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An Economic Decision Framework Using Modeling
for Improving Aquifer Remediation Design

Bruce R. James, Jin-Ping Gwo, and Laura Toran
Oak Ridge National Laboratory!, P.O. Box 2008, TN 37831-6352.
ABSTRACT

Reducing cost is a critical challenge facing environmental remediation today. One of the
most effective ways of reducing costs is to improve decision-making. This can range from
choosing more cost-effective remediation alternatives (for example, determining whether a
groundwater contamination plume should be remediated or not) to improving data
collection (for example, determining when data collection should stop). Uncertainty in site
conditions presents a major challenge for effective decision-making. We present a
framework for increasing the effectiveness of remedial design decision-making at
groundwater contamination sites where there is uncertainty in many parameters that affect
remediation design.

The objective is to provide an easy-to-use economic framework for making remediation
decisions. The presented framework is used to 1) select the best remedial design from a
suite of possible ones, 2) estimate if additional data collection is cost-effective, and 3)
determine the most important parameters to be sampled. The framework is developed by
combining elements from Latin-Hypercube simulation of contaminant transport, economic
risk-cost-benefit analysis, and Regional Sensitivity Analysis (RSA).

The framework is demonstrated using a hypothetical contamination problem. In this
problem, ®Sr placed in an unlined trench 40 years ago is leaching into the groundwater and
forming a plume at the site boundary in concentrations above compliance levels. Three
remediation design alternatives are considered: no action, isolating the source trench, and
installing a plume containment and treatment system. Uncertainty in remediation design
performance is due to uncertainty in 13 flow and transport parameters including hydraulic
conductivity, retardation factor, and source strength.

Model results show that, for the assumed parameter distributions, plume containment is the
most cost-effective at low compliance limits (<100 pCi/L), while monitoring alone is the
most cost-effective at higher compliance limits (> 10,000 pCi/L). In the areas between
these extremes, costs are fairly close among the alternatives and more data are needed to
reduce uncertainty. Data worth analysis suggests that hydraulic conductivity of the C soil
horizon is the key parameter in helping to determine the most cost- effective course of
remedial action.

The methodology applied to this specific example can be applied to a variety of transport
situations.

1.0 INTRODUCTION

Reducing costs is one of the critical challenges facing environmental remediation today
because of high costs of present cleanup practices, large number of contaminated sites, and
declining remediation resources. One of the most effective ways of reducing costs is to

1 Research sponsored by the Oak Ridge Office, U.S. Department of Energy, under contract DE-ACO05-
840R21400 with Lockheed Martin Energy Systems, Inc.



improve decision-making, such as choosing more cost-effective remediation alternatives or
improving data collection. A major challenge facing effective decision-making is
uncertainty in site conditions. This is particularly true at groundwater contamination sites
where uncertainty may exist in a large number of parameters affecting remediation design,
ranging from contaminant plume location to transport parameters such as hydraulic
conductivity and source strength. For example, it can be difficult to determine whether a
plume should be contained or not, if there is great uncertainty in whether the plume poses a
future environmental threat. In addition, a large number of uncertain parameters can make
it difficult to determine which parameter is the most cost-effective to sample in order to
reduce uncertainty.

We present a decision framework for increasing the effectiveness of remediation decision-
making for groundwater contamination sites having uncertainty in many parameters. The
objective is to provide a generic, easy to use, robust methodology for making remediation
decisions. Three particular decisions are addressed by the framework. The first is
determining the best remedial action alternative. The best alternative is defined as the
lowest-cost, acceptable alternative. The second is determining if additional data collection
is likely to be cost-effective. Additional data collection is valuable if it helps to choose a
better alternative than one chosen with existing information alone. Finally, if additional
data collection is warranted, what are the most important parameters to sample? This
question is addressed by ranking the uncertain parameters, according to the sensitivity of
the remedial alternative to these parameters. The parameters that have the most effect on the
decision are the most important ones to sample.

The framework is demonstrated using a hypothetical contamination problem. The physical
situation is based on similar contamination problems found at Oak Ridge National
Laboratory. In this problem, %Sr placed in an unlined trench approximately 40 years ago
is leaching into the groundwater and discharging into a nearby creek in concentrations that
are above compliance levels. Consequently, remedial action must be considered. Three
remediation design alternatives are considered: 1) no action, 2) isolation the source trench,
and isolation of a plume containment and treatment system. There is uncertainty in
remediation design performance due to uncertainty in 13 hydrogeological parameters
ranging from hydraulic conductivity and retardation to source strength.

The framework is developed by combining elements from Latin-Hypercube simulation of
contaminant transport, economic risk-cost-benefit analysis, and Regional Sensitivity
Analysis (RSA). Latin Hypercube simulation is used to model contaminant transport for a
wide variety of combinations of unknown parameters. Economic risk-cost-benefit analysis
is used to select the best remedial alternative and to estimate whether additional data are
worth collecting. RSA is used to rank the importance of collecting information about
different parameters.

One of the major advantages of this framework is that it is relatively easy to understand and
to apply. It also accounts for the multivariate relationship between parameters as opposed
to a standard sensitivity analysis where one varies a single parameter at a time. The
methodology is also adaptable to a variety of problems. For instance, while only
uncertainty in hydrogeological parameters is dealt with in the hypothetical example,
uncertainty in economic parameters can also be accounted for. However, the framework is
also dependent on simplifying assumptions. For example, the unknown parameters are
assumed to be independent.

The remainder of the paper will first present a review of previous work and then outline the
framework. The framework will then be applied to the hypothetical example. Finally,
strengths and limitations of the framework will be discussed.



2.0 LITERATURE REVIEW

Much of the earlier work in developing data worth decision frameworks in
hydrogeology/hydrology using economic risk-cost-benefit analysis are based on Bayesian
decision analysis. Bayes' equation is used to evaluate the worth of gathering additional
information in situations where there is uncertainty in one parameter that is an independent
random variable. Example applications include evaluating the worth of additional stream
flow measurements in the design of a bridge (Davis et al. 1972), determining the optimal
sampling frequency for contamination at a water supply well (Grosser and Goodman
1985), and evaluating the worth of drilling a borehole when determining the hydraulic
connection between and a contaminated an uncontaminated aquifer (Ben-Zvi et al. 1988).

More recent work is much more complex in nature, where the worth of gathering additional
information about a spatially correlated parameter is evaluated. These solutions are based
on extensive numerical simulation. Example applications include evaluating worth of
boreholes when searching for aquitard discontinuities (James and Freeze 1993), and
designing sampling programs when searching for contamination (Christakos and Killam
1993 and James and Gorelick 1994).

The framework presented here differs from the above work in a number of ways. First,
the objective of this framework is to provide an easy-to-apply method for making
preliminary remediation decisions. As such the data-worth analysis is not as rigorous as in
the above work and is simpler to apply. Second, the framework evaluates data worth in
situations where there are numerous uncertain parameters. Much of the above work is
geared to evaluating the worth of 1 unknown parameter. Refer to Benjamin and Cornell
(1970) or Freeze et al. (1990) for a discussion of Bayesian decision analysis.

In the work that is most similar to the work presented here, Maddock (1973) examined the
management of a farm. He provided a means of estimating the value of collecting
additional information when there is uncertainty in a large number of parameters.
Maddock's work differs from our work in that it is analytical in nature whereas ours is
numerical and can incorporate more complex situations. Gates and Kisiel (1974) evaluated
the worth of information about several uncertain hydraulic parameters when predicting
hydraulic heads. However, the worth of data was quantified in terms a costs associated
with the precision of predicted heads rather than a design decision.

It is important to note that the risk-cost-benefit approach discussed here will work in
concert with human health and ecological risk in remediation decision making (Sutter et al.
1995).

3.0 DATA WORTH DECISION FRAMEWORK

‘The framework consists of three major components: 1) a prior analysis that determines the
lowest total cost alternative, based on given information, 2) a data worth analysis that gives
a ball park estimate of whether additional data collection is cost-effective, and 3) a
mechanism based on Regional Sensitivity Analysis (RSA) that determines the most
important parameters to sample. The steps in the framework are outlined in Figure 1.

3.1 Prior Analysis: Choosing Lowest Total-Cost Remediation Alternative,
Based on Existing Information

The purpose of the prior analysis is to choose the lowest total-cost alternative, from a suite
of available alternatives, based on given information.
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Figure 1: Outline of major steps in carrying out an analysis using framework.




s 3.1.1 Total Cost of an Alternative

The total cost of an alternative can be calculated using the following equation, based on
economic risk-cost-benefit analysis (Freeze et al. 1990):

1

= C(t)+R(t 1
tot t=0(1+i)t[ ( ) ( )] ( )
where,
C, total cost of an alternative ($);
t time (years);
T engineering time horizon (years);

i discount rate (decimal %);
C(t) known costs in year t ($);
R(t) risk in year t ($).

C,, represents net present value of all future costs associated with a given alternative. The

best alternative is the one with the lowest C,,. C(t) represents the known costs in year t,
such as cost of monitoring or construction cost associated with remediation. The risk,
R(t), represents the expected cost of failure, where failure is defined as an alternative not
performing as expected. For example, failure will occur if the source trench is
hydraulically contained, but the level of contamination reaching the stream does not achieve
compliance levels. It is calculated by:

R(t) = P{t)CHt) (2)

where, Pi(t) represents the probability of failure in year t (decimal fraction),and Cgt) is the
cost of failure in year t. The cost of failure includes all costs associated with a design
alternative failing, including secondary remedial actions as well as regulatory fines or
penalties. It is noted that equation (2) can also incorporate a term to account for the risk
adverseness of a decision maker (Freeze et al. 1990). In general, the higher the
consequences of making a wrong decision are, the more risk adverse a decision maker is
likely to be.

Combining equations (1) and (2) yields:
L1

DY e [C(t)+ P, (t)C, ()] 3)

t=0

which is the equation used here to calculate the total cost of an alternative. Note that i,
Cg(t), and C are known while are P¢(t), and t are unknown. They are unknown because
they depend on many unknown transport parameters. The next step is to estimate the total
cost for each remediation alternative despite this uncertainty.

3.1.2 Estimating Total Cost Using Latin Hyper Cube Simulation
The expected (or average) total cost of each alternative is estimated using Latin Hypercube

simulation. The details of the methodology can be found in Iman and Conover (1980).
The basic technique is to statistically generate equally likely realizations, or scenarios, of

—_



what the site conditions could be. Latin Hypercube simulation is a form of Monte Carlo
simulation. However, the advantage of the former is that fewer realizations are needed to
get a reliable estimate the total cost. As a general rule of thumb, six times as many
realizations should be generated as the number of unknown parameters (Morris 1995) in
order to obtain a reliable estimate of the predicted variable, which here is total cost.
Parameters are assumed to be independent or weakly correlated

The first step in generating the realizations is to estimate probability distributions for each
of the uncertain parameters. Latin Hypercube simulation then uses these probability
distributions to generate a series of N realizations of site conditions on the computer. Each
realization consists of one possible value for each of the unknown parameters. Every
realization is assumed to be equally likely to represent a picture of the real, but unknown,
site conditions. Contaminant transport is then simulated for every realization for each
remedial alternative using a computer model to determine if failure occurs or not, and also
the failure time. The probability of failure for an alternative for each realization will be
either zero or one. The total cost for each alternative can then be calculated using equation
(3). The best remediation alternative is the one with the lowest expected total cost and will
be referred to hereafter as the prior design, or Ap for short.

It is important to note that since Ap is based on uncertain information, it may not actually be
the best alternative. Consequently, it may be worth spending money gathering additional
information to help choose a better alternative. This issue is addressed next.

3.2 Evaluating the Maximum Size of an Exploration Budget

The purpose of this section is to estimate the maximum size of an exploration budget. In
economic risk-cost-benefit analysis, additional data are only worth collecting if they will
change the choice of best design, or prior design, based on existing information. New data
that cannot change Ap have no value. Data worth can be explained using the concept of
regret. The regret represents the monetary loss incurred by not making the best decision.
The regret in selecting Ap, Reg(Ap) is calculated by (Freeze et al. 1992):

Reg(AD) = Ctot(ADItruth) - Ctot(ATItruth) (4)
where

Ciot(Apltruth) the total cost of the prior design given the truth, i.e. complete knowledge of
site conditions;

At the true best design alternative;

Ciot(Agltruth) the total cost of the true best alternative, given the truth.

Note that C(Apltruth) represents the actual total cost for Ap given complete knowledge of
site conditions; it is not the value estimated in the prior analysis. In other words, equation
(4) represents the difference between the actual total cost of Ap and the total cost of best
alternative, At. If Ap is the same as Ay (i.e. we really did choose the true best design in
the prior analysis) then the regret is zero.

The regret represents the maximum amount of money that should be spent gathering
additional data, or in other words, the maximum size of an exploration budget.
Unfortunately we do not know what the regret is because the true site conditions are
unknown. However, we have N equally likely realizations of the site conditions that were
generated using Latin Hypercube simulation. We can calculate the regret for each



realization number n by comparing the actual cost of Ap, based realization n, to the cost of
the true best design for realization n:

Reg(A,lX,)=C,, (AplX,)-C, (AIX,) &)
where

vector containing a value generated for each uncertain parameter

representing site conditions for realizations number n;

Reg(ApIX,) regret of choosing Ap, assuming that X represents the true site conditions;

C..(AplX,) total cost of the prior design, assuming that X represents the true site
conditions;

C.(A[l%,) total cost of the true best design, assuming that X represents the true site

conditions.

xn

Realizations where the regret = $0 indicate that Ay, is the true best design. Realizations
where the regret > $0 indicate that Ap is not the true best design. The maximum size of an
exploration budget is represented by the average regret of the N realizations:

N
Maximumexploration budget = %Z[C‘m (Apix,)—C(A[1X, )] (6)

n=]

- If the maximum exploration budget is very large, additional data collection is likely to be
cost-effective.

The next step is determining the most cost-effective parameters to sample.
3.3 Determining the Most Important Parameters to Sample

The parameters that are the most important to sample are the ones that have the greatest
effect on changing the prior decision. Parameters that have little effect on the prior decision
are the least important to sample. The ranking of cost-effectiveness is done using Regional
Sensitivity Analysis (RSA), a technique developed by Spear and Hornberger (1980) and
Hornberger and Spear (1980).

RSA is conceptually very simple. The approach is to separate the N realizations into two
classes. Class 1 represents realizations where the best alternative is the same as Ap
(Reg(Ap) = $0). Class 2 represents realizations where the best design is not Ap

(Reg(Ap) > $0). The number of realizations in classes 1 and 2 are represented by N; and
Nj, respectively, where N; + N3 = N. Recall that each realization consists of one value for
each unknown parameter. Let us refer to an unknown parameter as X;. The cumulative

probability function, Fx., (x,), is then estimated for each X;, for both classes. The

cumulative probability function for X; is defined as Fy (x;), for class 1 and Fy (x;), for
class 2.

The measure of importance of a parameter, Xj, is based on the difference between Fy (x;),
and Fy (X;),. The basic principle is that if Fy (x;) = Fy (x;), = Fx (x;), then parameter
X has no effect on the decision. The greater the difference between Fy (x;), and




Fy (X;),, the greater the importance in obtaining more information about parameter X;.
The difference between Fy (x;), and Fy (x;), is calculated by:

d;= max [Sy (x;), - S (%)) )

1 —ooLK; <00
where,

d; is the Kolmogorov-Smirnov two sample statistic for X;;
Sy (x;); is the sample Fy (x;), for class 1;
Sy, (x;), is the sample Fy (x;), for class 2.

The d; represents the maximum vertical distance between Sy (x;), and Sy (x;),. The

greater the size of d;, the greater the sensitivity of the Ap to Xj, and the more important it is
to sample X;. Conceptual results are shown in Figure 2 for the cases of a sensitive and a
non sensitive parameter.

One way to accentuate the difference in importance between different parameters is to
calculate the confidence that d; is indicating that the realizations in classes 1 and 2 are truly
different. This confidence is quantified by (Press et al. 1987):

Prob(D, >d,) = 22”‘, (-1 e AW (8)

=1

A=d, / NN, | ©)
N, +N,

where D; is the Kolmogorov-Smirnov statistic for two samples drawn from the same
population. Hence D; represents the random difference between the cumulative probability
distributions of two samples that are from the same population. The Prob(D; > d;)
represents the probability that d; is not just a random event. If the Prob(D; > d;) = 0.9 then
there is a 90% chance that the calculated d; is simply a random event and the realizations of
X;j in classes 1 and 2 are from the same population. In this case we have no confidence that
Apis sensitive to X;. If the Prob(D; > d;) = 0.001 then there is a 0.1% chance that the
realizations of Xj in classes 1 and 2 are from the same population. In this case we are very
confident that Ap is very sensitive to Xj.

and A is calculated by

Therefore, the lower the Prob(D; > d;), the more important the parameter is to sample. The
value of Prob(D; > d;) can be used to accentuate the difference in importance between the
different parameters because small increases in d; yield large increases in Prob(D; > d;).
Consequently, Prob(D; > d;) can be used to quickly pick out the most sensitive parameters.

It is noted that one cannot set a certain value of Prob(D; > d;) to indicate whether a
parameter is significant or not because Prob(D; > d;) is dependent upon the number of
realizations used in the analysis. The value of Prob(D; > d;) is only valuable for picking
out the important parameters in the relative sense.

Equation (10) is only an approximation of A that becomes asymptotically accurate as Ny
and N; become large. In practice N; and N3 should be = 20 (Press et al. 1987). An



1+
regret > $0 N
Fy(x)
T regret = $0
(a) 0- >
X
1 -
d
[—— regret = $0
Fy(x) 9
regret > $0 -7
(b) 0 >
X

Figure 2: Cumulative probability distributions for realizations where regret = $0 and
regret > $0 for (a) a sensitive parameter and (b) a nonsensitive parameter.




important point is that as long as N; and N, are 2 20, the number of realizations needed to
achieve a given level of confidence in the conclusions is independent of the number of
uncertain parameters because the Kolmogorov-Smirnov two sample test is only a function
of N; and N and not of the number of uncertain parameters (Auslander et al. 1982).

Once the important parameters are selected, the next step is to determine which sampling
program is the most cost-effective.

3.4 Cost-Effectiveness of a Proposed Sampling Program

The purpose of this section is to determine whether a proposed sampling program is cost-
effective. A sampling program is worthwhile if it will reduce remediation costs by an
amount greater than its cost of acquisition. This section will only provide an approximate
estimate of the cost-effectiveness of a proposed sampling program.

There can be four possible outcomes for a sampling program: (a) failure conditions are
indicated when failure conditions exist, (b) non failure conditions are indicated when in
reality failure conditions exist, (c) non failure conditions are indicated when non failure
conditions exist, and (d) non failure conditions are indicated when in reality failure
conditions exist. Outcomes (b) and (d) will be referred to here as false indications of
failure and non failure conditions, respectively.

Estimating the worth of a sampling program that accounts for all four possible outcomes
can be done, but is beyond the scope of this paper. For simplicity we focus on evaluating
the worth of a sample survey that gives no false indications of failure. For example, say
that a potentially dangerous contaminant exists at a site. A sample survey that can give a
false indication of failure may suggest that the dangerous contaminant exists when in reality
it does not. The worth of a sample survey with no false indications of failure can be
calculated by (James and Freeze 1993):

Sample worth = (Sample reliability) (EVPI) (10)

where the sample reliability represents the probability that the sample survey will detect
failure conditions given that failure conditions exist. The reliability ranges fromOto 1. A
sampling survey with a reliability of 1 represents a perfect measurement that reduces
uncertainty to zero, while one with a reliability of O represents a useless survey that gives
no useful information.

One can obtain a very approximate estimate of the worth of a proposed sample survey by
intuitively estimating what the precision is of the proposed sampling program, for example
determining if the sample reliability is high (say >0.7), medium (say 0.3 to 0.7) or low
(say <0.3). If the sample cost is much lower than the estimated worth then the sample
survey is likely to be cost-effective, whereas if it is higher then the sample survey is not
likely to be cost-effective.

4.0 HYPOTHETICAL EXAMPLE: REMEDIATION OF A DISPOSAL
TRENCH CONTAINING *Sr

4.1 Introduction

In this section, the framework is demonstrated using a hypothetical example. However,
the site conditions are based on one found at Waste Area Grouping 6 (WAG6) at Oak
Ridge National Laboratory (ORNL), Oak Ridge Tennessee.




In the hypothetical problem, waste contaminated with strontium-90 (90Sr) was disposed of
in an unlined earthen trench 40 years ago. Since disposal, 90Sr has been leaching out of
the trench into the groundwater system. Monitoring wells adjacent to the site boundary
indicate that the activity of 90Sr in the groundwater is above the compliance level, which is
assumed to be 1,000 pCi/l. Consequently, remedial action must be considered. It is noted
that this is not the contamination problem being faced at ORNL.

However, spending limited financial resources carrying out remediation immediately may
not be the best course of action. First, the contamination presently poses no direct human
health risk. Second, the contamination will remediate itself naturally as the source strength
weakens through dilution and radioactive decay (the half life of strontium is 28.5 years).
Given these circumstances, it may be more cost-effective to spend limited financial
resources on other higher priority sites.

It has been determined through negotiation with involved stakeholders that the average
activity level of 99Sr contamination in the groundwater leaving the site must achieve the
compliance level within 10 years.

4.1.1 Remedial Action Alternatives

Three remedial alternative courses of action are considered. The first is containment of the
groundwater contamination by a pump and treat system at an assumed cost of $5 million.

It is assumed that this alternative will be 100% effective in bringing the site within
compliance. The second is isolation of the source trench with a impermeable cap and slurry
walls at an assumed cost of $1 million. This alternative will be effective in cutting off the
source trench, but it will not prevent remobilization of 90Sr that is already sorbed to soil
matrix outside of the trench area. This remobilization represents a secondary source of
contamination. Therefore, this second alternative may not achieve compliance levels within
10 years. The third is to monitor-only at zero cost. Monitoring costs will be incurred;
however, they are not considered in the analysis here because monitoring will be carried
out for all remediation alternatives. This alternative relies solely on natural cleanup to
achieve compliance. As such it is the least effective at reducing discharge levels of
contamination, but has the lowest cost up front.

In the event that compliance is not achieved within 10 years, failure will occur. It is
assumed that the cost of failure will be $15 million, payable at the time of failure. This cost
will include regulatory fines as well as having to remediate a much more serious
contamination problem. A discount rate of 4.5% is assumed.

4.1.2 Geology and Hydrogeology

The physical situation consists of three layers (Fig. 3). The top layer is the B soil horizon
and is approximately 1 m in thickness. The next layer is the C horizon which is composed
of highly fractured saprolite that ranges in thickness from 5 to 10 m. The bottom is a layer
of limestone/shale which has fracturing to a depth of 10 to 20 m. The water table is located
in the saprolite layer and is below the waste trench. Contaminants are leached from the
trench in the unsaturated zone down to the water table, where they are transported by the
groundwater through the saprolite and limestone/shale layers. In addition to three layers, a
series of clay lenses also exist which effect contaminant transport.
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Figure 3: Cross section used in the hypothetical example. The cross section
consists of B and C soil horizons, a shale-limestone layer, and clay lenses.
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4.1.3 Numerical Model of Contaminant Transport

The modeled system is shown in Figure 3. It consists of three layers as well as clay
lenses. All geological units are assumed to be homogeneous and the transport parameters
are independent random variables. It is assumed that the average activity level of 99Sr can
be adequately modeled using an equivalent porous media two dimensional flow and
transport model.

Groundwater flow is modeled using the finite element code PFEM, a parallelized version of
3DFEMWATER (Yeh 1987) while contaminant transport was modeled using
3DLEWASTE, a parallelized version of LEWASTE (Yeh and Gwo 1990). The finite
element mesh consisted of 8262 nodes and 4000 elements. The groundwater flow
calculations were run assuming steady state conditions. The leaching rate through the
unsaturated zone is based on tabulated soil moisture properties from the ORNL site.

Present day conditions were generated by modeling transport from 40 years ago until the
present. Given the 40 year period of time, it is assumed that flow is in steady state
conditions. The monitor-only alternative was simulated by continuing to model each
realization of present day conditions for another 10 years. The source isolation alternative
was simulated by turning off the source term at the present time and then continuing to
simulate transport for another 10 years.

For this hypothetical example, it is assumed that any modeled realization of present day
activity level is equally likely, as long as the activity level is above compliance levels.
Monitoring data will not be used to condition any present day realizations that are above
compliance levels for two reasons. First, only limited monitoring data maybe available
with which to provide bounds of plume activity levels. Furthermore, in extremely
heterogeneous setting where there is fracture flow, such as at ORNL, there can be
tremendous variability in the contaminant concentrations measured by different monitoring
wells, depending on whether a significant flow zone is intersected or not. Finally, the
modeled activity level will not correspond exactly to the real activity level because of model
simplifications. For example, fracture flow is represented as an equivalent porous media
and only steady state flow conditions are modeled.

The next section discusses the setting of values for the uncertain transport parameters.
4.1.4 Setting of Values for Uncertain Transport Parameters

In this section, we choose the range of values for the different uncertain flow and transport
parameters. It is assumed that all parameters are known except for the hydraulic

conductivity (K), distribution coefficient (Kd), and longitudinal dispersivity (04 ) of the
three layers and clay lenses as well as the source strength. Consequently there were 13
uncertain parameters. It was assumed that the likelihood of each parameter is uniformly
distributed between a maximum and a minimum value. Parameter ranges for the uncertain
parameters were based on knowledge from the ORNL site known as Waste Area Grouping
6 (WAG®), where possible. These values are summarized in Table 1. The choice of these
values is discussed next.

The ranges of hydraulic conductivity (K) of the different units were based on observed
values rounded to an order of magnitude difference (Moore and Toran 1992; Wilson et al.
1992).



Parameter minimum maximum
conductivity Limestone (m/h) 3.6e-6 3.60e-3
conductivity C horizon (m/h) 0.00036 0.036
conductivity clay lenses (m/h) 3.6e-6 3.60e-3
conductivity B horizon (m/h) 0.036 0.360
Kd, Limestone, (ml/g) 0 5.0
Kd, C horizon, (ml/g) 0 5.0
Kd, clay lenses, (ml/g) 0 5.0
Kd, B horizon, (ml/g) 0 5.0
dispersivity, Limestone (m) 10.0 100.0
dispersivity, C horizon (m) - 10.0 100.0
dispersivity, clay lenses (m) 10.0 100.0
dispersivity, B horizon (m) 10.0 100.0
source strength (pCi/l) 2.e4 2.e5

Table 1: Assumed ranges of transport parameters.
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The dispersivity cannot be easily measured in the field, and there are no well-calibrated
model plumes on which to base a site-specific value. Therefore, we used an order of
magnitude range (10-100 meters) that is typical for modeling at this scale (Anderson 1984
and Gelhar et al. 1992). Model dimensions were 250 meters in length with a variable grid
spacing that never exceeded 10 m. Each hydrogeologic unit had the same range in

dispersivity, with the transverse dispersivity (0y) fixed at one-tenth the selected value of
the longitqdinal dispersivity (0y).

The upper bound for Kd is set at 5.0 and is based on field observations of plumes located
near WAG 6 (Jardine 1995). We arbitrarily used a lower bound of Kd = 0 to represent a
conservative (fast) travel time with a retardation factor of 1.

One estimate for the present source strength is approximately 2 x 104 pCi/l based on
estimates from the WAG6 environmental monitoring plan (SAIC 1993). This is assumed
to represent the lowest possible value for the original source strength. It is arbitrarily
assumed that the maximum possible value is 10 times greater than the minimum one.

Fixed parameters included porosity (0.39 for limestone, 0.41 for C horizon, 0.48 for clay
lenses, and 0.45 for B horizon) and half-life of %0Sr (28.5 y).

4.2 Results

A total of 100 realizations of site conditions were generated. However, two of the
realizations were rejected because breakthrough of contamination had not occurred at the
compliance point when present day conditions were modeled. Consequently, only 98 of
the 100 realizations were used in the analysis

4.2.1 Prior Analysis

Results from the prior analysis indicated that plume containment was the best alternative,
with cost of $5 million. However, the expected costs of the monitor-only alternative and of
source isolation were both not much higher at values of $5.5 and $6.3 million,
respectively. The probability of failure for monitoring-only was 0.57 while the probability
of failure for source isolation was slightly smaller at 0.55. These values are summarized in
Table 2.

This small reduction in probability of failure from 0.57 to 0.55 indicates that source
isolation was only slightly more effective at reducing the level of 0Sr activity than natural
remediation with monitoring alone. This slight reduction illustrates the importance of the
secondary source, which continues to leach after the primary source in the trench is cut off.

4.2.2 Maximum Size of an Exploration Budget

The expected regret of the 98 realizations was calculated to be $2.2 million using equation
(6). Therefore, the maximum size of an exploration budget is approximately $2.2 million.
Given this magnitude of exploration budget, it is highly likely that additional data collection
is cost-effective because many sampling programs will cost much less than $2.2 million.
The next question is to determine which are the most important of the 13 uncertain
parameters to sample in order to reduce uncertainty.




Remediation Average Total Cost | Probability

Alternative ($ million) of Failure
seepage containment 5.0 0.0
source isolation 6.3 0.55
monitor-only 5.5 0.57

Table 2: Result of prior analysis for base case.
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4.2.3 Ranking of the Most Important Parameters to Sample

Recall that the ranking was done by the RSA algorithm. The RSA analysis indicated that
the most sensitive parameter is K of the C horizon. It had a Kolmogorov-Smirnov statistic
of 0.475 and the probability of its being a random event, or level of significance, is 3.6 x

10-5 (Table 3). The next two most important parameters to sample are the o of C horizon
and the source strength, which had Kolmogorov-Smirnov statistics of 0.399 and 0.38, and
levels of significance of 8.9 x 104 and 1.8 x 10-3, respectively. One can also see that
uncertainty in the transport parameters for the B horizon and the clay lenses in general have
little effect on choosing the best remediation alternative, as would be expected because
lateral flow occurs primarily in the C horizon. For example the Kolmogorov-Smirnov
statistic for Kq4 of clay lenses is 0.1 and its level of significance of 0.97. This means that
there is a 97% chance that there is no significant difference between the realizations K for
the clay lenses in classes 1 and 2. Consequently, it is not worth gathering additional
information about these less important parameters. The cumulative probability distributions
for realizations with a regret = $0 and > $0 for K for the C horizon (a sensitive parameter)
and K of the clay lenses (a non-sensitive parameter) are shown in Figures 4 and 5.

The importance of source strength is clear, but muted somewhat because of the
development of the secondary source. Note that the results from the monitoring only and
the source isolation realizations are nearly identical. This similarity also indicates the
importance of the secondary source. The dominance of dispersivity over retardation is a
function of the maturity of the plumes. Most of the plumes have reached their peak
concentration and already crossed the compliance point. In the tailing portion of the plume,
dispersivity is more important than retardation in determining the concentration.

Note that the levels of significance are at least an order of magnitude less for oy of C
horizon and the source strength, than that for K of the C horizon, showing that K of the C
horizon is clearly dominating the uncertainty. Consequently, any sampling program should

likely focus solely on K of the C horizon. This is especially true since both the oy of C
horizon and the source strength will be difficult parameters to measure.

4.2.4 Estimating Cost-Effectiveness of Proposed Sampling Program

A field sampling program for K of the C horizon is highly likely to be cost-effective. First,
the likely cost of the program will be much less than the estimated $2.2 million maximum
size of the exploration budget. Second, a well designed field program should be reliable in
greatly reducing uncertainty in K of the C horizon from its present 2 orders or magnitude
spread. Consequently, from equation (10), the worth is likely greater than the sample cost.

5.0 SENSITIVITY ANALYSIS

In this section, we study the sensitivity of the base case analysis to the compliance limit and
the cost of failure. We will first examine the sensitivity to the choice of the best
remediation design in the prior analysis, then the maximum size of an exploration budget
and finally the ranking of parameters. This exercise is valuable at showing how decisions
may change under different assumptions.

The choice of best remediation design determined in the prior analysis is sensitive to both
the cost of failure and the compliance limit. The expected total cost for both the monitor-

only and source isolation alternatives both decrease with increasing compliance limit for a
cost of failure = $15 million (Fig. 6). At lower (more strict) compliance limits, the best




Parameter d; Prob(d;<D)
K of C horizon 0.475 3.6E-05
oy of C horizon 0.399 0.00089

Source Strength | 0.38 0.0018
K of limestone 0.317 0.015
K4 of Chorizon | 0.295 0.03

K of B horizon 0.244 0.11
K4 of limestone 0.234 0.14

oy of clay lenses 0.205| 0.26
K of clay lenses | 0.194 0.32

oy of limestone 0.164 0.53
K4 of B horizon | 0.162 0.54

oy, of B horizon 0.141 0.72
K4 of clay lenses | 0.1 0.97

Table 3: Ranking for parameters to be sampled from RSA analysis for base case. The
Kolmogorov-Smirnov statistic = d; and the level of significance = Prob(d;<D).
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remediation alternative is to be conservative and contain the plume at a cost of $5 million.
However, at higher compliance limits (less strict), the best remediation alternative is to
monitor-only, and accept the risk of failure. A similar behavior is shown for a cost of
failure of $10 million (Fig. 7). Note that for both costs of failure of $10 million and $15
million that the expected total cost of monitor-only is always less than that for source
isolation. Note also, for the base case compliance limit of 1000 pCi/l, that changing the
cost of failure from $15 million to $10 million changes the best design from containment to
monitor-only.

The estimated maximum size of an exploration budget is also sensitive to both the cost of
failure and the compliance limit (Fig. 8). For a cost of failure of $15 million, as the
compliance limit increases from 10 pCi/l, the maximum size of the exploration budget
increases and reaches a maximum = $2.2 million at a compliance limit of approximately
1,000 pCi/l. It then decreases and reaches $0 at a compliance limit of approximately
50,000 pCi/l. A similar phenomenon also occurs when the cost of failure is $10 million,
except that the maximum size of the exploration budget is only approximately $1 million.

This change in size of exploration budget reflects the change in the degree of uncertainty in
selecting the best design as the compliance level changes. At low, or more strict,
compliance levels (< 10 pCi/l) the seepage containment is clearly the best. Its $5 million
cost is much less than the next best alternative of source isolation which costs over $9
million (Fig. 6). This large difference in costs shows that there is little uncertainty in which
alternative is the best design. In fact the maximum size of an exploration budget is $0,
indicating that no data collection is cost-effective. As the compliance limit increases to near
1,000 pCu/l, the estimated total costs for the three alternatives are all relatively close
together (Fig. 6). At this point there is great uncertainty as to which is the best design
alternative. Consequently, the estimated maximum size of an exploration budget reaches a
peak. At higher, less strict, compliance limits (= 50,000 pCi/l) the degree of uncertainty
again decreases as monitor-only clearly becomes the best alternative (Fig. 6). The
maximum size of an exploration budget then decreases to $0 again.

The sensitivity of the parameter ranking was also studied. The parameter ranking was
calculated for three different compliance limits of 500, 1000 and 5000 pCi/l for a cost
failure = $15 million (Table 4). Note that it is worth collecting data at each of these three
limits. The ranking of the three most important parameters (K of C horizon, ¢y of the C
horizon, and source strength) does not change with changing compliance limit. However,
the ranking of the less important parameters is sensitive to the compliance limit. For
example, oy, of the limestone is the 4th most important parameter at a compliance limit of

5,000 pCi/l, but it is only the 10t most important parameter at a compliance limit of 1,000
pCi/l.

The ranking of the three most important parameters was insensitive to changing the cost of
failure from $15 million to $10 million (Table 5). As in the above case, only the ranking of
the less important parameters was sensitive to changes in the cost of failure.

6.0 STRENGTHS AND LIMITATIONS

There are a number of strengths and limitations associated with the framework. The
strengths will be discussed first. The first strength is that the framework is conceptually
simple to understand and relatively easy to implement on the computer. For example, two
of the needed computer routines for carrying out the analysis are readily available. Latin
Hypercube sampling routines are commercially available. A program for carrying out the
RSA analysis is available as part of the Numerical Recipes programs (Press et al. 1987).
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Parameter Compliance Level

@Cih
500 1000 5000

d; | Prob(d;<D) dj | Prob(d;<D) d; | Prob(di<D)
Kof Chorizon [0.498 | 65x 105 {0475 | 3.6x 105 [0.706 | 83 x 108
oy of C horizon 0.417 | 0.0015 0.399 | 0.00089 |0.458 | 0.0016
Source Strength | 0.33 0.021 0.38 0.0018 0.385 | 0.013
K of limestone 0.317 {0.031 0.317 | 0.015 0.279 [0.14
Kgq of C horizon |0.247 | 0.16 0.295 | 0.03 0.267 | 0.18
K of B horizon |0.257 | 0.13 0.244 | 0.11 0.121 | 0.96
Kq of limestone | 0.125 | 0.9 0.205 | 0.26 0.269 | 0.17
o of clay lenses | 0-202 | 0.36 0.234 | 0.14 02 |05
K of clay lenses | 0.145 | 0.77 0.194 | 0.32 0.187 | 0.59
oy of limestone 0.162 | 0.65 0.162 | 0.54 0.324 | 0.055
Kgof B horizon |0.158 | 0.68 0.164 | 0.53 0.12 0.97
oy of B horizon 0.248 | 0.15 0.141 | 0.72 0.112 | 0.98
K4 of clay lenses | 0.138 | 0.82 0.1 0.97 0.118 | 0.97

Table 4: Ranking of parameters for different compliance levels. Cost of failure = $15
million. The Kolmogorov-Smirnov statistic = d; and the level of significance =
Prob(di<D).




Parameter Cost of Failure

$10 million $15 million
d; Prob(d;<D) d; Prob(d;<D)
Kof Chorizon |0.53 2.8E-06 0.475 3.6E-05
oy of C horizon 0.381 |0.0019 0.399 0.00089

Source Strength | 0.345 | 0.0066 0.38 0.0018

K of limestone 0.28 0.047 0.317 0.015
K4 of C horizon |0.273 |0.097 0.295 0.03
K of B horizon |0.304 |0.024 0.244 0.11
K4 of limestone | 0.214 | 0.22 0.234 0.14
oy, of clay lenses 0.19 10.35 0.205 0.26
K of clay lenses | 0.208 |0.25 0.194 0.32
o of limestone 0.149 |0.66 0.164 0.53
K4 of B horizon |0.167 |0.52 0.162 0.54
oy of B horizon 0.143 | 0.71 0.141 0.72
K4 of clay lenses | 0.125 | 0.85 0.1 0.97

Table 5: Ranking of parameters for cost of failure = $10 million and $15 million.
Compliance level = 1000 pCi/l (base case). The Kolmogorov-Smirnov statistic =
dj and the level of significance = Prob(d;<D).
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Second, it is adaptable to a wide variety of problems and a relatively large number of
uncertain parameters. The framework can also be adapted to handle uncertainty in other
parameters besides contaminant transport parameters. For example, uncertainty in
economic parameters, such as the cost of failure, can easily be incorporated into the
analysis. This incorporation can be particularly valuable in situations where uncertainty in
economic parameters may be more important than uncertainty in hydrogeological
parameters. Such a situation was found by Maddock (1973) in his study of the
management of a farm.

Finally, the framework is relatively robust. For example the application of the RSA
approach is essentially independent of the complexity of the modeled situation because the
classification scheme is based on a binary system (Beck 1987). For the same reason, the
number of simulations required to achieve a given level of confidence in d; is independent
of the number of uncertain parameters. The value of d; is also sensitive not only to the
difference in the central tendency of the two distributions, but also to any difference in the
distribution functions (Spear and Hornberger 1980).

The most significant limitation is that the modeled situation is a simplified version of
reality. For example, the RSA approach is limited to uncertain parameters that are
independent random variables or correlated to just one other random variable (Beck 1987).
Hence, situations with many correlated random variables may not be handled adequately.
Another limitation is that the framework does not carry out a complete data worth analysis.
The framework gives ball park estimates as to whether additional information may be cost-
effective and indicates what are the most important parameters to sample. It does not
estimate how much money should actually be spent gathering information on each
individual parameter.

Another limitation of the adaptation here is that conditioning of realizations of present day
contamination was only based on whether the modeled activity levels were greater or less
than compliance. In reality, measured activity levels would be useful in conditioning likely
realizations of reality.

Given these strengths and limitations, the framework is most applicable to making "big
picture" decisions such as the best remedial alternative, the cost-effectiveness of additional
data collection, and the choice of parameters to sample. One area of potential application is
in the preliminary stages of remediation design.

7.0 SUMMARY AND CONCLUSIONS

We present an economic decision framework for improving remediation design at
groundwater contamination sites where there is uncertainty in many flow and transport
parameters. The framework is specifically used to address broad decisions regarding
remediation design and data worth.

The framework is applied to a hypothetical example, but the physical conditions are based
on a field site located at ORNL. In this example, the cost-effectiveness of three alternatives
for remediation of 90Sr contamination are compared. The three alternatives include: 1)
monitor only, 2) source isolation, and 3) plume containment. There is uncertainty in which
is the best alternative because of uncertainty in 13 flow and transport parameters.

The prior analysis indicates that plume containment at a cost of $5 million is the most cost-
effective remediation alternative. However, there is significant uncertainty in this choice




15

and a data-worth analysis indicates that up to $2.2 million could be spent on exploration to
reduce uncertainty in site conditions.

The ranking analysis indicates that K of the C horizon was by far the most important
parameter to sample. Dispersivity of the C horizon and source strength were also
important. However, since they are difficult to measure, exploration effort should likely
focus solely on obtaining a better estimate of K of the C horizon.

A sensitivity analysis indicated that the choice of best remediation alternative, based on
existing information, was dependent on the compliance limit and the assumed cost of
failure. However, it was more sensitive to the compliance level. At compliance limits
greater than the base case level of 1,000 pCv/1, monitoring only was the best, while at
compliance limits much less than 1,000 pCi/l, containment was the best.

Data worth was a maximum at the base case compliance limit because the estimated costs of
the three alternatives were relatively close together. At higher and lower compliance limits,
there is a greater spread in the remediation costs of the different alternatives; therefore,
uncertainty in which is the best alternative is reduced and the amount of money that should
be spent on exploration declines. The ranking of the most important parameters was
insensitive to changes in the compliance limit and cost of failure. However, the ranking of
the less important parameters was.

The advantage of the methodology is that it is easy to apply and relatively robust. The
disadvantage is that site conditions are simplified. However, the methodology is adaptable
to more complex problems.
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