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Abstract

A model is proposed for the formation and evolution of three-dimensional
sedimentary structures such as longshore sand ridges on the continental shelf
in water deeper than that of the shoaling region. Owing to the striking
similarity between the bar spacing and the length scales in which interactions
among the most energetic modes of shallow water waves take place, we argue
that these bars are formed slowly by flows in the turbulent boundary layer
generated by weakly nonlinear, ‘dispersive waves. Hence the model is based
on the interaction between surficial, weakly nonlinear shallow water waves,
having weak spanwise spatial dependence, and the bottom topography.

While such underwater structures are not the result of a single formative
agent, it is argued that the mechanism proposed in this study does contribute
significantly to their generation and evolution. Comparisons of this model
with oceanographic data must wait for sufficient data to become available.
In conjunction with developing the sand ridge model, this study proposes

new mathematical equations of interest in their own right.
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1 Introduction

The dynamics of sand ridges are not well understood. Sand ridges are underwa-
ter barlike features of the continental shelf, composed of loose granular sediment.
Hundreds of meters long and up to a few meters high, sand ridges are usually

found in groups, arranged in more or less parallel rows separated from each other
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by hundreds of meters. They may be loosely classified as either tidal ridges or long-
shore sand ridges. Tidal ridges are oriented parallel to the prevailing direction of
the local ocean currents, whereas longshore sand ridges are oriented normal to the
direction in which the overlying water waves propagate. In this study we propose
a possible mechanism for the formation and evolution of longshore sand ridges.

It deserves emphasis that the often complex seabed structures appearing off
many continental coasts are likely to owe their existence to a multitude of causes.
We introduce here a very simple, wave-generated mechanism that does provide a
dynamical model of wave-bottom interaction leading to the formation of barlike
structures in suitable oceanographic environments. It is not suggested that the
intentionally crude model can account for everything we observe. The model is
constructed in such a way, however, that it can be implemented using data that is
sometimes available from field studies, and without introducing adjustable param-
eters.

The plan of this paper is as follows. In this introduction, a précis is provided
of the morphology of oceanic sedimentary structures; observational and laboratory
research in this area is briefly reviewed, and various sedimentation and sandbar
models are outlined. The equations describing the evolution of the water waves are
covered in Section 2. Section 3 deals with the wave-driven boundary layer and with
a consequent mass transport equation. To give a qualitative idea of the behavior
of solutions to the model, we present in Section 4 several numerical simulations.
Section 5 reviews the preceding sections and lists open questions worthy of future

pursuit.




1.1 Morphology of Oceanic Sedimentary Structures

Until recently, it was thought that sand ripples, like those found in the beach
zone, and their larger cousins the sandbars and sand ridges were morphologically
similar. We now recognize a variety of different sedimentary structures, defining
the categories by shape or generating mechanism. Examples are sand ripples,
ridge-runnel systems, tidal ridges, and longshore sand ridges.

In the near-beach zone, including the breaker zone, occur small sand ripples
on the order of a few centimeters high, which come in a multitude of shapes and
forms. Larger structures, such as crescentic bars, occur as well. In this region the
fluid flow is quite complex, since there are both incident and reflected waves, tidal
flow effects, and turbulence and entrainment of air from wave breaking.

The ridge-runnel system, so common in the near-beach zones in the American
Northeast and in the Great Lakes [1], is composed of a large bump 3 to 15 meters
away from the beach, about 0.3 meters high and up to perhaps 7 to 10 meters in
length, which is preceded by a runnel. The runnel may or may not be scoured with
small ripples. The system is thought to be formed by storms eroding the beach and
the dune fields and/or by tidal currents [1]. Davis et al. 1] provide observational
evidence for their claim that storms seem to play a minor role in the evolution of
these structures once they have formed.

Tidal ridges, which were noticed by Off [2], are rhythmic features oriented
parallel to the direction of tidal currents. They are 8 to 30 meters high, 7 to 60
kilometers long, and spaced 1 to 10 kilometers apart. Allen [3] found that their

height is roughly proportional to the square root of their spacing and that they are
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composed of sand, silt, and mud. He reported that they occur where tidal currents
reach at least 2 to 7 kin/h and where there is an ample supply of sediment. Tidal
ridges are also prominent in the neighborhood of river deltas. Tidal ridges may
have a fairly flat dome, suggesting to some researchers that erosion effects play a
very minor role.

Sandbars are distributed in complicated patterns on the continental shelf, and
it is sometimes difficult to discern which is a tidal ridge and which is a longshore
sand ridge, the object of attention in this study. For example, Figure 1 taken from
a paper by Swift [4] shows the relative orientation of different types of ridges. Note
that some bars fan out around river deltas, while some are oriented parallel to or
almost normal to the coast.

Longshore sand ridges are common features of the continental shelf in water
deeper than the surf zone, from the near-shore region to the farthest reaches of the
shelf. The better-known ridge fields are those found in the shallowest end of this
range, primarily because they are readily seen, as illustrated in Figure 2, which
shows the bar system off central Harrison County, Mississippi. Other near-shore
systems are found along the coasts of the Carolinas, Florida, the northern coast of
Alaska, the Black Sea, the Baltic Sea, and even large lakes such as Lake Michigan.
Lougshore sand ridges can also be found in the farthest reaches of the shelf hugging
every continent around the world. Observations seem to indicate that a mean slope
in the neighborhood of 0.02 to 0.05 favors the formation of longshore sand ridges
[5]. Such ridges are composed mostly of fine sand and silt, sometimes of mud.
The mean sediment particle size ranges between 0.1 and 0.5 millimeters. Groups

of up to 12 ridges have been found that are more or less parallel to each other.
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Figure 1: Submerged ridge field from Long Island to Florida, from Swift [4]

Some ridge fields are observed to change position over time. Their migration rates
vary from place to place; for instance, the ridges on Sable Island Bank have been
estimated to move at rates ranging from 0.5 meters per year, in water 60 meters
deep, to 5 meters per year, in 30-meter depths [6]. Ridge fields are routinely found
in regions where the water depth is small compared with the wavelength of an

overlying internal wave environment with frequencies in the infragravity range [7].

It is clear that the formation and maintenance of these sedimentary structures
are connected with the ambient hydrodynamics. One possibility is that ridges are

generated by major events such as storms, while another prospect is that they




Figure 2: Sand ridges in shallow water, Harrison County, Mississippi

come about as a result of systematic aspects of the surrounding fluid flows. Lau
and Travis [5] found that sandbars beyond the breaker zone do not disappear but
simply change location after a severe storm. Short, in his field observations in
Northern Alaska (7], found that severe storms seem to rework the baré, but that
some sandbars photographed in 1949 and 1955 were still identifiable after approx-
imately 30 years. Preliminary data from the so-called Super Duck [8] experiments
show this bar “reworking™ as a consequence of major storms. Other evidence points
in the same direction and inclines one to the view that systematic aspects of the
hydrodynamic environment play a decisive role in ridge generation. A related ques-
tion is whether wave breaking is an essential ingredient in the generative processes
leading to sand ridges. While categorical evidence does not present itself, it is
true that sand ripples form in a laboratory flume under the action of waves and

that sand ridges appear in regions where there is no apparent breaking. Both the
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above points will figure in the mathematical conceptualization of the situation to
be presented in this paper.

Several significant differences exist in the near and far ends of the continental
shelf insofar as the fluid environment is concerned. First, in the near-shore zone,
strong incident and reflected components to the wave field may be identified. Sec-
ond, the effect of wind stresses on the boundary layer flows is quite significant in
the nearshore. Third, while significant asymmetry exists in the velocity field in
both areas, quite pronounced asymmetry can occur in the acceleration field in the
nearshore case. Bijker et al. [9] made laboratory measurements of acceleration
and velocity fields for water waves with fairly high Stokes numbers, in the range
of 12-57. They found the net transport to be in the direction of the wave, partic-
ularly if the wave was very nonlinear. Smaller particles seemed to be transported
mostly by the Stokes flow, whereas larger particles responded in the main to the
“acceleration” field. Hallermeier [10] analyzed a large experimental data set and
found an empirical rule for the prediction of ripple characteristics based on the ac-
celeration field, which suggests that this field may be an important sand-transport
mechanism in the near-beach zone. Elgar et al. [11] made measurements in the
shoaling region, in water depths in the range of 1-6 meters, over a topography
with mean slope of 3%, and confirmed in the field the existence of the velocity
and acceleration field asymmetry. They found that the acceleration asymmetry
becomes increasingly significant with decreasing water depth. These investigations
suggest that the acceleration field becomes ever more important as the distance
to the beach decreases; our model would not apply in this area, since the adopted

transport equation does not include acceleration effects.




1.2 Sediment-Transport Models

As mentioned, much of the work on sedimentation has been aimed at understanding
how the sediment moves, rather than how it generates patterns. Most researchers
working on sediment transport assume an outer fluid flow at the edge of a boundary
layer and attempt to model sediment motion on the bed and in the boundary layer.
Sleath [12] presents a good review of the subject, and we therefore content ourselves
with a cursory summary of the various sedimentation models.

A model developed by Bagnold {13,14] assumed that wave-induced oscillatory
water motion causes sediment to move back and forth with a net expenditure of
energy. Although no net transport results in such an oscillatory flow, the energy
dissipation acts to keep the sediment in suspension. Once in suspension, any steady
current superimposed on this oscillatory flow will then cause a net transport of
the suspended sediment in the direction of the instantaneous total bottom stress.
Originally a bed-load model, Bagnold’s model has also been applied to suspended-
load transport for low Froude number flows. A threshold of motion parameter
called the Shield’s parameter is incorporated into the model to reflect the fact that
;(L critical amount of energy must be imparted on the bed before transport can
occur. Smith [15] and Fredsce [16] applied this model to the ocean environment.
They assumed a constant eddy viscosity and obtained criteria for the onset of
instability and ripple formation. Richards [17] used instead a turbulent scale that
increases linearly in height from the bed, thus obtaining two modes of instability

that yield small- and large-scale ripples, respectively. Bagnold’s model has also




been used with some success in the near-shore zone, in a version that includes the
effect of wind on sediment transport rate [18]. However, Bailard and Inman [14]
found that the model did not perform adequately when the waves are not normally
incident to the beach.

Another sedimentation model by Raudkivi [19] and by Williams and Kemp [20]
attributes the formation of ripples to a chance piling of sediment. This deforma-
tion then causes the flow to separate, with subsequent building up of the ripple
downstream. They attribute the initial small deformation to the random action of
highly turbulent velocities, or “bursts,” close to the bed.

Last, we mention the model in the Longuett-Higgins paper [21]. He showed
how a second-order drift velocity, which was first noted by Stokes {22], develops in
the boundary layer from an outer linear oscillatory flow or in the bulk of the fluid
through the action of nonlinear waves. This drift velocity is capable of transporting
sediment, particularly suspended sediment. A number of people have studied this
mechanism; of note are Johns [23], who developed explicit expressions appropriate
for the ocean environment and studied the character of the drift velocity and
its stability, and Blondeaux [24] and Vittori and Blondeaux {25}, who looked at
the stability and formation for Froude numbers at which flow separation does
not occur. They determined adequate height, spacing, and ounset thresholds, by
comparison with laboratory experiments. The second of these papers introduced
more structure and made a case for the inclusion of nonlinear effects in the flow

immediately outside of the boundary layer.
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1.3 Sedimentary Bar Models

Among the researchers who have coupled a sedimentation transport model to an
oceanic wave field to look at the process of bar formation in the oceanic environ-
ment are Holman and Bowen [26]. They use the fully three-dimensional, linearized
water wave equations to compute the drift velocity, which in turn they couple to
Bagnold’s transport model for suspended load. In particular, they examine the
edge-wave case in an effort to compute the formation of crescentic bars in the
shoaling region. Bowen [27] has also examined the performance of this model in
predicting the spacing of longshore ridges and reports good qualitative agreement
with field observations.

Laboratory and field observations indicate that standing wave patterns dis-
play a Bragg resonance process with an underlying wavy bottom [28] [29]. In a
steady-state situation, the ripples develop a spacing that is roughly half the local
average length of the water waves. This first-order theory [28,30-32] is applicable
in principle to the near-shore environment, since it relies on the scouring effect of
a standing wave pattern. [t has been widely studied since it is easily implemented
in the laboratory; at one or another time, various researchers have implicated this
mechanism as the general reason we observe stable sandbars in the near-shore area.

The ridge and runnel system have been modeled with a variant of Bagnold's
transport formula by Dean [18] and deVriend [33]. The extent of the model’s
success is somewhat difficult to discern, however. Since the undertow and the local
bed slope are significant and since the effect of the wind in generating stresses on

the surface of the ocean must be taken into account, modeling the formation of
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runnels is very difficult. Russell and Osorio [34] and Bijker et al. [35] found that
on a sloping beach, the mass transport velocity near the bed was onshore before
breaking and offshore after. This effect, which seems to be independent of wave
reflection from the beach, may explain why these bar systems are usually found
close to the plunge line of breakers.

Huthnance [36] developed a theory for the formation of tidal ridges based on
an instability that is triggered by a small protuberance on the shelf. The ensuing
boundary layer develops a bar that is fed by bedload. The resulting steady-state bar
is finite in extent and parallel to the assumed, always-present currents. Equilibrium
is reached when the supply of sand is exhausted. Huthnance notds that the tops
of these ridges are flat rather than rounded, which he claimed dismisses erosion as
being the source for the generation of these structures. Huthnance’s study does not
address the periodic nature of these bars, nor does it suggest a relation between
their height and spacing.

Among the first to suggest that infragravity standing waves may be responsible
for longshore sand ridge formation was Suhaida {37]. He did so at a time when
few people saw anything fundamentally different about near-shore sandbars where
a strong standing-wave field may be present, and bars or ridges far from the beach
where little or no standing wave pattern is to be found. Short {7], in field measure-
ments of sand ridges in Alaska, found a loose correlation between the ridge spacing
and the average peak infragravity component wavelenth.

Lau and Travis [5] derived a drift velocity from a Stokes water-wave field for a
bed with constant slope. Their model yields the spacing and the number of ridges

from the periodicity of the drift velocity. They made use of the SRIT (slightly res-
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onant interacting triads) approximation developed by Lau and Barcilon [38] and
Mei and Umliiata [30] for weakly nonlinear shallow-water waves to solve approxi-

mately for the wave motion.

Boczar-Karakiewicz conducted a number of interesting field and laboratory
studies [28] [39]. The an analysis of her findings [40], she combined the hydro-
dynamic approximation of Lau and Barcilon with the boundary-layer theory of
Longuett-Higgins [21]. Exploiting the large discrepancy between the time scales
relevant to wave propagation and sediment dynamics, these investigators formu-
lated the first evolutionary models for sand ridge formation. The original model is
appropriate in principle for the shallower end of the continental shelf since it was
derived for an isotropic water environment. Later, the model was extended to take
account of internal waves and this version was tested against actual field data [41].
Encouraged by the outcome of the comparisons with field data, we have extended
the model’s applicability to three dimensions.

Referring to Figure 3, we envision infragravity waves coming into the purview
of the model at the line £ = 0, which is determined in relatively deep water as
the location where the waves begin to be significantly influenced by the bottom
topography. The z direction increases as the wave travels shoreward. The span-
wise direction, which is the y coordinate in our reference frame is approximately
parallel to the line of constant phase of the incoming waves. The waves propa-
gate shoreward, possibly at an angle with respect to the prevailing direction of
maximum gradient of the bottom topography. In the deeper reaches of the shelf.

the drift velocity is produced by waves supported by the picnocline, while in the
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shallower end of the ocean where the water column is more isotropic, the drift
velocity is a boundary layer manifestation of the waves on the ocean surface. The
extent of the model is limited in the shoreward direction by the disintegration of
the interface supporting the internal waves, by the approach to the breaking zone
for surface waves, by any singularity in the depth, or by significant energy transfer
from low to high frequencies that are ignored by the hydrodynamic modeling. The
spanwise direction is limited by the same sort of issues. Taking advantage of the
disparate time scales for bottom and fluid evolution, we assume that the gently
sloping bottom is fixed in the time span in which the water wave begins its trip
towards the shore, progresses, and eventually dissipates in the shallow end of the
model’s purview. Taking advantage of this assumption, we can then decouple the
problem: starting with some initial bottom configuration, we can obtain the hy-
drodynamics of the water surface, which evolves on a time scale ¢, say. This in turn
yields the drift velocity in the boundary layer; the resultant drift velocity is then
used in a transport equation to update the bottom topography, which is evolving
on a time scale T that is considerably longer than {.

A few comments are deserved about the general mechanism for longshore ripple
and sand ridge formation. If a standing-wave pattern exists in the surface waves.
whether it be a result of linear or nonlinear effects, the scouring effect of the waves
presumably generates ripples obeying a Bragg scattering mechanism (see [23]).
This is a first-order phenomenon whose effectiveness in influencing the shape of
the bottom topography relies on the existence of both a reflected and an incident
wave. Generally, the reflected component becomes weaker and weaker the further

it travels seaward. Yet, far from the shore there are abundant fields of large-scale
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Figure 3: Plan view of the problem

bars. In this deeper region it is suggested that the Bragg mechanism gives way to
the second-order, strictly nonlinear theory that is presented in this study. Thus, we
envision that both mechanisms operate along the continental shelf; but in the very
near-shore reaches, the first-order theory is prevalent, while in the deeper reaches.
the second-order theory prevails.

The second-order drift velocity is not exclusively the result of progressive waves
incident on the shore. Reflected waves may also contribute. For very mild slopes
and relatively large distances from the shore, however, the reflected component is

sometimes quite weak. This issue wil be discussed again later.
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2 Hydrodynamics of the Water-Wave Problem

A striking similarity exists between the typical bar spacing and the length scale
at which energetic interactions among the most significant modes of shallow-water
waves takes place. Hence, it is suggested that longshore sand ridges are formed
by flows in the boundary layer that are generated by these weakly ;mnlinear long
water waves. The goal in the present section is to develop a crude but useful model
for the important aspects of the overlying hydrodynamics on the surface and in
the body of the fluid. The interaction of the flow environment with the sediment
in a boundary layer at the bottom of the fluid column is treated in Section 3.

Figure 4 is an illustration of the hydrodynamic problem. The free surface
is given by z = n(x,t) and the bottom by z = —H(x,T), where the notation
x = (z,y) is used to denote the transverse coordinates. A thin boundary layer of
thickness é hugs the bottom topography. The spatial domain for the hydrodynamic
problem is Qr = R? x [-H(T)+8,7(t)] = R* x [-H(T),n(t)], since § < | H|. The
T is used to remind us that the scale of time evolution of the bottom is different
from that of the fluid environment; hence, it appears here as a parameter. The
fluid is subjected solely to gravitational forcing.

The following introduces the notation to be used throughont this study. The
velocity field is given by (u, w), where the first entry is the transverse velocity (u, v)
and w is the vertical velocity. Position is represented by the vector (x.z). The
standard three-component gradient operator is explicitly split into its transverse
and vertical coordinates, so that V3 = V + 29,. The same convention is followed

for the Laplacian operator A;. Incompressibility and irrotationality are assumed




16

2 "32
/

L 2= n(xf)

Figure 4: Side view, surface wave problem

to hold in the bulk of the fluid, and its viscosity is assumed negligible in Q7. The
bottom is taken to be impermeable which together with no-slip conditions for the

fluid/bottom interface leads to

¢, =—-VHV¢, at z=—H, (1)

where

(u,w) = Vso. (2)

;.

Because of the continuity equation, the velocity potential ¢ is harmonic in the flow

domain. which is to say

Az =10, in Q7. {3)

At the air-water interface, conservation of momentum requires the pressure to
be continuous. The assumed constant value of the pressure immediately above

the water is set to zero. Hence, the pressure at the interface when the surface
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1s quiescent is zero. Furthermore, a kinematic condition on the interface leads to

¢.=m +Ve¢-Vnat z=n1.

2.1 Hamiltonian Formulation of the Hydrodynamic Prob-

lem

In this subsection, a useful Hamiltonian formulation of the hydrodynamic problem
is proposed. This aspect relies heavily on ideas developed by Zakharov and Shabhat
[42], Miles {43), Bowman [44)], and especially Benjamin [review stability benjamin
| and Benjamin and Olver [benjamin olver].

To begin, we note that the motion of the entire fluid body can be determined
once the free surface motion is known. Specifically, if the function 7 that describes
the free surface, and the velocity potential at the free surface, ¢ = ¢(x,2z = 75,t),
are known, then €17 is determined by 1 and ¢ is determined by the condition ¢ = ¢
at the free surface, together with the boundary condition at the bottom, the fact
that ¢ is harmonic in Q7, and the asymptotic conditions |V3é| — 0 as |r] — oc.

Cousider the Hamiltonian £ = E(n, ®). The choice of label E reflects the fact
that the Hamiltonian for this problem is conserved and is numerically equal to the
sum of the potential energy V and the the kinetic energy K. As shown by Benjamin

and Olver [45], the evolution of the free surface is given by the Hamiltonian system

_ SF
T e
§F

= —— 4

®t 57]a ( )

where £ is the Hamiltonian.
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We specialize Equation (4) for the case of weakly nonlinear shallow-water waves.
Define the parameters a < 1 and 8 < 1, where « is characteristic of the size of the
nonlinearities and 3% characteristic of the degree of dispersiveness of the surface
waves. In terms of physically relevant parameters, & = a/ho and 8 = ho/A, where
a is the typical wave height, ho the characteristic of the fluid column size, and A
the typical length of the water waves. Further, it is assumed that O(a) ~ O(8%).
The Stokes number S; which is a measure of the balance between nonlinear to
dispersive effects, is defined as the ratio a/8%. For § < 1, nonlinear effects are
weak, and only a small portion of energy transfer occurs on moderate space-time
scales, so that O(1) nonlinear effects are possible only after very large scales. For
S ~ 1, inertial effects are of the same order as dispersive effects. In view of this.
we take n = O(a), ® = O(a), and the differentiations 9., d,,V = O(3). We defer
the description of the bottom topography to a later stage, but for now assume that
H =0(1), VH = O(«a),

An approximation to ¢, which satisfies the boundary value problem, is’

o(r.z,t)= @(r,t) — 12V(r,t) — V- (HVO(r,t))
O(a) O(as?) O(ai?)

which can be easily derived using Rayleigh’s trick [46]. The gradient of the above
expression

U(r, z,t) = u(r,t) = {zV[V-(Hu(r,t))] + =2*V(V-u(r,t))} (5)

[ SR

gives the velocity anywhere in the inviscid domain of the fluid.
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The potential energy is exactly
2, 1 2
v=[d rson® (6)
R2

The kinetic energy is calculated by using the approximation developed above for

the velocity potential, Equation (5):
2,¢1 2, H 2 H® oo
K= [ @r{5(H+n)(Ve)P + 5 (VH-VO) - —(V*0)?), (7)
R2

which is an expression of O(a®4?), and O(a?8%).

Thus, in terms of the velocity at the surface u = V® and the displacement, the

energy is
E=V+KQ+QK1+"', (8)
where
- 2l 2
Ko = /dr;z—Hu (9)
R2
, 1, H , H? . .
. 2 gt o 2 T
K. = /(17{_217u+2(VHu) —(V-u)’}, (10)
R'Z

and V is as before. Substituting £ in Equation (4), to lowest order, vields the

wave equation

m+ V-(Hu) =0 (11)

u,+gVny =0. (12)




To the next order,

ni -+ V-[(H + n)u] + V-[uV(H2)-VH + Ei—vuﬁv-u)] -0 (13)

u; + (u-Viu+g¢gVn =0, (14)

a version of a Boussinesq system [47]. The Boussinesq system (BSS) is a shallow-
water, long-wavelength, weakly nonlinear approximation to the Euler equation
which admits bidirectional waves as solutions. The version given by Equations (13)
and (14), however, has a couple of troublesome characteristics from the standpoint
of modelling a physical situation. Specifically, the system is linearly unstable and
rather poor at conveying accurately the full dispersion relation [48]. The instability
can be shown by the substitution of plane wave solutions into the linearized version
of Equation (14), and the degree to which the equation’s dispersion relation differs
appreciably from the full-water wave dispersion is most apparent for the higher
wavenumber. By making changes in the dispersive term (i.e., regularizing), it is
possible to overcome the instability problem and improve the agreement between
the full dispersion relation and the long wave limit.

The BSS is regularized by exploiting the specific form of the bottom topography.

Using Equation (12), and the fact that VH = O{«), we approximate
‘ I l - .
V- (uV(H?).VH + ;;V(H"’Vu)] = -—§V-[\7(H‘2m)l + O(a). (15)

Thus, the regularized system (RB) adopted in this study, as an approximate model

for the water waves, is




0o+ VI +m)u] = SVV(H)] = 0 (16)

u; + (u-V)u + gV = 0. (17)

Since the velocity is in terms of the surface values, rather than in terms of
averaged-depth velocity, say, the irrotational condition, with u and v being re-
spectively the shoreward and spanwise velocity components, remains in the simple

form

Uy = Vg, (18)

which is quite convenient in the development of three-dimensional problems.

Using the convention in what follows that new «— scale x old, wwe adopt the

scaling

t«-—@t u«—-%u n—n/a hf—% re—% (19)

where hg is a characteristic depth of the water column.
In addition, the spanwise dependence is scaled to reflect the fact that waves are
propagating primarily in the shoreward direction. To do so, we assume that there

is a constant ¢ < | such that
O(]3-K]) = ¢ x O(]§-K]), (20)

for which a consistent uniform expansion of the RB exists and that is physically
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relevant. If nonlinear, dispersive, and weak y variation effects are to balance, the
size of the constant must be of the order of the reciprocal of 3. Since this parameter
has considerable nuisance value, the parameter ¢ will be set equal to 1/3 for the

rest of this study. This implies that the spanwise variables must be scaled

y—aly g e o, (21)

which will alter the regularized system but will not affect the irrotational condition,

Equation (18).

2.2 Description of the Bottom Topography

Laboratory data [28] suggests that there are two time scales: a fast time scale ¢,
which measures the evolution of the fluid quantities, and a slow time scale T', which
is characteristic of the evolution of the bottom topography. In addition, the data
suggests that the typical height and slopes of the longshore sand ridges are such
that e = O(V™h) = O(«). Furthermore, the type of longshore sand ridge under
consideration is such that the measure of longshore spatial variation is larger than
the spatial variations of the fluid quantities. It is suggested that the sand ridge
shoreward variation be X = az. Hence, two scales of shoreward variation exist. so

that

Oz — 0z + adx. (22)

Thus the bottom in scaled variables is

WXy, T)=1+ef(X,y,T), (23)




where the function f = O(1).

2.3 Slightly Resonant Interacting Triads (SRIT)

By substituting an expansion of the form

n = fota' fr+alfot-

u = gotalgi+alg+--- (24)

into Equations (16), (17), and (18), and matching order by order, it is possible to
solve for the surface quantities to lowest orders in «. Our interest is limited to the
lowest-order theory. We refer the interested reader to [49] for the details of the
higher-order theory.

For the momentum balance, Equation (17), the first two orders in the formal

expansion are

a” . Uot + Nor = 0
vor + 70y =0, ‘
P (25)

a't wy 4 uotor + s+ n0x =0

Ve + UgVoz + Ty = 0.

Similarly, (18) yields,
0 : z = 03

(&4 Uoy Vo (_)6)




at the first two orders. Finally, we derive the relations

22
al: Not + Yoz — %T]Oz::ct =0,
7 (27)

! Me + Uiz — 3 Mzt = Fl(n()y Ua, Vo, G;anayv t)a

al:
from (16), where G(X,y,T) = éﬁ%@ and

[32
F'l = —vgy + ——77:%@3 — UgXx — UoToz — GuO:z: — NoUoz +

2162 (770.7.:Xt + Gnﬂ:crt)

5 . (28)

- Cross differentiation of the momentum and continuity equations, making use of

(26), and combining the results into a single equation, leads to

CYO : CT]Q =0
(29)
al : [:7]1 = 91(770, Ug, Vo, G; z, X: Y, t)7
where
; . 3. .
L = dtt - d:r:r - %dmtt- (30)

L is a linear operator that shows up at every order. The inhomogeneous term G,

is

G = (1+ /323“/3)7]0w + G(1 + 2/3251z/53)770za: +2(1 + ,Bzdtt/g)UOrX G
+(ug/2)z — (uono)z:-
The order of RB and the two-scale technique restrict the region of validity of

the present model. The lowest-order solutions, which are linear, are valid for dis-

tances that are less than O(1/ka), the scale over which triads of Fourier modes




exchange significant energy. Higher-order terms and processes neglected in the
expansion restrict the range of the present nonlinear solutions to distances less
than O(1/ka?). Thus, RB is not formally valid for very long evolution distances.
Boussinesq equations are strictly valid for S = O(1), but they are quite robust

{50]. In this study, the value of S is in the range of 10 to 30.

To continue, we assume that the shoreward velocity is

w(z, X,y,t) = T2,a;(X,y) + O(a)leih==wit) ¢ cc.

T24[6( X, y) + O(a)]e-h==wit) 4 c.c.,

(32)

where c.c. stands for complex conjugate of the expression immediately preceding
its appearance. The a’s are the complex incident wave amplitudes, and the &’s
are the complex reflected wave amplitudes. The reality of the physical variables

implies that a_; = a} and b_; = b. The spanise velocity at the surface must then
be
U(:II, ‘X,y,t) = ,’]?“;1 _f-[ajy(X y) + O( a)] i(kyz—W;t) +ec.c.

+ 252 5[5 (X,y) + O()]elt=5H7799 +ce.

(33)

in order to satisfy Equation (18). Since, to lowest order, ug;+7n0; = 0, an expression
for the surface amplitude is readily available: the replacement of the lowest-order

velocity into the momentum equation yields

= 3 e (X, y) + O ¢ e
j=1 ]
+Z-w—’[b (X,y) + O(a)]e=5==w:0 4 cc. (34)

177
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A solution of the form given by Equations (32), (33), and (34) is valid provided
that the following relation holds between the frequency and the wavenumber:
K

wio 5 _g 35
j 1+ﬁ21_§’_ (35)

which gives the dispersion relation for the j-th mode, the positive root k; corre-
sponding to the shoreward-directed wave, and the negative to the seaward wave.

The solution must also satisfy a compatibility condition. Since the linear oper-
ator £ in Equation (29) appears in every order, and terms of lower-order appear in
the inhomogeneous part, secular terms arise. It is an artifice of having truncated
the expansion and is typified by the possibility of blowup from resonance. This
resonance condition for j-th interacting waves is

kit---thkrtk = 0
(36)
wi+-rFtwytw = 0
where the wavenumbers and corresponding frequencies obey the dispersion relation.
In the scaling adopted in this study, the O(k;) = O(w;).

Since the dispersion relation for gravity water waves is such that w'(x) > 0 and
w"(K) < 0, perfect coincidence is not possible. At most we expect what we refer to
as “slight resonance.” Furthermore, we shall restrict our attention to the special
weakly resonant triad case in which k; = 2k, — 6, wy = 2w, where the detuning
parameter § < 0. The compatibility condition is

it

Xotamfsky .. . . » e
T [ ei”k”(gj + G7)dz = 0, where j = 1,2,3..., (37)

Xo




(V)
-1

starred quantities conjugated.

Application of the compatibility condition to the lowest-order terms in Equation

" (31) yields, after some algebra, the evolution equations for the modes in Equation

(32), and Equation (34):

1z + ief Dy Eray — iaFyay,, +iaD1S1e~%%ata; = 0

G2z + ie f Dy Byay — iaFyany, + iaDySeetdq? = ¢

(38)
biz — i€ f D1 Exby + iaFybyy — iaDy Syet0bh, = 0
boz — ief Dy Baby + iaFybay, — iaDySee= 0202 = 0,
having substituted back X = az. The constants are
D; = [2(1-p5)"
E; = ki(1-32p%72)
Fi = 1/2k; (39)

Sl = hﬁ{kl—kl +w1(%+%)}

Sy = 2k + 2w?)/w,.

Equation (38), along with appropriate boundary conditions, determines in an
approximate way the ocean surface. The incident and reflected waves are decoupled
owing to the assumptions and restrictions on the spatial variation of the bottom
topography. If the spatial scales of variation in the bottom topography in the
shoreward direction are of the same order as those of the surface waves, then
scattering plays an important role in the energetics of these surface waves; hence

the reflected component must be included even if the backwash is negligible. If, on




the other hand, the longshore sand ridges being considered were
bz, X,y,T)=1+¢ef(z,X,y,T), (40)
the resulting modal equations, to lowest order, would be

a1z — e f D Evyyay + e fD1EypyT by — taFyayy, + z'aDlSle""‘S’a{az = 0

taz — i& f Dy Byyay + ie f Dy Bypy 526297 — i Fyan,, + iaDySeeti®=a? = 0

biz + i€ f Dy Eyy, by — ief Dy Byt ay + i0eFybyyy — iaDy Sietidbib, = 0
bye + ic f Dy Eaby — ic f Dy Ere™ 207y ay + i@ Fybay, — iaDySye~02b2 = 0,
(41)
to O(6/X), with
7 = % /Owjkl (foo + 2ik; fo — K} f)dz
By = ]_2/;:_ /Oh/jkl(fm + 2tk fo — k?f)e‘zijklrdx
wro= T i - e (42)

The most striking differences between the way Equations (38) and (41) describe
the surface is that, in the latter case, the terms involving the bottom topography,
which attenuate and modulate the waves as they propagate. involve the bottom
topography, its slope, and its curvature; and the energy in the reflected wave does

not depend exclusively on the boundary conditions.




3 The Mass Transport Problem

The drift velocity is the second-order steady state flow that is created by the
passage of overlying water waves in the sediment-laden boundary layer that hugs
the bottom topography. The boundary layer is assumed to have a characteristic
thickness &y < ho. The sediment in the boundary layer is assumed. to move from
place to place at a rate equal to the drift velocity. To compute the drift velocity, we
must find the fluid velocity immediately outside of the sediment-laden boundary

layer. ;From Equation (5) in scaled variables, the shoreward velocity is explicitly

U,

]

z-U(r, —h,t)

= u(r,t) - 62{_h[(huu‘(r’t)) + a(hvzy(r,t))] + %h2(um(rv t) + avgy(r, 1))},
(43)

and the spanwise velocity

vb = }}U(l‘, —h» t)

= 0(r,t) = B {=hl(huay(r, 1)) + alhvy (5, 1)] + 1031y (1, 1) + vy (1, )}
(44)

in the neighborhood of the boundary layer. If we neglect the reflected component,

the bottom velocities to lowest order are

/- 2/ 2,
gy = uo+ r3 '-Lz—u*()xz
= ?:l (Jj(lj(X,y)ei(kJI_wlt) + c.c.
2 (k2 2 i
Voo = wvo+ L—-Zl"LUo: + 8 % Uozy

= —iY2, LCia(X,y) + 325 (R?),)eR= =90 ¢ cc,

i=1 1
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where C; = 1 — F2k?42

3.1 Hydrodynamics of the Boundary Layer

In the boundary layer the transverse momentum, vertical momentum, and the

continuity equations are, respectively,

u; +uVu+odu, = —-%Vp + vAu + vu,,
W + u-Vib + ow, = —%pz + g+ vAD + vib,, (46)
V-u + w, = 0,

where v is the assumed isotropic eddy viscosity. Across the boundary layer the
flow velocity changes from zero at the bottom boundary to some finite value char-
acteristic of the exterior inviscid fluid. The derivatives with respect to z of any
flow quantity are thus, in general, much greater than those with respect to z or y.
Hence, within the boundary layer, | Vu] < |u. |, | V*u| < |u.. |, etc. We conclude

that the transverse momentum in Equation (46) is well approximated by
_ 1 -
u; +u-Vu + ou, = —-Vp+vu... (47)
p

The velocity @ must also be small. The continuity statement in Equation (46)
suggests that the boundary layer and w are of equal order of smallness. There-
fore, none of the terms on the left-hand side of Equation (47) can be neglected.
On the other side of the equation, it is expected that vu.. be of comparable
size to the inertial terms. The magnitude of the inertial terms is represented

by the size of u-Vu; hence, the balance is such that O(u-Vu/vu,;) = | when the
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Reynolds number is sufficiently large, so it is mostly true in the whole boundary
layer. If \/gho is representative of the magnitude of the velocity u and X repre-
sents a distance in the transverse direction over which u changes appreciably, then

(Vgho)?/A = O(u-Vu). Since 8y is the boundary layer thickness, v\/gho/8} is a

measure of vu... Thus,
O(6},R/A*) = 1, where R = 3@. (48)

The dimensionless constant R is the Reynolds number. Equation (48) implies that
8yt ~ AR™1/% as R — oo, which suggests that the boundary layer concept improves
as R — oo and that 8 o« AY?y'/2, In this study A is large but of finite length.
We assume that the boundary layer does not change significantly as a function of
wave frequency. Thus, A can be replaced by kg in R, so that R = \/ghoho/v. We

arrive, then, at a working definition for the boundary layer thickness:

8ot = \/v/ho(gho)V/?, (49)

which is nondimensionalized by dividing by hy. In this scaling, it is implied that
the size of the Reynolds number and the boundary layer thickness are controlled
mostly by the viscous effects (i.e., the size of v).

To get an estimate of the size of w, we conclude from the continuity condition

in Equation (46) that

O(16./Vu) = Syho/ X = py/gho R™M?; (50)




thus

@ = O(B/gho R™1?). \ (51)

With Equation (51) in hand, we can infer from the vertical momentum balance

that

g+ l’; = O(6y). (52)

Hence p. = O(&4); that is, the pressure is approximately constant throughout the
layer.
For high Reynolds number flow, with §yn = z + h, where z = RY2z and

w = RY*w, the equations for the boundary layer are

Bu, + a[)’[uu, + avuy] + awu, = “"gp:: + Upn
Bu, + afluv, + avvy] + cwv, = —‘gpy + Upn =)
Pn = O(bu)

Bluz + avy) + wy, = 0,

having invoked the scaling that reflects weak y dependence of the flow as well. A
locally flat bed has been assumed. In contrast, suppose that the bed had some
finite curvature K, say. This would change the vertical momentum balance in
Equation (53) to

pn = KO(u?), (54)

but the pressure change across the layer is still of O(8y), so we are justified in the

assumption that the bed be locally flat.
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The following boundary data is used to solve Equation (33):

u=v=w=10 atn =20 (53]
and
u— Uy
(56)
v — V, n — oo.

The velocity (U, V3) immediately outside of the layer gives rise to the following

pressure gradients:

B, = BUw+ aB(Uslss + aVyUs,)
_..gpy = AV + af(UsViz + oV Vi ).

We thus have all the required information to solve for the velocities in the boundary

layer. Performing the usual expansion

U = Ug+au---

v o= To+ad -, (58)

we obtain as the lowest-order equations

,Biiot - '&On'n. = ,‘96[0“

,{37}()! - ‘5077,77. = /BVObt -
(29}

Pon = 0

/3720: + wo, = 0.
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A solution of Equation (59) of the form

2
= Z o Pz, y,n)eltr—wWit) 4 c.c., (60)

=
subject to the boundary conditions given by Equations(55) and (56), is found by

integrating Equation (59). The same procedure is used to obtain ©. The result is

U = Z?‘:1 C;a;(1 - e‘"Ai)ei(ka—wjt) +ece.
B = T k(B (R)ya3/2 ~ Cragy )L — el 4 e (6]

wo = B L5 kiCia;(1 —nA; — e'"AJ’)/AJ-e"(kJ""wJ‘) + c.c.,

where A; = (1 — 2)4/Bw;/2. The vertical velocity w is found by integrating the

continuity equation.

3.2 The Drift Velocity

In this section we follow closely Longuett-Higgins’s study on mass transport by

oscillatory flows [21]. Define the time average of the quantity A as

Ay = 2 [ (s = l/;“ A(s)ds. (62)

T 2n Je T

The drift velocity is the time average displacement rate of a fluid particle.
As Stokes noted [22], the drift velocity is second order in nature. That is, if @(r, z. ¢}

is the Eulerian velocity, and the motion is periodic,

i(r,z,t + 1) = alr, 2, £), (63)




:3 ls

and expressible as the asymptotic series
i=1do+a'ty + iy +---, (64)

then (fio) = 0 is a statement of this assumption; in other words, the lowest-order
steady-state current is zero. Let U(ro, zo,%0) denote the Lagrangian velocity, or
velocity of a fluid particle at t = ¢y with position (ro,zp). Then, the displacement

of the particle from its original position to some other position

t -~ ~
(r,2) = (ro, z0) + / Ul(ro, 20, £)di (63)
g
at time t. It follows that
t -~ ~
U(r, 2,1) = il(ro, 0) + | Ulro,z0,&)df, 4], (66)

which can be formally expanded in a Taylor series

U(rv Z,t) = ﬂ'(rO?:O’t) + ftto Ud{'v(ro.:o)a(rﬁv ZOvt)

+%{fllo Ud{}T'H(Po»:o)ﬁ'(rDe Zp., t)' fti, Udt +---.

Here H stands for the Hessian, and both the Hessian and gradients have subscripts
to remind us as to where they are to be evaluated. The steady-state Lagrangian
velocity is in fact akin to the drift velocity. An approximate expression for it, in

terms of the Eulerian velocity in the boundary layer, can be obtained by expanding

U = U + a'U, + 0(a?) (68)
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and substituting Equations (68) and (64) into Equation (67), order by order. After

time-averaging, the lowest-order velocities are

O(a®): (Up) = (ug) =0

(69)
O(al) : <U1> = <U1) + <ft uOdE'VU(ﬁ.

The drift velocity is then

U,V) = o'U; + 0(a?). (70)

Expressing the O(a) in component form, after weak y dependence scaling has

been adopted, the drift velocity is

U = (w) + ([  uodiues) + (f* wodtuon)

(71)
V = (v)+ (ft uodt~v0,) + (ft wodfvm)-

3.3 The Mass Transport Equation

Since the mean slopes in the regions of principal interest here are very low, down-
slope gravitational transport, which is important in the coastal environment, plays
a negligible role in the formation of sand ridges, we assume that sediment movement
in regions sufficiently removed from the shoaling region is accomplished primarily
by suspension. Hence, we adopt results from the Longuett-Higgins theory to char-
acterize the effect of the water waves on the fluid motion in the boundary layer.
Furthermore, since the ratio of bar height to separation is significantly below the

critical value of 0.1 (which has been identified by Sleath {12] as the value over which
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flow in the boundary layer separates behind the crests of the bars and vortex for-
mation takes place), the flow in the boundary layer is adequately characterized
by the lowest-order dynamical quantities. In what follows, the fluid wave field
is assumed to be entirely represented by the incident wave. Further, we assume
that the viscous boundary layer is sediment-laden, composed of cohesionless, rarely
interacting, sand particles.

The sediment concentration p in coastal environments has a very weak influence
on the fluid flow [51]. Typical values for the concentration are p ~ 107> — 10~*
ppm, and this situation is assumed thoughout the shelf. Chapalain [51] and
Boczar-Karakiewicz et al. [52] concluded that time independent and vertically
uniform parameters of eddy viscosity and eddy diffusivity are adequate in providing
satisfactory accuracy for sediment morphology models on the shelf In this study
we adopt a very simple model for the sediment concentration [12].

The equation of continuity for the sediment concentration is the advection-

diffusion equation

pe + V-(up) +[(w—vs)pln =0, (72)

where vy is the sediment “fall velocity” and n = (2 + h{X,y,T))/by. Assume that.
apart from random fluctuations, u and p do not vary much over small transverse
spatial scales, so that the second term of the above equation may be neglected. In
light of this, the sediment concentration changes at a rate dp/dn proportional to

the vertical lux. Hence,

wp = —Yp,, (73)

where v is the diffusivity coustant.
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The flux, which is the product of the concentration and the velocity, can be
split into a time-dependent part C* and a time-independent part C™. Boczar-
Karakiewicz et al. [6] found that in the sand ridge areas, the ratio C!/C™ =
O(107%) for the off-shore case. This situation isl assumed to apply throughout
the shelf, so that the sediment concentration is represented solely by its time-
independent part. Employing this assumption and substituting Equation (73) into

Equation (72), we have as the equation for sediment concentration

Pn +vsp = 0. (74)
The boundary condition may be taken as

19 _ 73
vy an - P(l‘), (/0)

where P(r) has the flavor of Svendsen’s [53] empirical “pick-up function,” which in-
corporates such effects as the degree of wave asymmetry and skewness of sediment
flux, and a Shield’s parameter, which sets a threshold fluid velocity at which sed-
iment will be picked up, based on the sediment particles’ buoyancy and geometry
and on the fluid’s velocity field and viscocity.

Solving Equation (74), we obtain as the sediment concentration
p = P(r)e ", (76)

where o = v;/v. The fall velocity vy is species-dependent. It is either measured

or estimated by calculating the balance of drag to buoyant forces for a particle
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falling freely into a static fluid. The diffusivity constant 5 is hard to estimate:

sedimentologists usually measure its value in the field.

For the sake of clarity, the mass transport equation is derived by assuming
transverse dependence in the x direction only. The generalization to variations in y
follow in a straightforward manner. Let T € [0, 00) and II7 € R! x [R(T'), (], where
¢ 2 h(T)+8bs, be the boundary layer time-space domain, and consider a differential
“volume” element in such a domain, as shown in Figure 5, which is bounded on the

bottom by the ocean topography and on the top by a flat lid 2/ = (. It is assumed

(S 13
.
~
i
&>
+
Cn

Figure 5: Volume element used in the derivation of the mass trasport equation

that the sediment concentration p is entirely negligible for z/ > ¢ and moves on

fast time scales. In what follows p : [I7 —— R'. The sediment concentration and
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drift velocity are thought to be C*(Il7), and the bottom topography & € CY(T),
and piecewise linear in [I7.

The mass flux per unit length at z in a time interval [T, T + AT] is given by

T+ATd ¢ i Ny , T+ATd ¢ 1M / _
/T T/h(r‘r) 2 p(z, 2" (J;,g,)zfr T»//;(z,‘r) 2’ M(z, 2). (77)

Consider a portion of the region, say [x,z + Az], in a time interval [T, T + AT].
Since mass cannot spontaneously vanish or be created, the net amount of sediment
between point x and z+ Az must be compensated by a change in the concentration
of the sediment or by a topographical change in the bottom surface. The flux

difference in the space and time intervals [z, + Az], [T,T + AT] is thus

AT (€ Mt te - [ [C M), (78
/T T/I;(x+Ax,r) ZM(z + :v,~)—/T T/h(m) ZM(z,2"), (78)

and the total mass in the given portion at time T is given by

1:+Az ¢
/ de do'p(€, 2'). (79)

The change in total mass in a time interval [T, T + AT]| resulting from net accu-

mulation is given by

il /C dzp(€, ") /”A’” zgfc d='p(€, =) (30)
= .2 ) — ¢ z s 2 ), S
/1: 3 hE T+T) p T h(€,T) P

or equivalently,

r+ Az h(e, T+AT) ) )
[ d='p(¢, ). (81)
z h{€,T)
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Equating (78) and (81), dividing by AzAT, and formally taking the limit as Az

and AT go to zero, we obtaian, on the right-hand side,

: c+ Az AT
hmAT—bOAz:—-O m fr * dE fh((fé’lrl")-‘- ) (6: ) ~

me. 1)+ Ardaer )
h(e,T) T dZp(¢,

p(z, bz, T)) 2D,

Bm A 7oA ,—o Avgs J2HE7 de ) = (82

and on the other side of the equation,

mAT_oA,—o s JEHOT dr{ [os oy 42 Mz + Az, 2) = [§, 1 d2'M(z, )} =

HmAr_ oAz Z_IE} T+AT{ h( +Azr dz (M(z,2")+ Az a.M(a:,z’) +--]-

fh(:r:,‘r) A’I(my Z )} = hmAT—»OAz—»O mA'B f:(z ) +Aza— d..,,dM(:C Z
fhc(z,T) d:l-%&:—(;c’ z’)
(83)
Heunce, the mass transport equation is
Oh(z,T) _ K’ o ¢ ’, o
oT (_1; h(.E T))d ‘/h(.‘L‘T) P(I,‘. )L((:L',‘. )d~ s (84)

where K’ is a constant of proportionality. Since the boundary layer is assumed

very thin. we may define the mass transport flux as

6"‘ ! ! !
g = / ple, 2YWU(z, 2"))d=
0




so that the transport equation now reads

= 5 e (86)
The generalization of Equation (86) to one more space dimension is

oh(z,y,T) K

aT ;_(/-‘r + Vy)’ (87)

where g and v are the shoreward mass flux and the longshore mass flux, respec-
tively. Note that when weak y dependence scaling is adopted in Equation (87), the
longshore mass flux is O(«) smaller than all other quantities in the equation.

In the remainder of this paper, we assume, for simplicity, that the sediment
concentration is constant and equal to p, in the boundary layer. In terms of
Equation (71), and upon use of Equation (85), the calculation of the mass flux

components, to lowest order, is

2k; C'z a; 3k; C?la
— Z l 7 l IIJ Z [______I__J_LIZJ +c. c., (88)
g; 7=1 GJ
where
Bo; 3 1 _ 20
Ty = ogin = D= D (1 y)eriorts

o750 [cos 0386 — sin o[l — Boj(o;6m + 1)] (89)
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and

3 |
T = S(1/2 = o56u) + e 204

_e—a,5bz[1 + by0;] cos o;i0n + 26—016”‘ sina; (90)

for the shoreward mass flux, and

2 1C%a%a;
v=>Y —L L1741+ 0(8% +cec (91)
7=1 deJ

for the longshore directed mass flux, with

1 .
J;, = ojby—1— —5(1 - e"z"J&"‘) + e"""s"‘(cos 065 — sin o;8y)

1 . .
+8A(5(1+ e=250u) 4 e=Nsbu(ig,5.72 — 1)), (92)

Before proceeding, two important remarks are in order. First, we note that
the bottom need not be slightly perturbed to initiate the development of bars.
Second, the time-scale discrepancy may be estimated by examining the ratio of
the magnitude of the time rate of change of the bottom to the Eulerian veloc-
itv. Such comparison leads in a straightforward manner to the conclusion that
t/T = O(a)O(6u)O0(p) ~ O(1077), assuming that the boundary layer thickness is

typically O(1072%ho) and the sediment concentration is O(107*) ppm.
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4 Qualitative Features of the Solutions to the

Full Model

Some of the qualitative features of the full model are presented in this section,
using examples computed numerically with the fixed-point

method, which is described in [54]. The main points of the section are to(1)
present the effects of different initial bottom configurations and boundary condi-
tions on the surface and on the eventual bottom topography after the passage of
many surface waves, and (2) show that the smaller reflected wave plays a rela-
tively minor role in determining the shape of the ocean surface and therefore of
the sand-ridge topography when the bottom is assumed to be very mildly sloped.

To better discern the effects of different bottom topographies on the surface
waves and on the eventual bottom topography after the passage of many waves,
we now turn to the case in which the initial bottom configurations are strictly z-
dependent and the boundary conditions are constant. Briefly, in this case, a larger
number of bars form when the gradient is slight, the distance separating the bars
increases seaward for the positively sloped case, and initial bottom discontinuities
in the x direction tend to get “smoothed out” after the passage of many waves.

Waves at T = 0 that are traveling normal to the shore over topography initially
described by f = 0.006z are displayed in Figure 6. Superimposed, but not drawn
to scale. is the eventual bottom topography. Figure 7 shows the evolution of an
initially stepped bottom at three different times. For these figures o« = 0.1, = 0.2,
3 =10.03. and w; = 1.8.

A bottom, which initially had gradients in the y direction, bends the water
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Figure 6: Ocean surface at T = 0. Bottom at T = 400, for f(z,y,T = 0) = 0.006z.
ay(z = 0) = 0.5, ay(z = 0) = 0.01.

waves, affecting the eventual bottom topography by producing a series of bars with
refractive features. Consider, for example, the case in which the initial bottom
topography is f(z,y) = 0.0075x — 0.005y , with all other parameters as before,
except wy = 1.2. Figure 8 shows a; at T = 0. A striking way in which refraction
takes place can be seen in the case for which the boundary conditions at = 0 are
y dependent. The case for which f(z,y) = 0 at T = 0 and the boundary conditions
are 4, = 0.5+0.001ly and A, = 0.024+0.001y, corresponding to an incoming gravity
wave that has slightly higher amplitude at one end than at the other, is shown in

Figures 9 and 10 for (T = 0) and f(T = 400AT), respectively. The eventual fate
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Figure 7: The fate of the topography which initially contained a step, shown at

three different times

of a bottom that initially was smooth but sloped, f(z,y) = 0.0075z — 0.0035y, is
illustrated in Figures 11, 12, and 13. Compare these with Figure 8. The boundary
conditions are A; = 0.5 and A, = 0.02.

Shown in Figure 14 is the cross section of mode a;(z,y), and in Figure 15
a comparison of the eventual bottom with and without contributions from the
reflected field. Both figures were computed by using Equation (38), with A, = 0.5.
A, =001, By =02, and B, =0.: ¢ = 0.2, a = 0.1. 3 = 0.08. The bottom was
flzr,y) = 0.006z at T = 0. The domain was 200 units long.

As was discussed in Section 2, the reflected and incident fields are completely
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Figure 8: Refraction on the surface mode a; due to the bottom topography:

f(z,y) = —0.005y Shown at T = 0.

decoupled, owing to the assumptions made concerning the bottom topography.
The deformations on the bottom topography due to the reflected component are
entirely determined by the amount of energy in the boundary conditions. Hence, it
is necessary to include the reflected component when the sea-going wave backwash

is not negligible.

5 Conclusions

This study detailed the counstruction of a model for the formation and evolution
of three-dimensional sedimentary structures on the continental shelf, based on the
energetic interactions of weakly nonlinear long waves with the shelf’s sedimentary

topography.
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Figure 9: Refraction due to boundary conditions. a; at T = 0.

The main conjecture of this study is that a significant, but by no means ex-
clusive, agent for the formation and evolution of longshore sand ridges on regions
of the continental shelf that are sufficiently removed from the shoaling area is the
repeated action of the second-order oscillatory drift velocity that results from the
passage of weakly nonlinear shallow-water internal or surficial waves. The basis for
the conjecture rests on (1) the close correlation between the interbar spacing and
the length in which energetic exchanges among the most powerful modes of the-
shallow water waves takes place; (2) the close correlation between the evolutionary
time scales for the bars and the time required for highly coherent nonlinear disper-
sive wave trains to impart sufficient energy into a boundary layer to significantly
transform a sediment-laden bottom topography; (3) the fact that longshore sand
ridges are found in areas in which no wave breaking occurs and/or in which the

reflected field is abseut or negligible; (4) the claim that sand ridges with highly
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Figure 10: Refraction due to boundary conditions. Bottom at 7" = 100AT.

organized characteristics may be found in regions in which coherent weakly non-
linear dispersive waves exist; and (3) the fact that the energy of these waves is of
the correct magnitude to significantly affect the topography of a sediment-laden
bottom.

At present, neither the dynamics of sedimentation nor those of water waves
are fully understood. The model presented here represents the conjecture based on
current understanding of both processes. If the conjecture is correct, the model will
improve in predictive power as understanding of sedimentation and wave dynamics
improve. The more important functions played by the model, however, are that
its development yields clues to ways in which the conjecture itself may be refined
and tested, as well as generating problems that are interesting independent of the
sedimentation problem at hand, such as the modal surface system that appears in

this study.
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Figure 11: Evolution of bottom topography. T=0.

The model in its inception was two dimensional. Based on encouraging compar-
isons with actual field data, the three-dimensional version was developed. Briefly
described, the present model couples a mass transport equation, which controls the
history of the bottom topography, to a mathematical equation, which describes
the evolution of the most energetic modes of surface weakly nonlinear dispersive
shallow-water waves with weak spanwise spatial dependence. To solve the coupled
system, one relies on the discrepant time scales of the bottom evolution and of the
water waves to effectively decouple their interaction, making a solution by iteration
possible.

In the near future the modal representation of the water waves will be re-
placed with a full Boussinesq system, and the effects of oceanic currents will be
included in the model. Bona and Saut [35] are studying the different versions of

the Boussinesq system in order to determine, among other things, which vanant




Figure 12: Evolution of bottom topography at T = 40AT. Shown here is the

difference between the new bottom and the original topography.

best models oceanic waves and which is well-posed as a boundary value problem.
Additionally, a number of issues brought up in this study need to be pursued to
completion. These include the search for stable bottom configurations as predicted
by the model, completion of the well-posedness theory and the Hamiltonian struc-
ture for the surface system, and development of a stability result for the iterative
procedure that was used to solve the coupled surface/mass transport equations.
The sensible way to test the conjecture and the model is, of course, to examine
oceanic field data. Comparisons with oceanic field data can give an idea of the
predictive powers of the model; laboratory experiments cannot, however, as they
do not scale well. The task of making field observations, particularly in the three-
dimensional case, is a tedions, expensive, and difficult enterprise. While researchers

at the INRS at the University of Quebec, headed by Prof. Boczar-Karakiewicz,
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Figure 13: Evolution of bottom topography. T’ = 100AT. Shown here is the differ-

ence between the new bottom and the original topography.

were able to make some comparisons between the two-dimensional version of the
model and sand ridge data [41], finding that the model’s predictions agreed quali-
tatively with the height, spacing, and evolution trends of the actual bars, they have
not yet taken on the task of making comparisons in the three-dimensional case. As
of this writing, the Quebec team is reducing field data from the continental shelf,
gathered from the ocean floor neighboring Newfoundland and Eastern Australia
in order that comparisous may be made between the three-dimensional model and
data.

Several aspects of the conjecture can be tested in the laboratory. The drift
velocity created by shallow water waves of the type identified here as responsi-
ble for the formation of longshore sand ridges could be observed and studied in

a laboratory setting since they may be studied in a plume with a fixed bottom.
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Figure 14: Profile of a; and b, for f(z,y) = 0.006z. A; = 0.5, B, = 0.2.

Comparisons between the laboratory experiments and the drift velocity measure-
ments in sand ridge fields could prove fruitful. In particular, the model assumes
that the adjustment of the bottom/surface is a gradual process; thus, it would be
interesting to see whether the drift velocity is capable of changes in character to
that produced by the surface waves.

Field observations are needed to (1) determine the importance of both the
reflected wave field and oceanic currents in determining the nature of the drift
velocity in sand ridge areas: (2) correlate in some way the beginning and end
of ridge fields and the physical location at which water waves are created and
eventually destroyed; (3) track the relevant wave spectra in order to see evidence of
the predicted pattern in energetic interaction lengths and its correlation to features
of the bottom topography; and (4) determine what sort of sand ridge configurations

are stable and/or nonmigratory.
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Figure 15: Effect of a bi-directional surface wave field on the eventual bottom

configuration. Initially, f(z,y,0) = 0.006z. The dark line is the bottom resulting

from a strictly shoreward-directed wave.

Laboratory observations are required to determine how well the various Boussi-
nesq systems model the weakly nonlinear shallow-water waves and to confirm the
existence of recurrence-like solutions over long propagation lengths. Additionally,
more experiments aimed at furthering our understanding of the motion of sediment
in the boundary layer are needed.

Elgar and his collaborators [50] have examined the issue of the recurrence of
solutions to the modally truncated Boussinesq equation numerically in the Stokes
parameter regime of O(1). They found that the two-mode case, which is used
in this study, displays recurrence-like solutions over a great many wavelengths.
They found that as the number of modes is increased, the recurrence is confined to

fewer and fewer cycles; initially very narrow spectra undergo more recurrence-like
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cycles, before the spectra flatten, than do initially broad-banded spectra. Their
conclusion is that recurrence-like solutions are an artifice of a severely truncated
modal expansion of the Boussinesq equation. If these findings prove correct (we
are addressing this issue in a separate study), we may be modeling the water
waves in this study incorrectly. The observations of Elgar et al. do‘not, however,
weaken in any way our conjecture that weakly nonlinear shallow-water waves may
be respousible for the formation and evolution of sand ridges, since there is more
than ample observational evidence that these nonlinear waves travel over very vast
spans of ocean (i.e., that their spectra recurs a great many times before they lose
their coherent shape) over regions where sand ridges are a prominent feature of the
ocean floor. The appropriateness of making use of a small number of modes comes
from field data. Figure 16 suggests that most of the energy in the waves is found
in the first few harmonics [56]. The figure also shows the shifting of energy from
lower frequencies to higher ones as the wave travels shoreward over a decreasing
water column depth.

Computational experiments are being planned, aimed at exploring the nature of
recurrence-like solutions in nounlinear dispersive equations, such as the Boussinesq
equation: other experiments will explore the stability and interdependence of the
truncated modal solutions to these equafions.

While comparisons between field data and the two-dimensional model are very
encouraging and this three-dimensional extention should therefore find applicabil-
ity in the real-world environment, any topographical chart of the continental shelf
provides a good reminder of the long path yet to travel toward a complete under-

standing and model of the full problem. If this study has piqued the curiosity and
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Figure 16: Energy for shallow water waves in the Southern Baltic Sea: hq = 6.0m

yho=20m — — - — — - —— . From Druet et al. [56].

compelled the reader to take a closer look at sandbars, it will have succeeded.
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