solution in which the volume fraction decreases monotonically from the
inclined plane to the free surface. Similarly, in Figure 24, R, vs ¢ (marginal stability
curve) is plotted for different values of A,.

It is interesting to note that the marginal stability curves are qualitatively similar to
the marginal stability curves obtained by Yih (1964) for classical linearly viscous fluid.
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2.3.2 Stability analysis for the kinetic theory model

The linearized stability analysis will be illustrated here for Case A only. Consider
solutions which consist of the basic flow plus an infinitesimal perturbance of the form

V=v+ev, @-51)
=g -

A “ )

6=0+¢e0, (2-54)

where v, U and 0 correspond to the basic solution of the governing equations and v,,
u,, u, 6, represent the disturbance. It is assumed that for infinitesimal disturbances, the
equations may be linearized i.e. the terms of order €2 and higher order terms can be
neglected. In general, in addition to perturbing the volume fraction, velocity field and
granular temperature, it is necessary to perturb the free surface. Ofcourse, the base
solution will not hold in all of the perturbed domain. Here also, we do not allow for the
perturbation of the free surface. The basic flow is assumed to have the form

v =v(y)
U =U)i
0 = 8(y) (2-55)

Now substituting equations (2-51) through (2-54) into conservation of mass, balance
of linear momentum and balance of energy, the equations corresponding to the basic flow
i.e. of order zero are same as Case A.

Once again, there is no equivalent of Squire’s theorem for parrallel flows of granular
materials and in general have to study three dimensional disturbances. As we are
interested in the marginal stability curve, s is set to zero and we end up with three second
order ordinary differential equations. Here, also the free surface is fixed, i.e. same as the
basic solution domain (3? = (). But, in the actual problem the perturbed domain will not
be the same as the basic solution domain. The final equations are

42U 2U dU dU

aw
Py~ +i Gy =2+ Gy —2+ (Gig +i Gg) —2 4 Py —
dy dy* dy dy dy

+(Gy +iG R Uy +(Gp3 +iGi Uy +(Py+iGi) W, =0 (2-56)
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d2U dau au
(Gy6+iGyp) =2+ (Gyg +iGrg) =22+ (Gag +i Gpp) —2=
dy? , dy dy
aw,
-Sz—d;-+(Gn+iG23)Upy+Gz4pr+(st+iGZ6)Wp=0 (2-57)
y
dw 42U dau dau aw
Gy —=L+iGyy——=224(G3) +i Gyp) =22 4 Gy —Z 4+ (Gpg + i Gpg) —L
dy? dy dy

and the boundary conditions become

T = 1
pr= ﬁtana W{fpvp'!'fg—_wrﬂwp}

v,=0 (2-59)
B av,,  dv -
f {iv——_—+i-—-_—UPy-—ovUpz}dy =0 (2-60)
ol & & |
dU,, J,v4gdU J
S, —=+i ‘_d—_- £+ { Sl+—I:£i-[_-{fi-v:}UPy
dy cU dy cU dy dy
Jy v au S, 4U
Ly, L8y o @61
U dy 2 W2 dy
AW aw
22+ % w -0 (2-62)
& d
W,=0 (2-63)

here, as before the coefficients Ps, G¢, J¢, etc depend on the basic solution. Equations
(2-59), , are the boundary conditions at y = B on the inclined plane and equations (2-61),
(2-61) and (2-63) are the boundary conditions at y = 0 at the free surface. In the above
equations O is the wave number and all the co-efficients depend on the base solution.

The system of equations (2-56), (2-57) and (2-58) with the boundary conditions
(2-59) through (2-63) are solved numerically to obtain marginal stablity curves. For the
base solution of Richman and Marciniec (1990) approximate solution is used in the
stablity analysis. In Figure 25, Q Vs ¢ (marginal stability curve) is plotted for different
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values of angle of inclinatdon (a). We notice that the marginal stability curves are
qualitatively similar to those that were obtained for the continuum model.
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Figure 25. Marginal Stability Curve [Q vs 6 ]
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2.4 Project Output

The following summarizes accomplishments for the first three years of the project.

During the first year of the project we investigated the existence of solutions to the

equations governing the continuum model, that is an outgrowth of the model of Goodman
and Cowin (1971, 1972). We also looked at the multiplicity of solutions to the governing
equations. In the second year we studied numerically the equation governing the flow of
granular materials modeled by the kinetic theory approach. We considered the models
due to Richman and Marciniec (1990) and Boyle and Massoudi(1989). During the third
year of the grant we investigated the stability of flow for both the continuum model and

the kinetic theory model considered in the previous year.
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