RECEIVED
FER 2 8 199

Task Parallelism and High-Performance Languages OSTI

Ian Foster
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

1 Introduction

The definition of High Performance Fortran (HPF) is a significant event in the maturation
of parallel computing: it represents the first parallel language that has gained widespread
support from vendors and users. If successful, it will advance parallel computing by simpli-
fying application development, increasing application portability, and providing a common
framework for both commercial and academic research and development of compilers, de-
buggers, performance analyzers, and the other tools that are currently lacking on parallel
computers. HPF has also stimulated similar developments in other languages, notably
pC++ [6]. These languages are commonly referred to as high-performance languages,
because they are designed to allow efficient compilation for high-performance parallel
computers. ’

HPF as currently defined cannot be used to solve all programming problems. Indeed,
its focus on regular problems and data-parallel algorithms makes it dangerously limited.
However, this focus stems not from a belief that it is only these problems that matter,
but rather from the fact that it was in this area that it was easiest to build consensus
as to what was required in a Fortran-based language for high-performance computing. In
future work., this initial consensus will have to be extended to encompass other areas. This
process has already started with the second round of HPF Forum meetings.

One promising direction is to define additional directives that can be used to make
more information available to the compiler. Armed with this information, the compiler
can parallelize programs that operate on irregular and adaptive data structures, or that
require pipeline structures for efficient parallel execution. The goal here is to generalize
rather than to abandon the single-program. multiple-data (SPMD) programming model
of HPF.

Another important direction, which is the subject of this paper, is to incorporate
support for task parallelism. The term task parallelism (sometimes called control or
functional parallelism) refers to the explicit creation of multiple threads of control, or
tasks. which synchronize and communicate under programmer control. Task and data
parallelism are complementary rather than competing programming models. While task
parallelisin is more general and can be used to implement algorithms that are not amenable
to data-parallel solutions, many problems can benefit from a mixed approach, with for
example a task-parallel coordination layer integrating multiple data-parallel computations.
Other problems admit to both data- and task-parallel solutions, with the better solution
depending on machine characteristics, compller performance, or personal taste. For these

The submitied manuscript has been authored
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for

mSTREBUT?Qh Gn{- Tﬂ hf‘(SGSL :u:fﬁ g}f\ﬁ.ﬁfg:-rca ﬁ U. S. Government purposes.
[

reasons, we believe that a general-purpose high-performance language should integrate
both task- and data-parallel constructs. The challenge is to do so in a way that provides
the expressivity needed for applications, while preserving the flexibility and portability of
a high-level language.

In this paper, we examine and illustrate the considerations that motivate the use
of task parallelism. We also describe one particular approach to task parallelism in
Fortran, namely the Fortran M extensions. Finally, we contrast Fortran M with other
proposed approaches and discuss the implications of this work for task parallelism and
high-performance languages.

2 High Performance Fortran

We first provide a brief review of HPF [8]. As currently defined, this is primarily a data-
parallel language, meaning that it allows programmers to exploit the concurrency that
derives from the application of the same operations to all or most elements of large data
structures. An HPF program is a sequence of such operations, which may be specified
using either explicitly parallel constructs (e.g., array expressions and FORALL) or implic-
itly using traditional DO loops. A program can be augmented with distribution directives
specifying how data is to be mapped to processors. An HPF compiler normally gener-
ates a single-program. multiple-data (SPMD) parallel program by applying the “owner
computes” rule to partition the operations performed by the program; the processor that
“owns” a value is responsible for updating its value. The compiler also incorporates com-
munication operations when computation assigned to one processor requires data located
on other processors.

In addition to its data-parallel constructs, HPF provides two mechanisms for speci-
fying task-parallel execution. The first is the PURE function, which when called within a
FORALL loop can perform different computations depending on the value of its arguments.
However. the utility of this construct is limited by the fact that concurrently-executing
function calls cannot communicate. The second mechanism is the EXTRINSIC function,
which creates a separate execution thread on each processor. These concurrent threads
have access to the data structures of the HPF program and can perform arbitrary com-
putation and communication. This is a generic escape mechanism that allows an HPF
program to call a message-passing library to perform arbitrary task-parallel computa-
tion: however. it lacks flexibility and modularity and is not an adequate mechanism for
general-purpose task-parallel programming.

An important advantage of the current HPF model is that programs have sequential
(single-threaded) semantics. A program that adheres to the HPF standard and that does
not use extrinsic functions can be read as if it were a sequential Fortran program; the
parallel constructs and distribution directives affect performance but not correctness. In
principle. this feature simplifies program development and debugging, as many concepts
and tools from sequential programming can be reused. It is unclear to what extent this
sequential semantics can be maintained as HPF is extended to address a wider range of
problews.

3 The Role of Task Parallelism

The data-parallel constructs incorporated in high-performance languages exploit a com-
mon attribute of computations in science and engineering, namely homogeneity. Com-
putations that apply the same operation to all elements of regular data structures can
be expressed elegantly using data-parallel constructs and can be compiled efficiently for
parallel computers. For these problems, there is plentiful evidence that data parallelism
is an effective solution [7].

Unfortunately, heterogeneity — whether in data structures, computation, or data de-
pendencies — appears to be equally prevalent, particularly as high-performance computers
are used to solve more complex problems and as scientists and engineers use more sophis-
ticated algorithms. Heterogeneity does not prevent the use of data parallelism; however,
depending on the degree of heterogeneity, a data-parallel program may be overly compli-
cated (because the programmer is forced to use inappropriate abstractions) or inefficient
(because the compiler, lacking information available to the programmer, cannot infer effi-
cient execution and communication schedules). The programmer may then find it simpler
or more efficient to specify parallel algorithms explicitly, using task-parallel constructs.

In this section, we examine what appear to be the principal considerations motivating
the use of task parallelism, illustrating each with examples. These are as follows:

1. Software Engineering. Independent of issues relating to parallel computing, there
may be software engineering benefits from treating separate programs as independent
tasks. These benefits may relate to modularity or to the need to execute in a
heterogeneous system.

2. Locality. Task parallelism can allow the programmer to enhance locality and hence
performance by executing different components of a problem concurrently on disjoint
sets of processors.

3. Scheduling. Task parallelism can allow the programmer to enhance performance by
specifying computation and communication schedules that could not be discovered
by a cowmpiler.

3.1 Software Engineering

[n the first set of applications that we consider, the use of task parallelism is motivated
primarily by software engineering concerns. rather than performance: in particular, the
need to construct complex parallel programs in a modular fashion or to execute different
program cowmponents on different computers in a heterogeneous network.

These concerns often arise in multidisciplinary simulations, in which a computer model
of a complex system (such as an automobile, regional air quality, or an electricity distri-
bution system) is constructed from models of system components (Fig. 1). The system
model may itself form part of a design or management system that incorporates optimiz-
ers, databases, external control functions, etc. In principle, the various component models
could be integrated into a single (data-parallel) progratm, which would call components as
subroutines. However, this approach suffers from a lack of modularity. Program develop-
ment. validation. and modification all tend to be more difficult when program components

Atmospheric Model

Hydrology |
Model Ocean
¢ Model
LL:md Surface Model

Figure 1: An environmental modeling system, incorporating four submodels; a realistic
mode] might incorporate many more components. Arrows represent data transfer.

are tightly interconnected, particularly if the components were not originally designed to
be integrated in this manner.

An alternative approach is to treat the components of a multidisciplinary simulation as
separate programs that execute concurrently and exchange information using an “arms-
length” mechanism such as message passing or files: in other words, to structure the
application as a task-parallel program. Interfaces between components are then simple
and well defined, and components can be executed on different computers if required.
Components can also be executed in parallel to improve performance; however, this is not
a prerequisite for task parallelisin to be useful.

In simple problems of this sort, there are a fixed number of component models that
can themselves be expressed as data-parallel programs. Hence, heterogeneity is restricted
to an outer “coordination layer” which orchestrates the execution of data-parallel compu-
tations. In more complex problems, subcomputations may themselves be heterogeneous
in structure.

3.2 Locality

A second motivation for the use of task parallelism is to enhance locality so as to make
wmore efficient use of resources such as cache, memory, or cominunication bandwidth. This
is achieved by executing different parts of a problem on disjoint subsets of available pro-
cessors. {A side effect is to increase available concurrency; this can be equally important
in some problems.)

This situation often arises in signal processing when applying sequences of transfor-
mations to streams of pixel arrays. Data sets cannot easily be scaled as the number of
processors increase, and different inputs cannot be transformed independently. Hence,
while a purely data-parallel solution is possible. in which the various transformations are
applied sequentially, communication costs can often be reduced significantly by comput-
ing each transformation on a separate set of processors. Different inputs can then flow
through this pipeline concurrently. Each transformation can be performed by a task- or
data-parallel program.

A siuple exawmple of a pipelined computation is a two-dimensional fast Fourier trans-
form (2-D FFT). When applied to an array of size N X V, this performs first V independent

Figure 2: Task-parallel computation in a two-dimensional FFT. Two subcomputations
execute as a pipeline, with processors in the first phase operating on columns of each
array, and processors in the second phase operating on rows.

1-D FFTs, one on each column of the array, and then a second set of N independent 1-D
FFTs, one on each row. A data-parallel solution might initially decompose the array by
columns so that the first set of 1-D FFTs could proceed without communication, then
transpose the array before performing the second set of FFTs. A task-paralle]l solution
might construct a pipeline of two stages, with the first stage performing FFTs on columns
and the second FFTs on rows (Fig. 2). The same amount of data must be communicated
in both cases: in the data-parallel program, the entire array is transposed, while in the
task-parallel program, the entire array is forwarded in the pipeline. However, the task-
parallel program sends only about one-quarter as many messages, because rather than
each of the P processors sending to each other processor (in the transpose), each of the
P/2 processors in the first pipeline stage must send only to the P/2 processors in the
second stage. This can improve overall performance.

Other problems in which locality can motivate the use of task parallelism include
multiblock and nested grid codes, and (in many cases) multidisciplinary simmulations.

3.3 Scheduling

[n a third class of applications, the use of task parallelism is motivated by a need to
improve performance by explicitly controlling the scheduling of computation and com-
munication operations. This requirement arises frequently in applications with irregular,
data-dependent computation and communication requirements.

Data-parallel language compilers have proven to be most successful when computa-
tion and communication requirements are either predictable at compile time or easily
determined at run time. This predictability allows the compiler and/or runtime system to
determine a static execution schedule for each processor. In more heterogeneous problems,
the compntation and communication performed by a program are irregular, either in time
or space, and a cowmpiler may not be able to discover an efficient mapping of computation
to processors, scheduling of computation within processors, and organization of commu-
nication between processors. However, a programmer may be able to use task-parallel
constructs to implement effective application-specific mapping and scheduling strategies.
A task-parallel problem formulation can also underspecify scheduling constraints, allow-
ing the use of data-driven execution models in which the ordering of computation on each
processor is deterwined by the availability of data.

A simple problem of this sort is the Fock matrix construction problem from compu-

do 1 = 1,nl
I = compute_integral(i,j,k,1)
F(i,j) = F(i,j) + I*D(k,1)

F(k,1) = F(k,1) + I*D(i,j)
F(i,k) = F(i,k) + I*xD(j,1)
F(i,1) = F(i,1) + I*D(k,1)
F(j,1) = F(j,1) + I*D(i,k)
F(j,k) = F(j,k) + I*D(i,1)
enddo
enddo
enddo
enddo

Figure 3: Logic for Fock matrix construction problem.

)) r
@eo eo

O] O‘

]
7
!

/
e
® ‘o} &5—%

Figure 4: Task-parallel computation in a Fock matrix computation. Each box represents a
processor; distinct compute tasks (represented by unshaded circles) and data server tasks
(shaded) interact to provide asynchronous access to distributed data structures.

tational chemistry. The core of this problem is the quadruple-nested loop illustrated in
Fig. 3. Approximately N* integrals must be computed; each requires data from six ele-
ments of a density matrix, D, and contributes to six elements of a Fock matrix, F. Both
D and F have size V x N and must be distributed. The cost of an integral is strongly
data dependent. An efficient parallel algorithm must both map integrals to processors
dynamically and block integrals and communications so that fewer than 6 N4 messages are
required to communicate the D and F values.

A data-parallel formulation of this problem is possible if the data-parallel language
provides an “accumulate” operation. However, the problems of mapping and blocking
integrals remain. A task-parallel solution can define distinct compute and data server
threads. placing one thread of each type on each processor (Fig. 4): The compute threads
perform computation and generate requests for data to the data server threads, while the
data server threads handle requests for data. The desired behavior is that a compute

Figure 5: Task parallelism in a search problem. Each leaf node evaluation (shaded) involves
a data-parallel computation; the shape of the tree is determined only at run time.

thread executes when no requests are pending, and that execution switches to a data
server thread when a request arrives. The scheduling of computation and communication
is then under programmer control. In particular, integrals can be allocated to compute
threads using a load balancing strategy, and compute threads can block requests to data
server threads.

As a second example, we consider search problems in which a search tree of unknown
size and shape must be explored, with an evaluation function applied at each node and
pruning used to limit the number of nodes explored (Fig. 5). In this case, both the com-
munication and computation structure of the application are irregular. Efficient parallel
algorithms typically use dynamic load balancing algorithms to allocate computation to
processors. In some situations, the evaluation function can be sufficiently complex to ben-
efit from a data-parallel formulation, in which case the problem involves a task-parallel
collection of data-parallel computations.

Other examples of problems in which programmer control of scheduling may be nec-
essary for performance are discrete event simulation, reactive computations that must
respond to input from users or sensors, and adaptive mesh refinment problems, in which
meshes may be created, destroyed, or moved over time. We can also point to multidis-
ciplinary and image-processing applications in which the amount of computation in each
component, or the structure of the computation, adapts during program execution.

3.4 Summary

This brief examination of task-parallel applications has suggested at least three reasons
for using task parallelism in addition to data parallelism: software engineering, locality,
and scheduling. Of course, we can also identify problems in which several of these motiva-
tions apply. For example, there can be software engineering advantages to formulating a
mnltigrid code as a task-parallel collection of interacting data-parallel programs; task par-
allelisy can also be used to improve performance by executing multiple grids concurrently
to improve locality, and by scheduling these computations efficiently.

4 The Fortran M Approach

The Fortran M (FM) extensions to Fortran [5] represent a particularly simple approach
to task parallelism in Fortran. FM has also been used as a task-parallel coordination
language for HPF [4].

FM is a small set of extensions to Fortran 77 (F77) for specifying concurrent execution,
communication, synchronization, and resource management. A major design goal was to
define extensions consistent with F77 concepts. This means, for example, that because F77
lacks structured data and dynamic memory allocation, these concepts are not used in the
extended language. As we note below, the richer set of constructs available in Fortran 90
(F90) can enable more flexible approaches. The FM extensions can be characterized as
follows: ’

1. Processes. modeled on F77’s subroutine construct, provide the basic building block
from which parallel programs are constructed. They encapsulate data and the code
that operates on that data.

2. Parallel block and parallel do-loop constructs are used to create instances of pro-
cesses, '

3. Processes can communicate and synchronize both by passing data to subprocesses
and by sending and receiving data on channels. The channel operations are modeled
on F77’s file [/O constructs, and indeed channels can be thought of as “virtual files.”

4. Both processes and channels can be created and deleted, and channels can be re-
connected, dynamically; nevertheless, a compiler and runtime system can enforce
deterministic execution.

5. Resource management constructs allow the programmer to control how processes are
mapped to processors. These constructs are modeled on F77’s array constructs: a
programmer can define a virtual processor array, locate processes within this array,
and invoke subcomputations on subarrays.

It should be clear that the extensions are extremely simple: they are modeled mostly
on existing Fortran ideas, with the main conceptual extension being dynamic process and
channel creation. Nevertheless, they have proved sufficient for a wide variety of problems
and, in addition. provide modularity properties needed to support the definition of parallel
paradigm libraries. as described below. (The M in FM stands for “Modular”.)

Figure 6 illustrates the use of several FM constructs. The main program uses the
channel statement to create two channels: a process block (delineated by processes and
endprocesses statements) is nsed to create processes called controls and structures.
The new processes execute concurrently, with the submachine annotations specifying that
they should execute on disjoint sets of 64 virtual processors. The second code fragment
implements the controls process; it uses the send and receive statements to send and
receive data on the ports passed as arguments. Message formats are defined by the port
declaratious, allowing an FM compiler to generate efficient communication code and to
reformat data in a heterogeneous environment. Although controls has been invoked on
a submachine of 64 processors, it is defined here to execute sequentially; a parallel block

program aerodynamics

processors p(128)

inport (integer, real x(100,200), real y(100,200)) pi, qi
outport (integer, real x(100,200), real y(100,200)) po, qo

channel(in=pi,out=po)
channel(in=qi,out=qo)

processes
processcall controls(pi,qo) submachine(p(1:64))

processcall structures(qi,po) submachine(p(65:128))
endprocesses
end

process controls(inp,outp)

processors p(64)

inport (integer, real x(100,200), real y(100,200)) inp
outport (integer, integer, real x(100,100)) outp

send(outp) i, a, b
receive(inp) nstep, u, v

end

Figure 6: Sketch of an FM multidisciplinary program

{or a call to a message-passing or HPF procedure) would be required to invoke parallel
execution.

4.1 Paradigm Integration

In both the multidisciplinary simulation and image processing problems presented as moti-
vating examples, we pointed out that programs can usefully be structured as task-parallel
collections of data-parallel programs. These are simple examples of problems that can
benefit from the use of multiple parallel paradigms. In other situations, it can be useful
to integrate program components developed using message-passing libraries (e.g., linear
algebra libraries) or using shared-memory models (e.g., distributed data structures). Inte-
gration can be achieved using a single language that combines all the various -paradigms.
However, this approach tends to be complex. Alternatively, we can define a language that
provides just a few basic mechanisms, which we then use to develop libraries implementing
the different paradigms. In this section, we outline how FM can be used as a framework
of this sort.

The key to using FM to implement multidisciplinary frameworks of this sort is its
support for compositionality. FM processes specify concurrency, synchronization, com-
munication, and process mapping with respect to logical resources {processes, channels,
virtual processors) rather than physical resources. This means that an FM process can
be reused in different situations without concern for its internal concurrency, communica-
tion, and mapping; hence, we can develop separate program components using libraries
implementing message-passing libraries, distributed shared data structures, etc., and then
compose these components to form a complete program.

We use a simple example to illustrate how this integration is achieved. A message-
passing (MP) compatibility library allows MP programs to be invoked from FM and
permits MP programs to call FM routines. An invoking FM program uses FM virtual
computer constructs to specify the resources (virtual processors) available to the MP pro-
gram; the MP program executes as if these virtual processors were physical processors, and
performs ordinary MP calls, which, however. are implemented by an FM library rather
than direct message passing. (Experimental studies indicate that the overhead of this
approach is small.) FM data structures can be passed as arguments to the MP program.
These data structures can be either replicated or partitioned over virtual processors. Ports
passed as arguments allow an MP program to communicate with other program compo-
nents. The following code fragment illustrates some of these ideas.

process execute_mp(X,Y)
processors p(4)
real X(512,4), Y
processdo 1 = 1, 4
processcall mp_program(X(:,i), Y) location(p(i))
endprocessdo

As illustrated in Fig. 7, this program invokes an MP program (mp_program) on four
virtual processors, with argument X partitioned and Y replicated. In the figure, the en-
closing oval represents the FM process executemp while the execution graph represents
the encapsulated MP computation. For brevity, we do not show the code required to set

10

Figure 7: Invoking a message-passing program from FM

up the channels used for message-passing communication; however, this is simple, and can
be incorporated automatically using a source transformation.

The same basic concepts can be used to integrate HPF into the multiparadigm frame-
work. This integration has been demonstrated in a prototype compilation system devel-
oped with Bhaven Avalani and Alok Choudhary of Syracuse University {4]. HPF proce-
dures are compiled to message-passing code using an HPF compiler; the message-passing
code is then linked with both FM coordination code and interface routines that handle
data transfer between the two languages. This system has been used to implement a
variety of pipeline algorithms similar to those referred to earlier.

In summary. the techniques outlined in this section allow FM to be used as a coordi-
nation framework. This in turn allows us to construct multidisciplinary applications such
as those illustrated in Figs. | and 6, with component models implemented using HPF or
a message-passing library such as p4, Express, or MPL

4.2 Experiences

We have developed an FM compiler that generates code for a variety of parallel com-
puter platforms. including IBM SP, Intel Paragon, Cray T3D, Cray C90, and Ethernet-
and ATM-connected workstations. Heterogeneous collections of these machines are also
supported. Whenever possible, the compiler uses lightweight threads to implement FM
processes, so as to reduce the cost of switching between multiple FM processes executing
on the same processor. Performance studies show that communication performance is
generally competitive with low-level message-passing libraries.

Programmers have used FM’s task-parallel constructs for each of the three reasons
discussed in the preceding section: software engineering, locality, and scheduling. In the
software engineering area, an air quality model developed by Donald Dabdub and Rajit
Manohar at Caltech is constructed from separate atmospheric transport and chemistry
components. In another project, the ADIFOR automatic differentiation system generates
FM code to exploit parallelism in derivative calculations. Task parallelism is used for
locality in various pipelined task/data-parallel codes developed at Syracuse University. A
parallel Fock matrix construction code uses the structure illustrated in Fig. 4 to achieve
data-driven scheduling of computation and communication.

1l

c$ begin parallel

do i=1,m do i=1,m
call cffts(A) call cffts(A)
===> c$ output A
call rffts(a) call rffts(A)
v c$ input A
enddo enddo
c$ end parallel

Figure 8: Using directives to specify pipeline algorithms in Fx Fortran.

Several projects have used FM mechanisms to develop reusable libraries. For exam-
ple, a Fock matrix program encapsulates concurrency and communication in a portable
“global array” library, derived from a code originally developed by Robert Harrison using
a nonportable interrupt-driven receive on Intel computers. This library is used in an ab
initio quantum chemistry code which also incorporates a matrix diagonalization library
integrated using the message-passing compatibility library. At Caltech, Dan Meiron and
his colleagues have developed reusable templates for spectral computations.

5 Discussion

FM represents a conservative approach to task parallelism: its basic constructs are chosen
to be simple and counsistent with F77 concepts. Nevertheless, these concepts introduce
powerful capabilities: dynamic process and communication structures; support for data-
driven computation; programmer-control of resource allocation; compile-timme guarantees
of deterministic execution; and the compositionality required for library development.
In this section. we examine various aspects of the language and contrast them with some
alternative approaches. We also discuss the implications of this work for high-performance
languages.

5.1 Explicit Parallelism

FM provides an explicitly parallel programming model. That is. its extensions have se-
mantic content. and programs cannot easily be executed using a single thread of control.
In other approaches, task parallelism is introduced via directives that, as in HPF, have no
semantic content. If used correctly, a program compiled with and without directives will
compute the same result. The directives serve merely to provide additional information
to the compiler which helps it identify opportunities for parallel execution.

For example. the Fx Fortran compiler supports directives which can be used to specify
pipeline algorithms [10]. The directives allow the programmer to supply data depen-
dency information for iterative programs which apply a sequence of transformations to
a stream of input data; the compiler uses this information to convert the program into
a pipeline that streams data through data-parallel tasks responsible for performing the
various transformations. Performance models are used to determine whether to generate

12

pure data-parallel or mixed task/data-parallel code. The approach is illustrated in Fig. 8.
The code on the left is a sequential program that performs a sequence of m two-dimensional
FFTs; the code on the right incorporates the directives needed for pipelined execution.
The directives begin parallel and end parallel delineate the parallel loop; the direc-
tives output and input indicate that the array A is produced by cffts and consumed
by rffts. Additional HPF-like directives in the FFT routines themselves specify data
distributions.

This example illustrates two important advantages of directive-based approaches: ex-
isting sequential code need not be rewritten, and a compiler can tailor the generated code
to problem size and machine characteristics. Disadvantages include the restricted set of
applications that can be handled using any one directive, the complex compilers needed
to exploit the information provided by directives, and the large semantic gap between the
application program and the generated code.

We believe that while directives-based approaches are important, they do not avoid
the need for explicit task parallelism. In our view, there will always remain both software
engineering motivations for explicit task parallelism and problems that cannot be handled
using directive-based approaches. In addition, even programs that can be compiled auto-
matically must eventually be translated into executable task-parallel code. In both cases,
it is useful to have an architecture-independent parallel notation, whether for use by the
programmer or the compiler.

5.2 Determinism

While an explicitly parallel program may not have a straightforward sequential reading,
it can still be possible to guarantee that it is deterministic: that is, that every execution
of that program with a given input will produce the same output. In the vast majority
of cases, this is the desired behavior: few parallel algorithms in science and engineering
are nondeterministic, and indeed unwanted nondeterminism (“race conditions”) in parallel
programs has historically been a major source of problems [9].

Motivated by these observations. we chose when designing FM to make determinism
the default behavior. To this end, we defined restrictive semantics for communication
operations that ensure, for example, that each channel always has a single writer and a
single reader. (The restrictions also have the advantage of simplifying implementation.)
Nondeterminism is also supported, but must be introduced explicitly using specialized
constructs.

Other approaches to task parallelism in Fortran do not enforce determinism. For ex-
ample, in the shared-memory extensions proposed by ANSI committee X3H5 [1], programs
can create explicit threads, which execute concurrently and interact by reading and writ-
ing shared data structures. It is the programmer’s responsibility to prevent unwanted race
conditions by using explicit locks or other mutual exclusion constructs to control access
to shared data. Chapman et al. [3] have proposed mechanisms based on “spawn” and
“shared data abstraction” constructs. The shared data abstraction, a form of monitor, is
used to control interactions between tasks created using spawn. Again, the programmer
must use these constructs in a structured fashion to ensure deterministic execution.

We believe that determinism is fundamental to parallel programming and that a com-
piler or runtime system must either prevent unwanted nondeterministic execution or be

13

able to warn the programmer when it occurs. The FM approach to this problem appears
to work well, although in some cases we fear that it is too draconian: in more complex
nondeterministic executions (e.g., those involving the dynamic scheduling of a variable
number of tasks) the FM restrictions can lead to convoluted code. We are investigating
ways of relaxing these restrictions while maintaining the ability to enforce determinism
when it is required.

5.3 Task Parallelism and HPF

We have described how FM can be used as a task-parallel coordination language for data-
parallel HPF computations. This approach has proved quite effective, particularly for
multidisciplinary and pipeline problems. However, we do not believe that it represents
a satisfactory long-term solution to the problem of task parallelism in high-performance
languages. Instead, we argue for a single language that integrates task- and data-parallel
constructs.

A single language is preferable for several reasons. First, programming tools such as
compilers, debuggers, and performance analyzers are more effective when they have access
to information about all aspects of program behavior. A partitioning of computations
into separate task-parallel and data-parallel worlds makes this more difficult. Second,
many computations appear to require a fairly close intermingling of task and data paral-
lelism. Again, this is hindered by the use of separate languages. Finally, we suspect that
programmers are happier with an integrated programming model.

If we accept that task-parallel constructs are required in HPF, then FM suggests at
least two directions that can be pursued in their design. First, we can build on FM syntaz
and introduce constructs that would allow an HPF computation to acquire processors, to
initiate computation on these processors, and to connect computations on different sets of
processors with virtual files on which read and write (or send and receive) operations could
be performed. Notice that as these virtual file operations involve HPF processes, and each
HPF process may execute on multiple processors, the communication logic required to
implement even simple “write” and “read” operations can be complex.

Alternatively, we can build on FM concepts and define HPF extensions that support
explicit task parallelism, modularity, determinism, and library construction, but using
F90 rather than F77 constructs. For example, F90’s dynamic, recursively-defined data
structures provide a base on which we can build communication and synchronization
mechanisms more flexible than the restrictive (but F77-like) channel construct of FM.
These mechanisims can then be used to implement libraries implementing virtual files or
other higher-level interaction mechanisms. One candidate set of mechanisms uses single
assignment variables for synchronization and remote procedure calls for communication [2].

Runtime and compiler design issues must also be addressed. An integrated task/data-
parallel language may create concurrent task- and data-parallel computations on the same
or different processors. The programmer, compiler, and runtime system need to cooperate
to ensure efficient scheduling of these different computations. Important issues include
mapping of computations to processors, coscheduling of threads of control belonging to
the same data-parallel computation, and efficient organization of collective communication
operations. ’

Acknowledgments

[am grateful to Mani Chandy, Alok Choudhary, Carl Kesselman, and Rob Schreiber for
discussions on these topics. This work was supported by the National Science Foundation’s
Center for Research in Parallel Computation under Contract CCR-8809615 and by the

Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-
Eng-38.

References

[1] ANSI Technical Committee X3H5, Parallel Processing Model for High Level Program-
ming Models, 1992.)

[2] K. M. Chandy and C. Kesselman, CC++4: A declarative concurrent object-oriented
programming notation, Research Directions in Concurrent Object-Oriented Program-
ming, Gul Agha, Peter Wegner, and Akinori Yonezawa (eds.), MIT Press, 1993.

[3] B. Chapman, P. Mehrotra, J. van Rosendale, and H. Zima, A software architecture
for multidisciplinary applications: Integrating task and data parallelism, Technical
Report 94-18, ICASE, MS 132C, NASA Langley Research Center, Hampton, Va.,
1994.

[4] I. Foster, B. Avalani, A. Choudhary, and M. Xu, A compilation system that integrates
High Performance Fortran and Fortran M, Proc. 1994 Scalable High Performance
Computing Conf., [EEE, 1994.

[5] L. Foster and K. M. Chandy. Fortran M: A language for modular parallel program-
ming, J. Parallel and Distributed Computing, 1994.

[6] D. Gannon et al., Implementing a parallel C++ runtime system for scalable parallel
systems. Proc. Supercomputing 93, IEEE, 1993.

[7] P. Hatcher and M. Quinn, Date-Parallel Programming on MIMD Computers, MIT
Press, 1991.

[8] C. Koelbel. D. Loveman, R. Schreiber, G. Steele, and M. Zosel, The High Performance
Fortran Handbook, MIT Press, 1994.

[9] C. Pancake and D. Bergmark, Do parallel languages respond to the needs of scientific
programmers?, Computer 23(12), 13-23, 1990.

[10] J. Subhlok. J. Stichnoth, D. O’Hallaron, and T. Gross, Exploiting task and data
parallelisu on a multicomputer, Proc. Ath ACM SIGPLAN PPoPP, ACM, 1993.

15

Sidebar: Requirements

A workshop on “Task Parallelism in Fortran” held in Pasadena, February 9-10 1994, and
sponsored by the NSF Center for Research on Parallel Computation, brought together
participants from industry, universities, and federal laboratories to discuss requirements
for task parallelism in Fortran. The workshop was intended not to discuss standards
but to share information and to provide input for the second round of the HPF Forum.
A detailed report is in preparation and will be published both electronically and in the
journal Scientific Programming.

Participants in the workshop exchanged information regarding a wide range of ap-
proaches, including shared-memory extensions (SVM Fortran), directives (Fortran D, Fx
Fortran, CHAOS) and explicit task-parallelism (Fortran M, Vienna Fortran, Large-Grain
Dataflow). There was considerable consensus on requirements for a task-parallel Fortran,
if not on actual mechanisms:

1. Thread creation. Most participants believed that dynamic thread creation is needed,
although the SPMD model had some adherents. Both unstructured “spawn” and
the more structured “parbegin/parend” constructs were considered useful.

2. User-level resource management. Most participants believed that programmers re-
quire control over how computational resources (processors) are allocated to compu-
tations, as well as the ability to specify mapping with respect to virtual rather than
physical resources.

3. Name spaces. All agreed that some form of hierarchical name space is required, so
that subcomputations can define and use local names.

4. Thread interaction. This was the area in which there was least consensus. Clearly,
threads must be able to exchange data; however, theré was no agreement whether
this should be achieved by a shared address space with locks, channels, monitors, or
other mechanisms. Many present felt that determinism was important.

Sidebar: For More Information

A World Wide Web/Mosaic information server at Argonne National Laboratory provides
pointers to a range of research projects in the area of task and data parallelism in For-
tran, and a database of applications requiring task and data parallelism. Its URL is
http://www.mcs.anl.gov/tpf.
More information about the Fortran M language described in this article can be ob-
tained via WWW /Mosaic at URL http://www.mcs.anl.gov/fortran-m. A Fortran M
compiler and on-line documentation can also be obtained via anonymous ftp from info.mcs.anl.gov,
in directory pub/fortran-m.

Sidebar: Languages or Libraries?

Parallelism can be either a second-class or first-class citizen in a programming language.
That is, it can be incorporated via either libraries or language extensions. Each approach
has its adherents.

In library-based approachs, parallelism is supported not in the language but in separate
libraries that invoke machine-specific mechanisms to create threads of control, communi-
cate, synchronize, etc. Programmers call functions defined by these libraries to create
threads and to manage their execution. Numerous such libraries have been developed
over the years, providing mechanisms for both shared-memory and distributed-memory
computers (monitors, message passing, etc.), often in a portable fashion. The Argonne
macros, p4, PVM, Linda, and MPI are just five examples. Proponents of libraries em-
phasize their simplicity and low cost: a new parallel library can be developed without the
need to develop compiler technology, and the issue of standards is less critical.

Language-based approaches provide explicit language constructs for specifying paral-
lel computation; these are translated by a compiler into appropriate low-level operations.
Hence, the programmer uses a parallel block or a spawn statement to create a thread, com-
munication operations or remote procedure calls to transfer data, and so on. Proponents of
language extensions argue that programs are clearer when parallelism is specified using ex-
plicitly parallel constructs, and point to the benefits of compiler-based error detection and
optimization. They also argue that the apparent simplicity of library-based approaches
is misleading: the complexity associated with parallel programming does not disappear
when a library is used, but is pushed up a level to be dealt with by the programmer using
the library.

To some extent this controversy relates to the question of whether concurrency is re-
garded as a fundamental or incidental aspect of programming. In sequential programming,
data structures and control structures tend to be viewed as fundamental and supported in
languages, while incidentals such as input/output are relegated to libraries. Believing that
task parallelism is fundamental rather than incidental, we focus on language extensions
rather than libraries in this paper.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

