iy ER
Fra 74 1936
EPICS ST
Input / Output Controller (10C)

Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
November 1994

APS Release 3.12

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

EPICS 10C Application Developer’s Guide Document Revision: 1

Table of Contents

Preface....ccoceeeeeecnenceececcccncaceses ceseeneen ceenes 1
1. OVEIVIEW &+t vttt i iieean e rieaesnasseenesnssnannasnnnes 1

2. Acknowledgmentsooiiiiiiii i e 2
Chapter 1: EPICS Overview.....coceeevseeeisccceees ceeeaenns 3
1. WhatiS BPICS? .. oi ittt iiaie e iiniaaaenaanans 3

2. Basic AUEIDUIES . .0 vveetee ettt ittt i 4

3. Hardware - Software Platforms (Vendor Supplied).................. 4

4. I0C Software COMPONENtS. . ..ot iiierennnianeranenanasesnanns 5

5. Channel ACCESS - .. vvnenete s eeaenenenniansnaennarenannns 7

6. 1) 2 o To) 3 PGPS 9

7. EPICS Core SOftWare. . ..o vvvereeeie e iie et iin e inennannns 9
Chapter 2: IOC Test Facilitiescceveeanns cresesesnns 11
1. OVEIVIEW &+ vttt iteeteteenaetstoensnaaasaseensannnanensnns 11

2. Database List, Get, Put.ottt ittt et eeeeeiennnn 11

3. Breakpoints. . . . oot 13

4, Hardware Reports. . ..o v cevvnttiiiiii i iiiiiieieiiiinaanaann 14

5. SCan REPOITS. . . oot i e e 15

6. Time Server Reportovvnnvii ittt 15

7. Access Security Commands.ooviiiiiiiiii i 16

8. Channel AccessReports.oovvviiiiiiii i 17

9. Interrupt VECIOr - ..ottt it iiaaannens 17

10. Environment Variables............ccoviiiiiiiii i 17

11. Database System TestRoutinesot 18

12. Old Database Access Testing.cooviiieiiiieineenennnnn 19
Chapter 3: General Purpose Features............. ceseatecans 21
‘ 1. L0055 17 1= e 21
2. General Purpose Tasks.ooviviin it 21
EPICS Release: R3.12 EPICS 10C Application Developer’s Guide i

Table of Contents

3. ErrorHandling.oiiiinii it iiiiiiiae e 23
Chapter 4: Database Locking, Scanning, And Processing.27
1. VBV W . oottt ettt eretee e tetnires e aaaet s 27

2. Database LinKs. ovviiein it ii ittt i 27

3. Database Lockingoiiuiiiii i, 28

4, Database Scanning.covtiniiiiii ittt 29

5. Record Processing ... vvveveeereenuuerunennniniinninnns 30

6. Guidelines for Creating Database Links 30

7. Guidelines for Synchronous Recordsot 32

8. Guidelines for AsynchronousRecordsot 33

9. Cached PutSottt ittt it i i s 35
Chapter 5: Static Database Access............... N 74
1. 01 o T3 37

2. 11 VU1 o) 113 GO 38

3. EXAMPLE -Dump AllRecords.ooniiiiii i, 39

4. Allocating and Freeing Structures.ooiiiiiiiiiiiian... 40

5. Read and Write Database.ccoviiiiiiiiniiie i 40

6. Manipulating Record DescriptionscoiiiiiaL, 41

7. Manipulating Record Instancest 41

8. Manipulating Field Descriptions.covvviiiiiiiiiiinnn, 41

9. Manipulating Field Values ...t 42

10. ManipulatingMenuFields.o ool 42

11. ManipulatingLink Fieldscoiiiiiiii i, 43

12. DumpRoutinesccovviiiiiiiiii ... 43

13. Utility Programs.t i i 44
Chapter 6: Runtime Database Access Ceeesecessenenens 45
1. 101170 4 1< YUY 45

2. Database Include Files., 45

3. Runtime Database ACCESS . ..o vvveetiinn it iiiieninneens 48

4. Old Database AccessInterfacet 56
Chapter 7: Database Scanning............. Chssssesiseananas 57
1. 101 o U 57

2. Scan Related Database Fieldsot 58

3. Software Components That Interact With The Scanning System. 58

4. Implementation Overview........ ..., 61
Chapter 8: Record And Device Support Y 11
1. OVEIVIEW L o vttt it ee it et ie e etaeearaaenaeareannn 65

2. Overview of Record Processingiiiiiiiiinnann.. 66

3. Record Support and Device Support Entry Tables 66

4. Example Record SupportModule.................l 67

5. Global Record Support Routines.c.vviiiiiiiiiiinennnn. 72

6. Record Support Routines.cooviiiiiiii it 75

7. Example Device Support Modulesoooiiiiit, 78

8. Device SupportRoutines.covviiiiii i, 81

9. Device Drivers. covi ettt ittt it i i i 82
Chapter 9: Device Support Library........cccevveiiiiaaa.. 83
1. L0 0 o 13 83

2. Registering VME Addresses coovevev i, 83

ii EPICS I0C Application Developer’s Guide Document Revision: 1

Table of Contents

3. Interrupt Connect Routines.ooiiiiiiiii i, 84
4, Macros and Routines for Normalized Analog Values 84
Chapter 10: IOC Database Configuration87
1. (037 o - e 87
2. Overview of I0C Database Configuration................... .00 87
3. Self DefiningRecordscoiiniiiiiiiinniiniinennnnnne. 88
4. AsciiDefinition Filesoooviiiiiiii i 89
5. Record Description Filescooiiiiiiiiiiiiiiiinnn., 91
6. ASCHBuild Utilities ov vttt i iiiiii et 92
7. DCT - Database Configuration Tool 93
Chapter 11: IOC Initialization.........coveeveieieiieinnnn. 95
1. L 3 1 95
Chapter 12: Database Structures................. ceeecesens 101
1. OV eIVIEW L.ttt ettt et ettt e 101
2. Macros for Accessing Database Structures 101
3. Database Structurescciiiiiii it i i 104

Index of Functions and Commandscoeevveveeees...113

EPICS Release: R3.12

EPICS I0C Application Developer's Guide jit

Table of Contents

v EPICS 10C Application Developer's Guide Document Revision: 1

Preface

1. Overview

This document describes the core software that resides in an Input/Output Controller 10C),
one of the major components of EPICS. The plan of the book is:

Chapter 1:

Chapter 2:
Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

EPICS OVERVIEW
An overview of EPICS is presented, showing how the IOC software fits into
EPICS. This is the only chapter that discusses OPI software and Channel Access.
I0C TEST FACILITIES
Test routines that can be executed via the vxWorks shell
GENERAL PURPOSE FEATURES
General purpose tasks, and error handling conventions.
DATABASE LOCKING, SCANNING, and PROCESSING
Overview of three closely related IOC concepts. It is given so that later chapters
are more meaningful.
STATIC DATABASE ACCESS
Database access library that works on Unix and vxWorks and on initialized or
uninitialized EPICS databases.
RUNTIME DATABASE ACCESS
The heart of the IOC software is the memory resident database. Rather then
describing database structures first, the runtime database access routines are
discussed. This is an easier way of understanding the capabilities of the database.
DATABASE SCANNING
Database scan tasks, i.e. the tasks that request records to be processed.
RECORD and DEVICE SUPPORT
The concepts of record and device support are discussed. This information is
necessary for anyone who wishes to provide customized record and device
support.
DEVICE SUPPORT LIBRARY

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 1

Preface
Acknowledgments

A set of routines are provided so that device support modules can use shared
resources such as VME address space.

Chapter 10: I0C DATABASE CONFIGURATION
Various ASCII definition files used by EPICS as well as the build utilities that
read the ASCII files and turn them into files understood by EPICS. Anyone
writing record and or device support must understand how to modify these
ASCII files.

Chapter 11: IOC INITIALIZATION
A great deal happens at IOC initialization. This chapter takes some of the
mystery from initialization.

Chapter 12: DATABASE STRUCTURES
A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it does not
describe other EPICS tools which run in an IOC such as the sequencer. It also does not
describe Channel Access which is, of course, one of the major IOC components.

The reader of this manual should also have the following documents:
EPICS Record Reference Manual, Janet Anderson and Marty Kraimer
vxWorks Programmer’s Guide, Wind River Systems

vxWorks Reference Manual, Wind River Systems

Acknowledgments

The basic model of what an IOC should do and how to do it were developed by Bob Dalesio at
LANL/GTA. The principle ideas for Channel Access were developed by Jeff Hill of LANL/
GTA. Bob and Jeff also were the principle implementers of the original IOC software. They
developed this software over a period of several years with feedback from LANL/GTA users.
Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the
major goal being to provide easily extendible record and device support. Marty Kraimer
(ANL/APS) was primarily responsible for designing the data structures needed to support
extendible record and device support and for making the changes needed to the IOC resident
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC
modules necessary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive
changes to the Database Configuration Tool (DCT) necessary to support the new facilities.
Janet Anderson developed methods to systematically test various features of the IOC software
and is the principal implementer of changes to record support.

Since 1991.many improvements and refinements have been made to the EPICS IOC software
by people at APS, LANL, and other Sites.

Matt Needes implemented and supplied the description of fast database links and the database
debugging tools.

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 1: EPICS Overview

1. What is EPICS?

EPICS consists of a set of software components and tools with which Application Developers
can create a control system. The basic components are:

¢ OPI: Operator Interface. This is a UNIX based workstation which can run various
EPICS tools.

* JIOC: Input/Output Controller. This is a VME/VXI based chassis containing a Motorola
68xxx processor, various I/O modules, and VME modules that provide access to other
I/0 buses such as GPIB.

¢ LAN: Local Area Network. This is the communication network which allows the IOCs
and OPIs to communicate. EPICS provides a software component, Channel Access,
which provides network transparent communication between a Channel Access client
and an arbitrary number of Channel Access servers.

Figure 1-1 shows the basic physical structure of a control system implemented via EPICS.

«-- |opm| =+ [|oOPI| --- |oOPI

LAN

= I0oC " IoC

Figure 1-1: EPICS Based Control System

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 3

-

Chapter 1: EPICS Overview

Basic Attributes
The rest of this chapter gives a brief description of EPICS:

» Basic Attributes: A few basic attributes of EPICS.

¢ Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

¢ IOC Software: EPICS supplied IOC software components.

e Channel Access: EPICS software that supports network independent access to IOC
databases.

* OPI Tools: EPICS supplied OPI based tools.

¢ EPICS Core: A list of the EPICS core software, i.e. the software components without
which EPICS will not work.

2. Basic Attributes
The basic attributes of EPICS are:

* Tool Based: EPICS provides a number of tools for creating a control system. This
minimizes the need for custom coding and helps ensure uniform operator interfaces.

* Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the
network is not saturated, no single bottle neck is present. A distributed system scales
nicely. If a single IOC becomes saturated, its functions can be spread over several IOCs.
Rather than running all applications on a single host, the applications can be spread over
many OPIs.

* Event Driven: The EPICS software components are all designed to be event driven to
the maximum extent possible. For example, rather than having to poll IOCs for changes,
a Channel Access client can request that it be notified when changes occur. This design
leads to efficient use of resources, as well as, quick response times.

¢ High Performance: A SPARC based workstation can handle several thousand screen
updates a second with each update resulting from a Channel Access event. A 68040
IOC can process more than 6,000 records per second, including generation of Channel
Access events.

3. Hardware - Software Platforms (Vendor Supplied)
OP1 Hardware
» Unix based Workstation, currently Sun4s
* Hope to support HP RISC workstation in near future
Software

* UNIX

¢ X Windows

¢ Motif Toolkit

LAN Hardware
* Ethernet and FDDI
4 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 1: EPICS Overview

I0C Software Components
Ethernet
Channel Sequencer
Access
>l Monitors
Database
Scanners Access DATABASE
Driver or Record Support
Device
Interrupt
Routines
Device Support
Device
Drivers
VME

Figure 1-2: System Overview

I0C

¢ ATM in the future
Software

» TCP/IP protocols via sockets

Hardware

* VME/VXI bus and crates

¢ Motorola 68020, 68030 and 68040

* Various VME modules (ADCs, DAC, Binary V/O, etc.)
Allen Bradley Scanner (Most AB I/O modules)

* GPIB devices

* BITBUS devices

Software

» vxWorks operating system
¢ Real time kernel
» Extensive “Unix like” libraries

4. I0C Software Components

Figure 1-2 contains an overview of the IOC software components and their interactions.

* DATABASE: The memory resident database plus associated data structures.

* Database Access: Database access routines. With the exception of record and device
support, all access to the database is via the database access routines.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide

Chapter 1: EPICS Overview

|IOC Software Components

DATABASE

Database Access

Database
Scanning

Record Support,
Device Support
and Device
Drivers

¢ Scanners: The mechanism for deciding when records should be processed.
* Record Support: Each record type has an associated set of record support routines.
¢ Device Support: Each record type has one or more sets of device support routines.

« Device Drivers: Device drivers access external devices. A driver may have an
associated driver interrupt routine.

¢ Channel Access: The interface between the external world and the IOC. It provides a
network independent interface to database access.

e Monitors: Database monitors are invoked when database field values change.
¢ Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

The heart of each IOC is a memory resident database together with various memory resident
structures describing the contents of the database. EPICS supports a large and extensible set of
record types, e.g. ai (Analog Input), ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and
others are specific to particular record types. Every record has a record name and every field
has a field name. The first field of every database record holds the record name, which must be
unique across all IOCs attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficiently. Most
software components, because they access the database via database access routines, do not
need to be aware of these structures.

With the exception of record and device support, all access to the database is via the channel or
database access routines. See “Runtime Database Access” on page 45 for details.

Database scanning is the mechanism for deciding when to process a record. Four types of
scanning are possible: Periodic, Event, /O Event, and Passive.

* Periodic: A request can be made to process a record periodically. A number of time
intervals are supported.

e Event: Event scanning is based on the posting of an event by any IOC software
component. The actual subroutine call is:
post_event (event_num)
* I/O Event: The /O event scanning system processes records based on external
interrupts. An IOC device driver interrupt routine must be available to accept the
external interrupts.

* Passive: Passive records are processed as a result of linked records being processed or
as a result of external changes such as Channel Access puts.

In order to remove record specific knowledge from database access, each record type has an
associated record support module. Similarly, in order to remove device specific knowledge
from record support, each record type can have a set of device support modules. If the method
of accessing hardware is complicated, a device driver can be provided to shield the device
support modules. Record types not associated with hardware do not have device support or
drivers.

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 1: EPICS Overview
Channel Access

Channel Access

Database
Monitors

The IOC software is designed so that the database access layer knows nothing about the record
support layer other than how to call it. The record support layer in turn knows nothing about its
device support layer other than how to call it. Similarly the only thing a device support layer
knows about its associated driver is how to call it. This design allows a particular installation
and even a particular JOC within an installation to choose a unique set of record types, device
types, and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device
drivers, these topics are discussed in greater detail in a later chapter.

Every record support module must provide a record processing routine to be called by the
database scanners. Record processing consists of some combination of the following functions
(particular records types may not need all functions):

* Input: Read inputs. Inputs can be obtained, via device support routines, from hardware,
from other database records via database links, or from other IOCs via Channel Access
links.

¢ Conversion: Conversion of raw input to engineering units or engineering units to raw
output values.

* Output: Write outputs. Output can be directed, via device support routines, to
hardware, to other database records via database links, or to other IOCs via Channel
Access links.

» Raise Alarms: Check for and raise alarms.
* Monitor: Trigger monitors related to Channel Access callbacks.
¢ Link: Trigger processing of linked records.

Channel Access is discussed in the next section.

Database monitors provide a callback mechanism for database value changes. This allows the
caller to be notified when database values change without constantly polling the database. A
mask can be set to specify value changes, alarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use
the database monitors. The monitor routines will not be described because they are of interest
only to Channel Access.

Channel Access

Client Services

Channel Access provides network transparent access to IOC databases. It is based on a client
server model. Each IOC provides a Channel Access server which is willing to establish
communication with an arbitrary number of clients. Channel Access client services are
available on both OPIs and IOCs. A client can communicate with an arbitrary number of
servers,

The basic Channel Access client services are:

e Search: Locate the IOCs containing selected process variables and establish
communication with each one.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 7

Chapter 1: EPICS Overview

Channel Access

Search Server

Connection
Request Server

Connection
Management

¢ Get: Get value plus additional optional information for a selected set of process
variables.

e Put: Change the values of selected process variables.

* Add Event: Add change of state callback. This is a request to have the server send
information only when the associated process variable changes state. Any combination
of the following state changes can be requested: change of value, change of alarm status
and/or severity, and change of archival value. Many record types provide hysteresis
factors for value changes.

In addition to process variable values, get and add event, any combination of the following
additional information may be requested:

» Status: Alarm status and severity.

* Units: Engineering units for this process variable.

* Precision: Precision with which to display floating point numbers.

¢ Time: Time when the record was last processed.

¢ Enumerated: A set of ASCII strings defining the meaning of enumerated values.
¢ Graphics: High and low limits for producing graphs.

» Control: High and low control limits.

¢ Alarm: The alarm HIHI, HIGH, LOW, and LOLO values for the process variable.

It should be noted that channel access does not provide access to database records as records.
This is a deliberate design decision. This allows new record types to be added without
impacting any software that accesses the database via Channel Access. A Channel Access
client can communicate with multiple IOCs having differing sets of record types.

Channel Access provides a server which waits for Channel Access search messages. These are
generated when a Channel Access client (for example when an Operator Interface task starts)
searches for the IOCs containing process variables the client uses. This server accepts all
search messages, checks if any of the process variables are located in this IOC, and, if any are
found, replies to the sender.

For each IOC containing process variables it uses, the Channel Access client issues connection
requests. The connection request server accepts the request and establishes a connection to the
client. Each such connection is managed by two separate tasks. ca_get and ca_put requests
map to dbGetField and dbPutField database access requests. ca_add_event requests
result in database monitors being established. Database access and/or record support routines
trigger the monitors via a call to db_post_event.

Each IOC provides a connection management service. When a Channel Access server fails
(e.g. its IOC crashes) the client is notified and when a client fails (e.g. its task crashes) the
server is notified. When a client fails, the server breaks the connection. When a server crashes,
the client automatically re-establishes communication when the server restarts.

EPICS 10C Application Developer's Guide Document Revision: 1

 ——————— = e~ - e, e e —

Chapter 1: EPICS Overview
OPI Tools

6. OPI Tools

Channel Access
Tools

Other OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on
whether or not they use Channel Access. Channel Access tools are real time tools, i.e. they are
used to monitor and control IOCs.

* MEDM: Motif version of combined display manager and display editor.

* DM: Display Manager. Reads one or more display list files created by EDD, establishes
communication with all necessary IOCs, establishes monitors on process variables,
accepts operator control requests, and updates the display to reflect all changes.

* ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration
file.

¢ AR: Archiver. General purpose tool to acquire and save data from IOCs.
¢ Sequencer: Runs in an IOC and emulates a finite state machine.

* BURT: Backup and Restore Tool. General purpose tool to save and restore Channel
Access channels. The tool can be run via Unix commands or via a Graphical User
Interface.

e KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

* PROBE: Allows the user to monitor and/or change a single process variable specified
at run time.

* XMCA: Allows the user to monitor and/or change a set of process variables specified
at run time.

« XMSEQ: GUI which allows the user to prepare sequence programs that can be run on
Unix or on an IOC.

e CAMATH: Channel Access interface for Mathematica.
¢« CAWINGZ: Channel Access interface for Wingz.
» Other tools are also available.

* DCT: Database Configuration Tool. Used to create a run time database for an I0C.

* GDCT: Graphical Database Configuration Tool. Used to create a run time database for
an I0C.

* EDD: Display Editor. This tool is used to create a display list file for the Display
Manager. A display list file contains a list of static, monitor, and control elements. Each
monitor and control element has an associated process variable.

* SNC: State Notation Compiler. It generates a C program that represents the states for
the IOC Sequencer tool.

* Build Tools: Tools are available to create the various database components from ASCII
definition files.

* Source/Release: EPICS provides a Source/Release mechanism for managing EPICS.

7. EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software,
i.e. the components of EPICS without which EPICS would not function, are:

EPICS Release: R3.12 EPICS I0C Application Developer’'s Guide]

Chapter 1: EPICS Overview

EPICS Core Software

¢ Channel Access - Client and Server software
DATABASE
¢ Scanners

¢ Monitors

DCT or GDCT
Build Tools

¢ Source/Release

All other software components are optional. Of course, any application developer would be
crazy to ignore tools such as MEDM (or EDD/DM). Likewise an application developer would
not start from scratch developing record and device support. Most OPI tools do not, however,
have to be used. Likewise any given record support module, device support module, or driver
could be deleted from a particular IOC and EPICS will still function.

10

EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 2:

I0C Test Facilities

1.

Overview

This chapter describes a number of IOC test routines that are of interest to both application
developers and system developers. All routines can be executed from the vxWorks shell. The
parentheses are optional, but the arguments must be separated by commas. All character string

o

arguments must be enclosed in .

The user should also be aware of the field TPRO, which is present in every database record. If it
is set TRUE then a message is printed each time its record is processed and a message is printed
for each record processed as a result of it being processed.

Database List, Get, Put

dbl

Database List, format:
dbl (*“*<recoxrd type>”)
Examples

dbl

dbl “ai~
This command prints the names of the records in the run time database. If <record type> is
not specified, all records are listed. If <record type> is specified, then only the names of the
records of that type are listed.

EPICS Release: R3.12

EPICS I0C Application Developer’'s Guide 11

Chapter 2: I0C Test Facilities

Database List, Get, Put

dbgrep

dba

dbgf

dbpf

dbpr

List Record Names That Match a Pattern, format:
dbgrep (“<pattern>*)
Examples

dbgrep “S0*~
dbgrep “*gpibAi*~

Lists all record names that match a pattern. The pattern can contain any characters that are
legal in record names as well as “*”, which matches one or more of any character.

Database Address, format:
dba (“<record_name.field_name>")
Example

dba “aitest”
dba “aitest.VAL”

This command calls dbNameToAddr and then prints the value of each field in the dbaddr
structure describing the field. If the field name is not specified then VAL is assumed (the two
examples above are equivalent).

Get Field, format:
dbgf (“<record_name.field_name>")
Example:

dbgf “aitest”
dbgf “aitest.VAL”

This performs a dbNameToAddr and then a dbGetField. It prints the value of each element of
the dbaddr structure as well as the field value. If the field name is not specified then VAL is
assumed (the two examples above are equivalent).

Put Field, format:

dbpf (“<record_name.field_name>", *<value>*)
Example:

dbpf “aitest”,”5.0"

This command performs a dbNameToAddr followed by a dbPutField and dbgf. If
<field_name> is not specified VAL is assumed.

Print Record, format:

dbpr (“<record_name>”,<interest level>)
Example

dbpr “aitest~,2

This command prints all fields of the specified record up to and including those with the
indicated interest level. Interest level has one of the following values:

12

~ EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 2: 10C Test Facilities
Breakpoints

» 0: Fields of interest to an Application developer and that can be changed as a result of
record processing.

¢ 1: Fields of interest to an Application developer and that do not change during record
processing.

 2: Fields of major interest to a System developer.
* 3: Fields of minor interest to a System developer.
* 4: Fields of no interest. This is used only for pad fields.

dbtr Test Record, format:
dbtr (“<record_name>"*)
This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose is to
test record processing.
3. Breakpoints
A breakpoint facility that allows the user to step through database processing on a per lockset
basis. This facility has been constructed in such a way that the execution of all locksets other
than ones with breakpoints will not be interrupted. This was done by executing the records in
the context of a separate task.
The breakpoint facility records all attempts to process records in a lockset containing
breakpoints. A record that is processed through external means, e.g.: a scan task, is called an
entrypoint into that lockset. The dbstat command described below will list all detected
entrypoints to a lockset, and at what rate they have been detected.
dbb Set Breakpoint, format:
dbb (“<record_name>")
Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint continuation
task (one per lockset). Further record execution in this lockset is run within this task’s context.
This task will automatically quit if two conditions are met, all breakpoints have been removed
from records within the lockset, and all breakpoints within the lockset have been continued.
dbd Remove Breakpoint, format:
dbd (~”<record_name>")
Removes a breakpoint from a record.
dbs Single Step, format:

dbs (“<record_name>*)

Steps through execution of records within a lockset. If this command is called without an
argument, it will automatically step starting with the last detected breakpoint.

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 13

Chapter 2: IOC Test Facilities
Hardware Reports

dbe Continue, format:
dbc (“<record_name>*)
Continues execution until another breakpoint is found. This command may also be called
without an argument.
dbp Print Fields Of Suspended Record, format:
dbp
Prints out the fields of the last record whose execution was suspended.
dbap Auto Print, format:
dbap (“<record_name>*)
Toggles the automatic record printing feature. If this feature is enabled for a given record, it
will automatically be printed after the record is processed.
dbstat Status, format:
dbstat
Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the
records with breakpoints set, what records have the autoprint feature set (by dbap), and what
entrypoints have been detected. It also displays the vxWorks task ID of the breakpoint
continuation task for the lockset. Here is an example output from this call:
L.Set: 00009 Stopped at: so#B: 00001 T: 0x23cafac
Entrypoint: so#C: 00001 C/8: 0.1
Breakpoint: so(ap)
LSet: 00008#B: 00001 T: 0x22feedc
Breakpoint: output
The above indicates that two locksets contain breakpoints. One lockset is stopped at record
“so.” The other is not currently stopped, but contains a breakpoint at record “output.”
“Lset:” is the lockset number that is being considered. “#B:” is the number of breakpoints set
in records within that lockset. “r:” is the vxWorks task ID of the continuation task. “c:” is the
total number of calls to the entrypoint that have been detected. “c/s:” is the number of those
calls that have been detected per second. (ap) indicates that the autoprint feature has been
turned on for record “so.”
4. Hardware Reports
dbior I/O Report, format:
dbior (“<driver_name>*,<interest level>)
This command calls the report entry of the indicated driver. If <driver_name> is not specified
then the report for all drivers is generated. It also calls the report entry of all device support
modules. Interest level is one of the following:
 0: Print only a list of modules found.
14 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 2: |0C Test Facilities
Scan Reports

* 1: Print additional information.
* 2: Print even more info. The user may be prompted for options.

dbhcer Hardware Configuration Report, format:
dbher

This command produces a report of all hardware links. To use it on the IOC, issue the
command:

dbhcr > report
The report will probably not be in the sort order desired so on Unix issue the command:
sort report > report.sort

report.sort should contain the sort order you desire.

5. Scan Reports

scanppl Print Periodic Lists, format:
scanppl

This routine prints a list of all records in the periodic scan lists.

scanpel Print Event Lists, format:
scanpel

This routine prints a list of all records in the event scan lists.

scanpiol Print I/O Event Lists, format:
scanpiol

This routine prints a list of all records in the I/O event scan lists.

6. Time Server Report

TSreport Format:

TSReport
This routine prints out information about the Time server. This includes:
* Slave or Master

* Soft or Hardware synchronized
* Clock and Sync rates

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 15

Chapter 2: IOC Test Facilities
Access Security Commands

e efc.

Access Security Commands

asSetFilename

asInit

asdbdump

aspuag

asphag

asprules

aspmem

Format:
asSetFilename (“<filename>”")

This command defines a new access security file.

Format:
asiInit

This command reinitializes the access security system. It rereads the access security file in
order to create the new access security database. This command is useful either because the
asSetFilename command was used to change the file or because the file itself was modified.
Note that it is also possible to reinitialize the access security via a subroutine record. See the
access security document for details.

Format:
asdbdump

This provides a complete dump of the access security database.

Format:
aspuag ("“<user access group>")

Print the members of the user access group. If no user access group is specified then the
members of all user access groups are displayed.

Format:
asphag (“<host access group>")

Print the members of the host access group. If no host access group is specified then the
members of all host access groups are displayed.

Format:
asprules (“<access security group>~)

Print the rules for the specified access security group or if no group is specified for all groups.

Format:

aspmem (“<access security group>*, <print clients>)

16

EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 2: 10C Test Facilities
Channel Access Reports

Print the members (records) that belong to the specified access security group, for all groups if
no group is specified. If <print clients> is (0, 1) then Channel Access clients attached to
each member (are not, are) shown.

Channel Access Reports

ca_chanel_status

client_stat

dbel

Format:
ca_chanel_status (taskid)

Prints status for each channel in use by specialized vxWorks task.

Format:
client_stat

Channel Access client status

Format:
dbel (“<record_name>")

This routine prints the Channel Access event list for the specified record.

Interrupt Vector

veclist

10.

Format:
veclist

Print Interrupt Vector List

Environment Variables

epicsPrtEnvParams

Format:
epicsPrtEnvParams

Print Environment Variables

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 17

Chapter 2: IOC Test Facilities
Database System Test Routines

11. Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application
Developers.

dbt Measure Time To Process A Record, format:
dbt (“<record_name”)
Times the execution of 100 successive processings of record record_name. Note that process
passive and forward links within this record may incur the processing of other records in its
lockset. This function is a wrapper around the VxWorks timexN() function, and directly
displays its output. Therefore one must divide the result by 100 to get the execution time for
one processing of record._name.
dbtgf Test Get Field, format:
dbtgf (“<record_name.field_name>")
Example:
dbtgf “aitest”
dbtgf “aitest.VAL”
This performs a dbNameTo2ddr and then calls dbGetField with all possible request types and
options. It prints the results of each call. This routine is of most interest to system developers
for testing database access.
dbtpf Test Put Field, format:
dbtpf (“<record_name.field_name>”, “<value>*)
Example:
dbtpf *aitest”,”5.0"
This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for
each possible request type. This routine is of interest to system developers for testing database
access.
dbtpn Test Put Notify, format:
dbtpn (“<record_name.field_name>”, *<value>*)
Example:
dbtpn “aitest”,~5.0~
This command performs a dbNameToAddr, then calls dbPutNotify and has a callback routine
that prints a message when it is called. This routine is of interest to system developers for
testing database access.
dblls List Lock Sets, format:
dblls ({lock_set)
18 EPICS 10C Application Developer's Guide Document Revision: 1

—_———— - = ———- - e s ———

Chapter 2: IOC Test Facilities
Old Database Access Testing

This command generates a report showing the lock set to which each record belongs. If
lock_set is O all records are shown, otherwise only records in the specified lock set are
shown.

dbls List Structures: This test routine prints a formatted dump of the internal database structures. It
is completely menu driven. Only system developers will be normally be interested in this
routine because it assumes that the user understands the internal data structures.

12. Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old
database access interface, which is still used by Channel Access.

gft Get Field Test, Format:
gft (“<record_name.field_name>*)
Example:

gft “aitest”
gft *“aitest.VAL”

This performs a db_name_to_addr and then calls db_get_field with all possible request
types. It prints the results of each call. This routine is of interest to system developers for
testing database access.

pft Put Field Test, format:
pft (*<record_name.field_name>*, “<value>"*)
Example:
pft “aitest”,”5.0~

This command performs a db_name_to_addr, db_put_field, db_get_field and prints the
result for each possible request type. This routine is of interest to system developers for testing
database access.

tpn Test Put Notify, format:
tpn (“<record_name.field_name>”, *<value>*)
Example:
tpn “aitest”,”5.0"

This routine tests dbPutNotify via the old database access interface.

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 19

Chapter 2: I0C Test Facilities
Old Database Access Testing

20

EPICS 10C Application Developer’s Guide

Document Revision: 1

Chapter 3: General Purpose Features

1. Overview

This chapter describes two general purpose IOC features:

* General purpose tasks
¢ Error handling

2. General Purpose Tasks

Callback Tasks EPICS provides three general purpose IOC callback tasks. The only difference between the
tasks is scheduling priority: Low, Medium, and High. The low priority task runs at a priority
just higher than Channel Access, the medium at a priority about equal to the median of the
periodic scan tasks, and the high at a priority higher than the event scan task. The callback
tasks provide a service for any software component that needs a task under which to run. The
callback tasks use the task watchdog (described below). They use a rather generous stack and
can thus be used for invoking record processing. For example the I/O event scanner uses the
general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:
#include <callback.h>

2. Provide storage for a structure that is a private structure for the callback tasks:
" CALLBACK mycallback;
It is permissible for this to be part of a larger structure, e.g.
struct {

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 21

Chapter 3: General Purpose Features

General Purpose Tasks

Task Watchdog

CALLBACK mycallback;

Y.

3. Call routines (actually macros) to initialize fields in CALLBACK:

callbackSetCallback (VOIDFUNCPTR, CALLBACK *)
This defines the callers callback routine. The first argument is the address of a function
returning voID. The second argument is the address of the CALLBACK structure.
callbackSetPriority(int, CALLBACK *)
The first argument is the priority, which can have one of the values: prioritylow,
priorityMedium, or priorityHigh. These values are defined in callback.h. The
second argument is again the address of the CALLBACK structure.
callbackSetUser (VOID *, CALLBACK *)
This call is used to save a value that can be retrieved via a call to:
callbackGetUser (VOID *,CALLBACK *)

. Whenever a callback request is desired just call:

callbackRequest (CALLBACK *)
This. call can be made from interrupt level. The callback routine is passed a single
argument, which is the same argument that was passed to callbackRequest, i.e., the
address of the CALLBACK structure.

An example use of the callback tasks.

#include <callback.h>

static structure {

char begid(80];

CALLBACK callback;

char endid([80];
JmyStruct;

void myCallback(CALLBACK *pcallback)

{
struct myStruct *pmyStruct;
callbackGetUser (pmyStruct, pcallback)
printf ("begid=%s endid=%s\n*,&pmyStruct->begid{0],

&pmStruct->endid[0]);

}

example(char *pbegid, char*pendid)

(-
strepy (&myStruct .begid[0], pbegid) ;
strepy (&myStruct.endid{0], pendid) ;
callbackSetCallback (myCallback, &myStruct.callback) ;
callbackSetPriority (priorityLow, &myStruct.callback);
callbackSetUser (&myStruct, &myStruct.callback);
callbackRequest (&myStruct.callback) ;

}

The example can be tested by issuing the following command to the vxWorks shell:
example (*begin”, "end”)

This simple example shows how to use the callback tasks with your own structure that contains
the CALLBACK structure at an arbitrary location. Note that things can be simplified if carLLBACK
is located at the beginning of the structure,

EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to
be watched. The task watchdog runs periodically and checks each task in its task list. If any
task is suspended, an error message is issued and, optionally, a callback task is invoked. The
task watchdog provides the following features:

1. Include module:

22

EPICS |0C Application Developer's Guide Document Revision: 1

Chapter 3: General Purpose Features
Error Handling

#include <taskwd.h>

. Insert request:

taskwdInsert (int tid, VOIDFUNCPTR callback, VOID *userarg);
This is the request to include the task with the specified tid in the list of tasks to be
watched. If callback is not NULL then if the task becomes suspended, the callback
routine will be called with a single argument userarg.

. Remove request:

taskwdRemove (int tid);
This routine would typically be called from the callback routine invoked when the
original task goes into the suspended state.

. Insert request to be notified in any task suspends:

taskwdAnyInsert (void *userpvt, VOIDFUNCPTR callback,VOID *userarg);
The callback routine will be called whenever any of the tasks being monitored by the
task watchdog task suspends. userpvt must have a value unique to call to
taskwdAnyInsert.

. Remove request for taskwdanyInsert:

taskwdAnyRemove (void *userpvt);
userpvt is the value that was passed to taskwdanyInsert.

3. Error Handling

Overview

The error handling facilities provided by the IOC include the following features:

Whenever possible, IOC routines return a status value: (0, non-0) means (OK, ERRCR).

The include files for each IOC subsystem contain macros defining error status symbols
and strings.

Routines are provided for run time access of the error status symbols and strings.
A routine errMessage provides access to a system wide error handling system.

A global variable errverbose indicates if routines should call errMessage for errors
belonging to a particular client.

Errors detected by an IOC can be divided into classes: Errors related to a particular client and
errors not attributable to a particular client. An example of the first type of error is an illegal
Channel Access request. For this type of error, a status value should be passed back to the
client. An example of the second type of error is a device driver detecting a hardware error.
This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

In many cases it is not possible for the routine detecting an error to decide which type of
error occurred.

Normally, only the routine detecting the error knows how to generate a fully descriptive
error message. Thus, if a routine decides that the error belongs to a particular client and
merely returns an error status value, the ability to generate a fully descriptive error
message is lost.

If a routine always generates fully descriptive error messages then a particular client
could cause error message storms.

While developing a new application the programmer normally prefers fully descriptive
error messages. For a production system, however, the system wide error handler should
not normally receive error messages cause by a particular client.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 23

Chapter 3: General Purpose Features

Error Handling

If used properly, the error handling facilities described in this chapter can process both types of
eITorS.

Return Status Whenever it makes sense, IOC routines return a long word status value encoded similar to the
Values vxWorks error status encoding. The most significant short word indicates the subsystem
module within which the error occurred. The low order short word is a subsystem status value.
In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.
A file epics/share/epicsH/errMdef.h defines each subsystem number. For example the
define for the database access routines is:
$define M_dbAccess (501 << 16) /*Database Access Routines*/
Directory “epics/share/epicsH’ contains an include library for every IOC subsystem that
returns standard status values. The status values are encoded with lines of the following
format:
#define S_xxooxxx value /*string value*/
For example:
#define S_dbAccessBadDBR (M_dbAccess|3) /*Invalid Database Request*/
For example, when dbGetField detects a bad database request type, it executes the statement:
return(S_dbAccessBadDBR) ;
The calling routine checks the return status as follows:
status = dbGetField(...);
if(status) {/* Call was not successful */}
Interface to Either errMessage or errPrintf can be used as an interface to the system wide error
System Wide handling system. At the present time, they end up calling logMsg. Facilities have been added
. to EPICS to trap 1ogMsg calls and direct them to a system wide log file. In the future, a more
Error Handling . . X ? .
Svst generalized system wide error handling system, which allows an error handling program to
ystem receive error messages from all or selected IOCs, can be provided.
errMessage Routine errMessage (actually a macro that calls exrrPrintf) has the following format:
void errMessage(
long status,
char *message);
Where status is defined as:
* 0: Find latest vxWorks or Unix error.
e .1: Don’t report status.
¢ Other: See “Return Status Values” above.
errMessage, via a call to errPrintf£, prints the message, the status symbol and string values,
and the name of the task which invoked errMessage. It also prints the name of the source file
and the line number from which the call was issued.
The calling routine is expected to pass a descriptive message to this routine. Many subsystems
provide routines built on top of errMessage which generate descriptive messages.
24 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 3: General Purpose Features
Error Handling

An IOC global variable errVerbose, defined as an external in errMdef.h, specifies
verbose messages. If errVerbose is TRUE then errMessage should be called whenever an
error is detected even if it is known that the error belongs to a specific client. If errVerbose is
FALSE then errMessage should be called only for errors that are not caused by a specific
client.

errPrintf Routine errPrintf has the following format:

void errPrintf(
long status,
__FILE__,
__LINE__,
char *fmtstring
<argl>,

o)
Where status is defined as:
¢ 0: Find latest vxWorks or Unix error.

¢ -1: Don’t report status.
¢ Other: See “Return Status Values”, above.

FILE and LLINE are defined as:

* _FILE__ As shown or NULL if the file name and line number should not be printed.

e TINE__ Asshown

The remaining arguments are just like the arguments to the C printf routine. errverbose
determines if the filename and line number are shown.

EPICS Release: R3.12 EPICS IOC Application Developer's Guide 25

Chapter 3: General Purpose Features

Error Handling

26

EPICS 10C Application Developer’s Guide

Document Revision: 1

Chapter 4: Database Locking, Scanning, And
Processing

1. Overview

Before describing particular components of the IOC software, it is helpful to give an overview
of three closely related topics: Database locking, scanning, and processing. Locking is done to
prevent two different tasks from simultaneously modifying related database records. Database
scanning is the mechanism for deciding when records should be processed. The basics of
record processing involves obtaining the current value of input fields and outputting the
current value of output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records.
This feature also causes considerable complication. Thus, before discussing locking, scanning,
and processing, database links are described.

2. Database Links

A database record may contain links to other records. Each link is one of the following types:

» INLINK: Input link, used to fetch data.
* OUTLINK: Output link, used to write data.

INLINKSs and OUTLINKS can be one of the following: constant, database link, channel access
link, or a reference to a hardware signal.

* FWDLINK: A forward link refers to a record that should be processed whenever the
record containing the forward link completes processing.

NOTE: If a forward link is not a database link it is just ignored.
This chapter only discusses database links. Links are defined in file 1ink.h.

Database links are referenced by calling one of the following routines:

EPICS Release: R3.12 EPICS IOC Application Developer's Guide 27

Chapter 4: Database Locking, Scanning, And Processing

Database Locking

Process Passive

Maximize
Severity

* dbGetLink: The value of the field referenced by the input link retrieved.
* dbPutLink: The value of the field referenced by the output link is changed.
» dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense if it refers to a passive record that the application developer
wants processed after the record containing the link. For input and output links, however, two
other attributes can be specified by the application developer, process passive and maximize
severity.

Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record should
be processed before getting a value from an input link or after writing a value to an output link.
The linked record will be processed, via a call to dbProcess, only if the record is a passive
record and process_passive is TRUE.

Maximize severity (MS or NMS), is TRUE or FALSE. It determines if alarm severity is propagated
across links. For input links the alarm severity of the record referred to by the link is
propagated to the record containing the link. For output links the alarm severity of the record
containing the link is propagated to the record referred to by the link. In either case, if the
severity is changed, the alarm status is set to LINK_ALARM.

The method of determining if the alarm status and severity should be changed is called
”maximize severity”. In addition to its actual status and severity, each record also has a new
status and severity. The new status and severity are initially 0, which means No_arARM, Every
time a software component wants to modify the status and severity, it first checks the new
severity and only makes a change if the severity it wants to set is greater than the current new
severity. If it does make a change, it changes the new status and new severity, not the current
status and severity. When database monitors are checked, which is normally done by a record
processing routine, the current status and severity are set equal to the new values and the new
values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the
status reflects the first one detected.

Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously by
two different tasks. In addition, it prevents “outside” tasks from changing any field while the
record is being processed.

The following routines are provided for database locking.

dbScanLock (precoxrd) ;
dbScanUnlock (precord) ;

The basic idea is to call dbscanLock before performing any operations that can modify
database records and calling dbScanUnlock after the modifications are complete. Because of
database links (Input, Output, and Forward) a modification to one record can cause
modification to other records. All records linked together, except possibly for input links
declared NPP and NMS, are placed in the same lock set. dbScanLock locks the entire lock set
not just the record requested. dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

28

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 4: Database Locking, Scanning, And Processing
Database Scanning

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a
record and unlock afterwards.

All records linked via OUTLINKs and FWDLINKs are placed in the same lock set. Records
linked via INLINKs with process_passive or maximize_severity TRUE are also forced to
be in the same lock set. The lock sets are determined during IOC initialization.

Database Scanning

Database scanning is the mechanism that requests a database record be processed. Four types
of scanning are possible:

1. Periodic - Records are scanned at regular intervals.

2. YO event - A record is scanned as the result of an I/O interrupt.

3. Event - A record is scanned as the result of any task issuing a post_event request.
4

. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive
will issue a record processing request if and only if the record is passive and is not
already being processed.

A dbScanPassive request results from a task calling one of the following routines:

* dbScanPassive: Only record processing routines, dbGetLink, dbPutLink, and
dbPutField call dbScanPassive. Record processing routines call it for each forward
link in the record.

» dbPutField: This routine changes the specified field and then, if the field has been
declared process_passive, calls dbScanPassive. Each field of each record type has
the attribute process_passive declared TRUE or FALSE in the ASCII definition file.
This attribute is a global property, i.e. the application developer has no control of it. This
use of process_passive is used only by dbPutField. If dbPutField finds the record
already active (this can happen to asynchronous records) and it is supposed to cause it to
process, it arranges for it to be processed again, when the current processing completes.

* dbGetLink: If the link specifies process passive, this routine calls dbScanPassive.
Whether or not dbscanPassive is called, it then obtains the specified value.

* dbPutLink: This routine changes the specified field. Then, if the link specifies process
passive, it calls dbScanPassive. dbPutLink is only called from record processing
routines. Note that this usage of process_passive is under the control of the
application developer. If dbPutLink finds the record already active because of a
dbPutField directed to this record then it arranges for the record to be processed again,
when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call dbGetField
to obtain database values. dbGetField just reads values without asking that a record be
processed.

EPICS Release: R3.12

EPICS IOC Application Developer's Guide 29

Chapter 4: Database Locking, Scanning, And Processing

Record Processing

5. Record Processing

A record is processed as a result of a call to dbProcess. Each record support module must
supply a routine process. This routine does most of the work related to record processing.
Since the details of record processing are record type specific this topic is discussed in greater

detail in “Record And Device Support” on page 65.

6. Guidelines for Creating Database Links

Rules Relating
to Database
Links

Processing Order

The ability to link records together is an extremely powerful feature of the IOC software. In
order to use links properly it is important that the Application Developer understand how they
are processed. As an introduction consider the following example (Figure 4-1):

InLink PP

A FwdLink

FwdLink

Figure 4-1: Example of Database Links

Assume that A, B, and C are all passive records. The notation states that A has a forward link
to B and B to C. C has an input link obtaining a value from A. Assume, for some reason, A gets

processed. The following sequence of events occurs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C starts processing. One of the first steps is to get a value from A via the input link.

4. At this point a question occurs. Note that the input link specifies process passive
(signified by the PP after InLink). But process passive states that A should be
processed before the value is retrieved. Are we in an infinite loop? The answer is no.

Every record contains a field pact (processing active), which is set TRUE when record
processing begins and is not set FALSE until all processing completes. When C is

processed A still has pact TRUE and will not be processed again.

5. C obtains the value from A and completes its processing. Control returns to B.
6. B completes returning control to A

7. A completes processing.

This brief example demonstrates that database links needs more discussion.

The processing order is guaranteed to follow the following rules:

30

EPICS 10C Application Developer's Guide

— —e————— ——— - e e — -

Document Revision: 1

Chapter 4: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

Lock Sets

PACT -
processing active

Process Passive:
Link option

1. Forward links are processed in order from left to right and top to bottom. For example
the following records are processed in the order FLNK1, FLNK2, FLKN3, FLNK4
(Figure 4-2).

FLNK1 FLNK2

fanout

FLNK3 FLNK4

Figure 4-2: Processing Order

2. If a record has multiple input links (calculation and select records) the input is obtained
in the natural order. For example if the fields are named INPA, INPB, ..., INPL, then the
links are read in the order A then B then C, etc. Thus if obtaining an input resuits in a
record being processed, the processing order is guaranteed.

3. All input and output links are processed before the forward link.

All records, except possibly for NPP & NMS input links, linked together directly or indirectly
are placed in the same lock set. When dbScanLock is called the entire set, not just the
specified record, is locked. This prevents two different tasks from simultaneously modifying
records in the same lock set.

Each record contains a field pact. This field is set TRUE at the beginning of record processing
and is not set FALSE until the record is completely processed. In particular no links are
processed with pact FALSE. This prevents infinite processing loops. The example given at the
beginning of this chapter gives an example. It will be seen in Section 7 on page 32 and
Section 8 on page 33 that pact has other uses.

Input and output links have an option called process passive. For each such link the application
developer can specify process passive TRUE (PP) or process passive FALSE (NPP). Consider the
following example (Figure 4-3):

InLink PP v
FwdLink B
A fanout
FwdLink C
InLink PP 3

Figure 4-3: Incorrect Link Definition

Assume that all records except fanout are passive. When the fanout record is processed the
following sequence of events occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It calls dbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

4. A is processed, the data value fetched, and control is returned to B

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 31

Chapter 4: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

Process Passive:

Field attribute

Maximize
Severity: Link
option

5. B completes processing and control is returned to fanout. Fanout asks that C be
processed.

6. C begins processing. It calls dbGetLink to obtain data from A.
7. Because the input link has process passive TRUE, a request is made to process A.
8. A is processed, the data value fetched, and control is returned to C.
9. C completes processing and returns to fanout
10. The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no
process passive then A will only be processed once. Thus we should have (Figure 4-4).

InLink PP)
FwdLink B
A fanout
FwdLink C
InLink NPP 3

Figure 4-4: Correct Link definition

Each field of each database record type has an attribute called process_passive. This
attribute is specified in the ASCII record definition file. It is not under the control of the
application developer. This attribute is used only by dbPutField. It determines if a passive
record will be processed after dbPutField changes a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

Input and output links have an option called maximize severity. For each such link the
application.developer can specify maximize severity TRUE (MS) or maximize severity FALSE
(NMs).

When database input or output links are defined via DCT, the application developer can
specify if alarm severities should be propagated across links. For input links the severity is
propagated from the record referred to by the link to the record containing the link. For output
links the severity of the record containing the link is propagated to the record referenced by the
link. The alarm severity is transferred only if the new severity will be greater than the current
severity. If the severity is propagated the alarm status is set equal to LINK_ALARM. See
‘Maximize Severity” on page 28 for details.

Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the
application developer never needs to consider the possibility of delays when he defines a set of
related records. The only consideration is deciding when records should be processed and in
what order a set of records should be processed.

32

EPICS IOC Application Developer’s Guide Document Revision: 1

Chapter 4: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

Lets review the methods available to the application programmer for deciding when to process
a record and for enforcing the order of record processing.

1.

A record can be scanned periodically (at one of several rates), via I/O event, or via
Event.

. For each periodic group and for each Event group the phase field can be used to specify

processing order.

. The application programmer has no control over the record processing order of records

in different groups.

. The disable fields (sDIs, DISa, and DISV) can be used to disable records from being

processed. By letting the sDIs field of an entire set of records refer to the same input
record, the entire set can be enabled or disabled simultaneously. See the Record
Reference Manual for details.

. A record (periodic or other) can be the root of a set of passive records that will all be

processed whenever the root record is processed. The set is formed by input, output, and
forward links.

. The process_passive option specified for each field of each record determines if a

passive record is processed when a dbPutField is directed to the field. The application
developer must be aware of the possibility of record processing being triggered by
external sources if dbPutFields are directed to fields that have process_passive
TRUE.

. The process_passive option for input and output links provides the application

developer control over how a set of records are scanned.

. General link structures can be defined. The application programmer should be wary,

however, of defining arbitrary structures without carefully analyzing the processing
order.

8. Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input
record. When the record is processed the GPIB request is started and the processing routine
returns. Processing, however, is not really complete until the GPIB request completes. This is
handled via an asynchronous completion routine. Lets state a few attributes of asynchronous
record processing.

During the initial processing for all asynchronous records the following is done:

1.
2.
3.
4.

pact is set TRUE

Data is obtained for all input links
Record processing is started

The record processing routine returns

The asynchronous completion routine performs the following algorithm:

1.
1.
2.
3.
4.

Record processing continues

Record specific alarm conditions are checked
Monitors are raised

Forward links are processed

pact is set FALSE.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 33

Chapter 4: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

Lets note a few attributes of the above rules:

1. Asynchronous record processing does not delay the scanners.

2. Between the time record processing begins and the asynchronous completion routine
completes, no attempt will be made to again process the record. This is because pact is
TRUE. The routine dbProcess checks pact and does not call the record processing
routine if it is TRUE. Note, however, that if dProcess finds the record active 10 times
in succession, it raises a SCAN_ALARM.

3. Forward and output links are triggered only when the asynchronous completion routine
completes record processing.

With these rules the following works just fine:

ASYN dbScanPasive B

When dbProcess is called for record ASYN, processing will be started but dbScanPassive
will not be called. Until the asynchronous completion routine executes any additional attempts
to process ASYN are ignored. When the asynchronous callback is invoked the
dbScanPassive is performed.

Problems still remain. A few examples are:

Infinite Loop Infinite processing loops are possible.

dbScanPasive

dbScanPasive

Assume both A and B are asynchronous passive records and a request is made to process A.
The following sequence of events occur.

1. A starts record processing and returns leaving pact TRUE.

2. Sometime later the record completion for A occurs. During record completion a request
is made to process B. B starts processing and control returns to A which completes
leaving its pact field TRUE.

3. Sometime later the record completion for B occurs. During record completion a request
is made to process A. A starts processing and control returns to B which completes
leaving its pact field TRUE.

Thus an infinite loop of record processing has been set up. It is up to the application developer
to prevent such loops.

Obtain Old Data A dbGetLink to a passive asynchronous record can get old data.

A dbGetLink B

34 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 4: Database Locking, Scanning, And Processing
Cached Puts

Delays

Task Abort

If A is a passive asynchronous record then the dbGetLink request forces dbProcess to be
called for A. dbProcess starts the processing and returns. dbGetLink then reads the desired
value which is still old because processing will only be completed at a later time.

Consider the following:

ASYN dbScanPasive ASYN dbScanPasive —> = = *

The second ASYN record will not begin processing until the first completes, etc. This is not
really a problem except that the application developer must be aware of delays caused by
asynchronous records. Again, note that scanners are not delayed, only records downstream of
asynchronous records.

If the processing task aborts and the watch dog task cleans up before the asynchronous
processing routine completes what happens? If the asynchronous routine completes before the
watch dog task runs everything is okay. If it doesn’t? This is a more general question of the
consequences of having the watchdog timer restart a scan task. EPICS currently does not allow
scanners to be automatically restarted.

Cached Puts

The rules followed by dbPutLink and dbPutField provide for “cached” puts. This is
necessary because of asynchronous records. Two cases arise.

The first results from a dbPutField, which is a put coming from outside the database, i.e.
Channel Access puts. If this is directed to a record that already has pact TRUE because the
record started processing but asynchronous completion has not yet occurred, then a value is
written to the record but nothing will be done with the value until the record is again processed.
In order to make this happen dbPutField arranges to have the record reprocessed when the
record finally completes processing.

The second case results from dbPutLink finding a record already active because of a
dbPutField directed to the record. In this case dbPutLink arranges to have the record
reprocessed when the record finally completes processing. Note that it could already be active
because it appears twice in a chain of record processing. In this case it is not reprocessed
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record
while it is active, each new value is placed in the record but it will still only be processed once,
i.e. last value wins.

EPICS Release: R3.12

EPICS I0OC Application Developer's Guide 35

R e —————— - - = R — - — - e e e —— —

Chapter 4: Database Locking, Scanning, And Processing
Cached Puts

36 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 5: Static Database Access

1. Overview

An IOC database is created on a Unix system via a Database Configuration Tool and stored in
a Unix file. Two flavors of Unix files are supported: a binary file which uses an extension of
.database, and an ASCII format which uses an extension of .db (it is recommended that only
the .db format be used). A database file is loaded into an IOC via a dbLoad command and
initialized via the iocInit command. A database file contains a number of self defining
records which are described later in this manual. EPICS provides two sets of database access
routines: Static Database Access and Runtime Database Access. Static database access can be
used on Unix or IOC database files. Runtime database access only works on initialized IOC
databases. Static database access is described in this chapter and runtime database access in the
next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity
is hidden. All choice fields are accesses via a common type called DCT_MENU. A set of routines
are provided to simplify access to link fields. All fields can be accessed as character strings.
This interface is called static database access because it can be used to access an uninitialized,
as well as an initialized database.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static
database access interface. An IOC database is created on a Unix system via a database
configuration tool and stored in a Unix file with a file extension of ”.database”. Two routines
(dbRead and dbWrite) access a Unix database file. These routines read/write a database file
to/from a memory resident EPICS database. All other access routines manipulate the memory
resident database.

An include file dbstaticLib.h contains all the definitions needed to use the static database
access library. Two structures (DBBASE and DBENTRY) are used to access a database. The fields
in these structures should not be accessed directly. They are used by the static database access
library to keep state information for the caller.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 37

Chapter 5: Static Database Access

Definitions
2. Definitions
DBBASE Multiple memory resident databases can be accessed simultaneously. The user must provide
definitions in the form:
#include <dbStaticLib.h>
DBBASE *pdb;
pdb=dbAllocBase() ;
DBENTRY A typical declaration for a database entry structure is:
DBENTRY *pentry;
pentry=dbAllocEntry (pdb);
Most static access to a database is via a DBENTRY structure. As many structures as desired can
be allocated, each associated with a particular database. The user should NEVER access the
fields of DBENTRY directly.
Most access routines accept an argument which contains the address of a DBENTRY. Each
routine uses this structure to locate the information it needs and gives values to as many fields
in this structure as possible. All other fields are set to NULL.
Database Each database field has a type as defined in the previous chapter. For static database access a
Configuration new and simpler set of field types are defined. This allows a simpler interface definition. In
Field Types addition some database fields can be arrays. For DCT, however, all fields are scalars.
The DCT field types are:
* DCT_STRING: Character string.
 DCT_INTEGER: Integer value
* DCT_REAL: Floating point number
* DCT_MENU: A set of choice strings
« DCT_MENUFORM: A set of choice strings with associated form.
¢ DCT_INLINK: Input Link
« DCT_OUTLINK: Output Link
e DCT_FWDLINK: Forward Link
* DCT_NOACCESS: A private field for use by record access routines
A DCT_STRING field contains the address of a NULL terminated ASCII string. The field types
DCT_INTEGER and DCT_REAL are used for numeric fields. A field that has any of these types
can be accessed via the dbGetString, dbPutString, dbverify, and dbGetRange routines.
The field type DCT_MENU has an associated set of ASCII strings defining the choices. Routines
are available for accessing menu fields. A menu field can also be accessed via the
dbGetString, dbPutString, dbVerify, and dbGetRange routines.
The field type DCT_MENUFORM is like DCT_MENU but in addition the field has an associated link
field. The information for the link field can be entered via a set of form manipulation fields.
38 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 5: Static Database Access
EXAMPLE - Dump All Records

Link Types

DCT_INLINK (input), DCT_OUTLINK (output), and DCT_FWDLINK (forward) specify that the
field is a link structure as defined in dbStaticLib.h. Link fields, which have an associated set
of static access routines, are described in more detail in the next subsection. A field that has
any of these types can also be accessed via the dbGetString, dbPutString, dbVerify, and
dbGetRange routines.

Links are the most complicated types of fields. A link can be a constant, reference a field in
another record, or can refer to a hardware device. Two additional complications arise for
hardware links. The first is that field pTyp, which is a menu field, determines if the INP or oUT
field is a device link. The second is that the information that must be specified for a device link
is bus dependent. In order to shelter database configuration tools from these complications the
following is done for static database access.

» Static database access will treat DTYP as a DCT_MENUFORM field.

¢ The information for the link field related to the DCT_MENUFORM can be entered via a set
of form manipulation routines associated with the bcT_MENUFORM field. Thus the link
information can be entered via the DTYP field rather than the link field.

Each link is one of the following types:

e DCT_LINK_CONSTANT: Constant value.

¢« DCT_LINK_FORM: Constant with associated bCT_MENUFORM field.

 DCT_LINK_PV: A process variable link.

* DCT_LINK_DEVICE: A device link with associated bcT_MENUFORM field..
Database configuration tools can change any link between being a constant and a process

variable link. Routines are provided to accomplish these tasks. A device link can be given
values via the form routines described below.

The routines dbGetString, dbPutString, and dbverify can be used for link fields but
should not be used to prompt the user for v or DEVICE links. They are meant to be used for
constant links or to save and restore ASCII versions of the database.

EXAMPLE - Dump All Records

The following example demonstrate how to use the database access routines. If this is the first
time you are reading this manual just quickly look at the example and then come back to it
after reading the rest of the chapter. The example shows how to locate each record and display
each field.

void dbDumpRecords (DBBASE *pdbbase)
{

DBENTRY *pdbentry;

long status;

pdbentry = dbAllocEntry (pdbbase);
status = dbFirstRecdes (pdbentry);
if (status) {printf(”No record descriptions\n*);return;}
while(!status) {
printf ("record type: %s”,dbGetRecdesName
(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(* No Records\n”);
else printf(”\n Record: %s\n”,
dbGetRecordName (pdbentry)) ;

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 39

Chapter 5: Static Database Access
Allocating and Freeing Structures

4.

while(!status) {(
status = dbFirstFielddes (pdbentry, TRUE) ;
if (status) printf(~ No Fields\n”);
while(!status) {
printf(~ %$s:%s” ,dbGetFieldName (pdbentry),
dbGetString (pdbentry));
status=dbNextFielddes (pdbentry, TRUE) ;
}
status = dbNextRecord(pdbentry);
}
status = dbNextRecdes (pdbentry);
}
printf(~End of all Records\n”);
dbFreeEntry (pdbentry) ;

Allocating and Freeing Structures

DBBASE *dbAllocBase (void);

void dbFreeBase (DBBASE *pdbbase);

DBENTRY *dbAllocEntry (DBBASE *pdbbase);

void dbFreeEntry(DBENTRY *pdbentry);

void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry):
void dbFinishEntry(DBENTRY *pdbentry);

DBENTRY *dbCopyEntry (DBENTRY *pdbentry);

These routines allocate and free DBBASE and DBENTRY structures. dbAllocBase allocates and
initializes a memory resident database. dbFreebase frees all memory used by the database.
Note that it is possible to work with more then one memory resident database at the same time.

The user can allocate and free DBENTRY structures as necessary. Each DBENTRY is, however,
tied to a particular database.

The routines dbInitEntry and dbFinishEntry are provided in case the user wants to
allocate a DBENTRY structure on the stack.

The routine dbCopyEntry allocates a new entry, via a call to dbAllocEntry, copies the
information from the original entry, and returns the result.

Read and Write Database

long dbRead(DBBASE *pdbbase,FILE *fp);
long dbWrite(DBBASE *pdbbase,FILE *fpdctsdr,FILE *fp);

dbRead reads a file containing any combination of self defining records and adds the
information to the memory resident database. dbwrite writes the memory resident database
into a file. dbWrite requires two file pointers. The first is a file containing record description
information. The second references the output database file.

Although an arbitrary number of database files can be read each must contain the same set of
record descriptions. If any mismatch occurs dbRead will return an error. If dbRead returns a
non zero value do not call any of the other routines described in this chapter.

40

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 5: Static Database Access
Manipulating Record Descriptions

L] . . .
6. Manipulating Record Descriptions
long dbFindRecdes (DBENTRY *pdbentry,char *recdesname);
long dbFirstRecdes (DBENTRY *pdbentry);
long dbNextRecdes (DBENTRY *pdbentry);
char *dbGetRecdesName (DBENTRY *pdbentry);
int dbGetNRecdes (DBENTRY *pdbentry);
long dbCopyRecdes (DBENTRY *from,DBENTRY *to);
These routines manipulate the record description. An EPICS database consists of an arbitrary
number of record descriptions. The above routines provide access to the following
information:
« Name: dbGetRecdesName returns the record description name, e.g. ”ai”
* Number: dbGetNRecdes returns the number of record descriptions, i.e. the number of
record types.
. .
7. Manipulating Record Instances
long dbCreateRecord(DBENTRY *pdbentry,char *precordName) ;
long dbDeleteRecord (DBENTRY *pdbentry):
long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry); /*first of record type*/
long dbNextRecord(DBENTRY *pdbentry):
int dbGetNRecords (DBENTRY *pdbentry);
char *dbGetRecordName (DBENTRY *pdbentry);
long dbRenameRecord(DBENTRY *pdbentry, char *newname)
long dbCopyRecord(DBENTRY *from,DBENTRY *to);
These routines are used to create, delete, locate, etc. record instances. Note that other than
dbFindRecord all routines assume that one of the record description routines has been used to
locate a record type. dbFindRecoxrd also calls dbFindrield if the record name includes an
extension.
Routines are provided for accessing the following information:
e Name: dbGetRecordName returns the record name
¢ Number: dbGetNRecords returns the total number of record instances for current
record type.
8. Manipulating Field Descriptions

long dbFindField(DBENTRY *pdbentry,char *pfieldName);
long dbFirstFielddes (DBENTRY *pdbentry,int dctonly);
long dbNextFielddes (DBENTRY *pdbentry,int dctonly);
int AdbGetFieldType(DBENTRY *pdbentry):

int dbGetNFields (DBENTRY *pdbentry,int dctonly):
char *dbGetFieldName (DBENTRY *pdbentry);

char *dbGetPrompt (DBENTRY *pdbentry):

int dbGetPromptGroup (DBENTRY *pdbentry);

These routines manipulate the field descriptions for a particular record type. Note that if a
record instance has previously been located they also update the location of the field itself.

EPICS Release: R3.12

EPICS I0C Application Developer’s Guide 41

Chapter 5: Static Database Access

Manipulating Field Values

9. Manipulating Field Values

char *dbGetString(DBENTRY *pdbentry);

long dbPutString (DBENTRY *pdbentry,char *pstring):
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange (DBENTRY *pdbentry):;

int dbIsDefaultValue (DBENTRY *pdbentry):;

These routines are used to get or change field values. They work on all the database field types
except DCT_NOACCESS but should NOT be used to prompt the user for information for
DCT_MENU, DCT_MENUFORY, Or DCT_LINK_xxx fields. dbverify returns (NULL, a message) if
the string is (valid, invalid). Please note that the strings returned are volatile, i.e. the next call to
a routines that returns a string will overwrite the value returned by a previous call. Thus it is
the caller’s responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFORM and DCT_LINK_xxx fields can be manipulated via routines
described in the following sections. If, however dbGetString and dbPutString are used
they do work correctly. For these field types they are intended to be used only for creating and
restoring ASCII versions of a database.

L] * i
10. Manipulating Menu Fields
MENU and char **dbGetChoices (DBENTRY *pdbentry);
int dbGetMenuIndex (DBENTRY *pdbentry):
hd]EPJIJ]?()IKIV[long dbPutMenulIndex (DBENTRY *pdbentry,int index);
Fields int dbGetNMenuChoices(DBENTRY *pdbentry);
long dbCopyMenu (DBENTRY *from, DBENTRY *to);
These are the routines that should be used for bcT_MENU and DCT_MENUFORM fields.
MENUFORM These routines are used with a bcT_MENUFORM field (a DryP field) but actually manipulate an
Fields associated field DCT_INLINK or DCT_OUTLINK field.
int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentxry)
char **dbGetFoxmPrompt (DBENTRY *pdbentry)
char **dbGetFormvValue (DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)
char **dbVerifyForm(DBENTRY *pdbentry,char **value)
dballocForm allocates storage needed to manipulate forms. The return value is the number of
elements in the form. dbGetFormPrompt returns a pointer to an array of pointers to character
strings specifying the prompt string. dbGetFormvalue returns the current values. dbPutForm,
which can use the same array of values returned by dbGetForm, sets new values.
dbVerifyForm can be called to verify user input. It returns NULL if no errors are present. If
eITors are present it returns a pointer to an array of character strings containing error messages.
Lines in error have a message and correct lines have a NULL string. The following is skeleton
code showing use of these routines:
char **value;
char **prompt;
char **error;
int n;
42 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 5: Static Database Access
Manipulating Link Fields

n = dbAllocForm{pdbentry);
if (n<=0) {<Error>}
prompt = dbGetFormPrompt (pdbentry) ;
value = dbGetFormValue (pdbentry);
for(i=0; i<n; i++) {
printf(*%s (%s) : \n",prompt{i],value(i]);
scanf (*%s”,value(i]);
}
if (dbPutForm(pdbentry,value)) {
error = dbVerifyForm(pdbentry,value);
if (error) for(i=0; i<n; i++) {
if (error{il) printf(”Error: %s (%s) %s\n”, prompt(i), valueli],
error(il);
}
}
dbFreeForm(pdbentry) ;

All value strings are MAX_STRING_SIZE in length.

A set of form calls for a particular DBENTRY, MUST begin with a call to dballocForm and end
with a call to dbFreeForm. The values returned by dbGetFormPrompt, dbGetFormValue,
and dbverifyForm are valid only between the calls to dbAllocForm and dbFreeForm.

11. Manipulating Link Fields
A“ Link Fields int dbGetNLinks (DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType (DBENTRY *pdbentry);
These are routines for manipulating DCT_xxxLINK fields. dbGetNLinks and
dbGetLinkField are used to walk through all the link fields of a record. dbGetLinkType
returns one of the values: DCT_LINK _CONSTANT, DCT_LINK_FORM, DCT_LINK_PV, or
DCT_LINK_DEVICE.
Constant and long dbCvtLinkToConstant (DBENTRY *pdbentry);
. long dbCvtLinkToPvlink (DBENTRY *pdbentry);
Process Varlable long dbPutPvlink(DBENTRY *pdbentry,int pp,int ms,char *pvname):
Links long dbGetPvlink (DBENTRY *pdbentry,int *pp,int *ms,char *pvname);
These routines should be used for modifying DCT_LINK_CONSTANT or DCT_LINK_PV links.
They should not be used for DCT_LINK_FORM or DCT_LINK_DEVICE links, which should be
processed via the associated DcT_MENUFORM field described above.
12. Dump Routines

void dbDumpRecords (DBBASE *pdbbase, char *recdesname, int modonly);
void dbDumpPvd (DBBASE *pdbbase);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report)

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 43

Chapter 5: Static Database Access
Utility Programs

13. Utility Programs

atdb

dbta

NOTE: The routines described in this section are provided to translate between the old DCT
short form reports and .database files. Everyone is STRONGLY encouraged to start using
the GDCT format and use dblL.oadRecords and/or dbLoadTemplate to load databases into
IOCs. Thus the atdb and dbta should be considered temporary commands. See the GDCT
document for details.

ASCII to Database, format:

atdb <dctsdr> <database>

e.g.
atdb default.dctsdr example.database < example.rpt
This program. which accepts its input from stdin, creates a new database file and populates it

with records defined in the ASCII file. The ASCII file is a file in the old DCT short form format
or a file generated by the dbta utility with the -s option.

It should also be noted that instead of terminating records with a AL (the old short form report),
it is also permissible to terminate records with $$end. Thus, in addition to short form reports,
the following is valid input to atdb:

PV: <record name> Type: <record type>

<field name> <value>
ees <as many fields as desired>
$$end
PV: <record name> Type: <record type>

<field name> <value>
<as many fields as desired>

$$end

Use dbta, described next, on an existing database without the -s option to see an example.

Database to ASCII, format:
dbta [-v] [-s] <£filename>
e.g.
dbta -s example.database > newexample.rpt

This utility generates an ASCII file from a database file. If —v is specified then all prompt fields
are generated, otherwise only fields with non-default values are displayed. If -s is specified,
then the generated file can be used as input to the old DCT or to atdb.

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 6: Runtime Database Access

1. Overview

This chapter describes routines for manipulating and accessing an initialized IOC database.
This chapter is divided into the following sections:

¢ Database related include files. All of interest are listed and those of general interest are
discussed briefly.

¢ Runtime database access. These routines are used within an IOC to access an initialized
database.

e Old Database Access. This is the interface still used by Channel Access and thus by
Channel Access clients.

2. Database Include Files

Directory epics/share/epicsH contains a number of database related include files. A
complete list is:

e dbDefs.h: Miscellaneous database related definitions
* dbBase.h: Base pointers for database structures

» choice.h: Choice Structures (Cvt, Gbl, Rec, and Dev)
e cvtTable.h: Conversion Structures

¢ dbAccess.h: Runtime database access definitions

¢ dbDefs.h: Basic database related definitions

* dbFldTypes.h: Field type definitions

* dbRecDes.h: Record and field description structures

* dbRecType.h: Record type structures

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 45

Chapter 6: Runtime Database Access

Database Include Files

Fundamental
Database
Definitions

dbDefs.h

dbFldTypes.h

dbRecords.h: Database record locations structures
devSup.h: Device support structures

drvSup.h: Driver support structures

link.h: Link structures

« recSup.h: Record support structures

¢ sdrHeader.h: Self Defining Record header structures

dbDefs.h, dbFldTypes.h, and dbBase.h are discussed in this section. dbAccess.h is
discussed with runtime database access. The other include files are of interest to someone
needing details about the database structures. See last chapter for details.

This file contains a number of database related definitions. The most important are:

e PYNAME_SZ: The number of characters allowed in the record name.

« FLDNAME_SZ: The number of characters allowed in a field name. This has the value
4. The process variable directory routines depend on this value because they treat the
value as an unsigned long data type.

* MAX STRING_SIZE: The maximum string size for string fields or menu choices.

« DB_MAX_CHOICES: The maximum number of choices for a choice field.

This file defines the possible field types. A field’s type is perhaps its most important attribute.
Changing the possible field types is a fundamental change to the IOC software, because many
10C software components are aware of the field types.

The field types are:

¢ DBE_STRING: ASCII character string

« DBEF_CHAR: Signed character

« DBF_UCHAR: Unsigned character

« DBF_SHORT: Short integer

« DBF_USHORT: Unsigned short integer

* DBF_LONG: Long integer

« DBF_ULONG: Unsigned long integer

* DBF_FLOAT: Floating point number

« DBF_DOUBLE: Double precision float

« DBF_ENUM: An enumerated field

+« DBF_GBLCHOICE: A global choice field

+« DBF_CVTCHOICE: A conversion choice field

« DBF_RECCHOICE: A record specific choice field
« DBF_DEVCHOICE: A device choice field

« DBF_INLINK: InputLink

¢« DBF_OUTLINK: Output Link

« DBF_FWDLINK: Forward Link

« DBF_NOACCESS: A private field for use by record access routines

46

EPICS 10C Application Developer's Guide Document Revision: 1

- —————— — e ———— — ———a— - - - — = — -

Chapter 6: Runtime Database Access
Database Include Files

dbBase.h

A field of type DBF_STRING, ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRING field
contains a NULL terminated ascii string. The field types DBF_CHAR, ..., DBF_DOUBLE correspond
to the standard C data types.

DBEF_ENUM is used for enumerated items, which is analogous to the C language enumeration.
An example of an enum field is field vaL of a multi bit binary record.

The field types DBF_ENUM, ..., DBF_DEVCHOICE all have an associated set of ASCII strings
defining the choices. For a DBF_ENUY, the record support module supplies values and thus are
not available for static database access. The database access routines locate the choice strings
for the other types.

DBF_INLINK and DBF_OUTLINK specify link fields. A link field can refer to a signal located in
a hardware module, to a field located in a database record in the same IOC, or to a field located
in a record in another IOC. A DBF_FWDLINK can only refer to a record in the same IOC. Link
fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK (output), and DBF_FWDLINK (forward) specify that the
field is a link structure as defined in 1ink.h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a
constant value. This is somewhat of a misnomer because constant link fields can be
modified via dbPutField or dbPutLink.

2. Hardware links - The link contains a data structure which describes a signal connected
to a particular hardware bus. See 1ink.h for a description of the bus types currently
supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same IOC.
c. CA_LINK: A reference to a variable located in another IOC.

DCT always creates a Pv_LINK. When the IOC is initialized each PV_LINK is converted either
to a DB_LINK or a CA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.

The database and all its associated structures are located via the following set of variables
defined in structure dbBase (defined in dbBase.h):

struct dbBase {
struct choiceSet *pchoiceCvt;
struct arrChoiceSet *pchoiceGbl;
struct choiceRec *pchoiceRec;
struct devChoiceRec *pchoiceDev;
struct arrBrkTable *pcvtTable;
struct recDes *precbDes;
struct recType *precType;
struct recHeader *precHeader;
struct recDhDevSup *precDevSup;
struct drvSup *pdrvSup;
struct recSup *precSup;
struct pvd *pdbPvd; /* DCT pvd - remove when DCT goes away */
void *ppvd;/* pointer to process variable directory*/
char *pdbName;/* pointer to database name*/
struct sdrSum *psdrSum;/* pointer to default sum */
long sdrFileSize; /*size of default.dctsdr file*/
long pvtSumFlag; /*internal use only*/
};

EPICS Release: R3.12

EPICS I0C Application Developer’s Guide 47

Chapter 6: Runtime Database Access

Runtime Database Access

3. Runtime Database Access

With the exception of record and device support, all access to the database is via the channel
or database access routines. Even record support routines access other records only via
database or channel access. Channel Access, in turn, accesses the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the
set of routines that constitute database access. This provides a good look at the facilities
provided by the database. It may seem strange that the structure of the IOC database is not
described at this point but this would result in confusing detail. The structure is explained in
the last chapter.

Before describing database access, one caution must be mentioned. The only way to
communicate with an IOC database from outside the IOC is via Channel Access. In addition,
any special purpose software, i.e. any software not described in this document, should
communicate with the database via Channel Access, not database access, even if it resides in
the same JOC as the database. Since Channel Access provides network independent access to a
database, it must ultimately call database access routines. The database access interface was
changed in 1991, but Channel Access was never changed. Instead a module was written which
translates old style database access calls to new. This interface between the old and new style
database access calls is discussed in the last section of this chapter.

The database access routines are:

¢ dbCommonlnit Initialize database common
o dbNameToAddr: Locate a database variable.

* dbGetField: Get values associated with a database variable.

» dbGetLink: Get value of field referenced by database link

» dbFastLinkGet: Fast get value of field referenced by database link

¢ dbGet: Routine called by dbGetLink and dbGetField and dbcCa functions

¢ dbPutField: Change the value of a database variable.

¢ dbPutLink: Change value referenced by database link

¢ dbFastLinkPut: Fast change value referenced by database link
» dbPutNotify: A database put with notification on completion

« dbNotifyCancel: Cancel dbPutNotify

+ dbPut: Routine called by dbPutxxx and by the dbca functions.

o dbBufferSize: Determine number of bytes in request buffer.
¢ dbValueSize: Number of bytes for a value field.

* dbScanPassive: Process record if passive
» dbProcess: Process Record

e dbScanLocklInit: Initialize scan locking
¢ dbScanLock: Lock database
¢ dbScanUnlock: Unlock database

* dbCaAddInLink: Initialize a channel access database input link

48

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 6: Runtime Database Access
Runtime Database Access

Database
Request Types
and Options

dbAccess.h

dbCaAddOutLink: Initialize a channel access database output link
dbCaGetLink: Get the current value for a channel access database input link
dbCaPutLink: Put a value to a channel access database output link

Before describing database access structures, it is necessary to describe database request types
and request options. When dbPutField or dbGetField are called one of the arguments is a
database request type. This argument has one of the following values:

DBR_STRING: returns a NULL terminated string

DBR_CHAR: returns a signed char

DBR_UCHAR: returns an unsigned char

DBR_SHORT: returns a short integer

DBR_USHORT: returns an unsigned short integer

DBR_LONG: returns a long integer

DBR_ULONG: returns an unsigned long integer

DBR_FLOAT: returns an IEEE floating point value

DBR_DOUBLE: returns an IEEE double precision floating point value
DBR_ENUM: returns a short which is the enum item

The request types DBR_STRING, ..., DBR_DOUBLE correspond exactly to valid data types for
database fields. DBR_ENUM corresponds to database fields that represent a set of choices or
options. In particular it corresponds to the fields types DBF_ENUM, DBF_DEVCHOICE,
DBF_CVTCHOICE, DBF_GBLCHOICE, and DBF_RECCHOICE. The complete set of database field
types are defined in dbFldTypes.h.

dbGetField also accepts argument options which is a mask containing a bit for each
additional type of information the caller desires. The complete set of options is:

DBR_STATUS: returns the alarm status and severity
DBR_UNITS: returns a string specifying the engineering units
DBR_PRECISION: returns a long integer specifying floating point precision.
DBR_TIME: returns the time

DBR_ENUM_STRS: returns an array of strings
DBR_GR_LONG: returns graphics info as long values
DBR_GR_DOUBLE: returns graphics info as double values
DBR_CTRL_LONG: returns control info as long values
DBR_CTRL_DOUBLE: returns control info as double values
DBR_AL_LONG: returns alarm info as long values
DBR_AL_DOUBLE: returns alarm info as double values

Before describing the routines a few data structures must be described. The structures are
defined in dbAccess . h. The first structure is dbaddr.

struct dbAddr{

struct dbCommon *precord: /* address of record */

void *pfield; /* address of field */

void *pfldbes; /* address of struct fldDes */
long no_elements; /* number of elements (arrays) */
short record type: /* type of record being accessed */
short £field_type; /* type of database field */

short field_size; /* size (bytes) of the field being

EPICS Release: R3.12

EPICS 10OC Application Developer’s Guide 49

Chapter 6: Runtime Database Access
Runtime Database Access

accessed */

short special; /* special processing */
short choice_set; /* index of choiceSet GBLCHOICE &
RECCHOICE*/

short dbr_field_typel}/* field type as seen by database
request DBR_STRING, ...,
DBR_ENUM, DBR_NOACCESS*/

* precord: Address of record. Note that its type is a pointer to a structure defining the
fields common to all record types. The common fields appear at the beginning of each
record. A record support module can cast precord to point to the specific record type.

* pfield: Address of the field within the record. Note that pfield provides direct access
to the data value.

+ pfldDes: This points to a structure containing all details concerning the field. See
“Database Structures™ on page 101 for a description of this structure.

* no_elements: A string or numeric field can be either a scalar or an array. For scalar
fields no_elements has the value 1. For array fields it is the maximum number of
elements that can be stored in the array.

* record_type: An index specifying the record type. See “Database Structures” on
page 101 for how this is used.

» special: Some fields require special processing. This specifies the type. Special
processing is described later in this manual.

* choice_set: For global and record choice fields (described below), this specifies a
choice set.

+ dbr_field_type: This specifies the optimal database request type for this field, i.e. the
request type that will require the least CPU overhead.

The file dbaccess.h contains macros for using options. A brief example should show how
they are used. The following example defines a buffer to accept an array of up to ten float
values. In addition it contains fields for options DBR_STATUS and DBR_TIME.
struct buffer (
DBRstatus
DBRtime

float wvalue{l1l0];
} buffer;

The associated dbGetField call is:

long options,number_elements, status;

options = DBR_STATUS | DBR_TIME
number_elements = 10;
status = dbGetField(paddr,DBR_FLOAT, &buffer, &options, &number_elements) ;

Consult dbaccess . h for a complete list of macros.

Structure dbAddr contains a field dbr_field_type. This field is the database request type
that most closely matches the database field type. Using this request type will put the smallest
load on the IOC.

Channel Access provides routines similar to dbGetField, and dbPutField. It provides
remote access to dbGetField, dbPutField, and to the database monitors described below.

Database Access The most important goal of database access can be stated simply: Provide quick access to
Routines database records and fields within records. The basic rules are:

* Call dbNameToaddr once and only once for each field to be accessed.

50 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 6: Runtime Database Access
Runtime Database Access

dbNameToAddr

dbCommonlnit

dbGetField

dbGetLink

dbFastLinkGet

¢ Read field values via dbGetField and write values via dbPutField.

The routines described in this subsection are used by channel access, sequence programs, etc.
Record processing routines, however, use the routines described in the next section rather then
dbGetField and dbPutField.

Locate a process variable, format:

dbNameToAddr (
char *pname, /*ptr to process variable name */
struct dbAddr “*paddr);

Given a process variable name, this routine locates the process variable and fills in the fields of
structure ~ dbaddr. The process variable name is of the form
“<record_name>.<field_name>". For example the value field of a record with record name
‘sample_name” is “sample_name.VAL”. Note that the name is case sensitive. All field names
are all upper case letters.

dbNameToaddr locates a record via a process variable directory (PVD). It fills in a structure
(@baddr) describing the field. dbaddr contains the address of the record and also the field.
Thus other routines can locate the record and field without a search. Although the PVD allows
the record to be located via a hash algorithm and the field within a record via a binary search, it
still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located
the dbaddr structure allows the process variable to be accessed directly.

This routine is called by iocInit to initialize fields in database common. It is only included
for completeness.

Get values associated with a process variable, format:

dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, calls dbGet, and unlocks.

Get value from the field referenced by a database link, format:

dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
struct dbCommon *pdest,/*addr of destination record*/

short dbrType, /* DBR_xxx */
void ‘*pbuffer, /*addr of returned data*/
long *options, /*addr of options*/

long *nRequest);/*addr of number of elements desired*/

This routine is called by database access itself and by record support and/or device support
routines in order to get values from other database records via input links. It calls dbGet to
obtain data and also implements the process passive and maximize severity link options.

dbFastLinkGet (
struct link *plink,
struct dbCommon *precord,
void *pdest) ;

EPICS Release: R3.12

EPICS IOC Application Developer’s Guide 51

Chapter 6: Runtime Database Access

Runtime Database Access

This routine gets a value from an input link to pdest. Do not call this routine unless you have
a properly initialized Channel Access or database link. This routine is not intended to be called
directly by record support, use recGblGetFastLink() instead.

dbGet Get values associated with a process variable, format:
dbget (
struct dbAddr*paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data
long *options, /*addr of options*/
long *nRequest, /*addr of number of elements*/
void *pfl); /*used by monitor routines*/
Thus routine retrieves the data referenced by paddr and converts it to the format specified by
dbrType.
“options” is a read/write field. Upon entry to dbGet, options specifies the desired options.
When dbGetField returns, options specifies the options actually honored. If an option is not
honored, the corresponding fields in buffer are filled with zeros.
"nRequest” is also a read/write field. Upon entry to dbGet it specifies the maximum number
of data elements the caller is willing to receive. When dbGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful when
only option data is desired.
"p£l” is a field used by the Channel Access monitor routines. All other users must set
pf£1=NULL.
dbGet calls one of a number of conversion routines in order to convert data from the DBF types
to the DBR types. It calls record support routines for special cases such as arrays. For example,
if the number of field elements is greater then 1 and record support routine get_array_info
exists, then it is called. It returns two values: the current number of valid field elements and an
offset. The number of valid elements may not match dbaddr.no_elements, which is really
the maximum number of elements allowed. The offset is for use by records which implement
circular buffers.
dbPutField Change the value of a process variable, format:
dbPutField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer, /*addr of data*/
long nRequest); /*number of elements to write*/
This routine is responsible for accepting data in one of the DBR_xocx formats, converting it as
necessary, and modifying the database. Similar to dbGetField, this routine calls one of a
number of conversion routines to do the actual conversion and relies on record support
routines to handle arrays and other special cases.
It should be noted that routine dbPut does most of the work. The actual algorithm for
dbPutField is:
1. If the D1sP field is TRUE then, unless it is the DISP field itself which is being modified,
the field is not written.
2. The record is locked.
3. dbPut is called.
52 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 6: Runtime Database Access
Runtime Database Access

dbPutLink

dbFastLinkPut

dbPutNotify

4, If the dbPut is successful then:

If this is the PRoc field or if both of the following are TRUE: 1) the field is a process

passive field, 2) the record is passive.

a. If the record is already active ask for the record to be reprocessed when it

completes.

b. Call dbscanPassive after setting put £ TRUE to show the process request came

from dbPutField.
5. The record is unlocked.

Change the value referenced by a database link, format:

dbPutLink{(
struct db_link *pdbLink, /*addr of database link*/
struct dbCommon *psource, /*addr of source record*/
short dbrType, /* DBR_xxx*/
void *pbuffer, /*addr of data to write*/
long nRequest) ; /*number of elements to write*/

1. Calls dbPut.
2. Implements maximize severity.

This routine is called by database access itself and by record support and/or device support
routines in order to put values into other database records via output links. It performs the
following functions:

3. If the field being referenced is PRoC or if both of the following are true: 1)

process_passive is TRUE and 2) the record is passive then:

a. If the record is already active because of a dbPutField request then ask for the

record to be reprocessed when it completes.
b. otherwise call dbScanPassive.

Fast putLink, forward:

dbFastLinkPut (
struct 1link *plink,
struct dbCommon ‘*precord,
void *psource) ;

Put And Notify When Complete, format:

typedef struct putNotify{
/*The following members MUST be set by user*/

void (*userCallback) (struct putNotify *);

struct dbAddr *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/

long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/

void *usrPvt; /*for private use of user*/

/*The following is status of request. Set by dbPutNotify*/

long status;

/*The following are private to database access*/
CALLBACK callback;

void *list; /*list of records for which to wait*/
int nwaiting;

notifyCmd cmd;

unsigned char rescan; /*Should dbPutNotify be called again*/

This routine puts the value from psource to an output link. Do not call this routine unless you
have a properly initialized Channel Access or database link. This routine is not intended to be
called directly by record support, use recGblPutFastLink() instead.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide

53

Chapter 6: Runtime Database Access
Runtime Database Access

}PUTNOTIFY;

long dbPutNotify (PUTNOTIFY *pputnotify);
void dbNotifyCancel (PUTNOTIFY *pputnotify):

The following routine is used only by old database access.

int dbPutNotifyMapType (PUTNOTIFY *pputnotify,short dbr_type)

The status value stored in PUTNOTIFY can be one of the following:

0: Success: Callback was already called.

S_db_Pending: Success: Callback will be called later.

S_db_Blocked: The request failed because a dbPutNoti £y conflict occurred.
S_xxxx: The request failed due to some other error.

dbPutNotify is a request to notify the caller when all records that are processed as a result of
the put complete processing. The complication occurs because of asynchronous records. The
following is true:

1.

The user supplied callback is called when all processing is complete or when a
S_db_Blocked is detected. If everything completes synchronously the callback routine
will be called BEFORE dbPutNotify returns. The user supplied callback routine must
not issue any calls that block such as Unix I/O requests.

. In general a set of records may need to be processed as a result of a single

dbPutNotify. If database access detects that another dbPutNotify request has
resulted in a record in the set being already active then the user callback is called with
status=S_db_Blocked.

. If arecord in the set is found to be active because of a dbPutField request then when

the record completes a new dbPutNotify will be issued.

. If arecord is found to be active for some other reason then nothing is done. This is what

is done now and any attempt to do otherwise could easily cause existing databases to go
into an infinite processing loop.

. It is expected that the caller will arrange a timeout in case the dbPutNotify takes too

long. In this case the caller can call dbNotifyCancel.

dbPut Put a value to a database field, format:
dbPut (
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer, /*addr of data*/
long nRequest) ; /*number of elements to write*/
This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as
necessary, and modifying the database. Similar to dbGet, this routine calls one of a number of
conversion routines to do the actual conversion and relies on record support routines to handle
arrays and other special cases.
deuﬁ‘erSize Determine the buffer size for a dbGetField request, format:
long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest) ; /* number of elements*/
54 EPICS IOC Application Developer's Guide Document Revision: 1

Chapter 6: Runtime Database Access
Runtime Database Access

This routine returns the number of bytes that will be returned to dbGetField if the request
type, options, and number of elements are specified as given to dbBuffersize. Thus it can be
used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

dbValueSize Determine the size a value field, format:
dbValueSize(short dbrType);/* DBR_xxx*/
This routine returns the number of bytes for each element of type dbrType.
NOTE: This should become a Channel Access routine

dbScanPassive Process record if it is passive, format;

dbScanPassive(
struct dbCommon *pfrom,
struct dbCommon *pto); /* addr of record*/

This request specifies the record requesting the scan, which may be NULL, and the record to be
processed. If the record is passive and pact=FALSE then dbProcess is called. Note that this
routine is called by dbGetLink, dbPutField, and by record processing routines for forward
links. In addition to calling dbProcess this routine is responsible for creating lists needed for
dbPutNotify.

dbProcess Request that a database record be processed, format:
dbProcess (struct dbCommom *precord); /* addr of record*/

Request that record be processed. Record processing is described in detail below.

Database Lockin g Database locking is described in the next chapter. For now lets just state that a database record
must be locked before it is modified and unlocked afterwards.

The routines provided are:

dbScanLockInit (/* called only by iocInit*/
int nset); /* number of lock sets*/

dbScanLock (struct dbCommon *precord);/*addr of record*/

dbScanUnlock (struct dbCommon *precord);/*addr of record*/

Channel Access The routines described here are used to create and manipulate Channel Access connections

Database Links from database input or output links. At IOC initialization an attempt is made to convert all
process variable links to database links. For any link that fails, it is assumed that the link is a
Channel Access link, i.e. a link to a process variable defined in another IOC. The routines
described here are used to manage these links.

The routines provided are:

dbCa”AddInLink(
struct link *plink,
void *precord,
char *pfieldName) ;

dbCaaddoutLink (
struct link *plink,

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 55

Chapter 6: Runtime Database Access
Old Database Access Interface

void *precord,
char *pfieldName) ;

dbCaGetLink (
struct link *plink);

dbCaPutLink (
struct link *plink);

For a description of these routines see:

Links in a Distributed database: Theory and Implementation,
Nicholas T. Karonis and Martin R. Kraimer, December 1991

Old Database Access Interface

Channel Access has not yet been modified to support the database access routines described
above. The database access interface was changed because as more database field types and
request options were defined the previous database access interface become harder and harder
to modify. In order to make the transition to the new database access without obsoleting all
software that used Channel Access an interface module was written. Thus module translates
old database calls to new. Several of the Channel Access arguments directly map to database
access arguments. Thus existing Channel Access clients use the old database access interface.

Since this manual concentrates on IOC software, this is not the place to describe the old
database interface. Other documents describe it. The header file db_access.h also provides
descriptive information.

56

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 7: Database Scanning

1. Overview

Database scanning is the mechanism for deciding when to process a record. Four types of
scanning are possible:

Periodic: A record can be processed periodically. A number of time intervals are
supported.

Event: Event scanning is based on the posting of an event by another component of the
software via a call to the routine post_event.

I/O Event: The original meaning of this scan type is a request for record processing as
a result of a hardware interrupt. The mechanism supports hardware interrupts as well as
software generated events.

Passive: Passive records are processed only via requests to dbScanPassive. This
happens when database links (Forward, Input, or Qutput), which have been declared
”Process Passive” are accessed during record processing. It can also happen as a result
of dbPutField being called (This normally results from a Channel Access put request).
Scan Once: In order to provide for caching puts, The scanning system provides a
routine scanOnce which arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database
fields involved with scanning. It next discusses the interface to the scanning system. The last
section gives a brief overview of how the scanners are implemented.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 57

Chapter 7: Database Scanning
Scan Related Database Fields

2. Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite
permissible to change any of the scan related fields of a record dynamically. For example, a
display manager screen could tie a menu control to the SCaN field of a record and allow the
operator to dynamically change the scan mechanism.

SCAN This field, which specifies the scan mechanism, has an associated menu of the following form:
Passive: Passively scanned.
Event: Event Scanned. The field EVNT specifies event number
I/O Intr: I/O Event scanned.
10 Second: Periodically scanned - Every 10 seconds
.1 Second: Periodically scanned - Every .1 seconds
PHAS This field determines processing order for records that are in the same scan set. For example all
records periodically scanned at a 2 second rate are in the same scan set. All Event scanned
records with the same EVNT are in the same scan set, etc. For records in the same scan set, all
records with PHAS=0 are processed before records with PHAS=1, which are processed before
all records with PHAS=2, etc.
In general it is not a good idea to rely on PHAS to enforce processing order. It is better to use
database links.
EVNT - Event This field only has meaning when SCAN is set to Event scanning, in which case it specifies the
Number event number. In order for a record to be event scanned, EVNT must be in the range 0,...255. It
should also be noted that some EPICS software components will not request event scanning
for event 0. One example is the eventRecord record support module. Thus the application
developer will normally want to define events in the range 1,...,255.
PRIO - This field can be used by any software component that needs to specify scheduling priority,
Scheduling e.g. the I/O event scan facility uses this field.
Priority
3. Software Components That Interact With The Scanning
System
choiceGDbl.ascii This file contains definitions for a menu related to field SCaN. The definitions are of the form:
GBL_SCAN "Passive”
GBL_SCAN ~Event”
GBL_SCAN “I/O Intr~
GBL_SCAN #10 second”
58 EPICS 10C Application Developer’'s Guide Document Revision: 1

e ——— ————— e - - -

Chapter 7: Database Scanning
Software Components That Interact With The Scanning Sys-

dbScan.h

Initializing
Database
Scanners

Adding And
Deleting
Records From
Scan List

GBL_SCAN *.1 second”

The first three definitions must appear first and in the order shown. The remaining definitions
are for the periodic scan rates, which must appear in order of decreasing rate. At IOC
initialization, the menu values are read by scan initialization. The number of periodic scan
rates and the value of each rate is determined from the menu values. Thus periodic scan rates
can be changed by changing choiceGbl.ascii and running the makesdr utility. The only
requirement is that each periodic definition must begin with the value and the value must be in
units of seconds.

All software components that interact with the scanning system must include this file.

The most important definitions in this file are:

/* Note that these must match the first four definitions in choiceGbl.ascii*/
#define SCAN_PASSIVE 0

#define SCAN_EVENT 1

#define SCAN_IO_EVENT 2

#define SCAN_1ST PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);

void post_event(int event);

void scanAdd (struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord):;

int scanppl (void); /*print periodic lists*/
int scanpel{void); /*print event lists*/
int scanpiol (void); /*print io_event list*/

void scanIoInit (TOSCANPVT *);
void scanIoRequest (I0SCANPVT);

The first set of definitions defines the various scan types. The next two definitions (ToscanpvT
and interruptAccept) are for interfacing with the I/O event scanner. The remaining
definitions define the public scan access routines. These are described in the following
subsections.

scanInit (void) ;

The routine scanInit is called by iocInit. It initializes the scanning system.

The following routines are called each time a record is added or deleted from a scan list.

scanAdd({struct dbCommon *);
scanDelete (struct dbCommon *);

These routines are called by scanInit at IOC initialization time in order to enter all records
created via DCT into the correct scan list. The routine dbPut calls scanDelete and scanadd
each time a scan related field is changed (each scan related field is declared to be SPC_SCaN in
dbCommon.ascii). scanDelete is called before the field is modified and scanadd after the
field is modified.

EPICS Release: R3.12

EPICS IOC Application Developer’'s Guide 59

Chapter 7: Database Scanning
Software Components That Interact With The Scanning System

Declaring Whenever any software component wants to declare a database event, it just calls:
Database Event post_event (event)

This can be called by virtually any IOC software component. For example sequence programs
can call it. The record support module for eventRecoxd calls it.

Interfacing to Interfacing to the I/O event scanner is done via some combination of device and driver support.
/O Event 1. Include <dbScan. h>
Scanning 2. For each separate event source the following must be done:

a. Declare an TOSCANPVT variable, e.g.
static IOSCANPVT ioscanpvt;
b. Call scanIoInit,e.g.
scanIolnit (&ioscanpvt);

3. Provide the device support get_ioint_info routine. This routine has the format:
long get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);
This routine is called each time the record pointed to by precord is added or deleted
from an I/O event scan list. cmd has the value (0,1) if the record is being (added to,

deleted from) an I/O event list. This routine must give a value to *ppvt.

4. Whenever an I/O event is detected call scanIoRequest, e.g.
scanIoRequest (ioscanpvt)
This routine can be called from interrupt level. The request is actually directed to one of
the standard callback tasks. The actual one is determined by the PRIO field of
dbCommon.

The following code fragment shows an event record device support module that supports I/O
event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXxXX */
long init();
long get_ioint_info();
struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;
}devEventTestIoEvent={
5 ’
NULL,
init,
NULL,
get_ioint_info,
NULL} ;
static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)

60 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 7: Database Scanning
Implementation Overview

{
scanIoRequest (ioscanpvt);

)

static long init()

{
scanIoInit(&ioscanpvt);
intConnect (<vector>, (FUNCPTR) int_service, ioscanpvt) ;
return(0) ;

}

static long get_ioint_info(
int cmd,
struct eventRecord
IOSCANPVT *ppvt)

*pr’

*ppvt = ioscanpvt;
return(0) ;

Implementation Overview

Definitions And
Routines
Common To All
Scan Types

The code for the entire scanning system resides in dbScan.c, i.e. periodic, event, and /O
event. This section gives an overview of how the code in dbScan. c is organized. The listing of
dbScan.c must be studied for a complete understanding of how the scanning system works.

Everything is built around two basic structures:

struct scan_list {

FAST_LOCK 1lock:;

ELLLIST 1list;

short modified;

long ticks; /*used only for periodic scan sets*/
}:

struct scan_element{
ELLNODE node;
struct scan_list
struct dbCommon

*pscan_list;
*precord;

}

Later we will see how scan_lists are determined. For now just realize that
scan_list.list is the head of a list of records that belong to the same scan set (for example,
all records that are periodically scanned at a 1 second rate are in the same scan set). The node
field in scan_element contain the list links. The normal vxWorks 1sti.ib routines are used to
access the list. Each record that appears in some scan list has an associated scan_element.
The spvr field which appears in dbCommon holds the address of the associated
scan_element.

The lock, modified, and pscan_list fields allow scan_elements, i.e. records, to be
dynamically removed and added to scan lists. If scanList, the routine which actually
processes a scan list, is studied it can be seen that these fields allow the list to be scanned very
efficiently if no modifications are made to the list while it is being scanned. This is, of course,
the normal case.

The dbscan.c module contains several private routines. The following access a single scan
set:

* printList: Prints the names of all records in a scan set.

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 61

Chapter 7: Database Scanning

Implementation Overview

papEvent —>
scan_list
list
ves —_ — —_—> .
scan_element scan_element ="
node node
precord precord

Figure 7-1: Scan List Memory Layout

 scanList: This routine is the heart of the scanning system. For each record in a scan set

it does the following:
dbScanLock (precord) ;
dbProcess (precord) ;
dbScanUnlock (precord) ;

It also has code to recognize when a scan list is modified while the scan set is being
processed.

e addToList: This routine adds a new element to a scan list.
¢ deleteFromList: This routine deletes an element from a scan list.

Event Scanning Event scanning is built around the following definitions:
#define MAX_EVENTS 256
#define EVENT_QUEUE_SIZE 1000
static struct scan_list *papEvent[MAX_EVENTS];
static SEM_ID eventSem;
static RING_ID eventQ;
static int eventTaskId;
papEvent is an array of pointers to scan_lists. Note that the array has 256 elements, i.e. one
for each possible event number. In other words, each event number has its own scan list. No
scan_list is actually created until the first request to add an element for that event number,
The event scan lists have the memory layout illustrated in Figure 7-1.
At iocInit time a task “eventTask” is spawned. It waits on semaphore eventSem. When
post_event is called it puts the event number on the ring buffer eventQ and issues a
semGive for eventSem. This wakes up eventTask which calls scanList for the appropriate
scan_list.
I/0 Event 1/0 event scanning is built around the following definitions:
Scanning struct io_scan_list (
CALLBACK callback;
struct scan_list scan_list;
struct io_scan_list *next;
}
static struct io_scan_list *iosl_head [NUM_CALLBACK_PRIORITIES] =
{NULL, NULL, NULL} ;
The array ios1_head and the field next are only kept so that scanpiol can be implemented
and will not be discussed further. I/O event scanning uses the general purpose callback tasks to
perform record processing, i.e. no task is spawned for I/O event. The callback field of
io_scan_list is used to communicate with the callback tasks.
The following routines implement I/O event scanning:
62 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 7: Database Scanning
Implementation Overview

pioscanpvt
io_scan_list

.callback

scan_list

see — =

scan_list || scan_element ..

ves node
list -
‘e precord

Figure 7-2: Interrupt Source Structure

papPeriodic —>,

—

scan_list
list
—1 scan_element scan_element ot
node node
;;I:e.cord ;;l:e.cord

Figure 7-3: Structure after ioclnit

scanlolnit

scanloRequest

Periodic
Scanning

scanXoInit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source.
scanIoInit allocates and initializes an array of io_scan_list structures; one for each
callback priority and puts the address in pioscanpvt. Remember that three callback priorities
are supported (low, medium, and high). Thus for each interrupt source the structures are
illustrated in Figure 7-2:

When scanAdd or scanDelete are called, they call the device support routine
get_ioint_info which returns pioscanpvt. The scan_element is added or deleted from
the correct scan list.

scanIoRequest (TOSCANPVT pioscanpvt)

This routine is called to request I/O event scanning. It can be called from interrupt level. It
looks at each io_scan_list referenced by pioscanpvt (one for each callback priority) and
if any elements are present in the scan_1list a callbackRequest is issued. The appropriate
callback task calls routine ioeventCallback, which just calls scanList.

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskId;

nPeriodic, which is determined at iocInit time, is the number of periodic rates.
papPeriodic is a pointer to an array of pointers to scan_1ists. There is an array element for
each scan rate. Thus the structure illustrated in Figure 7-3 exists after iocInit.

A periodic scan task is created for each scan rate. The following routines implement periodic
scanning:

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 63

Chapter 7: Database Scanning

Implementation Overview

initPeriodic

periodicTask

Scan Once

scanOnce

initPeriodic()

This routine first determines the scan rates. It does this by accessing the scan field of the first
record it finds. It issues a call to dbGetField with a DBR_ENUM request. This returns the menu
choices for scan. From this the periodic rates are determined. The array of pointers referenced
by papPeriodic is allocated. For each scan rate a scan_list is allocated and a
periodicTask is spawned.

periodicTask (struct scan_list *psl)

This task just performs an infinite loop of calling scanList and then calling taskDelay to
wait until the beginning of the next time interval.

void scanOnce (void *precord)

A task onceTask waits for requests to issue a dbProcess request. The routine scanOnce puts
the address of the record to be processed in a ring buffer and wakes up onceTask.

64

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 8: Record And Device Support

1. Overview

The purpose of this chapter is to describe record and device support in sufficient detail so that a
C programmer can write new record and/or device support modules. Before attempting to
write new support modules, you should carefully study a few of the existing support modules.
If an existing support module is similar to the desired module most of the work will already be
done.

From the previous discussion, it should be clear that many things happen as a result of record
processing. The details of what happens are dependent on the record type. In order to allow
new record types and new device types without impacting the core IOC system, the concept of
record support and device support has been created. For each record type, a record support
module exists. It is responsible for all record specific details. In order to allow a record support
module to be independent of device specific details, the concept of device support has been
created.

A record support module consists of a standard set of routines that can be called by database
access routines. This set of routines implements record specific code. Each record type can
define a standard set of device support routines specific to that record type.

By far the most important record support routine is process, which dbProcess calls when it
wants to process a record. This routine is responsible for all the details of record processing. In
many cases it calls a device support I/O routine. The next section gives an overview of what
must be done in order to process a record. Next is a description of the entry tables that must be
provided by record and device support modules. The remaining sections give example record
and device support modules and describe some global routines useful to record support
modules.

The record and device support modules are the only modules that are allowed to include the
record specific include files as defined in epics/share/epicsH/rec. Thus they are the only
routines that access record specific fields without going through database access.

EPICS Release: R3.12

EPICS I0C Application Developer’'s Guide 65

Chapter 8: Record And Device Support
Overview of Record Processing

2. Overview of Record Processing

The most important record support routine is process. This routine determines what record
processing means. This section describes the overall model followed by record processing.
Before the record specific “process” routine is called, the following has already been done:

* Decision to process a record.

* Check that record is not already active (pact TRUE).

* Check that the record is not disabled.
The process routine, together with its associated device support, is responsible for the
following tasks:

+ Setrecord active while it is being processed

¢ Perform I/O (with aid of device support)

¢ Check for record specific alarm conditions

* Raise database monitors

* Request processing of forward links
A complication of record processing is that some devices are intrinsically asynchronous. It is
NEVER permissible to wait for a slow device to complete. The method to follow is to perform
the following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the I/O operation complete record processing

5. Set pact FALSE and return
The examples given below show how this can be done.

3. Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located
via the data structures defined in epics/share/epicsH/recSup.h. The concept of record
support routines isolates the iocCore software from the details of each record type. Thus new
records can be defined and supported without affecting the IOC core software.

Each record type also has zero or more sets of device support routines. Record types without
associated hardware, e.g. calculation records, normally do not have any associated device
support. Record types with associated hardware normally have a device support module for
each device type. The concept of device support isolates IOC core software and even record
support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the
same for every record type. These routines are located via a Record Support Entry Table
(RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */

66

EPICS I0OC Application Developer's Guide Document Revision: 1

Chapter 8: Record And Device Support
Example Record Support Module

RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* get value field */
RECSUPFUN cvt_dbaddr; /* cvt dbaddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array._info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum item */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum item from string */
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;
};

Each record support module must define its RSET. The external name must be of the form:
<record_type>RSET

Any routines not needed for the particular record type should be initialized to the value NULL.
Look at the example below for details.

Device support routines are located via a Device Support Entry Table (DSET), which has the
following structure:

struct dset { /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record; /* init support for particular record */
DEVSUPFUN get_ioint_info; /* get io interrupt information */
/* other functions are record dependent*/
}:

Each device support module must define its associated DSET. The external name must be the
same as the name which appears in devsup.ascii.

Any record support module which has associated device support must also include definitions
for accessing its associated device support modules. The field “dset”, which is located in
dbCommon, contains the address of the DSET. It is given a value by iocInit.

Example Record Support Module

Declarations

This section contains the skeleton of a record support package. The record type is xxx and the
record has the following fields in addition to the dbCommon fields: VAL, PREC, EGU, HOPR,
LOPR, HIHI, LOLO, HIGH, LOW, HHSV, LLSV, HSV, LSV, HYST, ADEL, MDEL, LAIM, ALST, MLST.
These fields will have the same meaning as they have for the ai record. Consult the Record
Reference manual for a description.

/* Create RSET -~ Record Support Entry Table*/
#define report NULL

#define initialize NULL
static long init_record():
static long process();
#define special NULL

static long get_value();
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();

EPICS Release: R3.12

EPICS IOC Application Developer's Guide 67

- i ——e—— e e e e —_ - - - — e e —

Chapter 8: Record And Device Support
Example Record Support Module

init_record

static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL

static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxXRSET={
RSETNUMBER,
report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
get_alarm_double)};

/* declarations for associated DSET */
struct xxxdset { /* analog input dset */
long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (-1,0)=>(failure,success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;
}:

/* forward declaration for internal routines*/
static void alarm();
static void monitor();

The above declarations define the Record Support Entry Table (RSET), a template for the
associated Device Support Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support
routines supplied for this record type. Note that forward declarations are given for all routines
supported and a NULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

static long init_record(pxxx,pass)
struct xxxRecord *PXXXK;
int pass;

struct xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (struct xxxdset *) (pxxx->dset)) == NULL) {
recGblRecordError (S_dev_noDSET, pxxX, *xXXX: init_record”);
return(S_dev_noDSET) ;

}

/* must have read_xxx function defined */

68

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 8: Record And Device Support
Example Record Support Module

process

if((pdset->number < 5) || (pdset->read_xxx == NULL)) {
recGblRecordError (S_dev_missingSup, pxxx, "xxx: init_record”);
return (S_dev_missingSup) ;

}

if(pdset->init_record) {
if((status=(*pdset->init_record) (pxxx})) return(status);

}
return(0);

}

This routine, which is called by iocInit twice for each record of type xxx, checks to see if it
has a proper set of device support routines and, if present, calls the init_record entry of the
DSET.

During the first call to init_record (pass=0) only initializations relating to this record can be
performed. During the second call (pass=1) initializations that may refer to other records can
be performed. Note also that during the second pass, other records may refer to fields within
this record. A good example of where these rules are important is a waveform record. The var
field of a waveform record actually refers to an array. The waveform record support module
must allocate storage for the array. If another record has a database link referring to the
waveform VAL field then the storage must be allocated before the link is resolved. This is
accomplished by having the waveform record support allocate the array during the first pass
(pass=0) and having the link reference resolved during the second pass (pass=1).

static long process {pxxx)
struct xxxRecord *PXHXX ;
{
struct xxxdset *pdset = (struct xxxdset *) (pxxx->dset);
long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt keep calling*/
pxxx->pact=TRUE;
recGblRecordError (S_dev_missingSup, pxxx, *read_xxx*) ;
return(S_dev_missingSup) ;

}

/* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx) (pxxx): /* read the new value */

if (!pact && pxoxx->pact) return(0); /* return if beginning of asynch processing*/
pxxx->pact = TRUE;

recGblGetTimeStamp (pxxx) ;

/* check for alarms */

alarm(pxxx) ;

/* check event list */

monitor (pxxx) ;

/* process the forward scan link record */
recGblFwdLink {pxxx) ;

pxxx->pact=FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific process
routine is called by dbProcess whenever it decides that a record should be processed. Process
decides what record processing really means. The above is a good example of what should be
done. In addition to being called by dbProcess the process routine may also be called by
asynchronous record completion routines.

EPICS Release: R3.12

EPICS I0C Application Developer’'s Guide 69

Chapter 8: Record And Device Support
Example Record Support Module

The above model supports both synchronous and asynchronous device support routines. For
example, if read_xxx is an asynchronous routine, the following sequence of events will occur:

* process is called with pact FALSE

* read xxx is called. Since pact is FALSE it starts I/O, arranges callback, and sets pact
TRUE

* read_xxx returns

* because pact went from FALSE to TRUE process just returns

* Any new call to dbProcess is ignored because it finds pact TRUE

* Sometime later the callback occurs and process is called again.

* read_sowx is called. Since pact is TRUE it knows that it is a completion request.
¢ read_xxxreturns

* process completes record processing

* pact is set FALSE

¢ process returns

At this point the record has been completely processed. The next time process is called
everything starts all over from the beginning,

Misce]laneous static long get_value (pxxx, pvdes)
aye . struct xxxRecord *pxxx;
Utlhty Routmes struct valueDes *pvdes;

pvdes->field_type = DBF_FLOAT;
pvdes->no_elements=1;
(float *) (pvdes->pvalue) = &pxxx->val;
return(0) ;

}

static long get_units(paddr,units)
struct dbAddr *paddr;
char *units;

struct xxxRecord *pxoot=(struct xxxRecord *)paddr->precord;

strncpy (units, pxxx->egu, sizeof (pxxx->equ)) ;
return(0) ;
}

static long get_graphic_double (paddr, pgd)
struct dbAddr *paddr;
struct dbr_grDouble *pgd;

struct xxxRecord *pxxx=(struct xxxRecord *)paddr->precord;

if (paddr->pfield == (void *) (&pxxx->val)) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;
} else recGblGetGraphicDouble (paddr,pgd);
return(0);
}

/* similar routines would be provided for get_control_double and get_alarm_double*/
These are a few examples of various routines supplied by a typical record support package.
The functions that must be performed by the remaining routines are described in Section 5 on
page 72.

70 EPICS 10C Application Developer’'s Guide Document Revision: 1

PPV e e a s e e e - — ———— . N

Chapter 8: Record And Device Support
Example Record Support Module

Alarm
Processing

Raising Monitors

static void alarm(pxxx)

{

}

struct xxxRecord *PXXX;

double wval;
float hyst,lalm, hihi, high,low, lolo;
unsigned short hhsv, 11sv, hsv, 1lsv;

if (pxox->udf == TRUE) {
recGblSetSevr (pxxx, UDF_ALARM, VALID_ALARM) ;
return;

}

hihi=pxxx->hihi; lolo=pxxx->1l0lo; high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->1lsv; hsv=pxxx->hsv; lsv=pxxx->1sv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */

if (hhsv && (val >= hihi || ((lalm==hihi) && (val >= hihi-hyst)))) {
if (recGblSetSevr (pxxx, HIHI_ALARM, pxxx->hhsv)) pxxx->lalm = hihi;
return;

/* alarm condition lolo */

if (11sv && (val <= lolo || ((lalm==lolo) && (val <= lolo+hyst))))} {
if (recGblSetSevr (pxxx, LOLO_ALARM, pxxx->11lsv)) pxxx->lalm = lolo;
return;

/* alarm condition high */

if (hsv && (val >= high || ((lalm==high) && (val >= high-hyst)))) {
if (recGblSetSevr (pxxx, HIGH_ALARM, pxxx->hsv)) pxxx->lalm = high;
return;

/* alarm condition low */

if (lsv && (val <= low || (lalm==low) && (val <= low+hyst)))) {
if (recGblSetSevr (pxxx, LOW_ALARM, pxxx->1sv)) pxxx->lalm = low;
return;

}

/*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val;

return;

This is a typical set of code for checking alarms conditions for an analog type record. The
actual set of code can be very record specific. Note also that other parts of the system can raise
alarms. The algorithm is to always maximize alarm severity, i.e. the highest severity
outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm
storms from occurring in the event that the current value is very near an alarm limit and noise
makes it continually cross the limit. The above algorithm ensures that the alarm being reported
will not change unless the value changes by the hysteresis value.

static void monitor (pxxx)

{

struct xxxRecord *PRAX;

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms (pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {
/* post events for value change */
monitor_mask |= DBE_VALUE;

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 71

Chapter 8: Record And Device Support
Global Record Support Routines

/* update last value monitored */
pxxx~>mlst = pxxx->val;

}

/* check for archive change */

delta = pxxx->alst - pxxx->val;

if(delta<0.0) delta = 0.0;

if (delta > pxxx->adel) {
/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxoxx->alst = pxxx->val;

}

/* send out monitors connected to the value field */

if (monitor_mask) {
db_post_events (pxxx, &pxxx->val,monitor_mask) ;

}

return;

}

The first part of the code will be common to most record types. Note that nsta and nsev will
have the value O after this routine completes. This is necessary to ensure that alarm checking
starts fresh after processing completes. The code also takes care of raising alarm monitors
when a record changes from an alarm state to the no alarm state. It is essential that record
support routines follow the above model or else alarm processing will not follow the rules.

IMPORTANT: The record support module is responsible for calling db_post_event for any
fields that change as a result of record processing. Also it should NOT call db_post_event
for fields that do not change.

Global Record Support Routines

Alarm Status
and Severity

A number of global record support routines are available. These routines are intended for use
by the record specific processing routines but can be called by any routine that wishes to use
their services.

The name of each of these routines begins with *reccbl”.

Alarms may be raised in many different places during the course of record processing. The
algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alarm is
raised. If more than one alarm of the same severity is found then the first one is reported. This
means that whenever a code fragment wants to raise an alarm, it does so only if the alarm
severity it will declare is greater then that already existing. Four fields (in database common)
are used to implement alarms: sevr, stat, nsev, and nsta. The first two are the status and
severity after the record is completely processed. The last two fields (nsta and nsev) are the
status and severity values to set during record processing. Two routines are used for handling
alarms. Whenever a routine wants to raise an alarm it calls recGblSetSevr. This routine will
only change nsta and nsev if it will result in the alarm severity being increased. At the end of
processing, the record support module must call recGblResetAlarms. This routine sets
stat=nsta, sevr=nsev, nsta=0, and nsev=0. If stat or sevr has changed value since the
last call it calls db_post_event and returns a value of DBE_ALARM. If no change occured it
returns 0. Thus after calling recGblResetalarms everything is ready for raising alarms the
next time the record is processed. The example record support module presented above shows
how these macros are used.

recGblSetSevr (
void *precord,

72

EPICS 10C Application Developer’'s Guide Document Revision: 1

Chapter 8: Record And Device Support
Global Record Support Routines

Alarm
Acknowledgment

Generate Error:
Process Variable
Name, Caller,
Message

Generate Error:
Status String,
Record Name,
Caller

Generate Error:
Record Name,
Caller, Record
Support Message

Get Graphics
Double

Get Control
Double

short
short

nsta,
nsevr) ;

Returns: (TRUE, FALSE) if (did, did not) change nsta and nsev.

unsigned short recGblResetAlarms(void *precord);

Returns: Initial value for monitor_mask

Database common contains two additional alarm related fields: acks (Highest severity
unacknowledged alarm) and ackt (does transient alarm need to be acknowledged). These field
are handled by iocCore and recGblResetalarms and are not the responsibility of record
support. These fields are intended for use by the alarm handler at some future time.

recGblDbaddrError (
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine can be called whenever an error is returned from a call to dbNameToAddr,
dbGetxxx, or dbPutxscx. It interfaces with the system wide error handling system to display
the following information: Status information, process variable name, calling routine.

recGblRecordError (
long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine.

recGblRecsupError (
long status,
struct dbAaddr *paddr,
char *pcaller_name, /* calling routine name */

char *psupport_name) ; /* support routine name*/

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine, record support entry name.

recGblGetGraphicDouble (
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by the get_graphic_double record support routine to obtain
graphics values for fields that it doesn’t know how to set.

recGblGetControlDouble (
struct dbAddr *paddr,

struct dbr_ctrlDouble *pcd) ;

This routine can be used by the get_control_double record support routine to obtain
control values for fields that it doesn’t know how to set.

EPICS Release: R3.12

EPICS 1OC Application Developer’s Guide 73

Chapter 8: Record And Device Support
Global Record Support Routines

Get Alarm
Double

Get Precision

Get Time Stamp

Forward link

Get Input Link

Put Qutput Link

Initialize Fast
Input Link

recGblGetAlarmDouble (
struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by the get_alarm_double record support routine to obtain control
values for fields that it doesn’t know how to set.

recGblGetPrec (
struct dbAaddr *paddr,
long *pprecision);

This routine can be used by the get_precision record support routine to obtain the precision
for fields that it doesn’t know how to set the precision.

recGblGetTimeStamp(void *precord)

This routine gets the current time stamp.

recGblFwdLink (
void *precord);

This routine can be used by process to request processing of forward links.

recGblGetLinkValue (
struct link*plink,
void *precord,
short dbrType,
void *pdest,
long *poptions,
long *pnRequest) ;

This routine gets a value from an input link. If the link is a constant this call amounts to a NOP.

recGblPutLinkValue (
struct link *plink,
void *precord,
short dbrType,
void *pdest,
long *pnRequest) ;

This routine writes a value to an output link. If the link is a constant this call amounts to a NOP.

recGblInitFastInLink(
struct link *plink,
void *precord,
short dbrType,
char *ca_string);

Initialize a fast input link. This routine should be used if scalar data with options is desired. If
the link is not a channel access link or a database link this amounts to a NOP. ca_string is the
uppercase name of the field that Channel Access is to get a value from.

74

EPICS I0C Application Developer’s Guide Document Revision: 1

Chapter 8: Record And Device Support
Record Support Routines

Initialize Fast

recGblInitFastOutLink(
struct link ‘*plink,

OUtput Link void *precord,
short dbrType,
char *ca_string);
Initialize a fast output link. This routine should be used if scalar data is to be written via the
link. If the link is not a channel access link or a database link this amounts to a NOP.
“ca_string” is the uppercase name of the field that Channel Access will take its value from.
Get Fast Input recGblGetFastLink (
. struct link *plink,
Llllk void *precord,
void *pdest);
Gets a value from a fast input link. This routine can only be used if the link was initialized via
recGblInitFastInLink. If the link is a constant link this amounts to a NOP.
Put Fast Output recGblPutFastLink(
. struct link *plink,
Llnk void ‘*precord,
void *psource) ;
Puts a value to a fast output link. This routine can only be used if the link was initialized via
recGblInitFastOutLink. If the link is a constant link this amounts to a NOP,
6. Record Support Routines
This section describes the routines defined in the RSET. Any routine that does not apply to a
specific record type must be declared NUL.L.
Generate Report report (void *precord); /* addr of record*/
of Each Field in This routine is not used by most record types. Any action is record type specific.
Record

Initialize Record
Processing

Initialize
Specific Record

init(void);

This routine is called once at IOC initialization time. Any action is record type specific. Most
record types do not need this routine.

init_record(
void *precord, /* addr of record*/
int pass);

iocInit calls this routine twice (pass=0 and pass=1) for each database record of the type
handled by this routine. It must perform the following functions:

* Check and/or issue initialization calls for the associated device support routines.
* Perform any record type specific initialization.

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 75

— T —_— = — - . = = -

Chapter 8: Record And Device Support

Record Support Routines

Process Record

* During the first pass it can only perform initializations that affect the record referenced
by precord.

* During the second pass it can perform initializations that affect other records.

process (void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

Special special (

. struct dbAddr *paddr,

PI‘OCCSSlng int after); /* (FALSE, TRUE) => (Before, After) Processing*/

This routine implements the record type specific special processing for the field referred to by
dbaddr. Note that it is called twice. Once before any changes are made to the associated field
and once after. File special.h defines special types. This routine is only called for user
special fields. A field is defined to be user special in the ASCII record definition.

Get Value get_value(

void *precord, /* addr of record*/

struct valueDes *p); /*addr of value description struct*/
This routine returns a description of the vaL field of the record. The structure valuebes,
which is defined in recSup.h, is defined as follows:

struct valueDes {

int field_type,

long no_elements,

void *pvalue}

Convert db Addr cvt_dbaddr (struct dbAddr *paddr);

Definitions This routine is called by dbNameToaddr if the field has special set equal to SPC_DBADDR. A
typical use is when a field refers to an array. This routine can change any combination of the
dbAddr fields: no_elements, field_type, field_size, and special. For example if the
VAL field of a waveform record is passed to dbNameToAddr, cvt_dbaddr would change
dbAddr so that it refers to the actual array rather then var.

Get Array get_array_ info(

. struct dbAddr *paddr,
Informatlon long *no_elements,
long *offset);
This routine returns the current number of elements and the offset of the first value of the
specified array. The offset field is meaningful if the array is actually a circular buffer.
Put Array put_array_info(
o struct dbaddr *paddr,
Informatlon long old_offset,
long nNew) ;
This routine is called after new values have been placed in the specified array.
76 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 8: Record And Device Support
Record Support Routines

Get Units

Get Precision

Get Enumerated
String

Get Strings for
Enumerated
Field

Put Enumerated
String

Get Graphic
Double
Information

Get Control
Double
Information

get_units(
struct dbaddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

get_precision(
struct dbAddr *paddr,
long *precision) ;

This routine gets the precision, i.e. number of decimal places, which should be used to convert

the field value to an ASCII string. Note that recGblGetPrec should be called for fields not
directly related to the value field.

get_enum_str(
struct dbAddr *paddr,
char *p);

This routine sets *p equal to the ASCII string for the field value. The field must have type
DBF_ENUM.

get_enum_strs(
struct dbaddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structure dbr_enumStrs.

put_enum_str (
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the
string values associated with each enumerated value and if it finds a match sets the database
field equal to the index of the string which matched.

get_graphic_double(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr_grDouble. Note that
recGblGetGraphicDouble should be called for fields not directly related to the value field.

get_control_double(
struct dbAddr *paddr,
struct dbr_ctriDouble *p); /* addr of return info*/

This routine gives values to all fields of structure dbr_ctrlDouble. Note that
recGblGetControlDouble should be called for fields not directly related to the value field.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 77

Chapter 8: Record And Device Support
Example Device Support Modules

Get Alarm get_alarm_ double(
struct dbAddr *paddr,
Double struct dbr_alDouble *p); /* addr of return info*/
Information This routine gives values to all fields of structure dbr_alDouble.
7. Example Device Support Modules
In addition to a record support module, each record type has an arbitrary number of device
support modules. The purpose of device support is to hide device specifics from record
processing routines. Thus support can be developed for a new device without changing the
record support routines.
A device support routine has knowledge of the record definition. It also knows how to talk to
the hardware directly or how to call a device driver which interfaces to the hardware. Thus the
device support routines are the interface between hardware specific fields in a database record
and device drivers or the hardware itself.
The common portion of every database record contains two device related fields:
* dtyp: Device Type.
* dset: Address of Device Support Entry Table.
The field dtyp is filled in by DCT. It contains the index of the menu choice as defined in
devsup.ascii. iocInit uses this field and the device support structures defined in devsSup.h
to initialize the field dset.
Synchronous /* Create the dset for devAiSoft */
. long init_record():;
Device Support long read ail();
Module struct {
long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read ai;
DEVSUPFUN special_linconv;
}devaisoft={
6[
NULL,
NULL,
init_recorxd,
NULL,
read_ai,
NULL};
static long init_record(pai)
struct aiRecord ‘*pai;
{
long status;
/* ai.inp must be a CONSTANT or a PV_LINK or a DB_LINK or a CA_LINK*/
switch (pai->inp.type) {
case (CONSTANT) :
pai->val = pai->inp.value.value;break;
case (PV_LINK) :
status = dbCaAddInLink (&({pai->inp), (void *)pai, "VAL");
if (status) return(status);
78 EPICS I0C Application Developer's Guide Document Revision: 1

p——— e - e = s e g e - - —_— N - - e e —-——

Chapter 8: Record And Device Support
Example Device Support Modules

Asynchronous
Device Support
Module

break;
case (DB_LINK) :
break;
default :
recGblRecordError (S_db_badField, (void *)pai,
*devAiSoft (init_record) Illegal INP field”):
return(S_db_badField);

}
/* Make sure record processing routine does not perform any conversion*/

pai->linr=0;
return(0);
)

static long read_ai(pai)
struct aiRecord*pai;
{
long status;
long options=0;
long nRequest=1;

status=recGblGetLinkValue(&(pai->inp.value.db_link), (void *)pai, DBR_DOUBLE,
&(pai->val), &options, &nRequest);
}
if(status) return(status);
return(2); /*don’t convert*/
}

The example is devaisoft, which supports soft analog inputs. The INP field can be a constant
or a database link or a channel access link. Only two routines are provided (the rest are
declared NULL). The init_record routine first checks that the link type is valid. If the link is
a constant it initializes VAL If the link is a Process Variable link it calls dbcaGetLink to turn it
into a Channel Access link. The read_ai routine obtains an input value if the link is a
database or Channel Access link, otherwise it doesn’t have to do anything.

This example shows how to write an asynchronous device support routine. It does the
following sequence of operations:

1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be
called after a number of seconds specified by the VAL field. callbackRequest is an
EPICS supplied routine. The watchdog timer routines are supplied by vxWorks.

2. It prints a message stating that processing has started, sets pact TRUE, and returns. The
record processing routine returns without completing processing.

3. When the specified time elapses myCallback is called. It locks the record, calls
process, and unlocks the record. It calls the process entry of the record support
module, which it locates via the rset field in dbCommon, directly rather than
dbProcess. dbProcess would not call process because pact is TRUE.

4. When process executes, it again calls read_ai. This time pact is TRUE.

5. read_ai prints a message stating that record processing is complete and returns a status
of 2. Normally a value of O would be returned. The value 2 tells the record support
routine not to attempt any conversions.

6. When read_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called
everything starts all over.

/* Create the dset for devAiTestAsyn */
long init_record():

long read_ai();

struct {

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 79

Chapter 8: Record And Device Support
Example Device Support Modules

long number;

DEVSUPFUN report;

DEVSUPFUN init;

DEVSUPFUN init_record;

DEVSUPFUN get_ioint_info;

DEVSUPFUN read_ai;

DEVSUPFUN special_linconv;
} devAiTestaAsyn={(

6 1

NULL,

NULL,

init_record,

NULL,

read_ai,

NULL};

/* control block for callback*/
struct callback {
CALLBACK callback;
sruct dbCommon *precord;
WDOG_ID wd_id;
};

static void myCallback (pcallback)
struct callback *pcallback;
{

struct dbCommon *precord=pcallback->precord;
struct rset *prset=(struct rset *) (precord->rset);

dbScanLock (precord) ;
* (prset->process) (precord) ;
dbScanUnlock (precord) ;

}

static long init_record(pai)
struct aiRecord *pai;

{
struct callback *pcallback;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {(
case (CONSTANT) :

pcallback = (struct callback *)(calloc(l,sizeof(struct callback)));

pai->dpvt = (void *)pcallback;

callbackSetCallback(myCallback, pcallback) ;
pcallback->precord = (struct dbCommon *)pai;

pcallback->wd_id = wdCreate();
pai-»>val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError (S_db_badField,

*devAiTestAsyn (init_record)

return(S_db_badField);

}

return(0);

}

static long read_ai(pai)
struct aiRecord *pai;

(

(void *)pai,
Illegal INP field~);

struct callback *pcallback=(struct callback *) (pai->dpvt);

int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {(
case (CONSTANT) :

80 EPICS 10C Application Developer's Guide

Document Revision: 1

Chapter 8: Record And Device Support
Device Support Routines

if (pai->pact) {
printf (*%s Completed\n”,pai->name);
return(2); /* don‘t convert*/

} else {
wait_time = (int) (pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio, pcallback) ;
printf(~%s Starting asynchronous processing\n”,pai->name);
wdstart (pcallback->wd_id,wait_time, callbackRequest, (int)pcallback) ;
pai->pact = TRUE;
return(0);

}

default :

if (recGblSetSevr (pai, SOFT_ALARM, VALID_ALARM)) {

if (pai->stat!=SOFT_ALARM) {
recGblRecordError (S_db_badField, (void *)pai,
devAiTestAsyn (read_ai) Illegal INP field);

}

}
return(0);

8. Device Support Routines

Generate Device
Report

Initialize Record
Processing

Initialize
Specific Record

Get1/O
Interrupt
Information

This section describes the routines defined in the DSET. Any routine that does not apply to a
specific record type must be declared NULL.

report (
FILE fp, /* file pointer*/
int interest);

This routine is responsible for reporting all I/O cards it has found. If interest is (0,1) then
generate a (short, long) report. If a device support module is using a driver, it normally does
not have to implement this routine because the driver generates the report.

init(
int after);
This routine is called twice at IOC initialization time. Any action is device specific. This
routine is called twice: once before the database records are initialized and once after. after
has the value (0,1) (before, after) record initialization.

init_record(
void *precord); /* addr of record*/

The record support init_record routine calls this routine.

get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt) ;

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 81

Chapter 8: Record And Device Support
Device Drivers

Other Device

Support
Routines

This is called by the I/O interrupt scan task. If cmd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an I/O scan list. See the chapter on
scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not
described in this document because, hopefully, it will go away in the near future. When it calls
this routine the arguments have completely different meanings.

All other device support routines are record type specific.

Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to
isolate device support routines from details of how to interface to the hardware. Device drivers
have no knowledge of the internals of database records. Thus there is no necessary
correspondence between record types and device drivers. For example the Allen Bradley
driver provides support for many different types of signals including analog inputs, analog
outputs, binary inputs, and binary outputs.

In general only device support routines know how to call device drivers. Since device support
varies widely from device to device, the set of routines provided by a device driver is almost
completely driver dependent. The only requirement is that routines report and init must be
provided. Device support routines must, of course, know what routines are provided by a
particular device driver.

File drvsup.h describes the format of a driver support entry table. File drvSup.ascii defines
the supported device drivers.

82

EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 9: Device Support Library

Overview

Include file devLib. h provides definitions for a library of routines useful for device and driver
modules. These are a new addition to EPICS and are not yet used by all device/driver support
modules. Until they are, the registration routines will not prevent addressing conflicts caused
by multiple device/drivers trying to use the same VME addresses.

Registering VME Addresses

typedef enum
atVMEAl6,
atVMEA24,
atVMEA32,

Definitions of
Address Types

atLast /* atLast must be the last enum in this list */

} epicsAddressType;

*epicsAddressTypeNamel]
{
VME Al6~,
VME A24*,
*"VME A32”
};
int EPICStovxWorksAddrTypel(]
={
VME_AM_SUP_SHORT_IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

char

};

EPICS Release: R3.12 EPICS I0C Application Developer's Guide

83

Chapter 9: Device Support Library
Interrupt Connect Routines

Register Address long devRegisterAddress(
epicsAddressType addrType,

void *baseAddress,
unsigned size,
void **pLocalAddress);

This routine is called to register a VME address. This routine keeps a list of all VME addresses
requested and returns an error message if an attempt is made to register any addresses that are
already being used. *pLocaladdress is set equal to the address as seen by the caller.

Unregister long devUnregisterAddress(
epicsAddressType addrType,
Address void *baseAddress);

This routine releases addresses previously registered by a call to devRegisteraddress.

3. Interrupt Connect Routines

Definitions of typedef enum {intCPU, intVME, intVXI} epicsiInterruptType;
Interrupt Types
Connect long devConnectInterrupt(

epicsInterruptType intType,

unsigned vectorNumber,
void (*pFunction) (),
void ‘*parameter);

Disconnect long devDisconnectInterrupt (
epicsInterruptType intType,
unsigned vectorNumber):;

Enable Leve] long devEnableInterruptLevel (
epicsInterruptType intType,
unsigned 1level);

Disable Level long devDisableInterruptLevel (
epicsInterruptType intType,
unsigned 1level);

4. Macros and Routines for Normalized Analog Values

Normalized long devNormalizedGblGetField(
N long rawvValue,
GetField unsigned nbits,

84 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 9: Device Support Library
Macros and Routines for Normalized Analog Values

Convert Digital
Value to a

Normalized
Double Value

Convert
Normalized
Double Value to a
Digital Value

DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

This routine is just like recGblGetField, except that if the request type is DBR_FLOAT or

DBR_DOUBLE, the normalized value of rawValue is obtained, i.e. rawvalue is converted to a
value in the range 0.0<=value<.1.0

#define devCreateMask (NBITS) ((1<<(NBITS))-1)
#define devDigToNml (DIGITAL,NBITS) \
(({double) (DIGITAL)) /devCreateMask (NBITS))

#define devNmlToDig (NORMAL,NBITS) \
(((long) (NORMAL)) * devCreateMask (NBITS))

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 85

Chapter 9: Device Support Library

Macros and Routines for Normalized Analog Values

86

EPICS I0C Application Developers Guide

Document Revision: 1

Chapter 10: 10C Database Configuration

1.

Overview

This chapter describes the ASCII files that must be modified and/or created in order to provide
new record support, device support, and/or device drivers. Before the ASCII files are
described, an overview of database configuration and the concept of Self Defining Record
(SDR) files is presented. Although it is not necessary for the application developer to
understand these concepts, the discussion should clear up the mystery of what happens to the
ASCII definition files.

The serious reader should obtain a listing of all the ASCII files in base/src/ascii.

Overview of IOC Database Configuration

NOTE: Everyone is STRONGLY encouraged to start using the GDCT ASCII database format
and dbLoadRecords and dbLoadTemplates. See the GDCT document for details.

The IOC database is a memory resident database plus assorted data structures. Many of the
data structures are configured via ASCII definition files. Let’s briefly discuss the steps involved
up to and including initialization of an IOC database.

1. Create ASCI Files. Each configuration component has one or more associated ASCII
definition files. The components and related ASCII files are:

* dbRecType.ascii: The allowable record types

* choiceGbl.ascii: Global choices, i.e. options common to multiple record types.
* choiceRec.ascii: Record specific choices.

* cvt*ascii: A group of ASCII files for defining conversion options.

* devSup.ascii: Device support.

* drvSup.ascii: Driver support.

EPICS Release: R3.12

EPICS IOC Application Developer's Guide 87

Chapter 10: IOC Database Configuration

Self Defining Records
* dbCommon.ascii: Definition of fields common to all record types.
* *Record.ascii: Record specific field definitions.

2. Create a DCT SDR File. Build utilities are provided to process the ASCII definition
files. The build utilities convert each ASCII file to a self defining record (SDR) file. An
SDR file contains a set of one or more self defining records. Two or more SDR files can
be concatenated to create a file that is again an SDR file. A script file "makesdr”
executes the appropriate build utilities and concatenates the output files so that an SDR
file appropriate for input to DCT is generated.

3. OLD STYLE:

Create a database via DCT. DCT reads the SDR file generated by makesdr and accepts
user input. The user creates and/or modifies an arbitrary number of records. When done
DCT generates a file <name>.database. This file, which is also in SDR format,
contains all the SDR records from the input SDR file as well as SDR records for the
actual database records.
NEW STYLE
Create the database file via GDCT. It saves a file with the extension .db
4. OLD STYLE:
After an IOC is booted and iocCore is loaded, the commands:
dbLoad (*<database>*)
NEW STYLE:
dbLoad (*default.dctsdr")
dbLoadRecords (*<file>.db*)
OLD AND NEW
iéélnit('<resource file>~
are executed. dbLoad reads the SDR file containing the database.
The Source/Release control manual describes the details of creating the SDR files. This
manual merely describes the contents of the ASCII files.
3. Self Defining Records
Self defining records provide the following features:

1. Many different types of information can be stored in the same file.

2. Two or more files containing self defining records can be combined with the Unix cat
command to form a new file that is also in self defining record format.

3. Record structures can contain pointer fields. In files all pointers are kept as offsets.
When sdrLoad reads a self defining record all offsets are automatically converted to
addresses. .

Each self defining record consists of a header (sarHeader) followed by data. The header has
the following format:

struct sdrHeader {

long magic; /* magic number */
long nbytes; /*number of bytes of data which follow header*/
short type; /* sdr record type*/
short pad;
long create_date; /* creation date in standard unix format*/
}
The allowable types are:
88 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 10: [OC Database Configuration
Ascii Definition Files

SDR_DB_RECTYPE: Record Types
SDR_DB_RECORDS: The actual database records
SDR_DB_RECDES: Record and field descriptions
SDR_CHOICEGBL: Global choices
SDR_CHOICECVT: Conversion choices
SDR_CHOICEREC: Record specific choices
SDR_CHOICEDEYV: Device support choices
SDR_DEVSUP: Device support description structures
SDR_CVTTABLE: Conversion tables
SDR_DRVSUP: Driver support structures
SDR_RECSUP: Record support structures

NOTE: sprR_DB_RECTYPE is needed to decipher many of the other SDRs. If needed it must
always be the first SDR in a file.

Each type of self defining record is created by one of the build utilities or by DCT. Two
subroutines are provided for use by any programs that want to use self defining records. The
two routines are sdrLoad and sdrUnload.

Ascii Definition Files

dbRectype

Choice

choiceGbl

choiceRec

cvtTable

This file, which defines the valid record types, has the format:

<record type>

The global choice table has the following format:

<choice_set> *~<choice_string>"

The values for <choice_set> are defined in choiceGbl.h.

This file contains choices special to particular record types. For each record type the following
definitions are accepted:

“record type” <choice_set> “<choice_string>"

The choice sets are defined in various record specific include files.

Raw data can be converted to engineering units via one of the following:

1. No Conversion.
2. Linear Conversion.
3. Breakpoint table.

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 89

Chapter 10: I0C Database Configuration

Ascii Definition Files

devSup

A conversion file consists of a set of definitions. The first two lines define no conversion and
linear conversion. The remainder of the file defines breakpoint tables.

There are two methods of preparing breakpoint tables. The first method is to directly provide
the breakpoint table. The second is to provide a table of raw values corresponding to equally
spaced engineering values,

The format for directly defining a breakpoint table is as follows:

<name> BreakTable
<raw value> <eng value>

ENDTABLE

The format for generating a breakpoint table from a data table of raw values corresponding to
equally spaced engineering values is:

<header line>
<data table>
ENDTABLE

The header line contains the following information:

* Name: ASCH string

* Low Value Eng: Engineering Units Value for 1st breakpoint table entry
* Low Value Raw: Raw value for 1st breakpoint table entry

* High Value Eng: Engineering Units: Highest Value desired

* High Value Raw: Raw Value for High Value Eng

* Error: Allowed error (Engineering Units)

* First Table: Engineering units corresponding to first data table entry
Last Table: Engineering units corresponding to last data table entry
Delta Table: Change in engineering units per data table entry

An example definition is:

”NO CONVERSION*

LINEAR

"TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1

<data table>

ENDTABLE

*Example Breakpoint” BreakTable

0 0

1000 .1

2000 2

3000 3

4000 5
8
L

o Ul v wum

4096

ENDTABLE

This file defines the device support for each record type. For each record type the following
definitions are accepted:

"record type” <link_type> ~<dset_name>* ~<choice_string>~

where

* ” record type”: Name of the record type
* <link_type>: Link type as defined in link.h
* <dset_name>: ASCII name of the device support entry table.

90

EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 10: 10C Database Configuration
Record Description Files

*» <choice_string>: String value for this choice.

drvSup This file contains the name of each driver entry table. It has the form:

<drvet_name>

5. Record Description Files

An ASCII definition file must exist for each record type (for example ai.ascii). This file
describes each field of the record except the fields defined by db_common.ascii.

Preceding the field definitions is a line of the form
RECTYPE “<type>*
Each field is defined by a number of definitions. The following definitions appear for all fields:

* prompt: Prompt string enclosed in double quotes

¢ fldname: Field Name string

* special: Special Processing

* aslev: Access Security Level

» field_type: Field Type as specified in db_f1dtypes.h

* process_passive: Should dbPutField cause passive record to be processed
* interest: Interest level

The remaining definitions depend of the field_type.

* field_type: DBF_STRING
* size: Field Size
¢ promptflag: YES or NO
* field_type: DBF_UCHAR, DBF_SHORT, DBF_LONG, DBF_ULONG, DBF_FLOAT,
DBF_DOUBLE, Or DBF_ENUM.

* initial: Initial Value
¢ promptflag: Oor 1
If promptfiag is >=1 then the following are defined:
¢ lowfl: conor var
* rangel: Field name(VaR) or Value(con) for low operating range
* highfl: conorvar

* range2: Field name(VAR) or Value(con) for high operating range
If field_type is DBF_UCHAR, DBF_SHORT, DBF_LONG, or DBF_ULONG:

¢ cvt_type: CT_DECIMAL or CT_HEX
* field_type: DBF_GBLCHOICE, or DBF_RECCHOICE.
* initial: Initial Value
* choice_set: Index of choice set
* promptflag: YES or NO
* field_type: DBF_CVTCHOICE, or DBF_DEVCHOICE.
+ initial: Initial Value
¢ promptflag: YES or NO
* field_type: DBF_INLINK, DBF_OUTLINK, Of DBF_FWDLINK.

EPICS Release: R3.12 EPICS I0C Application Developer's Guide 91

Chapter 10: IOC Database Configuration

ASCII Build Utilities

¢ promptflag: YES or NO
* field_type: DBF_NOACCESS.
* size: Field Size
* xxx: Code to be inserted in the .h file.

6. ASCII Build Utilities

The ASCI definition files are not used directly by IOC software or by the Database
Configuration Tool (DCT). Instead they are translated by one of a set of “Build” utility
programs. This section lists each build utility, the ASCII input files it accepts, and the SDR file
it generates. It also lists the input and output for DCT.

bldCvtTable This program reads file cvtTable.ascii and generates two files: cvtTable.sdr and
choiceCvt.sdr.
INPUT:
cvtTable.ascii
OUTPUT:
SDR_CVTTABLE cvtTable.sdr
SDR_CHOICECVT choiceCvt.sdr
bldGblChoice This program reads file choiceGbl.ascii (after it is processed by cpp) and generates file
choiceGbl.sdr.
INPUT:
choicegbl.ascii (after processing by cpp)
OUTPUT:
SDR_CHOICEGBL choiceGbl.sdr
bldRecChoice INPUT:
choiceRec.ascii (after processing by cpp)
SDR_DB_RECTYPE dbRecType.sdr
OUTPUT:
SDR_CHOICEREC choiceRec.sdr
bldDevSup INPUT:
devSup.ascii
SDR_DB_RECTYPE dbRecType.sdr
OUTPUT:
SDR_DEVSUP devSup.sdr
SDR_CHOICEDEV choiceDev.sdr
92 EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 10: IOC Database Configuration
DCT - Database Configuration Tool

bldRecDef INPUTS:

SDR_DB_RECTYPE dbRecType.sdr
dbCommon.ascii All .ascii after cpp. dbCommon must be first
<ai, etc>.ascii

OUTPUTS:

SDR_DB_RECDES dbRecDes.sdr
SDR_DB_DCTRECDES dbDctRecDes . sdr
<aiRecord, etc>.h

bldDbRecType INPUT:

dbRectype.ascii

OUTPUT:

SDR_DB_RECTYPE dbRecType.s

bldDrvSup INPUT:

drvSup.ascii From stdin
OUTPUT:

SDR_DRVSUP devSup.sdr

7. DCT - Database Configuration Tool

INCLUDES:

choice.h
dbDctRecDes.h
dbDefs. £
dbFldTypes.h
dbRecords.h
dbRecType.h

INPUTS: All inputs concatenated into file <appl>.dctsdr

SDR_DB_RECTYPE
SDR_DB_RECDES
SDR_CHOICEGBL
SDR_CHOICECVT
SDR_CHOICEREC
SDR_CHOICEDEV
SDR_DEVSUP

IN/OUT: The records are all stored in SDR_DB _RECORDS format. The ".database” file
contains the dctsdt records plus all database record.

EPICS Release: R3.12 EPICS 10C Application Developer's Guide 93

Chapter 10: IOC Database Configuration
DCT - Database Configuration Tool

94 EPICS I0C Application Developer's Guide

Document Revision: 1

Chapter 11: 10C Initialization

1. Overview

After vxWorks is loaded at IOC boot time, the following commands are issued to load and
initialize the control system software:

l1d < targetmvl67/iocCore
1ld < targetmvl67/drvSup
1ld < targetmvl67/recSup
1d < targetmvl67/devSup

1ld < initHooks.o

iocLogDisable = 1
TSconfigure(0) #See below for options

dbLoad (~default.dctsdr”)
dbLoadRecords (“<.db file>*)
and/or
dbLoadTemplates(*<.db file>, "<template_def>")

iocInit (”<resource file>~)
The first four commands load various components of the EPICS software.

InitHooks.o is an optional routine that, if supplied, is called after most steps of IOC
initialization.

The dbLoad loads the information obtained from the ASCII definition files. One or more
dbLoadRecords, and dbLoadTemplate commands load database files with the GDCT .db
format. It is also possible to use dbLoad to load databases saved in the DCT .database

format. In this case it is possible to have multiple dbLoad comnmands as long as all the
databases must have identical SDR information.

iocInit performs the following functions:

coreRelease

EPICS Release: R3.12 EPICS IOC Application Developer's Guide 85

Chapter 11: I0C Initialization

Overview

TSconfigure

initHooks

epicsSetEnvParams
getResources
iocLogInit
taskwdInit
callbackInit
dbCaLinkInit (1)
initDrvSup
initRecSup
initDevSup
ts_init
initDatabase
dbCaLinkInit(2)
finishDevSup
scanInit()
interruptAccept
initialProcess
rsrv_init

TSConfigure(master, sync_rate, clock_rate,master _port,slave_port)
* master: I=master timing IOC, O=slave timing, default is slave.
* sync_rate: The clock sync rate is seconds. The default is 10 seconds.
* clock_rate: Default is 1000 Hz
* master_port: UDP port for master. The default is 18233
* slave_port: UDP port for slave.

See "Synchronous Time Stamp Support”, by Jim Kowalkowski for details. Note that the
default is to be a slave. If no master is found the slave will obtain a starting time from Unix.

This routine, if loaded before iocInit is invoked, is called by iocInit after each significant
initialization step. When called it passes a single argument identifying the step just completed.
The argument is defined in epicsH/initHooks.h as follows:

#define INITHOOKatBeginning 0

#define INITHOOKafterSetEnvParams 1
f#define INITHOOKafterGetResources 2
#define INITHOOKafterLogInit 3

#define INITHOOKafterCallbackInit 4
#define INITHOOKafterCaLinkInitl 5
#define INITHOOKafterInitDrvSup 6
#define INITHOOKafterInitRecSup 7
#define INITHOOKafterInitDevSup 8
#define INITHOOKafterTS_init 9

#define INITHOOKafterInitDatabase 10
#define INITHOOKafterCaLinkInit2 11
#define INITHOOKafterFinishDevSup 12
#define INITHOOKafterScaniInit 13
#define INITHOOKafterInterruptAccept 14
#define INITHOOKafterInitialProcess 15
#define INITHOOKatEnd 16

The following is the default initHooks.c file. It merely declares the IOC as the master
timing IOC,

#include <vxWorks.h>
#include <initHooks.h>

/* If this function (initHooks) is loaded, iocInit calls this function
* at certain defined points during IOC initialization */

void initHooks (callNumber)

96

EPICS I0C Application Developers Guide Document Revision: 1

e e e e = — - ———— e~ o e r——

Chapter 11: 10C Initialization
Overview

dbLoad

int
{

callNumber;

switch (callNumber) {

case INITHOOKatBeginning :
break;

case INITHOOKafterSetEnvParams :
break;

case INITHOOKafterGetResources :
break;

case INITHOOKafterLogInit :
break;

case INITHOOKafterCallbackInit :
break;

case INITHOOKafterCaLinkInitl :
break;

case INITHOOKafterInitDrvSup :
break;

case INITHOOKafterInitRecSup :
break;

case INITHOOKafterInitDevSup :
break;

case INITHOOKafterTS_init :
break;

case INITHOOKafterInitDatabase :
break;

case INITHOOKafterCaLinkInit2 :
break;

case INITHOOKafterFinishDevSup :
break;

case INITHOOKafterScanInit :
break;

case INITHOOKafterInterruptAccept :

break;

case INITHOOKafterInitialProcess :

break;

case INITHOOKatEnd :
break;

default:
break;

}

return;

This command is used to load the ASCII configuration converted to default .dctsdr format.
In addition it can also load DCT .database files which contain the ASCII information as welll

as record instances. Multiple dbLoad commands can be issued to load multiple database files.

needs the following self defining records:

* SDR_DB_RECTYPE: Record Types

* SDR_DB_RECORDS: Database records.

* SDR_DB_RECDES: The record and field descriptions.
* SDR_CHOICEGBL: The global choices.

* SDR_CHOICECVT: The conversion choices.

* SDR_CHOICEREC: The record type specific choices.
* SDR_CHOICEDEY: The device support choices.

* SDR_DEVSUP: The device support description structures.
¢ SDR_CVTTABLE: The conversion tables

SDR_DRVSUP: The driver support structures.

Each must have identical SDR records except, of course, the SDR_DB_RECORDS. The IOC

EPICS Release: R3.12

EPICS 10C Application Developer's Guide

97

Chapter 11: 10C Initialization

Overview
» SDR_RECSUP: The record support structures
It is highly recommanded that dbLoad load only the default.dctsdr information and use
dbLoadRecords and/or dbLoadTemplate to load record instances.
dbLoadRecords These commands are used to load record instance definition that are in the GDCT .db format.
and The simplest usage is to use dbLoadRecords with a single argument, which is the name of the
dbLoa dTemplates .db file. dbLoadRecords also provides a macro substitution capability. dbLoadTemplate
accepts a .db file that is actually a template that can be instantiated multiple times. The full
usage of these commands is described in man pages.
Print a message specifying the EPICS release.
Set Environment At one time a number of EPICS related environment variables were defined. Many of the
Variables values associated with the variables were also needed by the IOCs. Although another
mechanism, not using environment variables, is now used on Unix, the values are still needed
on the IOCs. These values are defined by a routine epicsEnvParams, which is stored in the
epics/share/site directory. Note that the values defined by epicsEnvParams can be
overridden by the resource definition file described in the next section.
Get Resource GetResource gives values to IOC global variables. The resource file contains lines with the
Definitions following format:
global_name type value
global name is the name of the variable to be changed.
type must be one of the following:
DBF_STRING
DBEF_SHORT
DEF_LONG
DBEF_FLOAT
DEF_DOUBLE
value is the value to be assigned to the global variable.
Please note that you MUST set type so that it matches the actual type of the global variable
because there is no way for GetResources to know the actual type.
One use of GetResources is to override the default values for the EPICS realted environment
variables described in the previous section. Please note that all of these environment variables
are of type DBF_STIRING.
The variables that are used in the IOC are:
* EPICS_TS_MIN_WEST: The number of minutes west of GMT. For example in U.S.
Central time zone this is 360.
* EPICS_IOC_LOG_INET: The inet address of the log server.
* EPICS_IOC_LOG_PORT: The port used by the log server.
Initialize Initialize the logging system. This system traps all 1ogMsg calls and sends a copy to a Unix
Logging file. Note that this can be disabled by issuing the command iocLogDisable=1 before issuing
iocInit.
98 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 11: 10C Initialization
Overview

Start Task
Watchdog

Start Callback
Tasks

Initialize
Channel Access
Links - Pass 1

Initialize Driver
Support

Initialize Record
Support

Initialize Device
Support

Initialize Timing
System

Initialize
Database

Initialize
Channel Access
Links - Pass 2

Start the task watchdog task. This task accepts requests to watch other tasks. It runs
periodically and checks to see if any of the tasks is suspended. If so it issues an error message.
It can also optionally invoke a callback routine.

Start the general purpose callback tasks. Three tasks are started with the only difference being
scheduling priority.

Calls dbCaLinkInit specifying that it is the first call.

InitDrvSup locates each device driver entry table and calls the init routine of each driver.

InitRecSup locates each record support entry table and calls the init routine.

InitDevSup locates each device support entry table and calls the init routine with an argument
specifying that this is the initial call.

Ts_init initializes the timing system. If a hardware timing board resides in the IOC, hardware
timing support is used, otherwise software timing is used. If the IOC has been declared to be a
master timer, the initial time is obtained from the UNIX master timer, otherwise the initial time
is obtained from the IOC master timer.

InitDatabase makes four passes over the database performing the following functions:

* Pass 1: Initializes following fields: rset, dset, mlis.
init_record (First pass)

* Pass2: Attempts to convert PV_LINKs to DB_LINKs

* Pass 3: Calls record support init_record (second pass)

* Pass 4: Determines lock sets

Calls record support

Calls dbCaLinkInit specifying that it is the second call.

EPICS Release: R3.12

EPICS 10C Application Developer's Guide 99

Chapter 11: 10C Initialization

Overview

Finish Device
Support

Initialize
Database
Scanners

Accept
Interrupts

Perform Initial
Processing

Start Channel
Access Server

InitDevSup locates each device support entry table and calls the init routine with an argument

specifying that this is the finish call.

The periodic, event, and io event scanners are initialized and started.

A global variable ”interruptaccept” is set TRUE. Until this time no request should be made

to process records and all interrupts should be ignored.

dbProcess is called for all records that have PINT TRUE.

The Channel Access server is started.

100

EPICS IOC Application Developer's Guide

Document Revision: 1

Chapter 12: Database Structures

1.

Overview

This chapter describes the internal structures describing an IOC database. It is of interest to
EPICS system developers but serious application developers may also find it useful. This
chapter is intended to make it easier to understand the IOC source listings.

The database attributes defined in this chapter are fixed, i.e. they are common to all IOC
databases. They are defined via C include files. Any changes to these include files can affect
many IOC software components, which will have to be modified and recompiled. A serious
reader of this chapter should obtain a listing of all the files in epics/share/epicsH.

In the IOC a single global variable (pdbBase) contains the address of the dbBase structures
that defines the run time database. The various structures mentioned in dbBase are described
in this chapter. Any IOC source module using the macros and other routines mentioned in this
chapter must include a definition:

extern dbBase *pdbBase;

Then a particular routine accessing a database structure can either reference it via pdbBase or
create a local copy which must be initialized via pdbBase.

Macros for Accessing Database Structures

This section describes macros that make it easier to access the database structures.

EPICS Release: R3.12

EPICS I0C Application Developer’s Guide 101

[- - ~ e .

Chapter 12: Database Structures
Macros for Accessing Database Structures

Defined in
dbRecType.h
GET PRECNAME GET_PRECNAME (prectype, rec_type)
Typical Usage:
char *pstr;
if (! (pstr=GET_PRECNAME (precType, type)) {/*action if not found*/}
This macro returns a pointer to the record name.
Defined in
dbRecords.h
GET PRECLOC GET_PRECLOC (precheader, rec_type)
Typical Usage:
struct recLoc *precLoc;
if (! (precLoc=GET_PRECLOC (precHeader, type)) {/*action if not found*/}
This macro returns a pointer to the record location structure.
Defined in
dbRecDes.h
GET PFLDDES GET_PFLDDES (prectypdes, ind_f1d)
Typical Usage:
struct fldbes *pfldDes;
if (! (pfldDes=GET_PFLDDES (precTypDes, ind)) {/*action if not found*/}
This macro returns a pointer to the field description structure for a particular field of the record
type defined by precTypDes.
GET _PRECTYPDES GET_PRECTYPDES (precdes, ind_rec)
Typical Usage:
struct recTypDes *precTypDes;
if(! (precTypDes=GET_PRECTYPDES (precDes, ind)) (/*action if not found*/}
This macro returns a pointer to the record type description structure.
Defined in
choice.h
GET CHOICE GET_CHOICE (pchoice_set, ind_choice)

Typical Usage:

char *pchoice;
if (! (pchoice=GET_CHOICE(pchoiceSet,ind)) (/*action if not found*/}

102 EPICS IOC Application Developer’'s Guide Document Revision: 1

Chapter 12: Database Structures
Macros for Accessing Database Structures

GET_PCHOICE_SET

GET_PARR_CHOICE
SET

GET_DEV_CHOICE

GET_PDEV_
CHOICE_SET

Defined in
recSup.h

GET_PRSET

Defined in
devSup.h

GET_PDSET

This macro returns a pointer to the string defining a particular choice.

GET_PCHOICE_SET(parr_choice_set, ind_arr)
Typical Usage:

struct choiceSet *pchoiceSet;

if (! (pchoiceSet=GET_PCHOICE_SET (parrChoiceSet,ind)) {/*action if not found*/}

This macro returns a pointer to the structure defining a particular choice set.

GET_PARR_CHOICE_SET (pchoice_rec, ind_arr)
Typical Usage:

struct arrChoiceSet *parrChoiceSet;

if (! (parrChoiceSet=GET_PARR_CHOICE_SET (pChoiceRec, ind)) {/*action*/}

This macro returns a pointer to the structure defining an array of choice sets.

GET_DEV_CHOICE (pdev_choice_set, ind_choice)
Typical Usage:

struct devChoice *pdevChoice;

if (! (pdevChoice=GET_DEV_CHOICE (pdevChoice, ind)) {/*action*/}

This macro returns a pointer to the structure defining a device choice.

GET_PDEV_CHOICE SET (pchoice_dev, ind_rec)
Typical Usage:

struct devChoiceSet *pdevChoiceSet;

if (! (pdevChoiceSet=GET_PDEV_CHOICE_SET (pchoiceDev, ind)) {/*action*/}

This macro returns a pointer to the structure defining the device choices for a particular record.

GET_PRSET (precsup, rec_type)
Typical Usage:

struct rset *prset;

if (! (prset=GET_PRSET (precSup, type)) {/*action if not found*/}

This macro returns a pointer to a record support entry table.

GET_PDSET (pdevsup,dtype)
Typical Usage:

struct dset *pdset;

EPICS Release: R3.12

EPICS I0C Application Developer's Guide

103

Chapter 12: Database Structures
Database Structures

GET_PDEVSUP

Defined in
drvSup.h

GET_PDRVET

GET_PDRVNAME

if (! (pdset=GET_PDSET (pdevSup, type)) {/*action if not found*/)

This macro returns a pointer to a device support entry table.

GET_PDEVSUP (precdevsup, rec_type)

Typical Usage:

struct devSup *pdevSup;
i£(! (pdevSup=GET_PDEVSET (precDevSup, rectype)) {/*action if not found*/}

This macro returns a pointer to a structure defining the ndevice support entry tables for a
particular record type.

GET_PDRVET (pdrvsup, type)
Typical Usage:

struct drvet *pdrvet;
if (! (pdrvet=GET_PDRVET (pdrvSup, type)) {/*action if not found*/)

This macro returns a pointer to a driver entry table.

GET_PDRVNAME (pdrvsup, type)
Typical Usage:

char *pdrvName;
if(! (pdrvName=GET_PDRVNAME (pdrvSup, type)) {/*action if not found*/}

This macro returns a pointer to the driver name.

Database Structures

The following is a partial description of various database related structures. The associated
include files are located in epics/share/epicsH. The include files themselves should be
consulted for a complete description. Each file describing database structures contains the
following:

* Structure definitions for the associated information.
* A brief description of the memory layout.
* A set of macros for accessing the structures.

For the purposes of understanding this document it is sufficient to show the structure
declarations and the associated memory layout. If you are going to study program listings you
should first study the complete include files. In particular become familiar with the macros
which access the structures. The actual IOC code almost always uses macros to access the
structures.

104

EPICS I0C Application Developer's Guide Document Revision: 1

Chapter 12: Database Structures
Database Structures

precType ———>[1ocType

number
papName | ——

llaill

> Ilaoll

Figure 12-1: Record Types

dbRecType.h -
Record Types

dbRecords.h -
Record
Locations

dbRecDes.h -
Record
Description

This file describes the possible record types. All include files which define structures
containing components for multiple record types assume that the record type order is that
specified by structue recType.

struct recType {

long number; /* number of types *x/

char **papName; /* ptr to arr of ptr to name */
};

Figure 12-1 shows the memory layout of the record type structures.

This is among the simpler of the IOC structures thus let’s discuss a few details. The external
variable dbRecType points to structure recType. This structure contains two elements:
number and papName. number specifies the number of record types. papName is a pointer to an
array of pointers to record names. Notice in the figure the unnamed array of pointers. It is
permissible for any pointer in the array to be NULL.This type of structure will be seen many
times in the following subsections. Thus whenever a variable starts with “pap” it means
”pointer to array of pointers”.

These structures describe the location of the actual database records.

typedef struct{
ELLNODE next;
void *precord;
} RECNODE;

struct recLoc{ /* record location */

long rec_size; /* record size in bytes */

long record_type; /* record type */

ELLLIST *preclist /* LIST head of sorted RECNODES */
}:
struct recHeader{ /*record header*/

long number; /*number of record types*/

struct recLoc **papRecLoc; /*ptr to arr of ptr to recLoc*/

}:

Figure 12-2 shows the memory layout of the database records.

These structures describe each record type and each field of each record type.

/* conversion types*/
#define CT_DECIMAL 0
#define CT_HEX 1

/* lowfl, highfl */
#define CON 0
#define VAR 1

EPICS Release: R3.12

EPICS I0C Application Developer's Guide 105

Chapter 12: Database Structures
Database Structures

der —>
precHeader recHeader
number
papRecLoc
recLoc
rec_size
record_type
List
pris —list—
RECNODE
next
precord
Figure 12-2: Database Records

——>RECNODE ...
—><record>

#define PROMPT_SZ

24

union £14_types{

char

unsigned

short

unsigned

long

unsigned long

float

double
unsigned short

char_value;

char uchar_value;
short_value;

short ushort_value;
long_value;
ulong_value;
float_value;
double_value;
enum_value;

}:
struct range (
long fldnum;
unionfld_typesvalue;
}:

struct £fldDes{ /* field description */

char prompt [PROMPT_SZ]; /*Prompt string for DCT */

char fldname [FLDNAME_SZ];/*field name */

short offset; /* Offset in bytes from beginning of record */
short size; /* length in bytes of a field element */

short special; /* Special processing requirements */

short £field_type; /* Field type as defined in dbFldTypes.h */
short process_passive; /*should dbPutField process passive records*/
short choice_set; /* index of choiceSet GBLCHOICE & RECCHOICE*/
short cvt_type; /* Conversion type for DCT */

short promptflag; /* Does DCT display this field */

short lowfl; /* Is rangel CON or VAR */

short highfl; /* Is range2 CON or VAR */

short interest; /* interest level for reporting */

union fld_types initial:; /* initial value */

struct range rangel; /* Low value for field (Used by DCT) */
struct range range2; /* High value for field (Used by DCT) */
}:

struct recTypDes{ /* record type description */

short rec_size; /* size of the record */

short no_fields; /* number of fields defined */

short no_prompt; /* number of fields to configure */

short no_links; /* number of links */

short *link_ind; /* addr of array of ind in apFldDes */
unsigned long *sortFldName; /* addr of array of sorted fldname */
short *sortFldInd; /* addr of array of ind in apFldDes */

struct fldDes **papFldDes; /* ptr to array of ptr to fldbes */
};
struct recDes{ /* record description */

long number; /*number of recTypDes*/

struct recTypDes **papRecTypDes;/*ptr to arr of ptr to recTypDes*/
};

extern struct recDes *dbRecDes;

106 EPICS I0C Application Developers Guide Document Revision: 1

Chapter 12: Database Structures
Database Structures

precDes —>

‘ — [link index
re:l?;?aer link Index
papRecTypDes X
—> | field name
re.%?i?:es field name
no__fields se.
:g‘ﬁ.',?(?pt ind fldDes
*link_ind - ind fldDes
*sortFldName xR
*sordFldind
**papFldDes
fidDes
prompt

Figure 12-3: Record Descriptions

Figure 12-3 shows the memory layout of the record descriptions. Lets first discuss structure
recTypDes and then £1dDes.

Structure recTypDes describes the information specific to each record type. It contains the
following information:

rec_size: The size of arecord in bytes.

no_fields: The number of fields in a record.

no_prompt: The number of prompt fields, i.e. fields that are configured via DCT.
no_links: The number of link fields in a record.

link_in: Address of an array of field indices for the link fields.

sortFldName: Address of an array of sorted field names. Note that the array is an array
of long words. Thus the field names must be a maximum of 4 characters in length.
sortFldInd: Addrsss of an array of indexes into apFldpes for the sorted field names.
Thus when a sorted field name is located the field description can be located via this
array.

papFldDes: Pointer to an array of pointers to field descriptions.

Structure £1dDes contains a complete description of a field. The database access routines and
various utilities such as DCT use these definitions to access the database (the fields common to
all record types are also used). Thus, with the exception of record and device support routines,
the software has no knowledge of particular record types. This makes it possible to add new
record and device support and/or modify existing support without affecting most of the I0C
and utility software. Lets discuss each field attribute:

prompt: This is the prompt string used by DCT.
fldname: The field name.

offset: Offset in bytes from the beginning of the record.
size: Size of the field in bytes.

special: Is special processing required when field value is changed. This is discussed in
detail below,

field_type: The field type, i.e. DBF_xxx.

process_passive: This field determines in dbPutField requests to this field will cause
passive records to be processed.

EPICS Release: R3.12

EPICS IOC Application Developer's Guide 107

Chapter 12: Database Structures

Database Structures

choice.h - Choice

* choice_set: This is used by DBF_GBLCHOICE and DBF_RECCHOICE field types to
specify the associated choice set.

* cvt_type: This is used by DCT to display and decode field values. It applys only to the
field types DBF_UCHAR through DBF_ULONG. It must have the value CT_DECIMAL or
CT_HEX.

* promptflag: Is this a field the user can configure via DCT?

* lowfl: Specifies if rangel is constant or a variable. Must have the value CON or VAR.

* highfl: Similar to 1owfl except for range2.

* interest: Interest level for this field. This is used for reporting purposes. For example
dbpx honors this field. The lower the value the higher the interest level.

* initial: Initial value for field.

* rangel: Low value for field. If lowf1 =VAR then this must specify another field in the
same record.

* range2: High value for field. Similar to range1. Note that the field value must lie in the
range “rangel<=value<=range2”.

struct choiceSet { /* This defines one set of choices*/
long number; /*number of choices */

Deﬁnltlons char **papChoice; /*ptr to arr of ptr to choice string */
}:
struct arrChoiceSet{ /*an array of choice sets for particular record type*/
long number; /*number of choice sets */
struct choiceSet **papChoiceSet; /*ptr to arr of ptr to choiceSet*/
};
struct choiceRec{ /*define choices for each record type*/
long number; /*number of arrChoiceSet */
struct arrChoiceSet **papArrChoiceSet; /*ptr to arr of ptr to arrChoiceSet*/
};
/* device choices */
struct devChoice{
long link_type; /*link type for this device*/
char *pchoice; /*ptr to choice string */
};
struct devChoiceSet { /* This defines one set of device choices*/
long number; /*number of choices */
struct devChoice **papDevChoice; /*ptr to arr of ptr to devChoice */
char **papChoice; /*ptr to arr of ptr to choice string */
};
struct devChoiceRec{ /*define device choices for each record type*/
long number; /*number of devChoiceSet */
struct devChoiceSet **papDevChoiceSet; /*ptr to arr of ptr to devChoiceSet*/
}:
Figure 12-4 shows the memory layout of the choice definitions. In the database a choice field is
stored as an unsigned short value. The meaning is determined via the associated choice
structures. Four types of structures are referenced via the following pointers (stored in struct
dbBase):
 pchoiceCvt: Specifies a conversion choice.
* pchoiceGbl: Specifies a member of a set of global choices. These are choices that are
common to all record types.
* pchoiceRec: Specifies a member of a set of record choices. These are choices that are
special to the particular record type.
* pchoiceDev: Specifies a device choice, i.e. the set of device support routines for this
record. Each record type has its own sets of device support routines.
108 EPICS 10C Application Developer's Guide Document Revision: 1

Chapter 12: Database Structures

Database Structures

choiceSet
number
papChoice

"<choice string>"

arrChoiceSet
number
papChoiceSet

choiceRec
number
papArrChoiceSet

devChoiceRec
number
papDevChoiceSet

“<choice string>"

- choiceSet

|| num(l}aﬁr_

. paptholce "<choice string>"

| " |arrChoiceSet _:j

|| number

. papChoiceSet

H choiceSet

— || number
. papChoice

- devChoiceSet .

number | —

B papDevChoice

. papChoice — §I
B . d?ycl:(hoice
- in e
_"J pChT:tll::pe

“<choice string>"

Figure 12-4: Choice Definitions

—>""<choice
string>"

cvtTable.h

recSup.h -
Record Support

struct brkInt{ /* breakpoint interval */
long raw; /*raw value for beginning of interval */
float slope; /*slope for interval */
float eng;
}:

struct brkTable { /* breakpoint table */
char *name; /*breakpoint table name */
long number; /*number of brkInt in this table */
long rawLow; /*lowest raw data value allowed */
long rawHigh; /*highest raw data value allowed */

/*converted value for beginning of interval*/

struct brkInt **papBrkInt; /* ptr to array of ptr to brkInt */

}:
struct arrBrkTable { /* array of brkTable */
long number; /*number of break tables */

struct brkTable **papBrkTable;/* ptr to array of ptr to brkTable */

};

typedef long (*RECSUPFUN) (); /* ptr to record support function */

struct rset { /* record support entry table */
.long number; /*number of support routines */
RECSUPFUN report; /*print report */
RECSUPFUN init; /*init support */
RECSUPFUN init_record; /*init record */
RECSUPFUN process; /[*process record */
RECSUPFUN special; /*special processing */
RECSUPFUN get_value; /*get value field */
RECSUPFUN cvt_dbaddr; /*cvt dbaddr */
RECSUPFUN get_array_info:

EPICS Release: R3.12

EPICS 10C Application Developers Guide

109

Chapter 12: Database Structures
Database Structures

pecviTable —>

arrBrkTable
number
papBrkTable
brkTable
name
number
papBrkiNT

brkint
raw
slope
eng

Figure 12-5: Conversion Tables

precSup —> recSup
number
papRset
REST
numbers
report

RECSUPFUN
RECSUPFUN
RECSUPFUN
RECSUPFUN
RECSUPFUN
RECSUPFUN
}:

struct recSup {(
long

}:

number;
struct rset

Figure 12-6: Record Support

/*get string from enum item */
get_enum_strs; /*get all enum strings */
put_enum_str; /*put string to enum item */
get_graphic_double;

get_control_double;

get_alarm_double;

get_enum_str;

/*number of record types */

**papRset; /*ptr to arr of ptr to rset */

#define RSETNUMBER ((sizeof (stxuct rset) - sizeof(long))/sizeof (RECSUPFUN))

Figure 12-6 shows the memory layout of the record support definitions. Each record type must
have an associated set of record support routines. Note that only the record and device support
routines use the record structure declarations while accessing a record. The record support
routines are intended to isolate the rest of the IOC software from details of record access and

processing.

devSup.h -
Device Support

struct dset {
long

DEVSUPFUN
DEVSUPFUN

typedef long (*DEVSUPFUN)

(); /* ptr to device support function*/

/* device support entry table */
number;
DEVSUPFUN report;
init;

init_record;
DEVSUPFUN get_ioint_info;

/*number of support routines*/
/*print report*/
/*init support*/
/*init support for particular record*/
/*get I/0 interrupt information*/

/*other functions are record dependent*/

};
struct devSup (
long

number;

/*number of dset */

110

EPICS IOC Application Developer’s Guide

Document Revision: 1

Chapter 12: Database Structures
Database Structures

recDevSup —>
P P recDevSup
number
papDevSup
devSup
numbers
papDsetName —_ "
papDest <DEST name>
Dest
number
report
Figure 12-7: Device Support
drvSup —>
P P drvSup
numbers
apDrvName .
:agDrvet —> ‘“<driver name>"
—_—] —>
drvet
number
report
Figure 12-8: Driver Support
char **papDsetName; /*ptr of arr of ptr to name */
struct dset **papDset; /*ptr to arr of ptr to dset */
}:
struct recDevSup {
long number; /*number of record types */
struct devSup **papDevSup; /*ptr to arr of ptr to devSup */
}:
extern struct recDevSup *devSup;
Figure 12-7 shows the memory layout of the device support definitions. The device support
routines are intended to isolate the record processing routines from device specific details.
dl'VSllp.h - typedef int (*DRVSUPFUN) ();/* ptr to driver support function*/
. struct drvet { /* driver entry table */
D river SllppOl't long number; /*number of support routines*/

DRVSUPFUN report: /*print report*/
DRVSUPFUN init; /*init support*/
DERSUPFUN reboot; /*reboot entry*/
/* other functions are device dependent*/
}:
struct drvSup {
long number; /*number of dset */
char **papDrvName; /*ptr to arr of ptr to drvetName*/
struct drvet **papDrvet; /*ptr to arr ptr to drvet */
}:
#define DRVETNUMBER ((sizeof (struct drvet) -sizeof(long))/sizeof (DRVSUPFUN))

Figure 12-8 shows the memory layout of the driver support definitions.

EPICS Release: R3.12 EPICS IOC Application Developer's Guide 111

Chapter 12: Database Structures
Database Structures

112 EPICS I0C Application Developer's Guide Document Revision: 1

Index of Functions and Commands

db_post_event................ 8,72 dbFirstFielddes 40, 41

A db_pOSt_events 7 dbFirstRecdes 39,41

addToList «..... e 62 db_put field 19 dbFirstRecord 39,41

alarm e oo 69,71 AbAeeerceceenenonconcancnns 12,12 dbFreeBase «.eeveveeenvnencenen 40

atdD . o 44,44 dbAddr ..., 12 dbFreebase 40

dbAllocBase 38, 40, 40 dbFreeEntry. 40, 40

dbAllocEntry.......... 38, 39,40, 40 dbFreeForm......cvvuveenn.. 42,43

B dbAIIOCFOMM. v v v v vvunennnss 42,43 dbGet............. 48,51, 52, 52, 54

dbap...ceeeeiiiiiiiinrniinns 14,14 dbGetChoices vvvevineenenenann 42

bkptContceeuunneen 13 1 NP 13 dbGetField.8, 12, 18, 24, 29, 48, 49, 50,
bldCvtTable.................... 92 dbBufferSize................ 48,54 51,51, 52, 55, 64

bldDbRecType 93 ADCevererrnrennnennnneesnnnn 14 dbGetFieldName. 40, 41

bldDevSup..................... 92 dbCaAddInLink 48, 55,78 dbGEtFieldTYPe. . v vvvenerennnnn. 41

bldDrvSup. ...l 93 dbCaAddOutLink 49,55 dbGetForm 42

bldGbIChoice 92 dbCaGetLink. 49,56, 79 dbGetFormPrompt 42,42, 43

bldRecChoice 92 dbCaLinkInit. 99 dbGetFormValue. 42, 42, 43

bldRecDef..................... 93 dbCaPutLink. 49, 56 dbGetLink28, 29, 31, 32, 34, 35, 48, 51,

dbCommonlnit 48,51 55

C dbCOPYENIY . e evvnvennsrnnns 40, 40 dbGetLinkField. .o evvenennnnnn.. 43

dbCopyMent. oo cvvseeveoernnnnn 42 dbGetLinkType..covseeveennnenn 43

caadd event........oovvununnnn. 8 dbCopyRecdes «vovvuvevenennnns 41 dbGetMenuIndex +vveeeevennnns. 42

1o T - 8 dbCopyRecord «cevvnneeeneennss 41 dbGetNFields «oooeverennennnnns 41

CaPUL .. vreernnneraannnnnn, 8 dbCreateRecords s e ceveenenrnnns 41 dbGetNLInKS. oo veveverenennnees 43

callbackGetUseroouvv... 22 dbCvtLinkToConstant. e eeueeeo... 43 dbGetNMenuChoiceS v ovveeernnns 42

callbackRequest 22,79 dbCviLinkToPvlink. «vveeneennens 43 dbGetNRecdes «oveernennnnss 41,41

callbackSetCallback 22, 80 dbd.sieeiiieninnennenncnnnnans 13 dbGetNRecords. vvvevenneensn 41, 41

callbackSetPriority 22,81 dbDeleteRecords v e veveeeeennnns 41 dbGetPrompt. . covvennennnnsn. 41

callbackSetUser.oovvun... 22 dbDumpPvdvviiieniiennnn. 43 dbGetPromptGroup. «eeevvevann.. 41

Client_Stat «vvvevvrrnnrnnnonnnes 17 dbDumpRecords . oo evvvvvvnnnnss 43 dbGetPvlink «..vvvrneiiinnnnnn, 43

cvt_dbaddr, cereene eees76,76 dbeleseicrnrereneeneereennnees 17 dbGetRange.............. 38, 39,42

dbFastLinkGet. 48,51 dbGetRecdesName 39, 41, 41

dbFastLinkPut............... 48,53 dbGetRecordName 39,41, 41

D dbFindField. 41,41 dbGetString. 38, 39, 40, 42, 42

dbFindRecdes vovevveneenncnnnns 41 16117 12,12,18

gg—ﬁ‘;ﬁ;ﬁ"t‘g' g ig dbFindRecord « - vnvnmvnvnn o 41, 41 ADEIEP e enmemenniininns 12,12

- it dbFinishEntryovvvven.... 40, 40 412} 11¢3 o 15

EPICS Release: R3.12 EPICS IOC Application Developer's Guide 113

Index of Functions and Commands

dbInitEntry vevveeeennnns 40, 40
dbiOrseeevrvenncceocnes vesenes 14 E M
dblsDefaultValue+ 42 epicsPrtEnvParams......vve..... 17 makeSdrL. 59
ggils srreccresrtenceone -1, ié errtMessage 23,24,24,24,25 mOmitor 69,71
doLoad .1 ,95,97,98 coveoss. L1 gy Gk 279,80
dbLoadRecords. . 44, 87, 88, 95, 98, 98 eventTask 62
dbLoadTemplate. 44, 95,98 0
dbLoadTemplates. 87,95,98
ADIS . v 19 G onceTask...................... 64
dbNameToAddr .12, 13, 18, 48, 50, 51,

51,73, 76 get_alarm_double 68, 74,78 P
dbNextFielddes. 40, 41 é%}argéé?é% ------------ ibgz’l (7)2
dNowRecord. .11 do4l seLoontoldouble. |l g8,73,77 POOUETK i 68
dbNotifyCancel. 48,5454 GET_DEV_CHOICE....... 103, 103 post_event. 6, 57, 59, 60, 62
ADD e vvrereeerereennannnnnnne .14 get_enUM_Stre.ueeereeceoaensnns 77 prmt_Llst' .’ ! ’61
L AU 12 12 gel_enum_StrS.eecesronanescnces 77 process 3b. 66. .67. .69. :76 76
1 SO e, 12,12, 13 get_graphic_double. 68,70, 73,77 put am;)', ‘i.n.f o -.20, 66, 67, 63, /0, 7
dbProcess 13, 28, 34, 35, 48, 55, 55, 62, get_ioint_info......... 60, 61, 63, 81 put—enum— Olr, e 7

64, 65, 69, 70,79, 100 GET_PARR_CHOICE_SET.. 103, 103 - i
dbPut................ 48,52,53,54 GET_PCHOICE_SET....... 103, 103
dbPutField 8, 12, 18,29, 32, 33, 35, 47, GET_PDEV_CHOICE_SET . 103, 103 R

48, 49, 50, 51, 52, 52, 53, 55, 57 GET_PDEVSET............... 104
ABPULFOLM «+ + v« v'evoness. 42,42, 43 GET_ PDEVSUP...cvevnneenn. 104 read_ai.................. 78,79, 80
dbPutLink.. 28,29, 35, 47, 48, 53 GET PDRVET ...ccuvern.. 104, 104 recGbIDbaddrError. . oveeeennan. 73
dbPutMenulndex «voveveeeeennns 42 GET_PDRVNAME......... 104, 104 recGbIFwdLink. 69,74
dbPutNotify 18, 19, 48, 54, 54, 55 GET PDSET...cvveveennn. 103, 104 recGblGetAlarmDouble, .. 74
AbPUNOLEYMAPTYPG. + o v veeses 54 GET_PHLPDES ,,,,,,,,,,, 102, 102 rechlGetContrplDouble 73,77
AbPULPYENK «vvvenenennnnsnnns 43 getprecision............. 68, 74,77 recGblGetFastLink 32,75
dbPutString. 38, 39 42,42 GET_PRECLOC........... 102, 102 recGblGetField RELEEEEERREE P 85
dbReadovsninin, 37,40,40 GET_PRECNAME......... 102, 102 recGblGetGraphicDouble. . . 70, 73, 77
dbRenameRecord......... veeeesdl GET_PRECTYPDES........ 102, 102 recGblGetLinkValue........... 74,79
dbReportDeviceConfig. 43 GET PRSET...cvveeneenns 103, 103 1ecGbIGetPrec. o v v vvvevaennn. 74,77
dbS vevvevececnne ceseecsene ... 13 get units 67,70,77 rechth?tTlmeSta.lmp """"" 69,74
dbSCAN . .\vreeeeinn, 61 get value................ 67,70, 76 recGblInitFastinLink. 74,75
dbScanLock 28, 31, 48, 55, 62, 80 GetReSOUICE vvvvveenvenoncannas 98 reCGmetFaStO_Uthk -------- 75,75
dbScanLockImt ______________ 48,55 GetResourcesovveeun... 98 reCGbIPUtF?Sthk ----------- 53,75
dbScanPassive28, 29, 34, 48, 53, 55, 57 - A 19,19 recGblPutLinkValue 74
dbScanUnlock., 28, 48, 55, 62, 80 '“GgllR“"’dEmr --68,69,73,79, 80,
ot ' recGbIReCSupETor.... 7
Abta. oeesriearinaninnn 44,44 ileenenrnriireranninannns 75,81 [CObReselAlams. ... 71,72,73,73
dbgfennnnnnnnnnns, s 18,18 init_record67, 68,75, 78,79, 80, 81, 81, recGbiSetSevr.......... 71,72,72,81
dbtpfesnnnnn.. i 18,18 99 (330 ¢ F 75, 81
dbipn.eeeseeneneneneennns. 18,18 InitDevSup 99, 100
dbtreceeceeencene veesoene veees 13 InitDrvSup., 99 S
dbValueSize 48,55 INitHOOKS. v v v evvenrnennnnsns 96, 96
dbVerify 38,39,42,42 initPeriodic 64 scanAdd................. 59, 59, 63
dbVerifyForm............ 42,42,43 InitRecSup.cooonvenen.... 99 scanDelete............... 359, 59, 63
dbWrite................. 37, 40,40 intConnect. oo 61 scanlnit.................... 59, 59
deleteFromList oo vvevveeenns vees 62 110160} - W 73 scanfolnit............. 59, 60, 61, 63
devAiSoft............c.uuenn.. 79 jocInit 62, 63, 67, 69, 75, 78, 88, 95, 96 scanloRequest............ 59, 60, 63
devConnectInterrupt. s v o ovvu. .ee 84 iocLogDisable............... 95, 98 scanList........... 61, 62, 62, 63, 64
devCreateMask................. 85 joeventCallback................. 63 scanOnce................ 57,59, 64
devDigToNml.................. 85 foscanpvt.............ouuin... 61 scanpelieeeeeciiieneiananan, 15,59
devDisableInterruptLevel......... 84 [07:11) 3 (+) DA 15, 59
devDisconnectInterrupt00... 84 £ 11] 7 o) O N 15,59
devEnableInterruptLevel 84 L I A 15
devNmlToDig.................. 85 Special.eeeeeeiiiiiiiiininninnnn. 76
devNormalizedGblGetField 8¢ losMsg.............. 24,98 SHCDY. v eeeeeneeeneen 22
devRegisterAddress «ooevevoen 84,84
devUnregisterAddress «o.vveeee .. 84
114 EPICS IOC Application Developer's Guide Document Revision: 1

Index of Functions and Commands

T
taskDelay...........coovevvnt, 64
taskwdAnylInsert................ 23
taskwdAnyRemove.............. 23
taskwdInsert0000venn.. 23
taskwdRemove 23
timexN............covvnennn... 18
147 AP 19,19
Tsinit....oovvviiiennnnnnnnn, 99
TSConfiguUIe vvvvveevssonsssonns 96
TSconfigure.covvvvnn... 95

\')

VECHSE cveerveerroceeoconcnanas 17

w
wdStart 81

EPICS Release: R3.12

EPICS 10C Application Developer’s Guide

115

Index of Functions and Commands

116 EPICS I0C Application Developer’'s Guide Document Revision: 1

