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Stochastic Models of Chaotic Systems

C.E. Leith

Lowrence Livermore National Laboratory, Livermore, CA 94550

Abstract

Nonlinear dynamical systems, although strictly deterministic, often exhibit chaotic
. behavior which appears to be random. The determination of the probabilistic prop-
erties of such systems is, in general, an open problem. Closure approximations for
moment expansion methods have been unsatisfactory. More successful has been
approximation on the dynamics level by the use of linear stochastic models that
attempt to generate the probabilistic properties of the original nonlinear chaotic
system as closely as possible. Examples are reviewed of this approach to simple
nonlinear systems, to turbulence, and to large-eddy simulation. A stochastic model
that simulates the transient energy spectrum of the global atmosphere is developed.

1 Introduction

Many nonlinear dynamical systems exhibit chaotic behavior arising from their
sensitive response to small perturbations. Thus, although they are strictly de-
terministic, they behave much like random systems of limited predictability.
The many years of experience in seeking to understand the properties of tur-
bulent flow demonstrate clearly the nature of the problem. The probabilistic
properties of such chaotic systems can not, in general, be predicted well the-
oretically. The nonlinearity of the dynamics causes moment expansion tech-
niques to lead to an infinite hierarchy of moment evolution equations which,
for solution, must be closed by some approximation relating higher moments
to lower. Unfortunately, such closure approximations often lead to unrealizable
moment solutions, the simplest example of which is the generation of negative
variances. '

The preferred alternate approach, the subject of this article, is to make the
approximation on the level of the dynamical equation by replacing the orig-
inal nonlinear dynamical system by a model dynamical system in which the
nonlinear interaction of a mode with all others in the system is simulated by
linear damping and random forcing. The resulting stochastic model is gov-
erned by a set of stochastic ordinary differential equations whose parameters
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are chosen to simulate, as well as possible, the probabilistic properties of the
original system. These parameters may be and usually are chosen to depend
on probabilistic moments of the model system so that the evolution equations
for the moments of the stochastic model become nonlinear. But they are read-
ily computable, and they clearly guarantee that the resulting moments are
realizable. In fact, linear stochastic models preserve the assumed guassianity
of the forcing, and thus they provide at best a gaussian approximation to the
probabilistic properties of the original nonlinear system known generally to be
non-gaussian. Gaussian probability distributions are completely characterized
by their first and second moments so that it suffices to provide model evolution
equations for them alone. ) - ’

A stochastic model for a simple nonlinear oscillator is developed in Section
2 as a, demonstration of the general procedure. In this case the phase space
of the system is only two-dimensional, and the evolution of the probability
distribution function is easily visualized as the evolution of a cloud of phase
points.

Stochastic models have been widely used: for prediction of the probabilistic
properties of turbulent flows. In this case the dynamical phase space is myriad-
dimensional, but stochastic models based on eddy damping and eddy forcing
prescriptions provide readily computable estimates of second-moment quanti-
ties, which are of importance for eddy transport. Such models are discussed
in Section 3.

The range of spatial scales excited in a turbulent flow determines the needed
phase-space dimension of any dynamical model of it, and this may be so large
as to rule out as computationally infeasible the direct numerical simulation
of the flow by time integration of the evolution equations. The largest scales
are, however, of the greatest interest both for being most special to the flow
geometry and for being responsible for the major part of the turbulent trans-
port. For this reason the properties of turbulent flows are often deduced from
so-called Large-Eddy Simulation (LES) in which the large scales are explicitly
computed but scales smaller than a specified truncation scale are treated with
a subgrid-scale (SGS) turbulence model. For several decades such SGS models
treated the eddy damping. by the small scales of those resolved in the LES
model. In recent years such models have been extended to include stochastic
backscatter, i.e., the stochastic forcing of the large scales by the small. These
developments are discussed in Section 4.

An application of these ideas to the climate problem is given in Section 5. The
climate system is made-up of many components, in particular, a relatively
slowly evolving ocean and a rapidly fluctuating atmosphere. Since the time
scales of principle interest for the climate are closer to those of the ocean
there is a considerable computational benefit in finding some stochastic model



of the atmosphere to drive a deterministic ocean as a replacement for the
deterministic but chaotic weather models currently used. A crude first step is
described in which the global atmosphere is treated as homogeneous shallow
water turbulence characterized by white noise forcing and an eddy diffusion
of potential vorticity. A reasonable choice of a length and a time parameter
in the model leads to a fair fit to the observed atmospheric transient kinetic
energy spectrum and its time-lagged covariance properties.

2 Nonlinear Oscillator

Many aspects of the statistical mechanics of nonlinear systems are revealed by
- the almost trivial example of a nonlinear oscillator. We define this as a system
with two degrees of freedom described by the coordinates z and ¥ in phase
space evolving according to the equations of motion

T=—ary | 1)
J=orz . 2)

where 72 = 2%+ 32 and « is a constant. In terms of the phase angle @ for which
& = rcosl, y = rsinf, the dynamics equations can be written

=0 (3)
b=ar (4)

and integrated to give

r(t)=r0)=r, (5)

0(t) =0(0) + arst = 0, + aryt (6)
and thus

z(t) =rocos(8, + ar,t) (7N

Y(t) =1osin(, + ar,t) (8)

In the z,y phase space of the system the individual motions are quite simple.
Each phase path is a circle about the origin traversed counterclockwise at an
angular velocity proportional to its radius. The statistical mechanics of this




system concerns itself not so much with the individual phase paths as with
the behavior of an ensemble of such paths. An ensemble is characterized by a
probability distribution function (pdf) p(r,f,t) defined such ‘that

7d9 frdr p(r,9,t) =1. | 9

For this system 0i/0z + 8y/dy = 0 and we have a valid Liouville theorem
B(r,0,%) = 8p(r, 0,t)/8t + 78p(r,0,t)/Or + 08p(r, 0,t) /86 = 0. (10)

The pdf at any time ¢ is related to that at time ¢ = 0 by

p(r,0,8) = p(r, 0 — art, 0). ' | . (11)

Let us consider, as a simple example, an ensemble of phase points which at
time t = 0 is distributed along the z-axis with a pdf

p(r,0,0) = 50~ exp(—57%/P)(6) + 50 + ). (12)

At any other time we find

p(r,0,1) = 557 exp(—57*/p")(0 - art) + (6 + 7 — art]. (13)

and the points are distributed along the arms of a spiral wound counter-
clockwise for ¢ > 0, clockwise for ¢ < 0, and the more tightly wound the
greater the magnitude of ¢, as shown in Fig. 1.

We may use this evolving pdf to compute the evolution of the smgle-tlme
second moment of =

X(t,t) =< z(t)=(t) > (14)
—/dﬁfrdrr cos*0 p(r,0,1) (15)

=p? / exp(—irz/pz)r%osz(art)dr 1 | (16)
=71 — 50" (2apt)] o oW

= p*[2 — 8(apt)® + 16(apt)* — %:’r%b:(apt)é +...}] (18)
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Fig. 1. Evolving ensembles for the nonlinear oscillator, above, and its linear stochas-
tic model, below, shown for times (O&%), 1, 10, and 100 from left to right.

where

D(s) = exp(—lsz) exp(ltz)dt = [ sin(sr) exp(—lrz)dr (19)
2 J 2 J 2 ‘
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is related to Dawson’s integral. The second moment X (¢, ), fora=p=1,is
shown as a function of time ¢ by the curve labeled NL in Fig. 2. Similarly, the
second moment of y is given by

Y1) =<y(t)y() > (20)
=p°[1+ %D’” (2apt)] ' (21)
= p*[8(cpt)? — 16(apt)* + 2155—6(ozpt)6 +...] (22)

As © becomes large, X and Y approach p? as if determined by the normal
equipartition probability distribution

5(r,6,1) = (2m) ™ exp(~ 31/ ). (23)

It is tempting to say from an examination of Fig. 1 that the ensemble ap-
proaches a stationary equipartition distribution and that in some sense as
t — o0, p(r,0,t) — p(r,0,t). This is so only to the extent that we ignore the
increasingly fine structure of the tightly wound spiral, a fine structure that has
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Fig. 2. Variance, X, as a function of time ¢ for the nonlinear oscillator (NL) and its
linear stochastic model (LS).

vanishing influence on the calculation of second moments. As soon, however,
as we ignore the fine structure we have lost time reversibility, for when the di-
rection of time is reversed the spiral of p(r, 6, t) unwinds but the equipartition
distribution p(r, 8,t) remains unchanged. In approximations that we shall be
describing later, we shall want to give up the detail required for reversibility
and be content with an irreversible approach to equilibrium.

An ensemble with the initial probability distribution p(r,0,0) is evidently
stationary. For it two-time moments are functions of the time difference alone
and are readily computed. For example, we have

X(tl, tg) =< Il?(tl)ili(tz) > : (24)
= —%D’" (aoptz — apty) - , | (25)

or
X(t,8+7)=—5D"(apr) (26)
—1— 2(apr)? + (epr)* — x(epr) + .. (27)

Although the statistical mechanics of the nonlinear oscillator is quite simple,
for more general nonlinear systems the dimensionality of the phase space is
so large as to make explicit phase space calculations impractical, and we seek
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approximations provided by stochastic models. A stochastic model for an orig-
inal system is an alternate system with differing dynamics equations chosen in
such a way as, first, to induce as nearly as possible the statistical mechanics of
the original system, and, second, to have its statistical mechanics computable.
These two requirements evidently tend to be contradictory, and any stochastic
model must represent therefore a compromise.

The nonlinear oscillator needs no stochastic model since its statistical mechan-
ics is already computable, but, as illustration, we shall construct one, a random
linear oscillator. The dynamics equations for the random linear oscillator are

T=—wy (28)
y=wz (29)
F=0 (30)
O=w | (31)

where w is a time independent but random frequency chosen from a normal
probability distribution

w(w) = (2n) 4o~ expl (w — ©)/o7] (Y

having mean @ and variance o2. We have introduced a new random variable
into the system and averages are to be computed over the w distribution as
well as that of 7 and y. When we compute thus the evolving second moment
of z for the model starting from the same initial pdf as for the nonlinear
oscillator we find

X (t,t) = p*[L + cos 2wt exp(—20%12)] (33)
=p"[2 — 2(0? + @*)P + (20* + 4072 + (2/3)aV)t* +...]  (34)

Should we choose

@?=2(3)2a%p%. (35)
0% = (4 - 2(3))a?p? (36)




then we shall have
o’ + &* = 4a?p? ‘ : : (37)
20* + 40°@% + (2/3)@* = 16a*p* (38)
and the evolution of X (;t) for the random linear approximation will match
that of the original nonlinear system through ferms in t*. The resulting ex-

pression for X(t,t), with @ = p = 1, given by the linear stochastic model
equation (33), is plotted as the curve labeled LS in Fig. 2.

We may also compute
Y (t,t) = p*[1 — cos 2wt exp(—207t7)) (39)
and observe that for the model as for the original system as ¢ becomes large

both X and Y approach p?. In both the model and the original system we
have X + Y = 2p? independent of time.

3 Turbulence Models

Turbulence deals with the statistical properties of solutions of the Navier-
Stokes equation of fluid flow taken here as incompressible

0
6.’12]'

(0/0t — vVP;(x,t) = —vj(x, 1) 5—vi(x, t) — Op/Oz;. (40)

Here unit density is assumed, and the scalar pressure p is determined by the in-
compressibility condition, dv;(x,t)/8z; = 0. The wavevector space transform
of the Navier-Stokes equation is given by

[d/dt + vEJus(k, ) = —;‘ipijk(k) Zkuj(p,'t)uk(q,.t)‘ (41
N Rt s

with the incompressibility condition k;u;(k,t) = 0 and with

Py (k) = ki P (k) + ki Py (K), - (42)
P;i(k) =6 — kik; /K%, k = [K|. , (43)



For the purposes of the present discussion we shall recognize that the essential
aspect of these equations is that they are quadratically nonlinear. We shall
therefore replace them with a highly symbolic equation

du/dt = uu. (44)

We now proceed with a conventional expansion for the evolution equations of
moments for which the first three are written symbolically as:

d<u> [dt=<uu> (45)
d<uu> [dt=< uuu > (46)
d <uuu > [dt=< vuvu > . (47)

This leads to an infinite sequence of equations for increasingly higher moments
with an even higher moment always appearing on the right hand side. Thus
is posed the traditional closure problem of using some approximation of some
high moment in terms of lower ones in order to terminate this sequence.

For a normal or gaussian probability distribution function fourth moments
can be written in terms of products of second moments, but, in general, there
is something left over called the cumulant. Thus symbolically, for example, we
have

< wuuy >=< uu >< uy > + < uuuu > (48)

where the final term is the fourth cumulant. One of the oldest closure approx-
imations [1,2] is the so-called quasinormal closure obtained by ignoring the
fourth cumulant.

Unfortunately, there is usually no constraint on such cumulant discard clo-
sures to assure that the evolving moments remain realizable, that is, derivable
from a non-negative joint probability distribution function. In particular, the
quasinormal closure was found to generate negative energy spectra in some
applications [3-5].

Kraichnan [6] recognized that this difficulty would be avoided if the underlying
dynamics could be modified in such a way that the statistical properties of
the original system were approximated but that the modified model system
could be solved for its evolving moments exactly. Since such moments are for
a real (although wrong) system, they must be realizable. Kraichnan’s initial
model was based on the introduction of random factors in the coupling terms,
but later stochastic models were based on simpler linear stochastic differential




equations of Langevin ‘type [7]. In this case, the symbolic equation (44) is
replaced by the symbolic equation

du/dt = —yu+ f | (49)

where 7 is an eddy damping coefficient and f is a random white gaussian
eddy forcing term. These are intended to simulate the nonlinear turbulent
interaction of each mode in the dynamical system with all other modes. The
stochastic model equation (49) is not used directly, but from it is derived an
equation for the evolution of second moments which is taken as an approxi-
mation for that of the original turbulence.

A number of stochastic models for turbulence have been constructed by using
different formulations of the eddy damping and random forcing terms in equa-
tion (49) or in a generalized Langevin equation in which the damping term is
an eddy viscoelasticity and the forcing is gaussian but not white, symbolically,

du(t)/dt = — / vt —syu(s)ds+ f . (50)

The details of such models will not be discussed here; they are available in
published texts [8,9]. However, some general remarks will be made.

Stochastic models of this type, also called two-point or spectral closure mod-
els, have been applied primarily to statistically homogeneous and isotropic
turbulent flows, i.e., those for which the statistical properties are invariant
under spatial translation and rotation. Such symmetries simplify considerably
the representation of and the evolution equations for the moments. In some -
applications the isotropy constraint has been dropped with a large increase
in numerical complexity. It is not feasible to drop the homogeneity constraint
without leading to such a large increase in numerical complexity that the
model can not compete with a direct numerical simulation (DNS) achieved
by integration of the original Navier-Stokes equation or with a large-eddy
simulation (LES) to be discussed in the next section. ;

None of the existing stochastic models has a firm theoretical base. Various
perturbation expansion techniques used to derive them have had uncontrol-
lable uncertainties. Instead model builders have tried to mimic in the model
as many of the known properties of the original turbulent system as possible.
Some of these are straightforward and important such as the conservation of
known quadratic integrals of the motion such as kinetic energy and, in two
dimensions, enstrophy. A more subtle property is the existence of an artificial
stationary gaussian statistical state of turbulence toward which a turbulent
flow will tend when viscous dissipation is removed and some fictional barrier
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at high wavenumber prevents cascade. This situation can not be produced in
any laboratory flows but can be produced in numerical simulations. The re-
sulting state corresponds in classical statistical mechanics to thermodynamic
equilibrium with equipartition of an integral of the motion such as energy
across the available dynamical modes of the system. A natural requirement of
stochastic models of turbulence is that they also tend to the same equipartition
solution in the same artificial situation. In addition, if one prepares an initial
state of turbulence which differs from an equipartition state but is gaussian,
then it will not be stationary but its initial first time derivatives will vanish
and its second time derivatives are computable exactly from the Navier-Stokes
equations governing the original turbulent flow. Again this serves as a useful
constraint on the corresponding behavior of the stochastic model. Finally, it
should be remembered that these stochastic models are linear and driven by
. gaussian forcing, and thus can at best produce a close gaussian approximation
to the statistical properties of turbulence which are known to be non-gaussian.

4 Large-Eddy Simulation

For the practical prediction of the properties of an inhomogeneous turbulent
flow one is forced to consider direct numerical simulation (DNS) or large-eddy
simulation (LES). For DNS it is, of course, necessary in the calculation to re-
solve scales of motion down to the smallest scale at which molecular viscosity
is important. In many practical applications, this leads to a range of scales far
too great for a feasible numerical integration of the Navier-Stokes equations.
Of course, DNS when feasible does not require any closure approximation or
turbulence model. For this reason DNS has played an important role in pro-
viding an experimental basis for the testing of turbulence models at moderate
Reynolds numbers where the range of excited scales is small enough to be
treated numerically.

The goal of LES is more modest in that it carries out an explicit calculation of
the evolution of only the larger scales of motion in a flow. These larger scales
are more peculiar to the particular application and in general are known to be
primarily responsible for the eddy transport properties of the flow which are of
the greatest interest. But now the Navier-Stokes equations must be modified
by replacing the molecular viscosity term by some sort of terms that simulate
as well as possible the effect of the unresolved scales of turbulent flow on the
larger scales that are being explicitly computed. Such terms define a so-called
subgrid-scale (SGS) model that characterizes the LES.

Consider, for example, the problem of the numerical simulation of an isotropic

homogeneous turbulent fluid whose Reynolds number is so high that it exhibits
a clearly defined energy-cascading inertial range satisfying the Kolmogorov law
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for the energy spectrum

B(k) = K3k | | (51)

where K = 1.7 is the non-dimensional Kolmogorov coefficient, and € is the
energy cascade rate, assumed to be independent of the wavenumber k. This
law is derived on purely dimensional grounds considering the dimensions of
the factors involved, namely: E[L*T~2], [L?T 3], and k[L™']. At the high
wavenumber end this inertial range spectrum is terminated by a viscous dissi-
pation range, and again dimensional scaling arguments can be used to identify
the so-called Kolmogorov wavenumber kg at which viscosity becomes impor-
tant. This obviously depends on the viscosity coefficient v with dimension
[L*T™Y], and is given by '

kx = e/*p3/4, (52)

The simplest solution to the subgrid-scale modeling problem is to increase
the viscosity coefficient so that the corresponding Kolmogorov wavenumber
is resolved. Let k. be the limiting resolvable wavenumber. (In general, the
subscript . will denote a resolution dependent quantity.) Then inversion of
equation (52) gives the required artificially increased viscosity coefficient

v, = B3 743 - Y (53)

where the non-dimensional coefficient 8 = 1 has been introduced for flexibility.
If we know an expected value of € for the flow considered, then equation (53)
provides an estimate for the artificial viscosity coefficient v,. In practice, the
coefficient B is chosen to be as small as possible without leading to erratic
behavior in the smallest scales of the flow. The resulting artificial viscosity is
linear; that is, the coefficient is independent of the details of the flow itself.

A more satisfactory procedure is to deduce e from the flow itself and indeed in a
space mesh representation to attempt to compute a local value of € appropriate
to each mesh interval. This leads in turn to a local value of v, and a nonlinear
artificial viscosity.

This problem arose in the early days of numerical weather prediction where
megameter length scales are of interest while viscous dissipation occurs at
millimeter scales. Smagorinsky[10] generalized a technique that had been used
for the numerical treatment of shocks in compressible fluids[11] to generate a
nonlinear eddy viscosity depending on the locally computed shear. It adjusts
itself to remove kinetic energy at a resolved scale that would otherwise attempt
to cascade to unresolvable scales and would lead to erratic behavior in the
numerical simulation.
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The form of the Smagorinsky eddy viscosity is chosen by dimensional scaling
arguments. An eddy viscosity coefficient, v,, has dimensions L>T!. Since the
turbulence is considered to consist of unresolved scales of the fluid flow, its
characteristic length scale ), is given by the resolution length scale, say, the
grid spacing. Its time scale is taken as that given by the resolved local strain
rate, S,, to be defined below. The dimension of S, is T2, so that the eddy
viscosity coefficient becomes

v, = (Cs),)28, (54)

where Cs = 0.2 is the non-dimensional Smagorinsky coefficient, chosen empir-
ically to make things work.

" The deviatoric stain rate tensor for the velocity ; in Cartesian coordinates T;
is given by

Ou; + Oug _ gauj
Oz, Oxz; 3 0z;

Sik = 5,';;. (55)
1
The mean local strain rate introduced above is defined as S = [Sy8u;/ Ozi)2.

The Smagorinsky formulation given by equation (54) is consistent with the
inertial range formulation of equation (53) as can be seen from the following
dimensional analysis.

Whatever the local value of v, the rate of energy dissipation will be computed
as

€ = 1,52 (56)
where S? is the resolved local squared rate of strain in fnite difference ap-

proximation for which we may set k. = /.. If we substitute equation (56)
into equation (53) we find

v, =028, k72 (57)
=75, (58)

which is obviously equivalent to equation (54) if the non-dimensional constants
are set to v = 32/ = C2.

A test of the validity of this analysis would be the independence of ¢, a flow-
dependent quantity, and )., a mesh-dependent quantity. That is, we might

13




hope that as the mesh was refined and A. became smaller the average value
of € would remain unchanged. From equations (56) and (58) we find

€= 7S3)\2 (59) .

and the required independence of ¢ and A, would arise only because with
smaller ), the finite difference estimate of S, will increase as A2 ow1ng to
finer scales of motion being explicitly computed.

We see then that the Smagorinsky eddy viscosity defined by equation (54) is
consistent with the idea that the truncation wavenumber k. lies within the
energy-cascading inertial range of three-dimensional isotropic turbulence. In
its original application, however, this is a strange idea since it is now realized
that the truncation wavenumber for numerical models of the global atmo-
sphere are more likely to lie within an enstrophy-cascading range of quasi-two-
dimensional turbulence. We turn then to two-dimensional turbulence analysis
to develop a more suitable formulation.

In two-dimensional incompressible flow there are new constraints arising from
the conservation of vorticity. In particular the enstrophy (defined as one-half
the squared vorticity) is conserved in inviscid flow. Associated with this in-
tegral there is an inertial range through which enstrophy is cascaded at a
constant rate 7 to be removed at sufﬁc1ently high wavenumber by dlssmatwe
processes.

The dimensional scaling arguments applied above to an energy-cascading
range that depended on € with dimension L?T~3 may now be translated to
an enstrophy-cascading inertial range that depends on 7 with dimension 7'~ -3,
The corresponding energy spectrum, of dimension L3T~2, becomes

E = Ap*3k=3 -~ (60)
with some new non-dimensional coefficient A. A more careful analysis has led

Kraichnan[12] to introduce an additional non-dimensional logarithmic factor
which will be ignored here. The artificial viscosity becomes .

v, = BK? (61)

We estimate the local enstrophy dissipation rate as

1= |Vl (62)

and thus the artificial viscosity as

v, = 7|V.w|A3 . (63)

14



where |V,w| is the finite difference approximation to the magnitude of the
gradient of the vorticity w.

The eddy damping or viscous effect of unresolved scales of motion included in
SGS turbulence models is only a part of what is needed as has been pointed out
in a review of LES techniques by Mason[13]. The nonlinear interaction of unre-
solved and resolved scales of motion also induces a forcing of the larger scales
which can only be treated as random. Such so-called stochastic backscatter as
an eddy forcing supplement to the usual eddy viscosity provides a stochastic
model of SGS turbulence, and, of course, makes the LES itself stochastic in
its nature. But this latter consequence, disturbing as it may be, is completely
consistent with the well-known limits on the predictability of turbulent flows
considered as chaotic dynamical systems.

" Traditional stochastic models of turbulence have been applied to the problem

of predicting suitable formulations of both eddy damping and eddy forcing
in SGS turbulence models. Chasnov[14] describes such an application to the
problem of the optimal consistent truncation of an energy-cascading inertial
range for three-dimensional homogeneous isotropic turbulence.

5 Austausch Model of the Global Atmosphere

It is tempting to try to devise a stochastic atmospheric climate model of the
Langevin type, i.e., with random white forcing and specified damping, that
mimics all first and second moments as observed in the real atmosphere. The
fluctuation dissipation relation would be built into such a model which would
thus provide a crude estimate of climate sensitivity. The feasibility of doing
so is suggested by the success of a first simple step in which the atmosphere
is treated as a homogeneous, isotropic, two-dimensional turbulent fluid with
an eddy mixing of potential vorticity.

Define the potential vorticity as

g = Ay — N2 (64)

where A is the Laplacian operator, 1 is the stream function, and A is a specified
constant deformation wavenumber. Eddy diffusion dynamics for the model is
given by

0q/0t = DAg — ag+w (65)

where D is an eddy diffusion coefficient, & is an eddy damping rate, and
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w is space- and time-white noise forcing. For a particular wavenumber, k,
equations (64) and (65) may be written as

ae=—(k* + A 7 ‘ (66)
Oqr./ 0t = —(Dk* + a)gx + we : | (67)

The stochastic differential equation (67) of Langevin type generates stationary
statistics with the variance Q@ of gx given by

Qk = A/[2(a + DK?)] : : | (68)
. =(4/2D)/(k + 1) (69)

and with a newly defined characteristic wavenumber p. In order to maintain
parsimony of parameters it has been found to be adequate to set

pi=a/D =) | | (70)

The stream function variance, ¥y, for wavenumber % is given by
¥, = (A/2D)/(K* + \?)® | B | (71)

v

where A is a constant, and the two-dimensional velocity variance is given by

Uk) = kT o< K2/ (k> + X%)° ) (72)
The isotropic energy spectrum has the shape -

E(k) o< kU (k) o< K2/ (k* + \?)® - (78)
For z = k/A, on finds

E(E) « f(z) =8(z +z1)° o | (74)

which has a maximum at z = 1. The transient energy spectrum for the global
atmosphere is observed to have a maximum at planetary wavenumber £ =
A = 8, and for such a choice of A equation (74) provides a fair fit as shown in
Fig. 3. ‘
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Fig. 3. Fit of f(x) to an observed atmospheric transient kinetic energy spectrum. Et
and Es indicate global January transient and stationary spectra, respectively, taken
from Boer and Shepherd [15].

Consider next the temporal statistics, in particular, the time-lagged height-
height correlation. In this model this is proportional to

R(7) =7r7k\1f(k) exp[—(a + Dk?)7)dk (75) .
= 7r7k\1!(k) exp[—a(l + k?/)%)7]|dk (76)
o 7(1 + k2 /2%) 3 exp[—a(1 + k2/)?)7]kdk (77)
0
x 73-3 exp[—ars]ds = Es(or) : (78)

With suitable normalization, we find

R(7) = 2E3(ar) (79)

in terms of the exponential integral, E3. A good fit to the observed height-
height correlation is obtained by choosing the parameter o = 0.187 /day as
shown in Fig. 4.
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Fig. 4. Fit to height-height lagged time correlation data taken from Lorenz [16]. E3
and RN indicate the fit of the model equation (79) and a simple red noise model,
respectively.

Note that the parameter ) is chosen to fit spatial statistics and the parameter
o is chosen independently to fit temporal statistics. Note also that in this
model the amplitude of the variance depends on the specified strength of the
white-noise forcing.

\

It is clear that such a model is only a simple starting point for the development
of stochastic models that take into account the observed three-dimensional
mean flow and the inhomogeneous nature of the real climate system. Exami-
nation of Fig. 3 shows clearly that the atmospheric mean flow, labeled Es, is
far from the vanishing mean flow used in the model.

It is natural to consider the construction of stochastic models of the transient
component taking as a starting point the linearized dynamics of the flow about
the mean. The linear operator characterizing such dynamics is in general non-
normal and has therefore a much more complicated behavior than exhibited
by normal operators with traditional spectral analysis. A simple example of
this approach is given in a recent paper by Farrell and Ioannou[17].
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6 Summary and Conclusion

This paper reviews the general problem of replacing nonlinear chaotic dynam-
ical systems whose probabilistic properties are, in general, not readily com-
putable by linear stochastic dynamical systems that model the original system
and have more easily computed probabilistic properties. A trivial example is
given of a nonlinear oscillator modeled by a random linear oscillator.

Stochastic models have been widely used to simulate the properties of homo-
geneous isotropic turbulent flows, and from them have been deduced formula-
tions of stochastic models of the damping and forcing effects of subgrid-scale

. turbulence on the resolved scales in large-eddy simulations (LES). The prop-

erties of two- and three-dimensional turbulence are quite different, and both
cases are examined.

Climate is largely defined in terms of the probabilistic properties of the weather
fluctuations in the global atmosphere. A stochastic model of these global aver-
age properties is developed in terms of the eddy diffusion of potential vorticity
with specified random forcing and damping. The choice of two parameters in
the model, one determining spatial and the other temporal probabilistic prop-
erties, leads to a fair fit to the observations.

Although stochastic models lack rigor in their theoretical foundations, they
appear to have considerable pragmatic value, and they should therefore be
considered as engineering models that mimic the probabilistic properties of
chaotic nonlinear dynamical systems. In constructing such models one matches
those properties of the original system that are known and hopes for the best
for the rest.
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